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Abstract The aim of the paper is to present, test and discuss the implementation
of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs)
outdoors, in partially structured environments. Every issue of the whole process is
discussed in order to obtain more accurate localization and mapping from UAVs flights.
Firstly the issues related to the visual features of objects in the scene, their distance
to the UAV and the related image acquisition system features and their calibration
are evaluated for improving the whole process. Other important, considered issues
are related to the image processing techniques, such as interest point detection, the
matching procedure and the scaling factor. The whole system has been tested using
the COLIBRI mini UAV in partially structured environments. The results that have
been obtained for localization, tested against the GPS information of the flights, show
that Visual SLAM delivers reliable localization and mapping that makes it suitable for
some outdoors applications when flying UAVs.

Keywords Computer Vision - Visual SLAM - Unmanned Aerial Vehicles (UAV) - 3D
SLAM

1 Introduction

Vision is the richest source of information from our environment, and that is the reason
why SLAM algorithms have also begun to be used with visual information. The infor-
mation provided by vision systems consists on a vaste amount of data per time that
requires to be processed in order to provide SLAM algorithms with useful information.
Hence, image processing algorithms have to precede SLAM algorithms and they highly
determine the results and successfulness of the whole visual SLAM process.

This paper tackles the whole process of visual SLAM from rotary wings UAVs
in outdoors environment, from the image acquisition to the final UAV localization

Computer Vision Group U.P.M.
Tel.: +34-913363061

Fax: +34-913363010

E-mail: jatrigueros@argongra.com



and environment mapping. The obtained results are shown to be a useful information
source that complements, and in some applications can replace, other onboard sensors
as GPS or inertial ones. The information provided by visual SLAM is related to actual
objects present in the environment, constructing a map of them and localizing the
UAV relatively to these objects. This information can not be provided by GPS or other
onboard sensors, which can only localize the UAV without any relative localization to
external objects that can be verified by actual, external data, as visual SLAM does.
Visual SLAM can also be useful in cases of GPS signal drop-off. Finally Visual SLAM
can also be used for sensor fusion, providing the complementary advantages of diverse
and complementary sources.

Visual SLAM techniques can be first classified in Stereo and Monocular. The first
includes also more than two cameras approaches. There are many successful implemen-
tations of visual slam with stereo cameras [1], [2]. Monocular approaches where started
by A. J. Davision [3] who used only one camera to reconstruct indoor environments.
Successful results have been obtained using Visual SLAM indoors also by [4], Sunhyo
and Oh in [5] and Choi and Oh in [6].

With monocular vision the initialization of features is a difficult problem. The
approach given by Davison [3] used a delayed initialization algorithm. This algorithm
waits until the camera position has parallax enough to determine the position of a
feature and then includes it on the filter. This approach needs a depth interval in
which we expect to find the features and therefore is not suitable for outdoor uses where
very near features and very far features can coexist. Montiel [7] proposes a solution to
the aforementioned estimation problem by using the so called inverse parametrization,
which is also used in our approaches and tests. This technique allows the application
of the algorithm to outdoor scenes. Nonetheless, as a drawback that increases the
computational cost, which is also augmented in our case due to the big amount of key
points in non-structured outdoors 3D environments.

Another problem of SLAM in outdoor environments is the high number of features
and the long displacement between loop-closings. The most impressive application for
outdoor SLAM algorithms is [8]. Here the authors use a SLAM algorithm based on 3D
laser profiles and uses a vision based algorithm to detect loop-closure after a very long
loop. Other approaches like Lemaire and Berger [9] uses a feature database jointly with
a strong detection algorithms based on the feature topology.

There are two main filters used in the SLAM problem: Extended Kalman Filter,
EKF, and Rao-Backwellized Particle Filter, RBPF. Particle filters are not widely used
because it needs a very high number of particles when the state dimension is high, so
the RBPF is used instead of this. Examples of implementations of Visual Slam with
RBPF are [1],[2], [10]. Approaches using EKF are [3], [7].

Visual Slam implementations mainly use point features in contrast with the imple-
mentations of 2D laser based SLAM witch are based on occupancy grids. Occupancy
grids are not exclusive of non visual systems as shown in [1]. Several algorithms have
been used for interest point detection and visual features extraction[11][12], as well as
for their matching in consecutive images [13], or not consecutive [8]. Other approaches
use other geometry entities as features like Dailey [10] which uses lines.

The use of visual SLAM onboard UAV is no yet very spread although there are some
successful implementations like: [14], [15], [16], [9]. The system presented by Toérnqvist
et alt. [14] uses a FastSLAM offline algorithm that is fussed with the Rao-Blackwellized
particle filter in order to get 2D information that is necessary to estimate the position
and the altitude of the UAV. Good results concerning the position estimation have



been obtained but, on the contrary, not so good results have been achieved in relation
to altitude estimation. Another work in the same field was presented by Kim and
Sukkarieh [15] where vision, a Radar device and an high-quality Inertial Measurement
Unit (IMU) are used for a 2D inertial-SLAM in order to get better results. Yet they are
still shown in 2D SLAM, which means there is not three dimensional reconstruction
of the environment. In Miniature Air Vehicle (MAV) platform, the research made
by McLain et alt. [16] was based on a camera positioning device that estimates the
position and altitude of the MAV and the pixel location of the target in an image. Its
results can localize the target in world coordinates using different techniques so as to
reduce the localization error. N. Aouf et alt., on the other hand, developed in [17] an
airbone SLAM algorithm with Inertial Navigation System (INS) and Visual system by
implementing an Extended Kalman Filter (EKF). They proposed a solution to remove
the landmarks from the EKF, a methodology based on circle intersections, and gave
results with virtual images taken from a downward looking virtual camera.

Therefore, we have implemented an EKF version that takes into account our specific
UAYV application in order to optimize the computational time, not letting it to increase
oversize, as detailed in section 4. We present in this paper the results of applying
Visual 3D SLAM techniques onboard an UAV below. Those results will be compared
with the flight information delivered by the GPS and IMU. These results are presented
in section 5 and they demonstrate that robust and coherent positioning and mapping
are obtained,which make them suitable for being used in UAV applications where the
visual information regarding its environments plays an important role, such as outdoors
civilian infrastructures visual inspection, environmental events detection and tracking
and visual security applications.

2 System Description

The COLIBRI testbed [18], is based on a gas powered industrial twin helicopter with a
two stroke engine 52 cc and 8 hp (figure 1) capable to carry up to 12 kg payload. The
platform is equipped with a xscale-based flight computer augmented with sensors (GPS,
IMU, Magnetometer, etc fused with a Kalman filter for state estimation). Additionally
it includes a Pan Tilt servo controlled platform for many different cameras and sensors.
On the other hand, in order to enable it to perform vision processing, it has a VIA
mini-ITX 1.25 GHz onboard computer with 1 Gb RAM, a wireless interface and a
support for many Firewire cameras including Mono (BW), RAW Bayer, color and
stereo head for images acquisition. Additionally, it is possible to use IP cameras and
analog cameras as well.

The system runs in a client-server architecture using TCP/UDP messages. Comput-
ers run Linux OS working in a multi-client wireless 802.11g ad-hoc network, allowing
the integration of vision system and visual tasks with the flight control. This archi-
tecture allows embedded applications to run onboard the autonomous helicopter while
it interacts with external processes through a high level switching layer. The visual
control system and additional external processes are integrated with the flight control
through this layer using TCP/UDP messages[19]. The layer is based on a communica-
tion API where all the messages and data types are defined. The helicopter’s low-level
controller is based on simple PID control loops to ensure its stability. The higher level
controller uses various sensing mechanisms such as GPS and/or vision to perform tasks



Fig. 1 UPM-COLIBRI I Helicopter platform used for Visual SLAM tests

such as navigation, landing, visual tracking, etc. Several applications based on visual
control have been achieved employing the control architecture [20] [21].

3 Interest Points Detection And Matching

The selection of interest points that can be tracked along an image sequence is a key
step in the visual SLAM algorithm because it ensures the stability of the Kalman filter.
Since this step needs to be a reliable process it is important to have a measure of the
reliability of an extracted feature, in order to choose the most important and robust
one. There are some alternatives to find robust features that can be identified and
characterized with a descriptor like the SURF [22] or SIFT [23]. For example, in [24]
Danesi et alt. they use SIFT for a wheeled vehicle visual servoing. Other detectors
like the Harris Corner Detector [25] find corner features that are very common in
semi-structured environments, like in [26], where Garcé-Garcia et alt. used the Harris
Detector with RANSAC for a robust position estimation. Based on previous work that
evaluates the performance of interest point detectors for the SLAM problem [27], the
most appropriate choices are the Harris detector, SIFT and SURF, but since it is a
well known fact that SURF computation is faster than SIFT’s and their behaviors are
similar SIFT is not consider in the work.

Two alternatives are presented in this section; Harris Detector with a reliability
measure and the SURF feature. The subsequent matching algorithm is also described
for each type of feature too.

3.1 Harris Corner Detection and a reliability Index

The Harris detector is a well known detector that is widely used in a large amount
of applications. It extracts many corners very quickly based on the magnitude of the
eigenvalues of the autocorrelation matrix. However, it is not enough to use this pro-
cedure to ensure the robustness of the extracted corner. The aim that is sought is to



increase the probability to find it again in the next image and to match it correctly.
For that purpose a quality measure has been defined and some procedures have been
implemented in order to achieve the extraction of good features to track.

Due to the noise in the images caused by the sensor itself and vibration of the
UAV, it is important to filter the image with a mean filter and a median filter. Then,
the gradient G of the image is calculated, and only pixels with a norm of the gradient
above a value are considered to be processed. Afterward the Canny edge detector [28]
algorithm is used in the previously selected pixels keeping pixels laying on well define
edges. This reduces the number of extracted features. After this process is completed,
the corners are extracted with the standard version of the Harris detector. Next, the
sub-pixel precision version of the detector is applied [29] shifting the window over
three iteration. Based on the results of those two algorithms a stability measure is
calculated to determine the maximum position variation es. Finally, the size of the
detector window is increased from 5x5 to 7x7, to prove and test the stability of the
position of the extracted corners, and a measure of this variation is calculated, named
ew based on a “maximum difference allowed” criteria. All those measures are integrated
into a function @ 1 that returns a global value of the quality and robustness of the
extracted corner using the product of the eigenvalues A1 and A2, the norm of the
gradient ||G|| of the interest point and the measures described above.

At Ae||G]
Q()‘17>‘27 ||G||7e-976w) - (1 +es)(1 + ew) (1)

The global value calculated for each point is used to classify the extracted features
into three groups. This distinction between the corners is going to drive the matching
process: each group represents a level of quality of a corner. This allows one to make the
assumption that good corners are going to appear in the next image, and to suppose
that they are going to be found in one of the next levels in case they degrade. Figure
2 illustrates the three levels of classification of the corners and how the extraction
method keeps features that are on structured parts of the scene none of which belongs to
landscape. Another advantage of this classification resides in the possibility to include
new features into the Kalman Filter of the SLAM process only if they belong to the
level 1 group.

3.2 SURF Features

Speeded Up Robust Feature algorithm extracts features from an image which can
be tracked over multiple views. The algorithm also generates a descriptor for each
feature that can be used to identify it. SURF features descriptor are scale and rotation
invariant. Extracted features are blob like features. Ollero Et al. used this method in
[30] for position and motion estimation from multiple planar homographies taken from
different UAVs. The kinds of extracted features are shown in figure 3 on a structured
scene. Tests were also carried out with unstructured scenes such as the ones shown in
figure 4.

Scale invariance is attained using different amplitude gaussian filters. The appli-
cation of this filter results in an image pyramid. The level of the stack from which
the feature is extracted assigns the feature to a scale. This relation provides scale in-
variance. The next step is to assign a repeatable orientation to the feature. The angle
is calculated through the horizontal and vertical Haar wavelet responses in a circular



Fig. 2 Extracted corners features classified into three levels. Red corners are the most stable
ones and belong to level 1 group. Green corners are classified as level 2 and blue ones as level
3.

Fig. 3 SURF Features tested on semi-structured scenes

domain around the feature. The angle calculated in this way provides a repeatable
orientation to the feature. As with the scale invariance the angle invariance is attained
using this relationship.

SURF descriptor is a 64 element vector. This vector is calculated in a domain
oriented with the assigned angle and sized according to the scale of the feature. De-
scriptor is estimated using horizontal and vertical response histograms calculated in a
4 by 4 grid. There are two variants to this descriptor: the first provides a 32 element
vector and the other one a 128 element vector. The algorithm uses integral images to
implement the filters. This technique makes the algorithm very efficient.



Fig. 4 SURF Features tested on unstructured scenes

3.3 Corner Features Matching

Once corner features are extracted the next step is to correctly match the features
of the current image with as many features of the previous image as possible. Since
the corners are divided into levels, the first matching attempt is made using the level
1 corners of the current image against the 1st and 2nd levels of the previous image.
Then a matrix containing the result of a similarity function is calculated for all the
possible match pairs for this set of corners. The similarity function is the normalized
cross-correlation of the context of the corners, in this case is a 9x9 patch centered
at the position of the feature in pixel resolution. However, other similarity functions
can be used as, for example sum of squared differences or the Earth Mover distance.
The next step is to find each and every possible set of matches that maximize a cost
function which can be defined as follows:

— Cost function rewards high cross-correlation.

— Cost function penalizes matching pairs whose distance differs from the average
displacement of the set of matched features, based on the fact that most of them
will move in solidarity.

— Cost function rewards the number of attained matches.

If I;, is the kth image, quc is a corner in that image, lets define ¢ as the match
between a corner in the kth and (k-1)th image like a 2-tuple ¢ = (L];_I,LI;) and
lets define {2 = ¢1,t2,..., L4, ..., tn as the set of matches between the corners of those
two images. Given those definitions and the considerations described above, the cost
function is:

ny ¢
S V(dwi—dz)2 + (dy; —dy)?
V/(dz)?+(dy)?

J(2) = (2)

1+



Table 1 Results attained with the matching algorithm described in 3.3 for Corner Features

Image 1 2 3 4 5 6 7

Level 1 Corners 5 15 15 15 15 15 15
Level 2 Corners 20 20 20 20 20 20 20
Level 3 Corners 52 53 55 47 43 46 46
Total Corners 87 8 90 82 78 81 81

Matched on Phase 1
Matched on Phase 2
Matched on Phase 3
Correct Matches
Wrong Matches
Tracked Corners

11 11 10 10 13 10
3 0 0 9 9 0
11 5 3 9 20 6
25 16 11 24 38 14
0 0 2 4 4 2
0 9 8 10 16 12

[e=NoNoNoNoNel

where 4 is the ith match of 2, ¢; is the cross-correlation of ith matched features,
dx; and dy; are position difference of the Lf; corner in each axis from the matched
corner ng_l in sub-pixel precision, n is the number of matched features, and dz and
dy are the mean of those differences of position of the set of matches £2.

To find all possible sets of matches, including the case there is no match for some of
the current corners, a recursive algorithm is used to explore possible combinations. Yet,
the amount of combinations is too large to calculate the cost function for every single
possibility. The way to avoid unnecessary calculation can be found in the criteria used
to formulate the cost function. A corner is consider to be matched with other if their
correlation is higher than an umbral and if the difference in position is lower than a
maximum displacement. These conditions reduce the number of possible sets to a more
reasonable amount of possible sets to be calculated. In order to exploit the assumption
that the matching will be done on consecutive images captured at a reasonable frame
rate like 30 fps, empirically we have found that cross-correlation higher than 0.98, and a
search radius of 100 pixels works fine for this first step of the matching procedure. The
size of this radius of search depends on the frame rate, the angular and lineal velocity
of the UAV and the distance of the objects in the scene. This procedure results in the
definition of a global motion parameter of the corners of the current image compared
with the ones in the previous frame. Using the information of the best found match,
the procedure is repeated with the unmatched corners of the 1st level and 2nd level
corners of the current image. But this time candidate corners of the current image
are translated (—dx, —dy) to match them with the unmatched features of the previous
image in a radius of 4 pixels. Only matching pairs with cross-correlation higher than
0.96 are considered. To find the best set of matches in this second step the cost function

is Zci.

Finally, in the third phase, the algorithm tries to match features in the previous
image that were matched before. All unmatched features of the current and previous
images including 3rd level corners are matched using the same procedure of the sec-
ond matching attempt, allowing matched pairs with a cross-correlation higher than
0.96 to remain, only if they were matched before. Some results of the entire stages of
the matching process are summarized in table 1, while figure 5 shows graphically the
attained matching.



Fig. 5 Corner Features are matched using the procedure described in section 3.3. Red lines
show matches obtained in phase 1, while green lines represent the matches of phase 2 and the
blue lines depict the ones made in phase 3.

3.4 SURF Features Matching

The procedure to match SURF features is based on the descriptor associated to the
extracted interest point. An interest point in the current image is compared to an
interest point in the previous one by calculating the Euclidean distance between their
descriptor vectors. A matching pair is detected if its distance is closer than 0.9 times the
distance of the second nearest neighbor and the SSD error between the two descriptors
is less than 150000. The procedure for a sequence of images begins with the extraction of
all features in the first image. Thirty interest points well distributed all over the image
are selected to become the initial database. Extracted SURF features in the next image
are compared to the database using the Euclidean distance as described above. This
reduces the computational cost of matching all the possible features between frames
and allows to track a constant set of features along a high number of frames. If the
matching of the thirty features in the set is not possible, new features are added to
this set using the same procedure employed for the first thirty. To avoid the insertion
of features during short periods of no-detection of features, new features are inserted
only when the number of matched features is below ten.

SURF features extraction and matching have been tested with semi-structured
and unstructured scenes to use different techniques depending on the scenes and to
achieve better performance in SLAM algorithms. SURF features behave similarity in
both cases. Table 2 summarizes the behavior of SURF. Because of the results of Harris
detector indicate that it finds features that almost in all cases belong to structured
objects of the scene, the SURF features are used on unstructured scenes.



10

Table 2 Comparison between semi-structured and unstructured scenes for SURF algorithm

Scene Total features  Matched features ratio
semi-structured 1559 884 56 %
unstructured 3590 1518 42 %

4 Visual SLAM

This section presents the implementation of a visual SLAM algorithm with monocular
information. No prior information of the scene is needed for the proposed formulation.
In this approach, no extra absolute or relative information, GPS or odometry are used.
First, the formulation to the problem will be described. Then, the details of the Kalman
filter are explained. Finally, the particularities of this approach are addressed.

4.1 Formulation of the problem

The problem is formulated using state variables to describe and model the system. The
state of the system is described by the vector:

X = [x,s81,82,83,...] (3)

where x denotes the state of the camera and s; represents the state of each feature.
The camera state has 12 variables. The First six variables represent the position of
the vehicle in iteration k and in the previous iteration.The Next six variables, vector
[p, g, 7], represent the rotation at the iteration k& and k — 1. Rotation is expressed using
Rodrigues notation. This expresses a rotation around a vector with the direction of
w = [p, q,7] of an angle § = \/p? + g2 + r2. The rotation matrix is calculated from this

representation using
=1+ wsin(0) + &% (1 = cos()) (4)

where I is the 3x3 identity matrix and & denotes the antisymmetric matrix with entries

0 —r gq
=71 0 —p (5)
—¢p O

Therefore the state of the camera, not including the features, is composed by the
following 12 variables,

X = [xkn Th—15Yk>sYk—15Rks Rk—15PksPk—1,9k> dk—1, Tk, Tk*l] (6)

Others implementations of monocular SLAM uses quaternion to express the rotation
[7]. The use of Rodrigues notation, instead of quaternion, allows to reduce the dimen-
sion of the problem using only three variables to represent the rotation.

Rodrigues representation avoids the singularities of other three-parameter repre-
sentations but has a discontinuity at rotations of 180 degrees. This parametrization is
chosen instead of quaternions since quaternions force the introduction of a unit norm
restriction. This restriction is difficult to handle in the context of a conventional EKF.
It can even lead to singularities in the Kalman filter matrices [31] although noise and
system imperfections help to avoid this situation.
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Using a discrete system storing the states at instant k and k-1 instead of considering
a state composed of position and velocities at instant k helps the introduction of
angular representations that are not linear with angular velocities. It also allows the
introduction of movement models without many changes in the algorithm structure.
Both formulations are equivalent mathematically.

Each feature is represented as a vector [s;] of dimension 6 using the inverse depth
parametrization proposed by Javier Civera in [7]. This parametrization uses six param-
eters to define the position of a feature in a 3Dimensional space. Each feature is defined
by the position of a point, the direction of a line based on the point and the inverse
distance form the point to the feature along the line. This parametrization is shown
in figure 6. This reference system allows the initialization of the features without any
prior knowledge about the scene. This is important in exterior scenes where features
with very different depths can coexist.

s; = [z0,0, 20,0, ¢, p] (7)

This parametrization is converted to 3D world coordinates using

cos(0)sin(¢p)
m(0, ) = —sin ()
cos(0)cos(9)
[-Tun Yuw Zw] = [$07 Yo, Zo} + % . m(97 ¢) (8)
w
N
57
XO U :
______ ¢
(x,y,2)

Fig. 6 Inverse Depth parameterizations. The position x,, of a feature s; is given by the
position of a point z,, the direction of a line, 6, ¢, and the inverse of the distance from the
point z, to the feature z,,. The State vector is completed by the position of the camera and
its rotation
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4.2 Prediction and correction stages

The algorithm main loop has two stages: prediction and correction. In the prediction
stage, uncertainty is propagated using the movement model. The correction stage uses
real measurements and predicted measurements to compute a correction to the predic-
tion stage. Both stages need a precise description of the stochastic variables involved
in the system.

There are mainly two approaches to implement this filter: extended Kalman filter
and particle filter (FastSLAM). Both filters use the same formulation of the problem
but have different approaches to the solution. The advantages of the Kalman filter are
the direct estimation of the covariance matrix and the fact that it is a closed mathemat-
ical solution. Its disadvantages are the increasing computational requirements with the
number of features, the need of linearization of the model and the assumption of gaus-
sian noise. On the other hand, particle filters can deal with non-linear, non-gaussian
models but the solution they provide depends on an initial random set of particles
which can differ in each execution.

Given the previous facts, the Kalman filter has thus been chosen since its results
can be traced back and experiments are repeatable. The Extended Kalman filter allows
the use of non-linear models through equation linearization.

The prediction stage is formulated using linear equations

Xpp1=A-Xp+B- U
Boi=A-P-AT 4+ Q 9)

where A is the transition matrix, B is the control matrix and ) is the model covari-
ance. Camera movement is modeled using a constant velocity model. Accelerations are
included in a random noise component. For a variable n which represents any of the
position components (z,y, z) or the rotation components (p, g, r) we have:

N1 = N + v - At (10)

Where vy, is the derivative of n or speed. We can estimate vy as the differences in
position,

ne —Np—
Nk41 = Nk + (thkl> At =2np, — xp—1 (11)
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Feature movement is considered constant and therefore is modeled by an identity ma-

trix. Now full state model can be constructed

[ Tht1 ] ?_01 [ xg ]
T 5 1 Tp—1
Yk+1 - Yk
y: 1o Yk—1

2 —1
Zk+1 2k
2k Lo Zk—1
2 -1
Th41 Tk
o 10 e (12)
2 -1
Pk+1 Pk
PZ 1o Pk—1
2 -1

qk+1 9k
q: 1o qk—1

S1,k+1 81,k

Correction stage uses a non-linear measurement model. This model is the pin-hole

camera model. The formulation of the Extended Kalman Filter in this scenario is

Kpy=P,-J'(J-P-J" +R)™!
Xp =Xy + Ky - (Z), — H(Xy))
P,=P, - K- J- P, (13)
Where Zj, is the measurement vector, H(X) is the non-linear camera model, J is the
jacobian of the camera model and K}, is the Kalman gain.
The movement of the system is modeled as a solid with constant motion. Acceler-
ation is considered a perturbation to the movement. A pin-hole camera model is used
as a measurement model.

nu f00 Tw
no| =l0fo0]|- [RT]- | (14)
n 001 Zi”

where u and v are the projected feature central coordinates. Distortion is considered
using a four parameters model (k1, k2, k3, k4)

r2 = u2 + v2
2 4
Cdist =1+ kor® + kir
g =u-Cgist + ko(2u-v) + k‘3(7“2 + 2u2)

Ya = v - Caist + k2 (r® + 20%) + k3(2u - v) (15)

The state error covariance matrix is initialized in a two part process. First, elements
related to the position and orientation of the camera, x, are initialized as zero or as a
diagonal matrix with very small values. This represents that the position is known, at
the first instant, with very low uncertainty. The initialization of the values related to
the features, s;, must be done for each feature seen for the first time. This initialization
is done using the results from [7]:
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Fig. 7 Mahalanobis distance representation

Pyx .
new
Kk = R; , J (16)
Op
Where
I 0 0
J=1 08s s gg..._0s os (17)
Oxyz Opqr 9x4,yd 9po
100 0 0 O 0 0 0
010 0 0 O 0 0 0
I FEY S O O ) B
Oxyz 000’ dpgr p 0q or | 0%4,Yq 21 dya | 9po 0
000 06 06 06 o4 98 0
dp dq Or Oxq Oyd
000 0 0 0 0 0 1

(18)

Robust feature tracking and detection is a key element in the system. In order to

improve the robustness of the feature matching process a Mahalanobis test is used. The

filter is implemented using Mahalanobis distance between the predicted feature mea-

surement and the real measurement. Mahalanobis distance weighs Euclidean distance

with the covariance matrix. Figure 7 shows a representation of Mahalanobis distance.
This distance is the input to a X2 test which rejects false matches.

Z-J-xX)-cHZ-T - X)>x2 (19)

where
C=H-P-H +R (20)

The scale of the reconstruction is an unobservable system state. This problem is
covered in [32] by Javier Civera. The use of inverse depth parametrization avoids the
use of initialization features of know 3D position. This allows the use of the algorithm
in any video sequence. Without these initialization features the problem becomes di-
mensionless. The scale of the system can be recovered using the distance between two
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points or the position of the camera and one point. Computational cost is dependant
on the number of features in the scene, and so the increasing scene complexity af-
fects processing time in a negative way. Robust feature selection and matching is very
important to the stability of the filter to achieve a correct mapping.

5 Results

Several tests have been made using the Colibri I testbed. In this test, a series of tra-
jectories around a 3D scene were performed flying in autonomous mode navigation
based on way points and desired heading values. The scene is composed of many ob-
jects, including a grandstand, a van and many other elements, and also of a series of
marks feasible for features and corners detection. For each flight test a 30 f.p.s. image
sequence of the scene was obtained, associating the U.A.V. attitude information for
each one. That includes the GPS position, IMU data (Heading, body frame angles and
displacement velocities) and the helicopter position estimated by controller Kalman
Filter, on the local plane with reference to the takeoff point.

—— U.A.V. trajectory
— U.A.V. Heading

o

=

U.A.V. Up Position Local Plane (m)
©

w o

U.A.V. North Position Local Plane (m) U.A.V. East Position Local Plane (m)

Fig. 8 3D flight trajectory and camera position reconstruction, obtained using the flightlog
data. The blue line depicts the translational movement and the red arrows represent the head-
ing direction of the camera (pitch and yaw angles). Superimposed Images show the different
perspectives obtained during the flight sequence around the semi-structured scene.

Using the flightlog it is possible to reconstruct the 3D trajectory of the vehicle and
the camera and/or helicopter pointing direction. Figure 8 shows a reconstruction of
one flight around the test scene.

Tests have been made with semi-structured scenes and un-structured scenes. Also,
very different distances to the features have been used. The implementation of inverse
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depth parameterized features and of dimensionless reconstruction allows the use of the
algorithm in relation to different kind of scenarios.

5.1 Semi-structured scene

Results for tests using a tracking algorithm for structured elements are shown on figure
9. Reconstructed features are shown as crosses. In the figure some references planes
were added by hand in order to help with the interpretation. Figure 9 shows an image
from the sequence used in this test.

Fig. 9 Semi-structured scene reconstruction. The Upper figure shows reconstructed points
from the scene shown in the lower figure. Points are linked manually with lines to ease the
interpretation of the figure. All the reconstruction is done dimensionless to show the original
results. To recover the scale at least two points must have known coordinates.
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Results show that the reconstruction has a coherent structure but that the scale of
the reconstruction is function of the initialization values. The scale can be recovered
using the distance between two points or the positions of one point and the camera.

-0.01
-0.01
-0.02
-0.02
-0.03
-0.03
-0.04

-0.04
-0.05

Fig. 10 Covariance matrix evolution. In this figure, uncertainty is represented as a point
cloud. The figure on the right shows the reduction of uncertainty after a few observations. The
uncertainty in depth direction is still hight due to low parallax in this short movement.

The uncertainty of the features is reduced if observations of features better known
are used. Figure 10 shows the variance of the features. Uncertainty is represented as
a point cloud around the reconstructed position. Ellipsoids are not an appropriate
form of representation due to the inverse depth parametrization. The figure shows
how uncertainty is reduced in sequential observation. It can also be seen how depth
uncertainty is much greater than uncertainty of other directions.

Uncertainty point cloud is represented in figure 11 as a group of small points.
Numbers represent the detected features. The sequence shows the evolution of the
features position and their uncertainty.

Finally the camera movement relative to the first image is compared with the
real flight trajectory. For this the (z,y, z) axis on the camera plane are rotated to be
coincident with the world reference plane used by the UAV. The Heading or Yaw angle
() and the Pitch angle (0) of the helicopter in the first image of SLAM sequence,
define the rotational matrix used to align the camera and UAV frames. The Rotation
Matrix is defined by:

cos(y) sin(v)) 0
R(¢,0) = | cos(0) sin()) cos(f) cos(v) —sin(0) (21)
sin(0) sin(¢) sin(0) cos(¢p) cos()

The displacement values obtained using SLAM, are rotated and then scaled to be
compared with the real UAV trajectory. Figure 12 shows the UAV and SLAM trajecto-
ries and the medium square error (MSE) between real flight and SLAM displacement,
for each axe. In X and Y axes, the trajectory adjusts better to the real flight as soon as
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Fig. 11 Covariance evolution. The uncertainty represented as a cloud of small points (red)
decreases in with sequential observations. Numbers show the predicted and observed features
position.

the features reduce theirs uncertainty, as soon as more images are processed. However,
in Z axe it doesn’t look to have a good adjustment compared with the ground-truth
but it has to be notice that altitude values measured using the GPS on the UAV has
precision of + 2 meters and change from initial altitude of 6.8 meters are not significant.

5.2 Unstructured scene

Another test was made using images from a manned helicopter. This scene has fewer
structured elements and has been recorded from a greater distance. This Figure 13
shows a frame of the image sequence. The results of the reconstruction of the features
and the track of the camera are shown in figure 14.

This test has two results. The first one is the successful application in unstructured
environments, which is shown by the great number of features tracked. The second
result is the performance of the algorithm in a scene with features that are very far each
other. All the reconstruction was made using the same parameters as in the previously
described test. Inverse depth parametrization and the dimensionless formulation allow
the application of the algorithm in outdoor scenes without prior knowledge of the scene
and without specific adjustments.
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Fig. 12 SLAM reconstructed trajectory vs. UAV trajectory. a.)3D Flight. b.) North Axe in
meters, c.) East Axe in meters, c.) Altitude in meters. The reconstructed trajectory on X
and Y aces, adjusts better to the real flight as soon as more images are processed and the
uncertainty of the features is reduced. Altitude measurement has a precision of £+ 2 meters
causing that Z axes results can’t be compared. The initial altitude of the test is 6.88 meters.

Fig. 13 Scene and tracked features during a non structured visual flight. Video sequence
was taken by a manned helicopter traveling along a rectilinear trajectory for several hundred
meters. The scene contains mainly non manmade features. Results are satisfactory although
vibrations and image quality made very difficult the feature matching.

6 Conclusions

This paper shows that it is possible to obtain robust and coherent results using Visual
SLAM for 3D mapping and positioning in vague structured outdoors scenes from a
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Fig. 14 Feature and track reconstruction. The figure shows the reconstruction of the helicopter
position by visual SLAM, shown as a blue line on top of the figure. On the lower parts, in
red, are the reconstructions of the observed features. The main direction of the movement is
coherent with the movement along a straight line done by the vehicle. Below the features are
reconstructed over an horizontal surface. In this test the reconstructed trajectory shows big
amplitude movements due to the vibrations, which make fast image changes not well modeled
by the system. All the reconstruction is done dimensionless to show the original results. To
recover the scale at least two points must have known coordinates.

mini UAV. In order to obtain these results, several stages of the whole process need
to be solved, starting with image acquisition, going on with image processing, interest
point detection, features extraction and matching, and finishing with the SLAM algo-
rithm itself, EKF prediction and correction matrix model estimation, state definition
and distance parametrization

The quality, resolution and frame rate of the images should be enough to detect
interest points that have to be tracked in several consecutive frames. The best results
in this paper have been obtained using a RAW Bayer non-interlaced camera, 640x480
pixels at 30 frames per second (FPS), with a 6 mm. optics, while the coherently mapped
environment has been in the range of 5 to 50 m. The video sequence is proceeded off-
line at an average of 12 FPS.

Interest points detection and features to be tracked have been found based on two
different approaches, Harris corner detection and SURF invariant feature extraction.
The approach based on Harris is very quick and selective, therefore very convenient
for this computational intensive application, but it needs to be improved with an ex-
haustive and robust corner descriptor, as the one proposed in section 3.1, that enables
robust matching and tracking of the detected points over time. Harris based detectors
have shown to be very efficient for scenes with significant structure objects, such as
houses, vans, cars and, generally human made structures. Scenes with significant struc-
tures have strong and stable contours that give reliable edges to which fix your Harris
points.

The SURF based feature extractors are on the contrary, more efficient when the
scene is basically made up of non-structured objects, which is the case of natural envi-
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ronments, among others. In those cases, the SURF based algorithms have the advantage
that they calculate a vast amount of features in the image, many of which vanish in
following images, but a significant amount of them still remain in following images
that is the key point to match and track them for an efficient SLAM. SURF based
algorithm also provide in those cases, an exhaustive enough, scale invariant feature
descriptor that accomplishes the matching requirements for its tracking.

The use of an extended descriptor for Harris based corner detection and the scale
invariant SURF features enable the sorting of the interest points into different clusters
(three chosen clusters in this paper) dependant on their relevance. That allows the
search of matching pairs in different stages according to the points relevance and the
number of matched points necessary for the SLAM algorithm (ten in the presented
results), according to the procedure described in section 3.3, that reduces the compu-
tational effort. The criterium for matching two interest points in consecutive images
evaluates both, the features correlation and the deviation of the distance between the
evaluated pair to the average distance between other matched pairs.

SLAM algorithm has been implemented using only visual information without con-
sidering any odometric or GPS information (which have been used afterwards to com-
pare and evaluate the obtained results). The state of the system comprises a 12 variable
array (position, orientation and their rates), where the inverse depth parametrization
has been used in order to avoid the initialization of the distances to the detected visual
features, that otherwise becomes a drawback when using SLAM outdoors in unknown
environments. The rest of the state array is made up of the tracked features, with ten
being the minimum allowed number. The prediction stage in EKF has been modeled
considering constant velocity for both, the position-orientation coordinates and the fea-
ture movements in the image plane. The correlation stage in the EKF uses a non-linear
camera model that includes a pin-hole distortion model for the sake of more accurate
results. Within the implemented SLAM algorithm, the Mahalanobis distance is used
to disregard far away matched pairs that can otherwise distort the results.

The whole described procedure has been tested in several 3D semi-structured en-
vironments from a camera situated onboard an unmanned operated mini-UAV. The
previous results show that the detected features covariance matrix decreases over time
and that the structure made up by joining these detected features is coherent with the
objects in the scene, with the absolute distance being a free parameter that has to be
solved out by knowing the real distance between two known 3D points in the scene.

The performed flights were not closed loops, so that the UAV didn’t come back to
previous positions. Therefore the position-orientation correlation is always increasing
in performed flights, even though the 3D position calculated by the SLAM has been
compared with the GPS position and it is made clear that horizontal positioning of
the UAV is performed quite well by the SLAM in our experiments, where the flights
had a dominant horizontal movement. The obtained MSE of the differences between
the SLAM and the GPS horizontal coordinates decreases over time and has an approx-
imate average value of 2m? in our experiments. The altitude estimation doesn’t show
such a good correlation, due to the limited range of this movement during the flights,
and for the same reason it has a lower MSE that is of around 0.14m?.
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