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Abstract This paper presents an implementation of an air-
craft pose and motion estimator using visual systems as the
principal sensor for controlling an Unmanned Aerial Vehi-
cle (UAV) or as a redundant system for an Inertial Measure
Unit (IMU) and gyros sensors. First, we explore the appli-
cations of the unified theory for central catadioptric cameras
for attitude and heading estimation, explaining how the sky-
line is projected on the catadioptric image and how it is seg-
mented and used to calculate the UAV’s attitude. Then we
use appearance images to obtain a visual compass, and we
calculate the relative rotation and heading of the aerial ve-
hicle. Additionally, we show the use of a stereo system to
calculate the aircraft height and to measure the UAV’s mo-
tion. Finally, we present a visual tracking system based on
Fuzzy controllers working in both a UAV and a camera pan
and tilt platform. Every part is tested using the UAV COL-
IBRI platform to validate the different approaches, which
include comparison of the estimated data with the inertial
values measured onboard the helicopter platform and the
validation of the tracking schemes on real flights.
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1 Introduction

The main objective of this paper is to demonstrate that com-
puter vision can be successfully used in several control loops
onboard Unmanned Aerial Vehicles (UAVs) and not only as
a sensing mechanism for providing visual information. For
this purpose, fast and robust image processing algorithms
are required in order to be able to close the control loops in
near real time. A processing rate near 15 frames per second
has been demonstrated to suffice, consistent with human pi-
lots’ reaction times. A general image processing algorithm
that fully recognizes the environment of a UAV is currently
very far from being realistic. In this paper, we demonstrate,
however, that some classical image acquisition techniques
can be integrated with ad-hoc image processing and with
fuzzy controllers in order to achieve UAV navigation based
on visual information.

Visual information in the control loop has the main ad-
vantage of providing information on UAV position/ attitude,
relative to objects within the UAV visual field. This informa-
tion can successfully complement and in some cases replace
other classical sensors for UAV navigation such as GPS and
IMU, which provide a very different type of information, i.e.
absolute coordinates that are not related to the position of
nearby objects. Visual information is crucial in some cases,
such as detecting and avoiding static structures (Beyeler et
al. 2009) and other flying objects (Carnie et al. 2006), or
maneuvering close to fixed objects (e.g. visual inspection,
spacial landings, flying close to outdoors structures) (Hrabar
et al. 2005; Mejias et al. 2006) and in cases where the GPS
is missing (e.g. indoors, on paths among buildings or other
structures, and on space missions).

The idea of using visual information for UAV attitude es-
timation is not new. The first experiments attempted to ob-
tain the skyline from images taken by a single perspective
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camera looking forward on the aircraft, using this to es-
timate the roll angle with a horizontal reference (Ettinger
et al. 2002; Todorovic et al. 2003; Cornall et al. 2006;
Cornall and Egan 2004; Dusha et al. 2007). These works
differs in the way that they segment the sky and ground
and in how they estimate the horizon line. Todorovic et al.
(2003) treat the horizon detection problem as image segmen-
tation and object recognition applying statistical appearance
models based on both color and texture clues. They make
a Bayesian segmentation based on a statistical framework
employing a Hidden Markov Tree on the appearance mod-
els. Cornall et al. (2006) use a technique focused on be im-
plemented on a small microcontroller. The algorithm uses a
simplistic method where the horizon is approximated as a
threshold of the blue color plane, determining the optimal
threshold by Otsu’s method and Kmeans. This approxima-
tion gives good results under clear sky conditions. Dusha
et al. apply morphological image processing and the Hough
transform to detect the horizon line and derive the roll and
pitch angles. In addition, they use optical flow to obtain the
bodyframe rates.

Omnidirectional vision has also been used for UAV con-
trol and attitude estimation. Hrabar and Sukhatme (2003)
use an omnidirectional system for sideways looking sensing
on an autonomous helicopter by applying image unwrap-
ping. Conroy et al. (2009) use spatial decompositions of
the instantaneous optic flow to extract local proximity infor-
mation from catadioptric images obtained onboard a micro-
air-vehicle (MAV) for corridor-like environment navigation.
Demonceaux et al. (2006), use a similar approach to the one
presented in this paper, showing the advantages of using om-
nidirectional rather than perspective images for attitude esti-
mation. They detect the horizon line on the catadioptric im-
age using a Markov Random Fields segmentation and then
project it on the equivalent sphere projection model for a
Catadioptric system (Geyer and Daniilidis 2000) to obtain
the attitude angles of the camera frame, which are related
to the normal vector of the projected horizon line. Experi-
mental results on video sequences demonstrated good per-
formance; however, they do not make any comparison with
ground truth data and also do not define the computational
cost and the feasibility of a real-time implementation, both
conditions that are necessary for use as a controller.

Motion estimation from imagery is often referred to as
visual odometry (Matthies 1989). It determines the vehi-
cle’s position and orientation by detecting and tracking
salient points using an onboard camera. This technique has
been traditionally used in ground vehicles to improve ro-
bot localization. The use of visual odometry techniques
has been documented in different situations such as, Mars
rovers (Corke et al. 2004), and (Cheng et al. 2006). It has
been tested on several ground autonomous robots (Nistér et
al. 2006) and on a small shrimp robot (Milella and Siegwart
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2006). Recently, a Visual Odometer have been implemented
in a small rotorcraft UAV (Kendoul et al. 2009), by identify-
ing and tracking visual features in the environment to obtain
the optic flow and fusing it with the inertial measurements
to determine the position and velocity of the aircraft. Cata-
dioptric systems have also been used for robot odometry
and relative orientation in outdoor vehicles (Labrosse 2006;
Scaramuzza and Siegwart 2008), showing that it is possible
to estimate relative orientation and the position of a mobile
robot using panoramic images.

Object detection and tracking are common problems in
vision systems in all of the robotics platforms. On the one
hand, the use of UAVs enlarges the possible applications by
increasing the workspace size, covering a bigger area for
inspection, detection and tracking. On the other hand, they
increase the problem of visual servoing, due to the difficul-
ties in aircraft stabilization and control when we are trying
to track an object. There are different visual algorithms tack-
ling these problems on UAVs, some of which are presented
in Campoy et al. (2008). Currently, some applications have
been developed, including Valavanis’ work on traffic mon-
itoring (Puri et al. 2007), and fire detection (Nikolos et al.
2004) and work in obstacles avoidance and path planning
for UAVs by Hrabar and Sukhatme (2009).

In this paper we propose an omnidirectional-based sys-
tem for attitude estimation and a stereo- based system for
height and motion estimation. We also provide visual infor-
mation to a Fuzzy control system, which is specially trained
for tracking moving objects and controlling the UAV head-
ing. The position and attitude calculated by our vision sys-
tems are compared with those provided by the IMU/GPS
system in Sects. 3 and 4, where there is shown an over-
all coherence that make them suitable for complementing
those sensor information and even for replacing them, as
it is demonstrated in following Sect. 5. The whole system
has been tested in real flights in our COLIBRI-III prototype,
showing the good results presented in Sects. 3.5,4.3 and 5.3.

2 UAV system description

The Colibri project has three operational UAV platforms:
one electric helicopter and two gasoline-powered heli-
copters (Fig. 1). The COLIBRI testbeds (Campoy et al.
2008), are equipped with an Xscale-based flight computer
augmented with sensors (GPS, IMU, Magnetometer, fused
with a Kalman filter for state estimation). Additionally they
includes a pan and tilt servo-controlled platform for many
different cameras and sensors. In order to enable it to per-
form vision processing, it also has a VIA mini-ITX 1.5 GHz
onboard computer with 2 GB RAM, a wireless interface, and
support for many Firewire cameras including Mono (BW),
RAW Bayer, color, and stereo heads. It is possible to use IP
and analog cameras as well.
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Fig.1 Up: COLIBRI III Electric helicopter with a stereo camera sys-
tem. Down: COLIBRI I Gas power helicopter

The system runs in a client-server architecture using
TCP/UDP messages. The computers run Linux OS working
in a multi-client wireless 802.11g ad-hoc network, allowing
the integration of vision systems and visual tasks with flight
control. This architecture allows embedded applications to
run onboard the autonomous helicopter while it interacts
with external processes through a high level switching layer.
The visual control system and additional external processes
are also integrated with the flight control through this layer
using TCP/UDP messages. The layer is based on a commu-
nications API where all messages and data types are defined.
The helicopter’s low-level controller is based on PID control
loops to ensure its stability. The higher level controller uses
various sensing mechanisms such as GPS and/or vision to
perform tasks such as navigation, landing, and visual track-
ing.

3 UAV attitude estimation using catadioptric systems

This section explains the use of omnidirectional images to
obtain attitude information for a UAV, working as a RAW
sensor data. First, we introduce the fundamentals of a cata-
dioptric system and the unified model; second, we explain
how the skyline is projected on the image and how it is seg-
mented; then we described how it is used to estimate the
attitude parameters, and finally we introduce the use of ap-
pearance images and its use as a visual compass.

3.1 Central catadioptric cameras

Catadioptric cameras are devices that combine reflective el-
ements (catoptric) and refractive systems (dioptric) to form

X=(xs,ys, 25)

X w=(xw,yw,2w)

e

Fig. 2 Catadioptric projection modeled by the unit sphere

a projection onto the image plane of the camera. They can be
classified as central and non-central catadioptric cameras ac-
cording to the single effective viewpoint criteria. Baker and
Nayar (1997, 1999), define the configurations that satisfy
the constraints of a single viewpoint, finding that a central
catadioptric system can be built by combining a perspective
camera with a hyperbolic, elliptical or planar mirror, or us-
ing an orthographic camera with a parabolic mirror.

Geyer and Daniilidis (2000, 2001) propose a unified
model for the projective geometry induced by central cata-
dioptric systems, showing that these projections are isomor-
phic to a projective mapping from a sphere (centered on the
effective viewpoint) to a plane with the projection centered
on the perpendicular axis to the plane.

A modified version of this unified model is presented by
Barreto and Araujo (2001, 2002), where the mapping be-
tween points in the 3D world and points in the catadioptric
image plane is split into three steps. First, a linear function
maps the world into an oriented projective plane. Then a
non-linear function transforms points between two oriented
projective planes. Finally, there is a collineation function de-
pending on the mirror parameters and the camera calibration
matrix (intrinsic parameters). Figure 2 shows the general
unit sphere projection for modeling catadioptric systems.

Consider a point in space (visible to the catadioptric sys-
tem), with Cartesian coordinates X, = (xy, Yw, zw)T in the
catadioptric reference (focus). This point is mapped into
point X = (xg, s, zs)T on the unitary sphere centered on
the effective view point by (1):

X Xy
V242 Xl

To each projective point X, corresponds a projective
point X, = (x¢, e, z¢)T in a coordinate system with origin
at the camera projection center. This projection is a non-
linear mapping between two projective planes and is defined

ey
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Table 1 Parameters £ and y for central catadioptric systems where d is distance between focus and 4p is the Latus Rectum (the chord perpen-
dicular to the principal axis and passing through a focus of an ellipse, parabola, or hyperbola)

Parabolic Hyperbolic Elliptical Planar
g 1 d d 0
N [ 2+4p?
_d+2p _d=2p
W 1+2p N N 1
by (2):
Xe = (xc, ye, ZC)T =M. MXy) 2)
where
Y —§ 0 0
M. = 0 E—y 0],
0 0 1

t
MXy) = <xwa Yw, 2w +$\/ xi + yl% + Z2w>

where the matrix M, depends on the mirror parameters &
and , defined for each one of the central catadioptric pro-
jections, as shown in Table 1.

Finally, the image in the catadioptric plane is obtained
after a collineation between the image and the projective
plane, depending on the camera’s intrinsic parameters K.
(where m, and m, are the pixel per unit distance in image
coordinates, f is the focal length, and (xo, yo) is the prin-
cipal point), and the rotation of the camera is R.. The pro-
jection of a world point on the catadioptric image is defined

by (3):

H(,‘:KC'RC'MCv

Xi = Hc : h(Xw)v
fmy S X0 3
K.= 0 fmy Yo
0 0 1

Function /(X ,,) is a homogeneous positive injective with
an inverse function i~ (X,,). This function maps points in
a projective plane onto the unitary sphere. The non-linear
inverse function is defined by

(X5, ¥55 2)" = BV (H XG) = (Mees hedes heze — )T (4)
where

CzE VA —EDHEZ+ D)
x62+y§+zg )

Ae

3.2 Skyline and catadioptric image

To be able to measure the body frame attitude based on the
catadioptric image, it is necessary to know how the skyline is
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Fig. 3 Skyline is the occluding contour of the earth sphere surface,
whose projection on the equivalent unitary sphere model through a
plane that intersects it forms the depicted red circle

projected onto the unitary sphere and onto the catadioptric
plane. Ying and Hu (2004) demonstrate that the occluding
contour of a sphere in space is projected onto a circle on the
unit sphere or onto a conic in the catadioptric image plane.
Considering the skyline the occluding contour on the earth
sphere surface, finding it requires to look for a small circle
on the unitary sphere model or for a conic or ellipse on the
image plane, as proposed by Demonceaux et al. (2006) (see
Fig. 3 for an illustration).

Because the original datum obtained is the image projec-
tion, the skyline detection focuses on isolating the sky from
the ground in this image and then estimating the best ad-
justed ellipse to the skyline.

To isolate the sky from the ground we use an approach
based on the method employed by Cornall et al. (2006) in
which the RGB components of each pixel are weighted us-
ing the function f(RGB) = SBZ/(R + G + B). This function
has shown very good results to sky-ground segmentation un-
der different light and cloud conditions. For each resulting
grayscale image from function f (RGB), a Pyramid Segmen-
tation (Antonisse 1982) followed by a Gaussian Adaptive
Threshold function, is used to obtain a sky-ground binary
image. The pyramid segmentation allows us to reduce the
effects of sunlight or brightness in the image under variable
lighting conditions. This threshold method is very fast and
produces good results in real-time.
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Fig. 4 The best fitted ellipse (blue) to the skyline on an original cata-
dioptric image obtained during a UAV flight

Once we have a sky-ground thresholded image, the
ground contour on the image can be easily defined. This
contour represents the skyline and is used by a fitting func-
tion to obtain the ellipse with the best approximation to the
contour. Figure 4 shows an example of the best fitted ellipse
to the skyline on an original catadioptric image obtained
during a UAV flight test.

3.3 Pitch and roll estimation using the skyline
backprojection on a sphere

The segmented skyline is defined by the points contours that
represent the ground border or the adjusted ellipse points
SKY g = (XSKYimg, VSKY img 1). These points are backpro-
jected onto the unitary sphere using (4) obtaining SKY =
(xskvy, Ysky,» Zsky,) as shown in Fig. 5. The circle formed
by the skyline points on the sphere forms a plane that inter-
sects with the unitary sphere. To obtain the parameters of the
skyline in the unitary sphere, it is sufficient to find the plane
with normal equation Nyxsky, + NyYsky, + N Zsky, +
D = 0 that best adjusts to the backprojected points of the
skyline contour on the sphere surface.

For each point of the backprojected skyline, the normal
equation of the plane is obtained by zquYS = NxngYs +
N, yf?KYx + D withi =1, ...,n and an overdetermined lin-
ear system of the form (A -x = b) is solved using the pseudo-
inverse method to obtain the plane myy = (Ny, Ny, 1, D)

(see (9)):

[Ne, Ny, D]" =argmin|[A - x — b (5)
X
where
x.lS‘KYS ny‘KYJ 1
A=l
x.g‘lKYS y;‘lKYs 1

Fig. 5 The best fitted ellipse (blue) to the skyline is backprojected
on a unitary sphere model, forming a plane that intersects the sphere
(which forms a small circle). The normal vector to this plane defines
the attitude of the camera and the UAV

Ny
x=| Ny |,
| D
- i

25Ky,
b= :
n

| ZSKY,

The normal vector to the plane formed by the skyline and
the unitary sphere is defined as N = [Ny, Ny, 117. Assum-
ing that the camera frame is aligned with the UAV frame, so
that the x axis is the heading of the UAV and the y axis is
aligned with the UAV wing, it is easy to obtain the desired
roll (¢) and pitch (9) angles, using (6):

Ny
@ =arccos | —— |,
/N2+N2+1
(6)
Ny
¢ = arccos

N2+ N2 +1
3.4 Yaw estimation using a visual compass

The relative heading of the UAV is calculated using the
so called Appearance Images. This method was used by
Labrosse (2006) and later by Scaramuza and Siegwart
(2008). It consists of a part of a panoramic image I (o, R)
obtained from a catadioptric image /. (original captured im-
age) using a polar to Cartesian coordinates change or un-
wrapping process employing (7):

I(, R) = I.(Rcos(a) + ug, R sin(a) + vg) @)
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Fig. 6 Two consecutive appearance images with a small rotation be-
tween them. A white grid is superimposed as reference and the red box
shows clearly the column shift between images

where (ug, vo) is the catadioptric image center, « is a lin-
ear function with maximum range [0, 27] and R is a lin-
ear function that scans along the image radius. If the cata-
dioptric image corresponds to a scene captured with an al-
most perfect vertical camera to the ground, then pure ro-
tation will be appear on the appearance image as a pure
pixel column-wise shift. The relative rotation between two
consecutive images is obtained, by finding the best match
based on the images’ column shift using the Euclidean dis-
tance. Equation (8) shows the Euclidean distance between
two panoramic images I, and I,, with the same size and
space color as a function of the column-wise shift on the im-
age I, by « pixels (horizontal rotation). Figure 6 shows two
consecutive appearance images obtained by an unwrapping
process with a small rotation.

d (I, In, &)

w. H. C.

= D)) Unljo k) = LG +a, k)% (8)

i=1 j=1k=1

The best shift apmi, that minimize the distance function
d(Ly, I, dmin) <d(Iy, I, )Va € R is the best pixel rota-
tion between this two images.

The rotation angle or yaw i between images is directly
related to the obtained column shift between images, consid-
ering only the angular resolution of the appearance images
defined by the images field of view FOV and the images’
width, as shown in (9):

Fov

—_— . 9
! imgWidth ©)

YLy, 1,) = %mi
To obtain the final rotation relative to the first image, it is
necessary to add the obtained value to a counter.
Equation (8) was developed under the assumption of a
pure camera rotation between consecutive images on its ver-
tical axis, which is perpendicular to the horizontal plane. In
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the general case, the UAV has translational components and
roll and pitch variations, causing the camera vertical axis
to not always be perpendicular to the horizon. However, as
shown by Labrosse (2006) and by Scaramuza and Siegwart
(2008) the visual compass method based on appearance im-
ages is still valid under translation and attitude variations if
the camera has small displacements or the distance to the
objects is large compared with the displacement. Because
images are captured continually, small variations of pitch
and roll are present between consecutive images; therefore,
the pure rotation assumption is still valid.

3.5 Attitude estimation tests

Several tests have been made using the Colibri testbeds
(COLIBRI 2009). In this test, a series of flights were per-
formed in both autonomous and manual modes. In au-
tonomous mode, the helicopter takes a previously defined
trajectory. In manual mode, a safety pilot takes a free flight
with strong movements of the helicopter. The algorithm is
tested during these flights and an image sequence is stored,
associating to each of the processed images the UAV attitude
information estimated by the omnidirectional system. Also,
aflightlog is created with the GPS position, IMU data (head-
ing, body frame angles and displacement velocities), and the
helicopter attitude position as estimated by the Kalman fil-
ter of the controller on the local plane with reference to the
takeoff point. These values are used for later comparisons
with the estimated data using the catadioptric system.

For these tests, a mirror with a hyperbolic shape of the

form y =39.3,/1+ # — 43.92 and catadioptric para-
meters d = 100 mm and 4p = 19.646 is combined with a

CCD firewire camera with a 640 x 480 pixels resolution and
focal length of 12 mm. The camera is located on the Pan and
Tilt platform of the helicopter in such a way that the vertical
axes of the camera and helicopter are parallel (by adjust-
ing the camera tilt). In this way, the hyperbolic mirror faces
downward, and the camera looks up. This position ensures
that all axes of the helicopter and the camera are coincident,
so that the obtained roll and pitch angles for the camera are
the same for the helicopter frame as shown in Fig. 3. The es-
timated values of roll, pitch and yaw from the test flight are
compared with the corresponding stored IMU values. Fig-
ure 7 shows the results and the mean squared error (MSE)
of the estimated values, compared with the IMU values as
ground truth.

The estimated values for roll are very close to the IMU
values and have a small MSE against the absolute values
measured in the IMU.

Pitch values are also estimated accurately compared with
the ground truth IMU. However when the helicopter has a
high nose-up angle, a portion of the ground is occluded on
the catadioptric image by the platform’s structure and the
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UAV’s reflections, causing a small error in the adjustment of
the skyline on the equivalent sphere projection and the pitch
estimation. This causes the MSE to have the highest value
of all the estimated parameters, although this value is still a
high-quality measurement.

Yaw estimation uses the first image taken by the algo-
rithm as a reference, calculating rotation with respect to this
reference image. Absolute Yaw data measured by the IMU
is rotated according to the first image angle and changed
to a range between 0 < ¢ < 360 for easy comparison with
omnidirectional data. Results show that the rotation be-
tween frames, as well as the total rotation are both estimated
correctly, taking into account the fact that the unwrapped
panoramic image only has a resolution of 0.5 pixels per de-
gree. As mentioned in Sect. 3.4, variations in roll and pitch
angles and translational movements do not notably affect the
estimated rotation between frames if the distances to sur-
rounding objects are large and the displacements and angles
between consecutive frames are small, as is the with UAV
flight in an open area. This is reflected in the MSE which is
the lowest value of the all estimated parameters, confirming
that the approximation is valid under the helicopter’s flight
conditions.

Several tests have been done in situations of totally clear
weather and also with cloudy skies. Results are good in both
cases, showing the feasibility of using a catadioptric system
as a UAV attitude and heading estimator or as a redundant
visual system. The attitude estimation loop operates at an
average rate of 12 frames per second (fps). The total video
sequence for this manual flight and additional test in manual
and autonomous mode can be seen on the Colibri Project
Web Page (COLIBRI 2009).

4 Odometry estimation using stereo vision

This section presents a system for estimating the altitude and
motion of an aerial vehicle using a stereo vision system. The
system first detects and tracks interest points in the scene.
Then the distance from the stereo system to the plane that
contains the features is found by matching the features be-
tween the left and right images and using the disparity prin-
ciple. The motion is then recovered by tracking pixels from
one frame to the next, finding its visual displacement, and
resolving camera rotation and translation by a least-squares
method (Mejias et al. 2007).

4.1 Height estimation

Height estimation is performed on a stereo system first using
a detection phase of salient features in the environment. This
procedure is applied to each of the stereo images using the
Harris corner detector because it offers the best performance
in terms of speed, robustness, stability in outdoor environ-
ments and an acceptable invariance to rotation and transla-
tion and to small changes in scale. See Ashbrook (1992) for
more details.

In the second phase, a correlation algorithm is applied
in order to find the correspondences between two sets of
features (features of the right and left images). A double
check is performed by checking right against left and then,
comparing left with right. The correlation is based on the
ZNNC (Zero Mean Normalized Cross Correlation) tech-
nique, which offers good robustness against changes in light
and other environmental conditions (Martin and Crowley
1995).

Once the correspondence problem has been solved, the
stereo disparity principle is used to find the distance from
the cameras to the plane that contains the features. This
distance is found by taking into account an error tolerance
(given that the correspondence is not perfect) and consider-
ing that all pixels belong to the same plane. The disparity is
inversely proportional to the scene depth multiplied by the
focal length (f) and the baseline (b), so that the depth can
be computed using the expression shown in Fig. 8.

Figure 9 describes the algorithm used to estimate the dis-
tance from the stereo system to the plane. The stereo sys-
tem has been located onboard the helicopter in two differ-
ent positions. In the first configuration, the stereo system is
looking down, perpendicular to the ground, so that the esti-
mated distance corresponds to the UAV altitude. In the sec-
ond configuration, the stereo system is looking forward, and
the estimated distance corresponds to the distance between
the UAV and an object or feature in the scene.

4.2 Motion estimation

The motion estimation is accomplished in two stages. In
the first stage, features are detected and pre-matched using
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Fig. 8 Stereo disparity for aligned cameras with all pixels in the same
plane. The stereo disparity principle is used to find the distance from
the stereo system to the plane that contains the features

Input images

Harris operator

ZNNC Zero mean cross correlation

one set of corresponded points

Left image

Right image

direct computation of height applying the formula

compute disparity for each pixel
and get the median

Fig. 9 Height estimation using the Harris corner detector and ZNNC.
Height is obtained using the stereo disparity principle

the Harris algorithm and the ZNNC technique; as a con-
sequence, those points with a correlation coefficient higher
than 0.85 are considered for the next stage.

@ Springer

The second stage, deals with the motion estimation prob-
lem. The motion estimation is solved using the ICP algo-
rithm (Iterative Closest Point) and SVD technique (Singular
Value Decomposition). The ICP algorithm is used to solve
the correspondence problem (image registration): assuming
there are two sets of points known as data and model, P =
{pi}ivp and M = {m,-}iv’” respectively with N, # N, the
closest point is defined as the one that minimizes cp(p) =
argmin,, ., |lm — p|l. Then, SVD is used to find the best
possible alignment of P and M by relating them through
equation M = RP + t. Therefore, the Motion Estimation
algorithm using ICP and SVD can be summarized in the fol-
lowing steps:

1. Compute the subset of closest points (CP):
y={meM|peP:m=cp(p)}

2. Compute the least-squares estimate of motion bringing
P onto y (the transformation is calculated using SVD):

Np

(R.t) =argming , ¥ " [ly; — Rpi — t||?
i=1

W

. Apply motion to the data points, P <— RP +¢
4. If the stopping criterion is satisfied, exit; else goto 1.

The calculation of the rotation matrix and translation
vector in step (2) can be summarized as follows: first,
the rotation matrix is calculated using the centroid of the
set of points. The centroid is calculated as y;, = y; — ¥

_ = s S
and p,, = p; — p, where y = N_pZNp cp(pi) and p =
NL,, > N, Pi- Then, the rotation matrix is found minimizing
ming ZNP ||)’c,- - RPc,' ||2
the trace (RK) is maximized with K =) N, Yei chz' Matrix

Kis calculated using SVD as K = VDU T Thus, the optimal
rotation matrix that maximizes the trace is R = VU7 and the
optimal translation that aligns the centroids is t =y — P p.

. This equation is minimized when

4.3 Height and motion estimation using a stereo system

Stereo tests were done using a Firewire stereo camera on-
board the UAV, with 10 cm od distance between lenses (dis-
parity). This camera captures images of 240 x 320 size at
15 fps (frames per second). In these experiments, the heli-
copter is commanded to fly autonomously following a given
trajectory while the onboard stereo vision algorithm is run-
ning at a processing frequency of 10 fps. The tests reveal a
correlation between the stereo visual estimation and the on-
board helicopter state given by its sensor suite. Figures 10
and 11 show the results of one flight trial in which the lon-
gitudinal displacement (X), lateral displacement (Y), alti-
tude (H) and relative orientation (Yaw) are estimated. Al-
titude is computed to be negative since the helicopter’s body
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(b) Visually Estimated Y and Easting (E).

Fig. 10 Results using a stereo system for Height and Motion Estima-
tion I. The visual estimation (red lines) for longitudinal displacements
(a) and lateral displacements (b) are compared with the helicopter state
estimation (blue lines)

frame is used as a reference system. Each estimate is cor-
related with its similar value taken from the onboard heli-
copter state, which uses an EKF (Extended Kalman Filter)
to fuse the onboard sensors. Table 2 shows the error analysis
based on the mean squared error of the visual estimation and
the helicopter’s state. Four measures of the mean squared
error have been calculated: the error vision-GPS Northing
(MSEX,), the error vision-GPS Easting (MSE,‘;), the error
vision-yaw (MSE};) and the error vision-altitude (MSE I‘;).

5 Visual control
In this section, we describe a control system that can fol-

low static and moving objects in real time. This new visual
servoing control improves on previous works (Campoy et

Time [zec]

(b) Visually Estimated Yaw and helicopter Yaw.

Fig. 11 Results using a stereo system for Height and Motion Estima-
tion II. The visual estimation (red lines) for the altitude (a) and the
relative orientation (b) are compared with the helicopter state estima-
tion (blue lines)

Table 2 Error analysis for the helicopter’s experimental trials

Exp. Test

MSEY, 1.0910
MSEY, 0.4712
MSE,, 1.7363
MSE}, 0.1729

al. 2008; Mejias et al. 2006) in the inclusion of control of a
pan and tilt visual platform. This gives a quicker response
than helicopter movements and also gives total freedom of
movement to the UAV, making it possible to track objects
not only during hovering flight, as in the previous work, but
also during a path-planned flight or when flying under man-
ual control.
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In this section, we also describe the implemented visual
control system, the tracking algorithm, and the fuzzy con-
trollers used for improving visual servoing control.

5.1 Visual tracking system

The visual tracking system for helicopter and platform con-
trol on a UAV is based on the Lucas-Kanade algorithm (Lu-
cas and Kanade 1981) which is a Gauss-Newton gradient
descent non-linear optimization algorithm. An optical flow
with a pyramidal implementation of this algorithm is used. It
relies on two premises: first, intensity constancy in the vicin-
ity of each pixel considered as a feature; second, minimal
change in the position of the features between two consec-
utive frames. Given these restrictions, to ensure the perfor-
mance of the algorithm, it can be expressed in the following
form: if we have a feature position p; = (x, y) in the im-
age I, the objective of the tracker is to find the position of
the same feature in the image I that fits the expression
plf = (x,y) +1t, where t = (t, t). The t vector is known as
the optical flow, and it is defined as the visual velocity that
minimizes the residual function e(¢) defined as:

w
e(t) =Y (I(pi) = Ies1 (pi + ) w(W) (10)

where w(x) is a function that assigns different weights to
the comparison window W. This equation can be solved for
each tracked feature, but since it is expected that all features
on physical objects move in solidarity, summation can be
done over all features, obtaining the movement of the ob-
ject on the image plane and using as the input to the Fuzzy
controller explained in Sect. 5.3.

5.2 Control scheme

The flight control system is composed of three control loops
arranged in a cascade formation, allowing it to perform tasks
at different levels depending on the workspace of the task.
The first control loop is in charge of the attitude of the he-
licopter. It is based on a decoupled PID control in which
each degree of freedom is controlled separately based on
the assumption that the helicopter dynamics are decoupled.
The attitude control stabilizes the helicopter during hover-
ing by maintaining the desired roll, pitch and heading. It
is implemented as a proportional-plus-derivative (PD) con-
trol. The second control loop is the one that has the visual
signal feedback. This control loop is composed of the vi-
sual pan-tilt platform and the UAV heading controllers. All
of them are designed with Fuzzy Logic techniques, as ex-
plained in more detail in the next subsection. With this loop,
the UAV is capable of receiving external references (from
the Visual Process) to keep it aligned with a selected target,
and it leaves the stability of the aircraft to the most internal
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loop in charge of the attitude. The third controller (position
based control) is at the higher level of the system, and is
designed to receive GPS coordinates. The control scheme
(Fig. 12) allows different modes of operation, one of which
is to take the helicopter to a desired position (position con-
trol). Integration of the visual references uses the TCP/UDP
and API architecture explained in Sect. 2. More detailed in-
formation of how those messages are integrated in the server
process running onboard the UAV is given in Mejias (2007).

5.3 Visual servoing using fuzzy controllers

This section explains the fuzzy controllers used for control-
ling the heading and the camera platform and the various
experiments to test them. The combined control of the video
platform and the heading of the helicopter allows a suitable
automatic control to be applied in different situations. In ad-
dition to overcoming environmental difficulties or adapting
to the needs of the pilot, it provides the possibility of track-
ing static and moving objects in these situations:

1. With a preprogrammed series of way points.

2. When the pilot is controlling the helicopter or when the
flight commands are sent from the ground station, mak-
ing it easier to control the UAV by allowing it to control
heading automatically.

3. Staying in hovering position in a safe place.

Also, the fuzzy logic provides a more versatile solution
for controlling the platform and helicopter because it is eas-
ier to tune and to adapt to the real world, due to the fact
that it can represent non-linear problems. This gives a bet-
ter solution for overcoming the helicopter’s own vibrations
and other perturbation signals from the environment. In this
chapter, we will first describe the control configuration of
the UAV, continue with an explanation of our fuzzy software
implementation, and finish by presenting the various fuzzy
controllers that we implemented.

5.3.1 Fuzzy controllers

For this work we use the software MOFS (Miguel Olivares’
Fuzzy Software), developed in previous works (Olivares and
Madrigal 2007; Olivares and Campoy 2008). This software
was independently designed, defining one class for each part
of the fuzzy-logic environment (variables, rules, member-
ship functions, and defuzzification modes) in order to fa-
cilitate future updates and easy interaction with the system.
There are different classes depending on the system we want
to create; we can define the number of inputs and outputs
that we prefer or make parts of the system work in serial or
parallel mode.

The software can be updated in any of its fuzzy-logic
parts, such as by introducing different membership func-
tions, fuzzy inference types, or defuzzification modes.
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MOFSModel
-RuleNode* ruleStore
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+void SaveModel(char* file)
MOFSvar MOFSRule MOF!
-char* name o -Set* d“‘f’ -MOFSInferenceModel* inferenceType
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+MOFSVar(ifstream file_in)
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+MOFSMembershipFunction()
+float Calc(float inputs, float begin, float ending, int type)

Fig. 13 Software definition

One of the differences between this software and other  response time and reducing the computational cost. Other
fuzzy software is that it allows us to represent a more im-  differences and more documentation can be found by con-
portant sector in each fuzzy variable, giving us the possibil-  sulting (Olivares and Madrigal 2007; Olivares and Campoy
ity of reducing the size of the rule-base, thereby improving 2008; Olivares-Mendez et al. 2009a, 2009b). The MOFS is
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defined like a controller class inside the server program run-
ning onboard the helicopter.

The fuzzification of the inputs and the outputs is de-
fined using a triangular membership function, for the plat-
form controllers, and trapezoidal membership functions, for
the heading. The controllers have two inputs, the error be-
tween the center of the object and the center of the image
(Figs. 14(a) and 14(b)) and the difference between the last
and the actual error (Figs. 14(b) and 14(d)), derived from the
position of the velocity of the object to track. The platform
controller output represents the required movement of the
servomotor in the two axes to minimize the error, on a scale
from O to 255, (Fig. 15(a)). The heading controller takes the
same inputs as the yaw controller (Figs. 14(a) and 14(b)),
and the output represents how many radians the UAV must
rotate to line up with the object (Fig. 15(b)).

The three controllers work in parallel, providing redun-
dant operation on the yaw axis and reducing the error in
the yaw-platform controller from the limitations of the vi-
sual algorithm and the movement of the servos. The third
controller also serves to eliminate the turn limitations of the
platform when the tracked object moves to the back part of
the UAV. All of these are guided by a 49-rules base, defining
for the output of the platform controllers a more important
sector in the section near zero, as shown in Fig. 15(a). This
option give us the possibility of defining a very sensible con-
troller when the error is small and the object is very near to
the center of the image and a very quick-response controller
when the object is far away. For the heading controller, we
defined a trapezoidal part in the middle of the output in order
to help the platform controller when the object to be tracked
is far from the center of the image. With these trapezoidal
definitions, we obtain greater stability of helicopter motion
in situations where the tracked object is near the center, ob-
taining a O value.

5.3.2 Heading control experiments

In order to test and fit the heading controller, we made some
tests with the platform control, tracking a real object while
remaining in real-time communication with the helicopter
simulator. For this test, we used a static tracked object and
moved the visual platform, trying to emulate the movements
of the helicopter and the tracked object. The error is shown
in Fig. 16 in pixels.

In Fig. 17 we can see the response of the Fuzzy controller
of the visual platform pitch angle, responding very quickly
and with good behavior. In addition, Fig. 18 shows the con-
troller response of the other axis of the platform. We can see
a big and rapid movement near 1600 frames, reaching an er-
ror of almost 100 pixels. For this change we can see that the
response of the controller is very fast, only 10 frames.
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Fig. 15 Output variables of the controllers

The response of the heading controller is shown in
Fig. 19, where we can see that it only responds to big er-
rors in the yaw angle of the image. Also, we can see, in
Fig. 20, how these signals affect the helicopter’s heading,
changing the yaw angle in order to collaborate with the yaw
controller of the visual platform.
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Fig. 16 Error between the static object tracked and the center of the
image, running with the UAV simulator

Pitch - Qutput of the Fuzzy Controller.
T

K 1 L
0 200 400 600 800 1000 1200 1400 1600 1764

Fig. 17 Response of the fuzzy control for the Pitch axis of the visual
platform tracking a static object with the simulator of the UAV control
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Fig. 18 Response of the fuzzy control for the Yaw axis of the visual
platform tracking a static object with the simulator of the UAV control
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Fig.19 Response of the fuzzy control for the heading of the helicopter

5.3.3 Tests on UAV

This subsection presents results from real tests onboard the
UAV, tracking static and moving objects. For these tests, we
use the controllers of the visual platform.

Tracking static objects In our tests, we tracked a static ob-
ject during the full flight of the UAV, from takeoff to land-
ing. This flight was made by sending set-points from the
ground station. Figure 21 shows a 3D reconstruction of the
flight using the GPS and IMU data on three axes: North (X),

Heading heli movements (Sim Test).
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Fig. 20 Heading response
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Fig. 21 3D flight reconstruction from the GPS and the IMU data from
the UAV. Where, the ‘X’ axis represents the NORTH axis of the surface
of the tangent of the earth, the ‘Y axis represents the EAST axis of the
earth, the ‘Z’ is the altitude of the helicopter and the red arrows show
the pitch angle of the helicopter

East (Y), and Altitude (Z), the first two of which are the axes
forming the surface of the local tangent plane. The UAV is
positioned over the north axis, looking to the east, where the
mark to be tracked is located. The frame rate is 15 frames
per second, so those 2500 frames represent a full flight of
almost 3 minutes.

Figure 22 shows the UAV’s yaw and pitch movements.

In Fig. 24, the output of the two Fuzzy-MOFS controllers
in order to compensate the error caused by the changes of the
different movements and angle changes of the UAV flight,
where we can see the different responses of the controllers,
depending the sizes and the types of the perturbations.

Looking the data shown in Table 3 and Figs. 22 and 23,
we can realize that the perturbations affect the control sys-
tem depending the size and the type of those, but never mak-
ing it lost the mark to track. The maximum error in the flight,
after the ignition of the motor, was 4100 pixels during the
initial elevation of the aircraft and 55 pixels during the flight.
The error represents 62.2% of the initial elevation, where

@ Springer



30

Auton Robot (2010) 29: 17-34

Table 3 Data from big attitude changes sections of the flight

Section Frames interval Attitude angle Degrees Frames num. Time Degrees per sec. Pixels error
1 540-595 Yaw +8 55 3.6s +2.28/s 4100 (Yaw)
1 590-595 Roll -5 5 0.33s —15/s 4100 (Yaw)
1 570-595 Pitch —4 25 1.6 —2.5/s +40 (Pitch)
1 595-620 Yaw —-22 25 1.6 —13.75/s +50 (Yaw)
1 595-660 Roll +10 65 43s +2.35/s +50 (Yaw)
1 620-660 Yaw +20 40 2.6 +15.38/s —75 (Yaw)
2 1460-1560 Yaw —40 100 6.6 —6.06/s +52 (Yaw)
2 1560-1720 Yaw +28 160 10.6 s +2.64/s 48 (Yaw)
3 2170-2260 Yaw -35 90 6s —5.8/s 55 (Yaw)
4 2375-2450 Yaw =27 75 5s —5.4/s 48 (Yaw)
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Fig. 22 Different pitch and yaw movements of the UAV
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Fig. 23 Error between center of the image and center of the object to
track

we have a fusion of all the possible movements and angles
changes in a UAV, with a high rate of change of 15.38 de-
grees per sec. Also, we ranged over 34.375% of the yaw axis
of the camera, with a maximum angle change of 6.06 de-
grees per second. Thus, we can say that the controller shows
good behavior in solving these kinds of problems
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—15 pixels error in the yaw angle. In degrees, this amounts
to 0.6562 degrees of pitch and 0.6562, —1.96875 degrees
of yaw. Notice that, in this section of light movements, we
have continued small yaw changes, as shown in Fig. 22(b)
between Sects. 1 and 2.

Tracking moving objects Here we present a tracking of a
van with continuous movements of the helicopter increasing
the difficulty of the test. In Fig. 25 we can see the error in
pixels of the two axes of the image. Also, we can see the
moments where we deselected the template and re-selected
it, in order to increase the difficulty for the controller. These
intervals show up as the error remains fixed in one value for
a long time.

In Figs. 26 and 27 we can see the response of the to the
controllers, showing the large movements sent by the con-
troller to the servos when the mark is re-selected. Notice that
in all of the figures that show the controller responses, there
are no data registered when the mark selection is lost be-
cause no motion is tracked. Figure 25 shows the data from
the flight log, the black box of the helicopter. We can see
that the larger responses of the controllers are almost 10
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Fig. 26 Response of the fuzzy control for the Yaw axis of the visual
platform tracking a dynamic object (a van)
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Fig. 27 Response of the fuzzy control for the Pitch axis of the visual
platform tracking a dynamic object (a van)

degrees for the yaw controller and almost 25 degrees for the
pitch controller, corresponding to the control correction over
a period of fewer than 10 frames.

Itis possible to view these test videos and more on (COL-
IBRI 2009).

6 Conclusions

This paper has described the research, results, and discus-
sion on the use of several computer vision techniques on-
board a UAV. These computer vision techniques are not
merely used to acquire environmental visual information
that can be used afterward by offline processing. Rather, this
paper has shown that computer vision can play an important
role on-line during the flight itself, in order to acquire the ad-
equate sequences necessary to actively track targets (fixed or
moving) and to guide and control flight trajectories.

We have developed and tested a method for UAV atti-
tude (roll and pitch) and heading estimation based totally on
visual information taken by a catadioptric camera. This ap-
proach has been validated against inertial measures using a
UAV testbed, showing that the estimated values are a very
good approximation of the real state of the aircraft, demon-
strating the feasibility of using this kind of system as a main
sensor on micro UAVs with reduced sensor payloads or as a
redundant system for IMU and gyroscopes in cases of fail-
ure or malfunction of these systems.

Additionally, we have been able to estimate the height
and motion of a UAV by employing a stereo system. Results
of an outdoors test using a UAV have been compared against
GPS data, producing a very good estimate of the vertical
and lateral displacements of the UAV using the ground as a
reference.

Although the measured values do not have a high reso-
lution, they have shown good response to large changes on
the aircraft’s flying state with a near real time computational
cost. Considering these facts, the inertial data measured with
the catadioptric system and the motion estimation with the
stereo system have been shown to be suitable for a flight
controller based on visual sensors. with additional features
such as object tracking and servoing.

The outputs of the image processing algorithm using a
Lucas-Kanade tracker for static and moving objects are the
visual references used by an autonomous fuzzy system to
control a pan and tilt camera platform and the UAV heading.
The controllers show excellent behavior when tracking both
static and moving objects, despite the perturbations in the
environment and the helicopter’s own vibrations. The uses
of the pan and tilt visual platform give the helicopter free-
dom of movement, as well as faster response when moving
objects are tracked, compared with other implementations
of visual servoing on UAVs without a pan and tilt platform.
The combined platform and heading control allows us to
make smooth movements of the platform, increasing both
the workspace of the visual tracker and the UAV. The de-
veloped visual tracking algorithms have many potential ap-
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plications in specific situations, such as staying near electric
structures, inspection of wind farms or dams, and fire moni-
toring.

Based on the results of our work, we conclude that the
UAV field has reached an important stage of maturity, in
which the possibility of using UAVs in civilian applications
can now be imagined and in some cases attained. We have
experimentally demonstrated several capabilities of an au-
tonomous helicopter using visual information such as atti-
tude estimation, navigation, trajectory planning, and visual
servoing. The successful implementation of all these algo-
rithms confirms the necessity of equipping UAVs with addi-
tional functionalities when tasks such as outdoor structures,
inspection, and object tracking are required.
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