
ON WEAKLY CONVEX STAR-SHAPED POLYHEDRA

JEAN-MARC SCHLENKER

Abstract. Weakly convex polyhedra which are star-shaped with respect to one of their vertices are infinitesi-
mally rigid. This is a partial answer to the question whether every decomposable weakly convex polyhedron is
infinitesimally rigid. The proof uses a recent result of Izmestiev on the geometry of convex caps.

1. Introduction

1.1. The rigidity of convex polyhedra. The rigidity of Euclidean polyhedra has been of interest to geometers
since Legendre [10] and Cauchy [4] proved that convex polyhedra are globally rigid. This result was an important
source of inspiration in subsequent geometry, for instance for the theory of convex surfaces, and was a key tool
in Alexandrov’s theory of isometric embeddings of polyhedra [1, 12].

The notion of global rigidity leads directly to the related notion of infinitesimal rigidity; a polyhedron is
infinitesimally rigid if any non-trivial first-order deformation induces a non-zero variation of the metric on
one of its faces. Infinitesimal rigidity is important in applications since a structure which is rigid but not
infinitesimally rigid is likely to be physically unreliable. Although Cauchy’s argument can be used to prove
that convex polyhedra are infinitesimally rigid, this result was proved much later by M. Dehn [8], by completely
different methods.

1.2. Non-convex polyhedra. Cauchy’s theorem left open the question of rigidity of non-convex polyhedra,
until examples of flexible polyhedra were constructed by Connelly [5]. It would however be interesting to know
a class of rigid polyhedra wider than the convex ones. We say that a polyhedron is weakly convex if its vertices
are the vertices of a convex polyhedron, and that it is decomposable if it can be cut into convex polyhedra
without adding any vertex.

Question 1.1. Let P be a weakly convex, decomposable polyhedron. Is P infinitesimally rigid ?

This question came up naturally in [16], where it was proved, using hyperbolic geometry tools, that the result
is positive if the vertices of P are on an ellipsoid, or more generally if there exists an ellipsoid which contains
no vertex of P but intersects all its edges. It was proved in [6] that the answer is also positive for two other
classes of polyhedra: suspensions – which can be cut into simplices with only one interior edge – and polyhedra
which have at most one non-convex edge, or two non-convex edges sharing a vertex.

1.3. Main result. Here we extend the result of [6] to a wider class of weakly convex decomposable polyhedra.
From here on all the polyhedra we consider are triangulated; it is always possible to reduce to that situation by
adding “flat” edges in non-triangular faces. For a polyhedron P which is star-shaped with respect to a vertex v0,
we do this subdivision by decomposing all non-triangular faces adjacent v0 by adding only diagonals containing
v0, so that this refinement of the triangulation of the boundary of P is compatible with a triangulation of the
interior of P for which all simplices contain v0.

Theorem 1.2. Let P be a weakly convex polyhedron, which is star-shaped with respect to one of its vertices.
Then P is infinitesimally rigid.
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Here by “star-shaped” with respect to v0 we mean that the interior of P has a decomposition as the union of
finitely many non-degenerate simplices, all containing v0 as one of their vertices, of disjoint interior, and such
that the intersection of each with P is a face of both.

1.4. A refined statement. There is a slightly refined version of Theorem 1.2, giving a better understanding on
the reasons for which rigidity holds. Let P be star-shaped with respect to a vertex v0, and let P = S1 ∪· · ·∪SN

be a triangulation of P as a union of non-degenerate simplices all containing v0 (and having disjoint interior).
Let e1, · · · , em be the interior edges of this triangulation, i.e., the edges of the Sj which are not contained in
faces of P . Let li be the length of ei.

It is then possible to consider a wider class of (small) deformations of the metric on the interior of P : those
for which the li vary, while the length of the edges of P remain constant. Such a variation of the li determines a
unique deformation of the metric on the Sj , which can however still be glued isometrically along their common
faces. Under such a variation, cone singularities might appear along the ei: the angles around those edges might
become different from 2π. We call θi the angle around ei.

Definition 1.3. Let

ΛP :=

(

∂θi

∂lj

)

1≤i,j≤m

.

Note that ΛP a priori depends also on the decomposition P = S1 ∪ · · · ∪ SN (and of the labeling of the ej).
It is well-known that ΛP is symmetric (see e.g. [6]), this follows from the fact that ΛP is minus the Hessian of
the total scalar curvature of the metrics obtained by varying the li. The following statement is also well known.

Remark 1.4. P is infinitesimally rigid if and only if ΛP is non-degenerate.

The proof is elementary: isometric first-order deformations of P correspond precisely to first-order variations
of the li which do not change, at first order, the θi. Although the proof of this point requires some care, we do
not include one here and refer the reader to [9, 2] where a similar problem is treated in full details.

Theorem 1.5. Under the hypothesis of Theorem 1.2, ΛP is positive definite.

1.5. A word on the proof. The proof is only indirectly related to the argument used in [16], and different
from those used in [6]. It is based on a recent result of Izmestiev [9], who gives a new proof of Alexandrov’s
theorem on the existence and uniqueness of a polyhedral convex cap with a given induced metric, based on the
concavity of a geometric function. We slightly extend his argument, to encompass weakly convex “caps”, by
proving that “removing” a simplex to a (weakly) convex cap actually makes this function “more” concave – a
point which we found somewhat surprising. We then use a classical projective argument to obtain Theorem 1.2.
Theorem 1.5 follows from the same arguments.

2. Weakly convex hats

We use a notion of “convex cap” which is a little different from the one used by Izmestiev [9]. We will use a
different name to avoid ambiguities. In the whole paper we consider a distinguished oriented plane, which can
for convenience be taken to be the horizontal plane {z = 0}. We call R

3
+ the half-space bounded by this plane

{z = 0} on the the side of its oriented normal.

Definition 2.1. Let E ⊂ R
3
+, its shadow Sh(E) is the set of points m ∈ R

3
+ for which there exists a point

m′ ∈ E such that m is contained in the segment joining m′ to its orthogonal projection on the horizontal plane
{z = 0}.

Definition 2.2. A convex hat is a polyhedral surface H in R
3
+ such that

(1) H is homeomorphic to a disk and has finitely many vertices,
(2) no point of H is in the shadow of another,
(3) H is contained in the boundary of the convex hull of Sh(H).



ON WEAKLY CONVEX STAR-SHAPED POLYHEDRA 3

Note that we do not demand that Sh(H) is convex, and that the projection of H on {z = 0} is not necessarily
convex.

Definition 2.3. A weakly convex hat is a polyhedral surface H ⊂ R
3
+, satisfying conditions (1) and (2) of

the previous definition, and such that every vertex of H is an extremal point of the convex hull of Sh(H).

A convex hat can be obtained by the following procedure. Start from a convex polyhedron P , and apply a
projective transformation sending one of the vertices, v, to infinity in the vertical direction (towards z → −∞).
Then remove all edges and faces adjacent to v. Any convex hat which has as its projection on {z = 0} a convex
polygon can be obtained in this manner. In the same way, one can start from a weakly convex polyhedron which
is star-shaped with respect to one of its vertices, say v0, and apply a projective map sending v0 to infinity, to
obtain a weakly convex hat. Any weakly convex hat can be obtained in this manner.

The proof of Theorem 1.2 will follow from the following lemma, using classical arguments relating projective
transformations to infinitesimal rigidity.

Lemma 2.4. Let H be a weakly convex hat. Any first-order isometric deformation of H which fixes the heights
of the boundary vertices is trivial.

The proof relies on an extension of the notion of (weakly) convex cap, to allow for cone singularities along
vertical edges, a device which is common in the field known as “Regge calculus”, or more specifically e.g. in
[2], [9], or in the last part of [6]. This type of construction has been used successfully also in the contexts of
hyperbolic polyhedra or circle patterns on surfaces, see e.g. [13, 14, 11, 3, 16, 17].

Definition 2.5. A prism is a non-degenerate convex polyhedron P in R
3
+ which is the shadow of a triangle in

R
3
+.

The faces which are neither the bottom or the upper face of P are its vertical faces. It is not difficult to
check that a prism is uniquely determined, among prisms with the same induced metric on the upper face, by
the heights of its vertical edges.

Definition 2.6. A generalized hat is a metric space obtained from a finite set of prisms P1, · · · , PN by isomet-
rically identifying some of their vertical faces, so that

• each vertical face is glued to at most one other, so that singularities occur only at line segments
corresponding to some vertical edges of the Pi,

• the prisms containing a given vertical edge are pairwise glued along vertical faces in a cyclic way (with
either all vertical faces containing the given vertical edges pairwise glued, for an interior edge, or with
two faces not glued and corresponding to vertical boundary faces of the generalized hat, for a boundary
edge),

• under the gluing of two vertical faces, the segments corresponding to the bottom (resp. upper) face of
the Pi are identified.

Given a convex or weakly convex hat H , it can be used to construct a generalized hat G by gluing the
shadows of the faces of H . Moreover it’s easy to characterize the generalized hats obtained in this manner. It is
necessary that the angles around all interior “vertical” edges are equal to 2π; under this condition, generalized
hats admit an isometric immersion into R

3
+, with their bottom faces sent to {z = 0}, and a generalized hat G is

obtained from a (weakly) convex hat H if and only if this image in R
3 is embedded and (weakly) convex. This

simple construction allows us to consider convex or weakly convex hats as special cases of generalized hats.
We define a generalized hat to be convex if it is convex at each edge e which is shared by the upper faces of

two of the prisms Pi and Pj , i.e., if the angles at e of Pi and Pj add up to at most π. It is strictly convex if
those angles add up to strictly less than π.

Given a generalized hat G, one can consider the space MG of all generalized hats for which the upper
boundary has the same combinatorics and the same induced metric. It is not difficult to check that MG is
parametrized by the heights of the vertical edges h1, · · · , hn. We call MG,0 the subspace of MG of generalized
hat having the same boundary heights as G, so that MG,0 is parametrized by the heights of the interior vertical
edges, h1, · · · , hm.
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3. The rigidity of convex hats

We mainly recall in this section results of Izmestiev [9], adapting the arguments to the proof of Lemma 2.4
for the special case of convex hats. In the next section it is shown how the argument can be extended to weakly
convex hats.

The proof is based on a matrix very similar to the matrix ΛP appearing in Definition 1.3. We consider a
convex hat H , and the corresponding generalized hat G. Since a prism, with given induced metric on its upper
face, is uniquely determined by the heights of its vertices, elements of MG,0 are uniquely determined by the
heights of the interior vertices. Conversely, each choice of those heights, close to the heights of the interior
vertices in H , determines an element of MG,0. We call e1, · · · , em the vertical edges ending at interior points
of H , (hi)1≤i≤m their heights, and (θi)1≤i≤m the angle around them. So the θi are equal to 2π for G, but not
necessarily at other points of MG,0.

Lemma 3.1 (Izmestiev [9]). Let

ΛG :=

(

∂θi

∂hj

)

1≤i,j≤m

.

Then ΛG is symmetric and positive definite.

We only give a brief outline of the proof here. The symmetry of ΛG follows from the fact that it is minus the
Hessian of a natural “total scalar curvature” function appearing in this context, called S in [9]. The coefficients
of ΛG are computed explicitly in [9] (Proposition 4, note that the coefficients given there are minus the ones
considered here), they are equal to:

• aij = 0 when i 6= j and ei and ej are not the endpoints of an interior edge of H .

• aij = −(cotan(αij) + cotan(αji))/lij sin2(ρij) when i 6= j but ei and ej are the two endpoints of an
interior edge of H . Here αij and αji are the angles between the shadow of the edge of G joining the
endpoints of ei and ej with the two upper faces of G adjacent to that edge, lij is the length of that
edge, and ρij is its angle with the vertical.

• aii = −
∑

j 6=i aij .

It follows from this explicit description that ΛG has dominant diagonal, and therefore that it is positive definite.
Remark 1.4 still applies in this context, so that it follows from Lemma 3.1 that convex hats are infinitesimally

rigid.

4. Weakly convex hats are rigid

The proof of Lemma 2.4 follows from Lemma 3.1 by a simple argument, remarking that (1) it is possible to
go from a weakly convex hat to a convex hat by adding a finite set of simplices (which are in a specific position
with respect to the vertical direction) (2) when removing such a simplex, the matrix Λ defined above becomes
“more” positive.

Lemma 4.1. Let H be a weakly convex hat, and let Hc be the convex hat which is the union of the upper faces
of the convex hull of Sh(H) which project orthogonally to {z = 0} as a polygon in the projection of H. There
exists a finite sequence H0, · · · , Hp of weakly convex hats in R

3
+ such that

• H0 = H and Hp = Hc,
• for all i ∈ {1, · · · , p}, Hi has the same vertices as Hi−1, and Sh(Hi) is obtained from Sh(Hi−1) by

gluing a simplex Si,
• the projection of Si on {z = 0} is a quadrilateral.

Proof. Set H0 := H , and choose a concave edge e0 of H0 (which is thus not a boundary edge of H0) with
vertices v0 and v1. Let f and f ′ be the faces of H adjacent to e0, and let v3 and v4 be the vertices of f and f ′

opposite to e0. Let S1 be the simplex with vertices v0, v1, v2, v3, then S1 projects to {z = 0} as a quadrilateral.
We can add to Sh(H) the simplex S1, this yields a polyhedron in R

3
+ which is the shadow of a weakly convex

hat H1 (which by construction has the same vertices as H0).
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If H1 is convex, the lemma is proved. Otherwise, H1 has at least one concave edge and one can choose one
of those edges, say e1, and repeat the construction, adding a simplex S2.

After a finite number of steps the weakly convex hat Hp obtained in this way will be convex, because the
number of simplices that can be added is bounded from above, for instance by the number of Euclidean simplices
having as vertices some vertices of H . �

The next step is to describe in what manner the matrix Λ associated to a weakly convex hat changes when
a simplex is removed. We consider a simplex S with vertices v1, v2, v3, v4 which projects on the plane {z = 0}
as a quadrilateral. Then the boundary of S is the union of two surfaces, each made by gluing two triangles,
and each of which has injective projection on {z = 0}: the “lower” surface S−, and the “upper” surface S+,
with S− ⊂ Sh(S+). We suppose for instance that S− is the union of the triangles (v1, v3, v4) and (v2, v3, v4),
while S+ is the union of (v1, v2, v3) and (v1, v2, v4). Let hi be the height of vi over {z = 0}. Any first order
variation of the hi, 1 ≤ i ≤ 4, determines a first-order displacement of the vi which preserves the lengths of the
five segments in S− (including the diagonal), which is unique up to horizontal translation and rotation with
vertical axis. Similarly a first-order variation of the hi determines a displacement of the vi which preserves the
lengths of the five segments in S+.

Definition 4.2. Let

MS =

(

∂(θ−i − θ+i )

∂hj

)

1≤i,j≤4

,

where, for heights of the vi close to the hi, θ
+
i is the angle of the projection of S+ on {z = 0} at the projection

of vi, and θ−i is the angle of the projection of S− at the projection of vi.

Lemma 4.3. Let H and H ′ be two weakly convex hats, with Sh(H ′) obtained by removing from Sh(H) a simplex
S. Then ΛH′ is obtained by adding MS to ΛH (with the lines/columns of MS added to the lines/columns of ΛH

corresponding to the same vertices).

Proof. This follows from the definitions, since ΛH′ is equal to ΛH except that the variation of the curvature
at the vertical edges ending on the vertices of S are given by the lower surface S− rather than by the upper
surface S+. �

The interesting point is that MS is always positive semi-definite, so that adding it to a positive definite
matrix yields another positive definite matrix.

Lemma 4.4. For any simplex S projecting on {z = 0} as a quadrilateral, MS is positive semi-definite of rank
1.

Proof. The space of Killing fields in R
3 has dimension 6. It contains a 3-dimensional subspace fixing {z = 0},

and therefore acting on S without changing any of the heights. There remains a 3-dimensional vector space
of Killing fields which do change the heights hi. Each acts by deforming globally S, so that, at each vertex,
the angles of the projection of the upper and the lower surface change in the same way, and therefore those
first-order variations of the hi are in the kernel of MS . So the rank of MS is at most 1.

The same argument can be used, conversely, to show that the rank of MS can not be zero. Otherwise the
kernel of MS would have dimension 4, which would mean that there exists a non-trivial first-order deformation
of S leaving invariant the lengths of all edges in both the upper and lower surfaces, and such that the angles
of the projections of the upper and lower surface vary in the same way. One could then consider the first-order
deformations of the upper and of the lower surface, and add a trivial deformation so that they match at all
four vertices, because the first-order variations of both the heigths of the vertices and the projections of the two
surfaces on {z = 0} match. This would mean that there is a non-trivial isometric deformation of S, and this is
well known to be impossible – all simplices are infinitesimally rigid.

So the signature of MS is constant over the space of simplices which projects on {z = 0} as quadrilaterals.
This means that MS is either positive semi-definite or negative semi-definite for all such simplices. To decide
which happens, it is sufficient to check for one simplex, for instance a maximally symmetric one. Consider the
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first-order deformations pictured in Figure 1, with the heights of v1 and v2 raised and the heights of v3 and v4
lowered.

v

v

v

v1

2

3

4

Figure 1. A positive deformation of a simplex

It is easy to check that in this case:

• θ+1 and θ+2 decrease: the angles of the projection of the upper surface at the projections of v1 and v2
decrease,

• θ+3 and θ+4 increase,
• θ−1 and θ−2 increase,
• θ−3 and θ−4 decrease,

It follows that the first-order variation of θ−i − θ+i is positive at v1 and v2 and negative at v3 and v4, so that
MS has at least one positive eigenvalue. So MS is positive semi-definite. �

Lemma 4.5. Let H be any weakly convex hat, then ΛH is positive definite.

Proof. Let Hc be the convex hat obtained as the upper boundary of Sh(H). Lemma 4.1 shows that Sh(H) is
obtained from Sh(Hc) by removing a finite sequence of simplices. But ΛHc

is positive definite by Lemma 3.1,
and Lemma 4.3 shows that, each time a simplex is removed, the matrix ΛH changes by the addition of a 4× 4
matrix, which is positive semi-definite by Lemma 4.4. It follows that ΛH is also positive definite. �

Proof of Lemma 2.4. We have already seen that the fact that ΛH is non-degenerate implies that H is infinites-
imally rigid: any isometric first-order deformation of H which fixes the boundary heights is trivial. �

5. Projective maps

The goal of this section is to prove Theorem 1.2, concerning polyhedra which are star-shaped with respect
to one of their vertices, using Lemma 2.4, which deals with weakly convex hats. The basic idea here is old,
going back at least to Darboux [7] and Sauer [15]: infinitesimal rigidity is a property which is invariant under
projective maps. The particular case of this property which is used here can be stated more precisely as follows.

Lemma 5.1. Let v0 ∈ R
3 ⊂ RP 3, and let φ : RP 3 → RP 3 be a projective transformation sending v0 to the

point at infinity corresponding to the vertical direction in R
3. There exists a map Φ : TR

3 → TR
3 sending

(x, v) ∈ TR
3 to (φ(x), ψx(v)) ∈ TR

3 such that:

• the image by Φ of any Killing vector field in R
3 is a Killing vector field,

• Killing fields which are infinitesimal rotations of axis containing v0 are sent to the translations along
horizontal directions and the infinitesimal rotations of vertical axis.

The proof of this Lemma is left to the reader, since it is quite classical. The map ψx can be explicitly
described as follows: it sends vectors parallel to the direction of v0 to vertical vectors of the same norm, while
acting on vectors orthogonal to the direction of v0 as the differential of the projective map φ.
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Proof of Theorem 1.2. Let P be a weakly convex polyhedron which is star-shaped with respect to a vertex v0.
Let U be an isometric first-order deformation of P , i.e., the restriction of V to each face of P is a Killing field.
Adding a global Killing field if necessary, we can assume that the restriction of U to all faces of P containing
v0 is a Killing field fixing v0, i.e., an infinitesimal rotation with axis containing v0.

Let Q = φ(P ), then Q is an infinite polyhedron with infinite vertical faces corresponding to the faces of P
containing v0. Applying a vertical translation if necessary, we can suppose that the intersection of Q with R

3
+

is of the form Sh(H), where H is a weakly convex hat with one face in its upper boundary corresponding to
each face of P not containing v0 (and conversely).

Now let V = Φ(U), then, by Lemma 5.1, the restriction of V to each face of Q is a Killing field, so that V
is a first-order isometric deformation of Q. Moreover, since the restriction of U to each face of P containing v0

fixes v0, the restriction of V to the vertical faces of Q are horizontal translations or rotations around a vertical
axis. So V does not change the heights of the boundary vertices of H . It follows from Lemma 2.4 that V is a
trivial deformation – the restriction to Q of a global Killing vector field – and therefore, again from Lemma 5.1,
that U is a trivial deformation of P . So P is infinitesimally rigid. �

Note that this argument – along with the results recalled in section 3, but without the need of section 4 –
gives a direct proof of the infinitesimal rigidity of convex polyhedra.

Proof of Theorem 1.5. Let again Q = φ(P ), so that, applying a vertical translation again if necessary, Q∩R
3
+ =

Sh(H), where H is a weakly convex hat. Let (φt)t∈[0,1] be a one-parameter family of projective transformation,
chosen such that

• φ0 is the identity, while φ1 = φ,
• φt(P ) is a compact polyhedron in R

3 for all t ∈ [0, 1).

Let Pt = φt(P ), 0 ≤ t < 1. We know by Theorem 1.2 that Pt is infinitesimally rigid for all t ∈ [0, 1). This means
by Remark 1.4 that ΛPt

has maximal rank, so that the signature of ΛPt
is constant for t ∈ [0, 1).

But a quick look at the definitions shows that limt→1 ΛPt
= ΛH , which is positive definite by Lemma 2.4. It

follows that ΛP = ΛP0
is also positive definite. �

Acknowledgements. I’m grateful to Bob Connelly, François Fillastre and Ivan Izmestiev for useful conversa-
tions, and for relevant remarks on the first draft of this text.
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8. M. Dehn, Über die Starrheit konvexer Polyeder, Math. Ann. 77 (1916), 466–473.
9. Ivan Izmestiev, A variational proof of Alexandrov’s convex cap theorem, math.DG/0703169, 2007.
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