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Abstract— In this paper we introduce a real-time trinocular
system to control rotary wing Unmanned Aerial Vehicles based
on the 3D information extracted by cameras located on the
ground. The algorithm is based on key features onboard the
UAV to estimate the vehicle’s position and orientation. The
algorithm is validated against onboard sensors and known
3D positions, showing that the proposed camera configuration
robustly estimates the helicopter’s position with an adequate
resolution, improving the position estimation, especially the
height estimation. The obtained results show that the proposed
algorithm is suitable to complement or replace the GPS-based
position estimation in situations where GPS information is
unavailable or where its information is inaccurate, allowing the
vehicle to develop tasks at low heights, such as autonomous
landing, take-off, and positioning, using the extracted 3D
information as a visual feedback to the flight controller.

I. INTRODUCTION

The use of computer vision algorithms designed to control
UAVs has been an attractive and interesting research area in
the academic and industrial field, being a special case of
study the use of autonomous helicopters due to their grate
maneuver capabilities that allow them to fly at low speed
velocities (lateral and longitudinal flights), hover, perform
vertical take-off and landing, and maneuver in reduced
spaces.

The vision systems implemented in UAVs cover areas such
as object detection and object tracking [1], pose estimation
[2], navigation [3], obstacle detection [4], and autonomous
landing [5], among others, in which vision is always used as
a rich source of information for the mission’s success.

The goal of this research is to provide UAVs with an
additional vision-based source of information, extracted by
ground cameras, in order to allow UAVs to develop visu-
ally guided tasks, such as landing, inspection or ground-air
cooperation missions, especially in situations when the GPS
information is not available, when the GPS-based position
estimation is not accurate enough for the task to develop, or
when the payload restrictions do not allow the incorporation
of additional sensors.

The vision based pose estimation problem has been ex-
tensively studied, such as in [6], [7], [8], and [9], where
the information of the vision system is integrated with the
onboard sensors to control the UAV. In another approach,
an onboard camera, in conjunction with a ground moire
pattern, is used to estimate the vehicle’s six degrees of

freedom for landing purposes [10]. Ground-based cameras
approaches for solving the pose estimation problem have also
been proposed. In [11], a ground camera is used to control
a dirigible based on the information of artificial landmarks.
In that work, the 3D position and orientation information
are recovered based on the knowledge of the geometrical
properties of the landmarks. A more recent work deals with
the pose estimation problem of a quadrotor vehicle using
simultaneously both ground and onboard cameras [12]. In
the latter work, color landmarks are used to recover the
vehicle’s pose. In this paper, we introduce a vision-based
control system for UAVs by presenting the estimation of
the position and orientation (Yaw angle) of a rotary wing
Unmanned Aerial Vehicle and its integration in the UAV
control loop. All of this, has the aim of developing a vision-
based platform for autonomous take-off and landing, and
high precision positioning tasks. The implemented system
is a redundant system composed of three cameras located on
the ground in charge of recovering the information of key
features onboard the helicopter in order to obtain a robust
3D position estimation by using a trinocular or binocular
estimation (depending on the number of cameras that see
a specific key feature), and also to increase the vehicle’s
workspace.

In these first steps towards an external vision-based con-
trol, color landmarks onboard the UAV have been used as
key features. The helicopter detection and tracking is based
on such landmarks, and is achieved by using the CamShift
(Continuously Adaptive Mean SHIFT) algorithm [13]. 3D
reconstruction techniques are also used for the estimation of
the helicopter’s pose [14].

The proposed algorithm has been tested in a variety of
situations (indoors and outdoors), and the results of these
tests are shown in this paper, whose outline is as follows:
Section II presents the system architecture. Section III de-
scribes the reference systems. Section IV deals with the
vision-based control system for UAVs. Finally, in Sections
V and VI experiment results, conclusions and future works
are presented.

II. SYSTEM ARCHITECTURE

The adequate intervention of several components from a
hardware and software perspective is required for a mission’s
success, especially when a vision system is used in a UAV
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control loop. The following section presents a description of
the different components of the proposed system.

Fig. 1. Helicopter tesbed Colibri III, during a flight. Color landmarks
onboard the UAV are used as key features for the position estimation
algorithm.

A. Helicopter Testbed

The Computer Vision Group at the UPM (Universidad
Politcnica de Madrid) counts with three fully operational
UAV systems to develop indoors and outdoors applications.
Such systems form part of the COLIBRI Project, whose
purpose is to develop algorithms for vision based control
of UAVs [15]. The experiments were carried out with the
Colibri III system (see Fig. 1). It is a Rotomotion SR20
helicopter with an electric motor of 1.300 W, 8A. It is
equipped with an xscale-based flight computer, a GPS,
an IMU (Inertial Measurement Unit), an onboard pan and
tilt camera, and an onboard Nano Itx computer for image
processing algorithms. The flight computer runs Linux OS
and uses an 802.11g wireless Ethernet protocol for sending
and receiving information to/from the ground station.

B. Trinocular System

The trinocular system, as shown in Fig. 2, is composed of
three FireWire cameras with 3.4mm lenses ( Field Of View:
HFOV ≈ 87◦ VFOV ≈ 71◦); each camera captures images of
320×240 size at 30fps (frames per second). These cameras
are strategically located on an aluminum platform in order
to allow a convergent optical axis configuration in two of the
three cameras, and to take advantage of the cameras’ field
of view. The cameras’ position and orientation are fixed, and
their intrinsic and extrinsic parameters are known due to a
calibration process. The cameras are connected to a vision
computer, which is a 2.2 GHz laptop running Linux OS.

C. Communication System

We use a client-server architecture implemented in our
systems (Colibri I, Colibri II, and Colibri III). This architec-
ture is based on TCP/UDP messages and is used to exchange
information between the helicopter, the ground station and
the ground vision system. The exchange is achieved through
a high level layer defined by a communication API (Appli-
cation Programming Interface), which routes the messages
to the specific process depending on the message type. The
messages can be sent from the ground station or from the

Fig. 2. Trinocular system. It is composed by three FireWire cameras
that capture images of 320× 240 size at 30fps. The rotation matrices and
translation vectors that define the relation of the cameras with the World
Coordinate System are calculated from a calibration process.

vision system, to the flight controller and can also be sent in
the other direction (from the flight controller to the ground
station and the vision system). Those messages include
velocity control, position control, and helicopter and GPS
state messages, among others. Fig. 3 shows an example of
messages that can be transmitted through the switching layer.

Fig. 3. Switching layer. TCP/UDP messages are used to exchange data
between the flight controller, the ground station, and the vision system.

III. COORDINATE SYSTEMS

Different coordinate systems are used to map the extracted
visual information from R2 to R3, and then to convert this
information into commands to the helicopter. This section
provides a description of the coordinate systems and their
corresponding transformations to achieve vision-based tasks.

We have different coordinate systems; the Image Coordi-
nate System (Xi), that includes the Lateral (X f ) and Central
Coordinate Systems (Xu) in the image plane, the Camera
Coordinate System (Xc), the Helicopter Coordinate System
(Xh), and an additional one: the World Coordinate System
(Xw), used as the principal reference system to control the
vehicle (see Fig. 4).
• Image and Camera Coordinate Systems
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Fig. 4. Local and global coordinate systems. The mapping from the
image plane to the Camera Coordinate System requires the calculation of
the intrinsic camera parameters (cx,cy, f ). Transformation from the Camera
Coordinate System to World Coordinate System is performed through a
rigid transformation, and requires the extrinsic parameters of the trinocular
system. The World and the Helicopter Coordinate Systems are related
through a rigid transformation, which defines the helicopter’s position
and orientation, and allows to send the adequate commands to the flight
controller.

The relation between the Camera Coordinate System and
the Image Coordinate System is taken from the ”pinhole”
camera model. It states that any point referenced in the
Camera Coordinate System xc is projected onto the image
plane in the point xf by intersecting the ray that links the
3D point xc with the center of projection and the image
plane. This mapping is described in (1), where xc and xf are
represented in homogenous coordinates. nx f

ny f
n

=

 fx 0 cx 0
0 fy cy 0
0 0 1 0




xc
yc
zc
1


xf = Kk[I|0]xc

(1)

The matrix Kk contains the intrinsic camera parameters of
the kth camera, such as the coordinates of the center of
projection (cx,cy) in pixel units, and the focal length ( fx, fy),
where fx = f mx and fy = f my represent the focal length in
terms of pixel dimensions, being mx and my the number of
pixels per unit distance.

The above-mentioned camera model assumes that the
world point, the image point, and the optical center are
collinear; however, in a real camera lens there are some
effects (lens distortions) that have to be compensated in
order to have a complete model. This compensation can
be achieved by the calculation of the distortion coefficients
through a calibration process [16], in which the intrinsic
camera parameters, as well as the radial and tangential
distortion coefficients, are calculated.
• Camera and World Coordinate Systems

Considering that the cameras are fixed, these systems are
related by a rigid transformation that allows to define the
pose of the kth camera in a World Coordinate Frame. As
presented in (2), this transformation is defined by a rotation
matrix Rk and a translation vector tk that link the two coordi-
nate systems and represent the extrinsic camera parameters.

Such parameters are calculated through a calibration process
of the trinocular system.

xc =
[

Rk tk

0T 1

]
xw (2)

• World and Helicopter Coordinate Systems
The Helicopter Reference System, as described in Fig. 4,
has its origin at the center of mass of the vehicle and its
correspondent axes: Xh, aligned with the helicopter’s longi-
tudinal axis; Yh, transversal to the helicopter; and Zh, pointing
down. Considering that the estimation of the helicopter’s
pose with respect to the World Coordinate System is based
on the distribution of the landmarks around the Helicopter
Coordinate System, and that the information extracted from
the vision system will be used as reference to the flight
controller, a relation between those coordinate systems has
to be found.

In Fig. 4, it is possible to observe that this relation
depends on a translation vector that defines the helicopter’s
position (t), and on a rotation matrix R that defines the
orientation of the helicopter (pitch, roll and yaw angles).
For practical purposes, pitch and roll angles are considered
= 0 (helicopter flying at low velocities (< 4m/s), and only
the yaw angle (θ ) is taken into account in order to send the
adequate commands to the helicopter. Therefore, the relation
of the World and the Helicopter Coordinate Systems can be
expressed as follows:

xw
yw
zw
1

=


cos(θ) −sin(θ) 0 tx
sin(θ) cos(θ) 0 ty

0 0 1 tz
0 0 0 1




xh
yh
zh
1

 (3)

Where (tx, ty, tz) will represent the position of the heli-
copter (xwuav ,ywuav ,zwuav ) with respect to the World Coordinate
System, and θ the helicopter’s orientation.

IV. VISION-BASED CONTROL

A. Feature extraction and tracking

A color-based algorithm is applied to extract four different
color landmarks (i), which are located onboard the UAV
as shown in Fig. 1. The algorithm that is implemented for
color segmentation is based on probability distributions. As
a consequence, a model probability distribution of the color
of each landmark and a probability distribution of those
colors in each frame have to be determined. Converting from
RGB to HSV color spaces, and using the histogram of the
Hue channel, the color probability distributions are created.
Then, the relation between the probability distributions (the
models’ ones with the probability distribution of each color
in each frame) is found using the backprojection algorithm
proposed by Swain and Ballard in [17]. This algorithm
computes the likelihood that each image point belongs to the
model. This relation is found by calculating a ratio histogram
Rh, as defined in (4).

Rhk
i ( j) = min

[
Mhk

i ( j)
Ihk

i ( j)
,1
]

(4)
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Where Mhk
i ( j), Ihk

i ( j), and Rhk
i ( j) correspond respectively

to the values of the jth bin of the model histogram, the
current image histogram, and the ratio histogram created for
the ith color in the kth camera. Once Rhk

i is found, it is then
backprojected onto the image, replacing the values of the
image by the values of Rhk

i that the former values index.
The resulting image is a gray-scale image, where pixels’
values represent the probability that the pixel belongs to the
object of interest. Once each backprojected image has been
extracted, a threshold is applied in order to eliminate outliers.

The new location of the object in each frame is found by
using the backprojected image previously extracted and the
Continuously Adaptive Mean Shi f t (CamShi f t) algorithm
[13] to track the landmarks. This tracker is based on the
Mean−Shi f t algorithm, originally introduced in [18]. This
algorithm operates on probability distributions [19] and uses
the gradient of the distributions in order to find the nearest
dominant mode (peak). However, taking into account that this
distribution can change over time, the CamShi f t algorithm
allows the Mean−Shi f t algorithm to adapt dynamically to
those changes based on the zeroth moment information of
the search window [13].

The following steps summarize the CamShi f t algorithm
[20]:

1) Choose the initial location and size of the search
window.

2) Run Mean−Shi f t algorithm (one or many iterations)
to find the densest region. Once it is found, store the
zeroth moment and its central location.

3) Center the search window at the mean location found
in Step 2 and set the search window size equal to a
function of the zeroth moment found in Step 2.

4) Repeat Steps 2 to 3 until converge occurs (when the
mean location moves less than a preset threshold).

For each frame in each camera, the CamShi f t algorithm
finds the centroid of the landmark (x̄k

i , ȳ
k
i ) within the search

window by calculating the zeroth (mk
i00

) and first moments
in the X and Y axes (mk

i10
, mk

i01
), as presented in (5).

mk
i00

= ΣxΣyIk
i (x,y)

mk
i10

= ΣxΣyxIk
i (x,y), mk

i01
= ΣxΣyyIk

i (x,y)

x̄k
i =

mk
i10

mk
i00

; ȳk
i =

mk
i01

mk
i00

(5)

Where Ik
i (x,y) represents the intensity value (within the

search window) of the backprojected image found for land-
mark i in the kth camera. The centroid found is then used as
feature for the 3D reconstruction stage.

B. 3D Reconstruction

The 3D reconstruction of each landmark requires a pre-
vious calibration of the system in order to find the intrinsic
parameters (Kk) of the cameras and the extrinsic parameters
(Rk and tk) of the trinocular system (Fig. 2). This calibration
is done using the CalTech camera calibration toolbox [21].
Once the previously mentioned parameters are calculated
for each camera, the different transformations mentioned in

Section III have to be applied from the image plane to the
World Coordinate System in order to recover the 3D position
of the landmarks.

Reorganizing (1), we have that:

x fi − ck
x = f k

x
xci
zci

, y fi − ck
y = f k

y
yci
zci

(6)

If we consider that xui = x fi−ck
x, yui = y fi−ck

y, and if we
take into account the color information of the landmarks and
the trinocular extrinsic parameters of the trinocular system,
equation (2) can be applied to relate a 3D point (the 3D
position of landmark i) with its projection in each camera
using the following equation:

xk
ui

= f k rk
11xwi +rk

12ywi +rk
13zwi +tk

x

rk
31xwi +rk

32ywi +rk
33zwi +tk

z

yk
ui

= f k rk
21xwi +rk

22ywi +rk
23zwi +tk

y

rk
31xwi +rk

32ywi +rk
33zwi +tk

z

(7)

In the aforementioned equations, xk
ui

and yk
ui

represent the
coordinates of landmark i expressed in the Central Camera
Coordinate System of the kth camera, whereas, rk and tk

are the components of the rotation matrix RK and the
translation vector tk that represent the extrinsic parameters
of the trinocular system.

Therefore, for each landmark in each camera we will
obtain two equations such as those presented in (7). Applying
a restriction regarding the minimum number of cameras
that see a specific landmark (in order to triangulate the
landmark position), if at least two cameras are seeing the
same landmark, it is possible to create a system of equations
of the form Ac = b,

where:

A =


(x1

ci
r1

31− r1
11) (x1

ci
r1

32− r1
12) (x1

ci
r1

33− r1
13)

(y1
ci

r1
31− r1

21) (y1
ci

r1
32− r1

22) (y1
ci

r1
33− r1

23)
...

...
...

(xk
ci

rk
31− rk

11) (xk
ci

rk
32− rk

12) (xk
ci

rk
33− rk

13)
(yk

ci
rk

31− rk
21) (yk

ci
rk

32− rk
22) (yk

ci
rk

33− rk
23)

 (8)

c =

 xwi

ywi

zwi

 (9)

b =


(t1

x − xk
ci

t1
z )

(t1
y − yk

ci
t1
z )

...
(tk

x − xk
ci

tk
z )

(tk
y − yk

ci
tk
z )

 (10)

The previous system can be solved using the pseudo-
inverse of the matrix A, as presented in (11), where the
obtained vector c represents the position (xwi ,ywi ,zwi ) of the
ith landmark.

c = A+b = (ATA)−1ATb (11)
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C. Pose estimation

In this case, the estimation of the helicopter’s pose will
be related exclusively with the estimation of the 3D position
of the helicopter (xwuav ) and the orientation of the helicopter
both expressed with respect to the World Coordinate System.
The helicopter’s orientation is defined only with respect to
the Zh axis (θ ), while the angles, with respect to the other
axes, are considered = 0. Therefore, taking into account the
3D positions of the landmarks extracted in the previous stage,
and taking into account the landmarks’ distribution around
the Helicopter Coordinate System, it is possible to formulate
equation (12) for each landmark, considering only the yaw
angle θ (as explained in section III):

xwi

ywi

zwi

1

=


cos(θ) −sin(θ) 0 tx
sin(θ) cos(θ) 0 ty

0 0 1 tz
0 0 0 1




xhi

yhi

zhi

1

 (12)

Reorganizing (12) for all the landmarks that have been
detected, and considering that cθ = cos(θ), sθ = sin(θ),
xwuav = tx, ywuav = ty, zwuav = tz, equation (12) can be rewritten
in the form:

Ac = b (13)

xh1 yh1 1 0 0
yh1 −xh1 0 1 0
0 0 0 0 1
...

...
...

...
...

xhi yhi 1 0 0
yhi −xhi 0 1 0
0 0 0 0 1




cθ

sθ

xwuav

ywuav

zwuav

=



xw1
yw1

zw1 − zh1
...

xwi

ywi

zwi − zhi


Where our unknown parameters cθ ,sθ ,xwuav ,ywuav ,zwuav

correspond to the values that define the orientation (yaw
angle) and the position of the helicopter with respect to the
World Coordinate System. The previous system of equations
can be solved as in (11), with the restriction that the
reconstruction of at least two landmarks is required to find
both xwuav and the yaw angle (θ ). However, this restriction
can vary depending on the task to develop: in the case of
autonomous landing, if we assume that the helicopter is in
the adequate landing position and the trinocular system will
actuate only on the helicopter’s height, the control task can
be achieved with only one detected landmark.

D. Vision system and flight control system integration

The integration of the visual system into the UAV control
system is presented in Fig. 5. It follows the architecture
of a ”dynamic look and move system” [22], which is a
hierarchical control architecture composed of a fast internal
control loop -flight control system- (±120Hz), which is in
charge of the helicopter’s stability, and an external loop (the
vision system), which operates at low frequencies and gives
references to the helicopter’s control loop.

The helicopter’s control loop is composed of: a State
Estimator, which fuses the information from different sensors
(GPS, Magnetometers, IMU -Inertial Measurement Unit-)

using a Kalman f ilter to determine the position and ori-
entation of the vehicle, and the Flight Controller which is
composed of different control loops based on PID controllers
(for attitude control, velocity control, position control) that
allow different modes of operation, as presented in [23], [15],
and [24].

Fig. 5. Vision-based control. In this scheme, a fast internal control loop
(flight control system) is in charge of the helicopter’s stability, whereas the
external loop (vision system) operates at low frequency and uses the visual
information as a feedback to the helicopter’s flight controller.

Considering that the vision system will determine the
position of the UAV in the World Coordinate System, the
adequate references will be given in terms of 3D positions,
so that the position xwsetPoint and the position information
given by the trinocular system xwuav , both defined in the
World Coordinate System, will be compared to generate
references to the position controller, as shown in Fig. 5.
These references are first transformed into commands to the
helicopter xhsetPoint by taking into account the helicopter’s
orientation θ (see Fig. 5), and then those references are sent
to the position controller in order to move the helicopter to
the desired position.

V. EXPERIMENTS AND RESULTS

Several experiments were developed with the aim of val-
idating the proposed algorithm regarding feature extraction,
tracking and position estimation. The program was developed
in C + +, and the OpenCV libraries were used for image
processing. The UAV system and the trinocular platform
described in Section II were used for the tests.
• Static tests
The first set of experiments consisted in positioning the

helicopter in different known 3D coordinates with respect to
the World Coordinate System. Real values of the UAV posi-
tions are obtained measuring them. The Root Mean Square
Error (RMSE) of the helicopter’s position is calculated by
comparing the algorithm results with the known position.
Fig. 6 presents the RMSE for different situations. As ex-
pected, the error in the Yw axis increases as the helicopter
gets farther away from the trinocular platform. This is so
because at those positions the parallax angle within the rays
becomes small. Errors in Zw and Xw axes are satisfactory and
constant within a small range, compared with those obtained
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in the Yw direction. This happens because changes of Xw and
Yw can be better perceived in the image plane.

Fig. 6. Test results. MSE obtained by comparing the pose estimation results
of the trinocular system with the known 3D positions at different depths.

The errors found in these experiments give an idea of the
precision of the system, being ≈ 5cm for the Xw axis, ≈
5cm for the Zw axis, while for the Yw axis, the precision
depends on the depth. If a landing task has to be achieved, the
adequate depth for this task is ≈ 3m, whereupon a precision
of ≈ 10cm will be the one obtained for the Yw axis. The
precisions that were obtained satisfy the requirements of the
tasks we expect to accomplish (landing and positioning).
• Flight tests

The algorithm has been tested during different flights (the
video sequences can be found in [25]). An interesting
sequence to analyze corresponds to a landing task which
has been performed in manual-mode (flown by the pilot).
In Fig. 7 (figures a,b, and c), the normalized signals of
the helicopter’s state estimator and the vision system are
compared regarding the UAV’s position estimation. It is
important to notice that, in spite of being a manual-mode
flight (having thus strong movements), the algorithm follows
the landmarks in the different frames and the reconstructed
values are consistent with the real movements experimented
by the helicopter. Analyzing the different signals, the vision
system signals (red lines) are consistent with the position of
the helicopter shown in the image sequences (the helicopter
moves to the left and right, forward and backward, up and
down of Camera 2). However, the UAV values (green lines)
present different variations at the end of the landing phase
that do not correspond with the helicopter’s real movements,
especially when the helicopter has landed (from frame 6750).
Therefore, it is demonstrated that the vision system is not
only capable of sensing the different movements adequately,
but also that it is capable of sensing small variations in
position (±50cm), improving the position estimation in the
different axes.

Another analysis has been done regarding the yaw (θ )
values that are estimated when the helicopter has been
rotated in different directions. In Fig. 8, it is possible to see
the similar behavior of the signals, obtaining an RMSE of
4.3 considering the measure given by the helicopter’s state
estimator as ground truth.
• Algorithm performance

Table I presents the execution time for the different stages
of the algorithm. The image processing stage (as expected)

(a)

(b)

(c)

Fig. 7. Algorithm results vs helicopter’s state estimator. The graphics
correspond to a manual-mode landing task. The vision system’s estimation is
compared with the UAV’s state estimator values and saved images, demon-
strating that the vision system not only senses the different helicopter’s
movements adequately, but also that it is capable of sensing small variations
in position (±50cm).

Fig. 8. Algorithm results vs helicopter’s state estimator II.The signal of the
Yaw angle of the helicopter state estimator (green line) is compared with
the raw data of the vision-based estimation (red lines).

takes the largest CPU time. The average time for solving
the pose estimation process is ≈ 56.7ms/ f rame, allowing
a frequency of ≈ 17.63 f rames/sec, which proves that the
algorithm can be used for real-time applications.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented and validated a real-
time vision system that estimates the UAV’s position and
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TABLE I
COMPUTATIONAL COST

ALGORITHM STAGE TIME (ms/frame) PERCENTAGE
Capture ≈ 3.455 6.1%

Image Processing ≈ 51.9 91.5%
Triangulation ≈ 0.1 0.1%
Other tasks ≈ 1.3 2.3%

Total ≈ 56.7 100%

orientation based on information extracted by three cameras
located on the ground. The algorithm has been tested in
indoor and outdoor environments, the latter corresponding
to real flight tests.

The experimental results show that the estimation is con-
sistent regarding 3D real data with approximate errors of
±5cm in Xw and Zw axes, and of ±10cm in the Yw axis (at
3m depth), which satisfies the requirements of the tasks we
expect to accomplish (landing, takeoff and navigation).

The comparison of the information provided by the vision
system with that of the UAV’s state estimator shows that the
vision system improves the position estimation, especially
the helicopter’s height estimation, whose current accuracy
based on GPS is ±0.5m or lower when the vehicle ap-
proaches the ground. Additionally, it was possible to see
that small variations in position are better perceived with
the vision system, which makes this system suitable for
maneuvers at low heights and close to structures where
precise movements are required.

Our future work will focus on the implementation of a
Kalman Filter, in order to smooth the estimation values.
It will also aim to close the UAV’s control loop with the
extracted information in order to perform positioning and
landing tasks. Additionally, we will study other techniques
for feature extraction and matching employing other key
points. All these new characteristics will be useful for the
improvement of the UAV’s pose estimation, which is crucial
to allow UAVs to operate at low heights and to perform
landing, take-off, and other ground-air cooperation tasks.
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