FUZZY CONTROL SYSTEM NAVIGATION USING
PRIORITY AREAS

M. A. OLIVARES*, P. CAMPOY, C. MARTINEZ, J. F. CORREA and I
MONDRAGON

DISAM, Universidad Politécnica de Madrid,
Madrid, 28006, SPAIN
Computer Vision Group

* E-mail: mig-olivares@hotmail.com
www.disam.upm.es/vision

This paper presents an improvement for the software implementation (MOFS)
of a user adaptive fuzzy control system for autonomous navigation of mobile
robots in unknown environments. This improvement consists of a priority areas
definition where the environment is measured by a PLS laser sensor, in order
to get a reduction in the number of fuzzy rules and also in the computational
cost, and hence obtaining improvements in the trajectory. This system has
been tested in a pioneer mobile robot and on a robotic wheelchair, odometry
sensors are used to localize the robots and the goal positions. The system is
able to drive the robots to their goal position avoiding static and dynamic ob-
stacles, without using any pre-built map. This approach improves the way to
measure the danger of the obstacles, the way to follow the walls of corridors
and the detection of doors. These improvements reduce the zigzag effect of the
previous system by making the trajectories significantly straighter and hence
reducing the time to reach the goal position.

Keywords: Fuzzy logic, autonomous navigation, adaptive control, fuzzy control,
mobile robots, collision avoidance, reactive navigation, priority areas.

1. Introduction

One of the most investigated problems in the robotic community is the au-
tonomous navigation of mobile robots. There are different ways to face this
problem either by reactive, delivered or hybrid methods. The main goal of
this research is to reduce the computational and memory cost required in
autonomous navigation of mobile robots. This approach reduces the compu-
tational cost by avoiding the use of environment maps, with the additional
advantage that it can be used regardless of the place. To approach the com-

putational cost fuzzy logic techniques for the interaction between the robot
and it’s surroundings.

In the following paper we remark on the usefulness of the two improve-
ments deeply explained in (). Which are, the more important and compre-
hensive sector for the definition of each fuzzy-variable and a user adaptive
learning algorithm based of the synapses-weight idea of the brain operation.
For this purpose a versatile software was created called MOFS (Miguel
Olivares Fuzzy Software) which uses fuzzy logic techniques that can learn
from experience regardless of the intelligent system architecture. The im-
provement made in this work is to measure the environment by creating
different areas with different priority values.

The next section of this paper presents the autonomous fuzzy naviga-
tion control system in detail. Section IIT defines the developed user adap-
tive learning algorithm. Section IV is dedicated to the explanation of the
environment division using priority areas. Section V describes the fuzzy-
software implementation. Section VI shows the experimental results. Sec-
tion VII consists of the conclusion and future works.

2. Autonomous Fuzzy Navigation Control System

For this work we use the MOFS to developed an autonomous fuzzy naviga-
tion system. The structure of the fuzzy control is divided into three inputs
variables for interaction with the environment and one output. The data we
use to check each situation is defined by the distance (in meters) between
the robot and the obstacle with the biggest priority, the angle direction
inside the selected priority area and the angle to the goal from the robots
position (both in degrees). The angles and distance are recovered by using
a 180 range laser sensor and an odometry system.

The figure 1 shows the inputs and the output of the fuzzy control sys-
tem. In the figure 1 (a), the distance to obstacles is shown from 0 meters
(very near) to 4.5 meters (far away), values with are equal to or greater that
4.5 have the same interpretation. The second input variable is shown in fig-
ure 1 (b), splits the environment in three areas (Left, Center and Right)
and provides where is the obstacle. The detection of the angle to the goal
position (fig. 1 (c¢)) is based on the data provided by a 2D odometry sys-
tem, which return the angle between that position and the orientation of
the mobile robot. Taking into account that this is a representation of 360
degrees area, the left extreme and the right extreme represent the back side
of the mobile robot. The front side of the robot has a bigger number of
sets in order to define a better behavior when it is very near to the goal

position. Finally the control system evaluates all the values of the inputs
using a base of rules and giving how many degrees must the mobile robot
turn in order to avoid the obstacles and face the goal position. The range of
this variable is defined in the same way than the angle to the goal position,
where the left extreme and the right extreme represent a big turn of 180
degrees (fig. 1 (d)).

In previous work different velocities were declared as constants depend-
ing on the danger of the situation which was based on the distance to the
near obstacle, but in this work the priority areas allow side obstacles to be
considered less dangerous than obstacles in front of the mobile robot. The
system scan time has been increased to 6 times per seconds, double that of
the previous work (1).

The fuzzification of the inputs and outputs are defined by using a trian-
gular membership function. This function has been used in many robotics
applications for navigation purposes (see,?34,5,56).

The system defines a more important and comprehensive sector in a
variable, with the aim of increasing the number of fuzzy-sets only in the
sector where the variable has been invoked. With this improvement we avoid
an increase in the number of fuzzy-sets in all space of a variable when a
fault occurs in one sector, as shown in Fig. 1. This is very important be-
cause there exists situations where the number of fuzzy-rules are increased,
making the system slower. This could be possible by the statistical study of
the uses of the fuzzy-subsets of each variables. To compare the same system
response without this more important sector definition, the rule-based size
was increased by 40%, this yielded to a 78% improvement in the compu-
tational time, 1.26s (improved) vs 2.25s (not improved). With regard to
the time spent to check each situation the system spent 17% more, 0,059s

' (a) . (b)

© @

Fig. 1. Fuzzy sets and membership functions for the mobile robot: (a) distance to the
near obstacle (0,4'5) meters(b) angle, inside the selected priority area, between robot and
the priority obstacle, (0,180) (c) angle between the robot and goal position, (—180, 180)
(d) motor command (output), the direction to take, (—180, 180)

(improved) vs 0,06903s (not improved).

For the inference process (in the defuzzification) we used an adaptation
of the minimum and product classic method (see,2,7®), with the considera-
tion of the weights assigned at each fuzzy-rule. This idea will be explained
in the next section. For the defuzzification part itself, we used the Height
Method (see,?,?), but with the adaptation of weighting of the fuzzy-rules
(Eq. 1a, 1b), where w' is the rule weight and W is the maximum weight

possible.

_ S g min(up (7)) W
ZlZ\il min (s (7)) WWZ

> (Y
Zl]\il I1 (“B’(gl))le

3. User adaptive learning algorithm

This algorithm is based on the idea of the synapse-weight, where a weight
variable for each rule is defined, that represents the contribution of each
rule in the system output. The default value of the weight is 0.3 and the
maximum value is 3. The decision of the user will make the weight of the
rules increase or decrease depending on the situation and in accordance
with the system output. For each situation 8 rules are selected, given the
fact that we use a simple overlap in the variables. In the training period the
system compares each rule output and with the user decision, which had
been fuzzificated by using the same proccess. When the rule output and
the user decision are different the system will decrease the weight of the
rule, and in the case of a negative rule weight the system will change the
output of the rule by using the set of user decisions that has the highest
value. In the case where the rule output is like one of the two sets of the
user decision the system will increase the weight by a quarter of the set
membership value. So with this method the system will adapt its behavior
to the users’ behavior. In the training phase the user just needs to make
some tours and the system will learn from this, evaluating all the situations
that the user makes in the tours. If the tours have many different situations
the system will learn early.

In the execution phase, when the user isn’t making a decision the sys-
tem continues learning, based on the rules that have higher weights, which
represents the users behavior. The way in which the system compares the

output of the selected rules for the situation with the output of the system,
is the same way as in the training phase.

The learning is illustrated in Fig. 2 (a), where the error between the sys-
tem output and the user decision is represented by the label ’error’ (cyan
color). The other lines referenced with the label rules output change’ repre-
sent the rules output change at specific proximities to the obstacle. When
the learning algorithm makes the output of the rules change the system
reduces the error. The more characteristic weight changes are represented
in Fig. 2(b).

4. environment division using priority areas

The division of the environment into different areas with specific priority
values is the new improvement introduced in the latest version of MOFS.
We try to make a radical reduction in the number of rules and in the
same way reduce the size of the base of fuzzy rules, moreover we try to
get better trajectories without increasing the complexity of the software.
Better trajectories are measured by the a more direct path to the goal,
hence reducing the zigzag effect of the previous work (!). The environment
which is described by the angle to the obstacles in front of the mobile robot
where divided into three areas, the first one from 0 to 60 degrees, the second
one from 60 to 120 degrees, and the last one from 120 to 180 degrees. It
is important to note that the PLS laser gives the environment information
180 degrees in front of the robot, from the left to the right. Furthermore
each segment is divided into three concentric areas, given a total of 9 areas
and mixing the two fuzzy variables, angle and distance between the obstacle
and the robot. The assignment of the priorities are shown in the figure 3.
There are some areas that has equal priority, so in that cases we consider

vules outpur change -)

it \ A
I 24| \

2k N o Adiaiale o f

B 23]
error
22|

Fig. 2. (a) Outputs modifications. (b) Weight modifications.

the priority obstacle the near one.

By the fact of giving more importance to obstacles in the middle seg-
ment of the priority area the robot behavior through a corridor is greatly
improved by making a much straighter path, also doors detection in indoor
environments is more efficient.

om 1,28m 25m 4m

Fig. 3. Priority Areas.

5. Software Implementation

The software was independently designed for the c++ platform. We defined
one class for each part of the fuzzy-logic environment in order to facilitate
the future updates and to be easy to work with. There are different classes
for variables, rules, membership functions and defuzzification modes (Fig.
4). Depending on the system we want to create we can define the number of
inputs and outputs that we prefer or make some different system in serial
mode, where the output of one system can be the input of another. In the
same way we can define the different characteristics of the variables, the
type of the fuzzification inference type or the defuzzification mode. At the
beginning the rule-base is implemented randomly, making this process so
fast, and depending on the size of the rule-base the user adaptive learning
algorithm in the training mode modified this in a few or little more tours
or uses. For this initial training it is possible to introduce a pattern list. In
this paper we make an initial rule base and then we use it for adaptation
of two users. With this initial rule base, where the weight of all the rules
are reset at the default weight, we can make a basic adaptation in 4 or 5
tours, taking into account its complexity, with the robotic-wheelchair.
The updates of the software can be implemented in each of the ways of
the fuzzy-logic parts, like introducing different membership functions, fuzzy
inference types or introducing another kind of defuzzification mode.

MOFSMode
FRuleNode" ruleStore

VarsNode* fuzzy_inputs_vars

HVarsNode* fuzzy_outputs_vars
IMOFSDefuzzificationModel* defuzz_model

[FMOF Shiodel(char” file, int mode)

[tint ReadVars(ifstream file_in)

[tint ReadRuleBase(ifstream file_in)
[+fiaat Inputirg(fioat inputsf], float*output)
[+fiaat Actionifioat *ouput)

[tvaid file)

!

_ MOFSVar MOFSinferenceModel
char* name MOFSMembershipFunction
MOFMembershipFunction® functionType
XArray* xValuesArray

FMOF SinferenceNiodel)
[*MOF SMembershipFunction() [+loat Calc(float inputs. float begin, float eding)
[FMOE SV ar(ifargam fi.in) [#float Cale(float inputs, float begin, float ending, int type) 7~

vint calc(float x)

+Outputs(fioat y_array())
+SetsAmay(char sets_array(l)

MOFSRule MOF SDefuzzification
-Set* dal§ MCF SnferenceModel” inference Type
-F‘Oat weight [*MOFSDefuzzification()
[ohar® inputs [+Mloat defuzz(void* rule_data_list, int var_number)

Lshar ouput
[FMOF SRule(char inputs{], char ouput, float weight)

[+int UpdateWeight(char inputs[], char output, float outputValue])
[#int UpdateOutput(char ouput)

Prod Weight

TriangularFunction

HeightWelight Min Weight

Fig. 4. Software definition.

6. Experiments Results

The experimental results presented in this section are a comparison with
the previous experiments realized in ().

Using this new improvement a 75% reduction in the size of the base
of rules is gain, leaving a group of just 252 rules, from the 1680 rules of
the previous work. Subsequently a large reduction in computational cost is
obtained, with the previous system spending 0.059 seconds for each iteration
and the new approach just 0.028 seconds, the 52% less. We must note
that the time spent in order to reach the same goal point is reduced, this
is because the velocity control is no longer based only on the distance
to the near obstacle, but takes the obstacle priority area into account.
This gives much greater importance to obstacles directly in front of the
robot rather then the obstacles on each side. For example, in a corridor the
walls don’t reduce the robots velocity in the situation where there are more
priority obstacles directly in front of the robot. Consequently, the zigzag
effect present in the previous work obtained when the robot travels to the
goal position, is greatly reduced. This can be seen by comparing figures 5
(a) and 5 (b), with the much straighter trajectories of the latest research
clearly visible. Also the doors detection while traveling to the goal position
is more accurate.

(a) (b)

Fig. 5. (a) Paths with priority areas. (b) Paths without priority areas.

7. Conclusions and Future works

In this paper, a fuzzy-based, priority areas navigator system for mobile
robots has been proposed, which implements obstacle avoidance and solves
navigation problems in unknown environments. We remark the previous
improvements of user adaptive navigation system and add the priority area
definition of the environment. The main goals of this approach are to re-
duce the computational and memory cost of the system evaluation of each
situation and to improve the trajectory by implementing more efficient
evaluation of the environment without using a map database. When the
computational costs of the previous work is compared to a map based nav-
igation system a 90% (0.059 seconds for each iteration)was obtained. With
this latest approach we get a further reduction of 52%, just 0.028 seconds
per iteration.

The system gives a good improvement in the time spent to reach the
same goal from the same initial point with a reduction of 12%. The straight
trajectory gives more robustness and softer movements when avoiding ob-
stacles. For future works, we have planned to greatly develop the software by

time spent in each iteration | Rule base size

previous work 0.059 s 1680
last work 0.028 s 252
percentage reduction 52% 5%

implementing different methods of fuzzy-inference, defuzzification or mem-
bership functions. We plan to include different bases of rules that represent
different behaviors to the autonomous navigation control system, for exam-
ple following some robots or signs, escape from deadend roads, etc. This can
be achieved by storing different rule-bases and including more capabilities

for recognition of these situations or simply just changing the rules when
the system has too many continuous errors. We are considering to include
more sensors and/or real-time map creation that stores repetitive paths,
using SLAM techniques.

Currently we are trying to implement computer vision techniques to
improve the recognition of obstacles in the environment, and embed the
fuzzy-system navigation control into different kinds of UAS’s.

Additionally we intend to use the software in a different type of robotic
system that do not have navigation tasks as the main objective, such as
medical robots, car shock absorber systems or other security car systems.

Acknowledgment

The authors would like to thanks Deane Chadwick, Dr. Luis Mejias for
support and help in the development of this work.

References

1. M. A. Olivares and J. A. F. Madrigal, Fuzzy logic user adaptive navigation
control system for mobile robots in unknown environments, in Intelligent Sig-
nal Processing, 2007. WISP 2007. IEEE International Symposium on, 2007.

2. G. Castellanoa and A. Fanelli, A self-organizing neural fuzzy inference net-
work, in in Proc. of IEEE-INNS-ENNS International Joint Conference on
Neural Networks (IJCNN 2000), (Como, Italy, 2000).

3. N. K. Kasabov, Learning fuzzy rules through neural networks Artificial Neural
Networks and Expert Systems, 1993. Proceedings., First New Zealand Inter-
national Two-Stream Conference on 1993.

4. S.-J. Huang and C.-F. Hu, Predictive fuzzy controller for robotic motion con-
trol, in Industry Applications Conference, 1995. Thirtieth IAS Annual Meet-
ing, IAS ’95., Conference Record of the 1995 IEEE, 1995.

5. P. G. Zavlangas, S. G. Tzafestas and K. Althoefer, Fuzzy obstacle avoidance
and navigation for omnidirectional mobile robots ESIT 2000, Aachen, Ger-
many 2000.

6. C.-J. Wu, Fuzzy robot navigation in unknown enviroments National Yunlin
Institute of Technology 1995.

7. R. Araujo, U. Nunes and A. de Almeida, Fuzzy-based reinforcement learning
of a robot force control skill, in in Proc. of IEEFE International Symposium on
Industrial Electronics (ISIE’96), (Warsaw, Poland, 1996).

8. A. Pesonen and A. Wolski, Quatified and temporal fuzzy reasoning for active
monitoring in rapidbase Symposium on Tool Environments and Development
Methods for Intelligent Systems, TOOLME'T 2000.

9. S. Thongchai, Behavior-based learning fuzzy rules for mobile robots American
Control Conference, 2002. Proceedings of the 2002 2000.

10

