
VOLUME MAXIMIZATION AND THE EXTENDED HYPERBOLIC SPACE

FENG LUO AND JEAN-MARC SCHLENKER

Abstract. We consider a volume maximization program to construct hyperbolic structures on triangulated
3-manifolds, for which previous progress has lead to consider angle assignments which do not correspond to a
hyperbolic metric on each simplex. We show that critical points of the generalized volume are associated to
geometric structures modeled on the extended hyperbolic space � the natural extension of hyperbolic space by
the de Sitter space � except for the degenerate case where all simplices are Euclidean in a generalized sense.

Those extended hyperbolic structures can realize geometrically a decomposition of the manifold as connected
sum, along embedded spheres (or projective planes) which are totally geodesic, space-like surfaces in the de Sitter
part of the extended hyperbolic structure.

1. Introduction

1.1. The Casson-Rivin program and its extension. There are several ways to construct hyperbolic metrics
on an ideally triangulated 3-manifold with torus boundary. The most prominent ones are Thurston's algebraic
gluing equations and Casson-Rivin's angle structure. In the angle structure approach, one �rst introduces the
notion of angles on the triangulation and use the Lobachevsky function to de�ne the volume of a tetrahedron
with angle assignments. In [Luo07], Casson-Rivin's angle structure program is extended to closed triangulated
3-manifold. The volume of angle structure is de�ned and the critical points of the volume is investigated in
[Luo07].

The goal of this paper is to investigate the relationship between the critical points of the volume and a
natural extension of the hyperbolic space by the de Sitter space. It turns out many of the critical points have
geometric meaning in terms of geometric structures based on this extended hyperbolic space.

1.2. Volume maximization on triangulated 3-manifolds.

De�nition 1.1. Let M be a closed 3-manifold, and let T be a triangulation of M . Recall that the triangulation
T is obtained as follows. Take a �nite set of disjoint Euclidean tetrahedra s1, ..., sN and identify all their
codimension-1 faces in pairs by a�ne homeomorphisms. The quotient space M inherits a natural triangulation,
denoted by T . A wedge of T is a couple (e, s), where s is a simplex of T and e is an edge of s in the unidenti�ed
space ∪N

i=1si. The set of wedges of T will be denoted by W (T ), while the set of vertices, edges, 2-faces and
3-simplices of T will be denoted by V (T ), E(T ), F (T ) and S(T ) respectively.

The main ingredient in Casson-Rivin's angle structure is based on the observation that the vertex link of
an ideal hyperbolic tetrahedron is a Euclidean triangle. In our extension, we observe that the vertex link of a
compact tetrahedron in the hyperbolic, spherical or Euclidean 3-space is a spherical triangle. This prompts us
to propose the following de�nition.

De�nition 1.2. An angle structure on T is a function θ : W (T )→ (0, π) such that:

• for each edge e of T , the sum of the θ(w) over the wedges of the form w = (e, s), s ∈ S(T ), is equal to
2π,

• for each s ∈ S(T ) and each vertex v of s, θ(e1, s) + θ(e2, s) + θ(e3, s) > π, where the ei are the 3 edges
of s adjacent to v,

• for each s ∈ S(T ) and each vertex v of s, θ(e1, s)+θ(e2, s) < θ(e3, s)+π, and similarly for permutations
of 1, 2, 3.
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We denote by AS(T ) the space of angle assignments on T .

The geometric meaning of the �rst condition is that, if the geometric structures on the simplices can be glued
along the faces (this is discussed below) then the angles add up at the edges so that there is no singularity there.
The second and the third conditions mean that for each simplex the link of each vertex is a spherical triangle.

It is quite possible that, in some cases, AS(T ) might be empty, however all manifolds do admit a triangulation
for which AS(T ) is non-empty [KL].

There is a well-de�ned manner, explained in [Luo07] and recalled in sections 4-5, to associate to an angle
assignment θ ∈ AS(T ) a number which is, in a precise way, a generalized volume. This de�nes a function
V : AS(T ) → R. This �volume� is de�ned in terms of a natural extension of the Schlä�i formula, so that it
automatically veri�es this identity.

If θ0 is a critical point of V in AS(T ) such that all the angles assigned to all simplices of T are the dihedral
angles of a hyperbolic simplex, then, thanks to the Schlä�i formula, the lengths of an edge in the wedges
containing it match, so that the faces of the simplices can be glued isometrically and θ0 de�nes a hyperbolic
metric on M . One of the main points of this paper is that an extension of this statement holds when θ0 does
not assign to all simplices of T the dihedral angles of a hyperbolic simplex.

1.3. Extended hyperbolic structures. There is a rather natural extension of the hyperbolic space by the de
Sitter space, used for instance in [Sch98, Sch01] in a polyhedral context somewhat reminiscent of the arguments
followed here. We call HS3 this extended hyperbolic space, so that HS3 contains an open subset isometric to
the 3-dimensional hyperbolic space and another open subset isometric to the quotient of the de Sitter space by
the antipodal map.

Given a 3-dimensional manifold M , an HS-structure on M is a geometric structure locally modelled on HS3.
This is explained in section 2.

1.4. The main result. The main result presented here is that most critical points of the volume V on the
interior of AS(T ) have a natural interpretation in terms of HS-structures.

Theorem 1.3. Let θ ∈ AS(T ) be a critical points of V . Then one of the following applies.

(1) θ corresponds to a spherical metric on M (for each simplex of T , the angles are the angles of a spherical
simplex, and those simplex can be glued isometrically along their faces, yielding a spherical metric),

(2) θ corresponds to an HS-structure on M . If this extended hyperbolic structure has a de Sitter part, then
it contains a totally geodesic surface homeomorphic to S2 or RP 2, which is normal surface in T ,

(3) all simplices in T are either Euclidean or �ipped Euclidean (see below). The volume V (θ) is then a
non-negative integer multiple of 2π2. If at least one simplex is �ipped, then V > 0 and (M,T ) contains
a normal surface homeomorphic to a sphere or a projective plane.

The �rst case should be clear, and can happen only ifM is di�eomorphic either to S3 or to RP 3. In the second
case, the totally geodesic space-like surfaces in the de Sitter parts of the HS-structure realize geometrically a
decomposition of M in irreductible parts, each of which carries a hyperbolic metric. The third case is quite
special, presumably it can occur only in very speci�c cases, see below.

1.5. Geometric interpretation. The �rst idea in Theorem 1.3 is that considering HS-structures radically
simpli�es the way in which one can �nd hyperbolic structures on 3-manifolds by a critical point argument.
Indeed, if M is reducible, there might still be a critical point of V on AS(T ), corresponding not to a hyperbolic
metric (which is impossible ifM is reducible) but to a HS-structure, with a de Sitter part corresponding to each
incompressible sphere in M .

There is however a limit to this argument, as it stands. Given a HS-structure h onM , the set of its hyperbolic
points is a domain N ⊂ M on which the restriction of h de�nes a complete hyperbolic metric. The de Sitter
parts of h are topologically either products of S2 × R or products of a projective plane by an interval. This
means that each connected component of the boundary of N has to be either a sphere or a projective plane,
which is a very restrictive condition.
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1.6. Further possible extensions. The construction of HS-structures associated to critical points of V on
AS(T ) suggests that a further extension of the space of angle assignments AS(T ) should be possible, allowing
for instance for angle assignments such that the sum of angles at a vertex of a simplex is equal to or less than
π. Such angles assignments would corresponds geometrically (at critical points of V ) to triangulations with at
least one vertex in the de Sitter part of the HS-structure obtained. This line of investigation is not pursued
here.

2. Extended hyperbolic structures

2.1. The extended hyperbolic space. One way to de�ne this extension is to consider a strictly convex
quadric Q in the projective 3-space RP 3. Given two distinct points x, y ∈ RP 3 \Q, let D be the projective line
containing x and y. If D intersects Q, let a, b be the points between D and Q, chosen so that a, x, y, b occur in
this cyclic order on D. Then de�ne the Hilbert distance between x and y as

dH(x, y) =
1
2

log[a, b;x, y] ,

where [·, ·; ·, ·] denotes the cross-ratio. If D does not intersect Q, use the same formula with a, b replaced by the
complex intersections of the line containing x, y with Q. This de�nes a �distance� in which the ball bounded by
Q can be interpreted as a projective model of H3, while the outside it a projective model of the quotient of the
de Sitter space dS3 by the antipodal map. In particular, dH(x, y) can be:

• real and negative, if x, y are in the ball bounded by Q, and this de�nes inside Q a projective model of
the hyperbolic 3-dimensional space (known as the Klein model).

• real and positive, if x, y are outside the ball bounded by Q and the line joining them intersects Q in
two points. This line is then time-like in dS3.

• in i(0, π), if x, y are outside Q and the line containing them does not intersect Q, this line is then
space-like in dS3.

• in iπ/2 + R, if x is inside the ball bounded by Q and y is outside it.
• 0, if the line joining x and y is tangent to Q. This line is then a light-like in dS3.

The same construction also works in dimension 2, yielding the extended hyperbolic plane HS2.

2.2. The double cover. It is sometimes helpful to consider the double cover H̃S
3
of HS3. It is di�eomorphic

to S3, and has two hyperbolic components each isometric to H3, and one de Sitter component isometric to the

full de Sitter space dS3. The same works in any dimension. H̃S
3
is composed of two copies of the hyperbolic

3-space, and of a one copy of the whole de Sitter space.

2.3. Extended hyperbolic structures. An HS-structure on a closed 3-dimensional manifoldM is a geometric
structure locally modeled on HS3, with transformation group PSL(2,C).

If h is an HS-structure on M , the set of points of M where h is locally hyperbolic is an open subset of M ,
which we denote by MH , and the restriction of h to MH is a complete hyperbolic metric. Similary, the set of
points of M where h is locally modeled on the de Sitter space is an open subset of M , for which we use the
notation MdS . Then MH ∪MdS is dense is M , and its complement is a surface.

3. Triangles

3.1. The cosine formula.

De�nition 3.1. We call cosh the restriction of the function x 7→ (ex + e−x)/2 to R<0 ∪ [0, iπ] ∪ (iπ + R>0).

With this de�nition, cosh is a bijection from its domain of de�nition to R.

Lemma 3.2. Let α1, α2, α3 be the (interior) angles of a hyperbolic triangle, and let a1, a2, a3 be the length of
the opposite edges. Then

(1) cosh(a1) =
cos(α1) + cos(α2) cos(α3)

sin(α2) sin(α3)
.
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3.2. The triangle inequality. Consider now a triangle in S2, of angles α1, α2, α3. It is a simple exercise to
check that those angles satisfy the following equation:

(TI1) α2 + α3 < α1 + π

Using the exterior angles rather than the interior angles, this equation can be written as

(π − α1) < (π − α2) + (π − α3) ,

which is the triangle inequality for the dual triangle in the sphere.

3.3. A classi�cation of Möbius triangles. Following [Luo93], we consider here a generalization of the notion
of spherical (or hyperbolic) triangle.

De�nition 3.3. A Möbius triangle is a triple (α1, α2, α3) ∈ (0, π)3. Given a Möbius triangle, its edge lengths
are the complex numbers (a1, a2, a3) de�ned by Equation (1), with the de�nition of cosh given above.

The rationale for the terminology used here is that, for any triple (α1, α2, α3) ∈ (0, π)3, there exists a triangle
in the complex plane bounded by three circles, unique up to Möbius transformation, so that its inner angles are
the αi's. The constructions used below are however based mostly on the extended hyperbolic plane and on real
projective geometry, rather than complex projective geometry. However sticking to the terms �Möbius triangle�
should be helpful to the reader insofar as it is closer to the previous works on the subjects, e.g. [Luo07], [Luo93].

Lemma 3.4. Let T = (α1, α2, α3) be a Möbius triangle, let s = α1 + α2 + α3, and let ai be the edge lengths of
T . Exactly one of the following �ve cases applies.

(1) T is spherical: s > π, and the triangle inequalities (TI1), (TI2), (TI3) hold. Then a1, a2, a3 ∈ i(0, π).
(2) T is hyperbolic: s < π. Then the triangle inequalities (TI1), (TI2), (TI3) hold, and a1, a2, a3 < 0.
(3) T is Euclidean: s = π. Then the triangle inequalities (TI1), (TI2), (TI3) hold, and a1 = a2 = a3 = 0.
(4) T is �ipped hyperbolic: α2 + α3 > α1 + π (or similarly after a permutation of 1, 2, 3). Then a1 < 0

while a2, a3 ∈ iπ + R>0.
(5) T is �ipped Euclidean: α2 + α3 = α1 + π (or similarly after a permutation of 1, 2, 3). Then a2 =

a3 = iπ and a1 = 0.

The proof (which is elementary) is based on two preliminary statements. Let α1, α2, α3 ∈ (0, π), and let
s = α1 + α2 + α3.

Sub-Lemma 3.5. • If α2 + α3 < π, then cosh(a1) < 1 (resp. > 1) if and only if s > π (resp. s < π).
• If α2 + α3 > π, then cosh(a1) < 1 (resp. > 1) if and only if (TI1) holds (resp. α2 + α3 > π + α1).

Sub-Lemma 3.6. cosh(a1) > −1 if and only if either α2 > α3 and (TI3) holds, or α3 > α2 and (TI2) holds.

Proof of Lemma 3.4. Suppose �rst that the three triangle inequalities hold. Then T is in one of the cases (1),
(2) or (4) depending on s. Note also that if (TI1) does not hold, then clearly both (TI2) and (TI3) are satis�ed.
So T is in case (3) if there is equality in inequality (TI1), or (5) otherwise.

In case (1), cosh(a1) < 1 by Sub-Lemma 3.5, and cosh(a1) > −1 by Sub-Lemma 3.6, so a1 ∈ i(0, π) by the
de�nition of cosh used here. The same holds of course for a2 and a3. In case (2), Sub-Lemma 3.5 shows that
cosh(ai) = 1 for i = 1, 2, 3 so that all the ai are zero. In case (4), the �rst case of Sub-Lemma 3.5, cosh(a1) > 1,
so that a1 < 0 by our de�nition of cosh, and the same applies to a2 and a3.

In case (3), the second point in Sub-Lemma 3.5 shows that cosh(a1) = 1, while Sub-Lemma 3.6 shows that
cosh(a2) = cosh(a3) = −1, so that a2 = a2 = iπ. The same argument applies to case (5), then cosh(a1) > 1
while cosh(a2), cosh(a3) < −1, so that a1 < 0 while a2, a3 ∈ iπ + R>. �

The following lemma shows that the edge lengths determine the shape of a Möbius triangle.

Lemma 3.7. Let A = (α1, α2, α3) and B = (β1, β2, β3) be two Möbius triangles which are not Euclidean or
�ipped Euclidean. If the corresponding edge lengths of A and B are the same, then αi = βi for all i.

The proof follows from the cosine law that

(2) cos(α1) =
− cosh(a1) + cosh(a2) cosh(a3)

sinh(a2) sinh(a3)
.

This laws shows that lengths determine the angles.
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3.4. Geometric realization of triangles. The classi�cation of Möbius triangles in Lemma 3.4 has a natural

interpretation in terms of triangles in the extended hyperbolic plane H̃S
2
. There is no interpretation needed

for spherical, Euclidean or hyperbolic triangle, but �ipped hyperbolic triangle correspond to triangles in H̃S
2

with one vertex and two in the other.
Suppose t is such a �ipped hyperideal triangle, with vertices v1, v2, v3, with v1 in one copy of H2 and v2, v3

in the other. Let αi be the angle of t at vi, 1 ≤ i ≤ 3. Those angles can be understood by ��ipping� t, that

is, considering the triangle t′ with vertices v′1, v2, v3, where v
′
1 is the antipode of v1 in H̃S

2
. t′ is a �usual�

hyperbolic triangle, and its angles are β1 = α1, β2 = π − α2, β3 = π − α3. Since t
′ is a hyperbolic triangle, its

angles satisfy
β1 + β2 + β3 < π ,

which translates as
α1 + π < α2 + α3 ,

the inverse triangle inequality for t. Similarly, t satis�es the triangle inequality,

π + β2 > β1 + β3 and π + β3 > β1 + β2 ,

which translates as
α1 + α2 < π + α3 and α1 + α3 < π + α2 .

This shows that (α1, α2, α3) is a �ipped hyperbolic triangle, according to Lemma 3.4. The same argument can
be used backwards, to show that any �ipped hyperbolic triangle in the sense of Lemma 3.4 is the triple of angles

of a �ipped hyperbolic triangle in H̃S
2
.

Flipped Euclidean triangles can be understood in the same way but by taking a limit. The usual Euclidean
triangles can be considered as limits of hyperbolic triangles of diameter going to zero � actually, a blow-up
procedure is necessary, since what we really want to consider are sequences of degenerating hyperbolic triangles
for which the angles, and therefore the ratio of the edge lengths, has a limit. This can also be done for �ipped

hyperbolic triangles, with vertices converging either to a point in the one copy of the hyperbolic plane of H̃S
2

or to its antipode in the other copy.
Putting this together, we obtain the following statement.

Lemma 3.8. Let T = (α1, α2, α3) be a Möbius triangle.

(1) If T is spherical, there is a triangle t ⊂ S2, unique up to the action of O(3), with angles α1, α2 and α3.
(2) If T is hyperbolic, there is a triangle t ∈ H2, unique up to the hyperbolic isometries, with angles

α1, α2, α3.
(3) If T is Euclidean, there is a triangle t ⊂ R2, unique up to isometries and homotheties, with angles

α1, α2, α3. In other terms, there is a sequence of hyperbolic triangles (tn)n∈N in H2, with angles
α1,n, α2,n, α3,n converging to α1, α2, α3, respectively.

(4) If T is �ipped hyperbolic, there is a t ∈ H̃S2
, with one vertex in one copy of H2 and two in the other,

with angles (α1, α2, α3). It is unique up to the action of O(2, 1) on H̃S
2
.

(5) If T is �ipped Euclidean, there is a sequence of �ipped hyperbolic triangles (tn)n∈N in H̃S
2
, with angles

α1,n, α2,n, α3,n converging to α1, α2, α3, respectively.

4. Three-dimensional simplices

4.1. Angle System. We now consider 3-dimensional simplices, and assign to each wedge an angle, as follows.

De�nition 4.1. Suppose s is a tetrahedron. Then an angle system on s is a function θ : {(e, s)|e is an edge of s} →
(0, π) so that for three edges ei, ej , ek ending at a vertex v of s, the 3 angles θ(ei, s), θ(ej , s), θ(ek, s) are the
inner angles of a spherical triangle. Let AS(s) be the space of all angle systems on s. An angled 3-simplex is a
3-simplex together with an angle system.

If T is a triangulation of a closed 3-manifold M , an angle system on T is a function θ de�ned on the set of
all wedges {(e, s)|e is an edge of a tetrahedron s} so that

• for each edge e of T , the sum of the values of θ on the wedges having e as their edge is equal to 2π,
• for each 3-simplex s in T , the restriction of θ to all wedges in s forms an angle system.
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In the paper [Luo07], the geometric prototype of an angled 3-simplex is the Möbius tetrahedron. Namely
a topological tetrahedron in R3 bounded by four 2-spheres of inner angles less than π. However, there are
angled 3-simplex which cannot be realized as a Möbius 3-simplex. Our main observation is that, in terms of
HS-geometry, these angled 3-simplices all have a geometric meaning. Furthermore, the edge lengths, volume
and Schlä�i formula can be generalized to the HS-geometry. These generalizations are exactly the underlying
geometric meaning of the corresponding notions de�ned in [Luo07].

4.2. Face angles.

De�nition 4.2. Let α = (α12, · · · , α34) ∈ AS(s). The face angles of α are the numbers βijk ∈ (0, π) de�ned,
for {i, j, k, l} = {1, 2, 3, 4}, by the formula

cos(βi
jk) =

cos(αil) + cos(αij) cos(αik)
sin(αij) sin(αik)

.

The geometric meaning of the face angle is as follows. According to the de�nition, at the ith vertex vi, the
angles αij , αik, αil are the inner angles of a spherical triangle Ajkl, which can be considered as the link vi in
the tetrahedron. Then the face angle βi

jk is the jk-th edge length of Ajkl. By de�nition, face angles are then in

(0, π).

4.3. Edge lengths. Using the faces angles, we make each codimension-1 face of an angled tetrahedron s a
Möbius triangle. Thus, by lemma 3.2, we can de�ne for each edge in each face, an edge length. The following
is proved in [Luo07].

Lemma 4.3. If L is an edge of a tetrahedron s with an angle system and D1, D2 are two faces of s having L
as an edge, then the length of L in D1 is the same as that in D2.

Thus the following is well de�ned.

De�nition 4.4. Let α = (α12, · · · , α34) ∈ AS(s). The edge lengths of α are the numbers (lij)i 6=j de�ned as
follows: lij is the length of the edge ij in the two faces of T adjacent to the vertices i and j.

4.4. A classi�cation of simplices. It is now possible to describe a classi�cation of 3-dimensional angled
simplices. It is slightly more elaborate than the corresponding classi�cation for Möbius triangles, because
simplices can be ��ipped� in two ways, depending on whether one or two vertices are in one of the copies of H3

in H̃S
3
. Here is the de�nition of the �ip at the i-th vertex of α ∈ AS(s). See [Luo07] for more details. The

�ipped simplex α′ = (α′12, ..., α
′
34) has angles α′ij = αij for j 6= i and α′jk = π − αjk for j, k 6= i. Geometrically,

if v1, v2, v3, v4 are the vertices of a spherical simplex, then the �ipped simplex (about the �rst vertex v1) is the
spherical simplex with vertices −v1, v2, v3, v4 where −v1 is the antipodal point of v1.

Lemma 4.5. Let α ∈ AS(s). After a permutation of {1, 2, 3, 4}, α is of exactly one of the following types:

(1) spherical: all faces of T are spherical triangles, and all edge lengths are in i(0, π).
(2) hyperbolic: all faces of T are hyperbolic triangles, and all edge lengths are in R<0.
(3) �ipped hyperbolic: the face (234) is a hyperbolic triangle, while the faces adjacent to the vertex 1 are

�ipped hyperbolic triangles. The lengths of the edges (12), (13), (14) are in iπ+ R>0, while the length of
the other edges are in R<0.

(4) doubly �ipped hyperbolic: all faces of T are �ipped hyperbolic triangles, the lengths of the edges
(12) and (34) are negative numbers while the length of the other edges are in iπ + R>0.

(5) Euclidean: all faces of T are Euclidean triangles, all edge lengths are zero.
(6) �ipped Euclidean: the length of the edges (12), (13), 14) are equal to iπ, while the lengths of (14), (24), (34)

are zero.
(7) doubly �ipped Euclidean: the lengths of (12), (34) are zero while all other edges have length iπ.

The terminology is based, as for triangles, on the idea of ��ipping� a hyperbolic simplex: this means replacing

one of its vertices, say v1, by its antipode in H̃S
3
. The dihedral angles at all three edges not adjacent to v1

are then replaced by their complement to π, and the e�ect on the edge lengths is as described in Lemma 4.5.

Doubly �ipping a hyperideal simplex means replacing two vertices by their antipodes in H̃S
3
.
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Proof of Lemma 4.5. Let α ∈ AS(s), let v1, v2, v3, v4 be the vertices of s. We consider di�erent cases, depending
on the lengths of the edges of s and in particular of its face (v1, v2, v3).

(1) (v1, v2, v3) is a spherical triangle, i.e., its edge lengths are in i(0, π). Lemma 3.4, applied to the three
other faces of s, shows that the lengths of the three other edges of s are also in i(0, π), it follows that s
is spherical.

(2) (v1, v2, v3) is hyperbolic. Then its edge lengths are negative, and considering Lemma 3.4 shows that
there are only two possibilities.
(a) (v2, v3, v4) is hyperbolic, that is, its edge lengths are negative. Then, again by Lemma 3.4, the

length of the edge (v1, v4) is also negative, so that s is hyperbolic.
(b) (v2, v3, v4) is �ipped hyperbolic, that is, the lengths of the edges (v2, v4) and (v3, v4) are in iπ+R>0.

Then the length of (v1, v4) is also in iπ + R>0, so that s is �ipped hyperbolic.
(3) (v1, v2, v3) is �ipped hyperbolic, we can suppose without loss of generality that the length of (v1, v2) is

in R>0 and the lengths of the two other edges are in iπ + R>0. Two cases are possible.
(a) (v1, v2, v4) is hyperbolic, it then follows from Lemma 3.4 that s is �ipped hyperbolic.
(b) (v1, v2, v4) is �ipped hyperbolic, it then follows from Lemma 3.4 that s is doubly �ipped hyperbolic.

(4) (v1, v2, v3) is Euclidean, so that all its edges have zero length. Lemma 3.4 then shows that there are
two possible cases.
(a) (v1, v2, v4) is Euclidean. Then all edges of s have zero length, and s is Euclidean.
(b) (v1, v2, v4) is �ipped Euclidean, so that (v1, v4) and (v2, v4) have length iπ. In this case s if �ipped

Euclidean.
(5) (v1, v2, v3) is �ipped Euclidean, we can suppose without loss of generality that (v1, v2) has zero length

zero while the lengths of the other two edges are equal to iπ. There are again two cases to consider.
(a) (v1, v2, v4) is Euclidean, so that all its edge lengths are zero, and it easily follows that s is �ipped

Euclidean.
(b) (v1, v2, v4) is �ipped Euclidean, so that the edges (v1, v4) and (v2, v4) have length iπ. Then s is

doubly �ipped Euclidean.

�

According to the lemma, there are three types of angled simplices: Euclidean, hyperbolic and spherical. A
angled simplex is of Euclidean (or hyperbolic) type if it can be �ipped to a Euclidean (or hyperbolic) simplex.
A spherical type simplex is the same as a spherical simplex. The type of a simplex can be determined by the
length of any of its edges.

Corollary 4.6. Suppose e is an edge of an angled simplex of length l(e). Then s is of

(1) Euclidean type if and only if l(e) ∈ {0, iπ},
(2) hyperbolic type if and only if l(e) ∈ R<0 ∪ {iπ + r|r ∈ R>0},
(3) spherical type if and only if l(e) ∈ i(0, π).

In particular, if e and e′ are two edges of an angled simplex s, then their lengths l(e) and l(e′) are in the same
subset listed above.

4.5. Combinatorics of the space of simplices. The classi�cation given in �4.4 can be interpreted in terms
of the HS-geometry as follows, as for Möbius triangles in Lemma 3.8. Let s be a simplex, and let α ∈ AS(s).

(1) If α is spherical, the αij are the dihedral angles of a unique simplex in S3.
(2) If α is hyperbolic, the αij are the dihedral angles of a unique simplex in H3.

(3) If α is hyperbolic, the αij are the dihedral angles of a unique simplex in H̃S
3
, with three vertices in one

of the copies of H3 and one in the other.

(4) If α is hyperbolic, the αij are the dihedral angles of a unique simplex in H̃S
3
, with two vertices in one

of the copies of H3 and two in the other.
(5) If α is Euclidean, the αij are the dihedral angles of an Euclidean simplex, unique up to homothety.

They are also limits of sequences of angles of hyperbolic simplices.
(6) If α is �ipped Euclidean, it is the limit of a sequence of angles of �ipped hyperbolic polyhedra.
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(7) Similarly, if α is doubly �ipped Euclidean, it is the limit of a sequence of angles of doubly �ipped
hyperbolic polyhedra.

Consider now AS(s) as the space of 6-tuples of angles in (0, π) satisfying some linear inequalities. It contains
some subdomains corresponding to the di�erent types of simplices. It is interesting to consider the combinatorics
of this decomposition of AS(s). The de�nitions show clearly that any continuous path going from a simplex of
spherical type to a simplex of hyperbolic type has to go through a simplex of Euclidean type. Moreover, the
only way to go from a hyperbolic simplex to a doubly hyperbolic simplex is through spherical simplices, and
similarly for doubly hyperbolic simplices.

5. The generalized volume

5.1. The Schlä�i formula. The last part of the picture considered here is the generalized volume, which is
de�ned for the simplices in the extended hyperbolic space. There are severaly ways to de�ne it, we use here the
Schlä�i formula, which we �rst recall for �usual� (spherical or hyperbolic) simplices. We refer to [Mil94, Vin93]
for a proof.

Lemma 5.1. For any one-parameter family of spherical (resp. hyperbolic) simplices, its volume V satis�es
2dV =

∑
e Im(le)dαe (resp. 2dV =

∑
e ledαe).

Note that the lengths considered here are those de�ned above, so that they are in (0, π) for spherical simplices,
and in R<0 for hyperbolic simplices.

5.2. The generalized volume. The previous lemma leads to a fairly natural de�nition of a real-valued volume
over the space of angled simplices.

De�nition 5.2. Let s be a tetrahedron and let ω be the 1-form (Schlä�i 1-form) de�ned on AS(s) by 2ω =∑
e(Re(le) + Im(le))dαe.

Note that the Schlä�i 1-form is a continuous 1-form de�ned on the 6-dimensional convex polytope AS(s).
It is proved in [Luo07] that,

Lemma 5.3. ω is closed.

Remark that ω vanishes on the subspace of Euclidean simplices.

De�nition 5.4. The generalized volume V : AS(s)→ R is the primitive of ω which vanishes on the Euclidean
simplices.

There is another possibility, namely to de�ne the volume as a complex-valued function, de�ning ω as
(1/2)

∑
e ledθe. The de�nition chosen here serves well for our purposes.

Note that V corresponds to the usual volume on spherical and hyperbolic simplices by Lemma 5.1. The
volume of Euclidean simplices is zero by de�nition. However, the volume of �ipped and doubly �ipped Euclidean
simplexes are not zero.

Lemma 5.5. Let α ∈ AS(s).
(1) Suppose that α is �ipped Euclidean, with the lengths of the edges adjacent to v1 equal to iπ and the other

lengths equal to 0. Then
V (α) = π(α12 + α13 + α14 − π) .

(2) Suppose that α is doubly �ipped Euclidean, with l12 = l34 = 0 and the other lengths equal to iπ. Then

V (α) = π(α13 + α14 + α23 + α24 − 2π) .

Note that in each case the volume, without the factor π, is equal to the area of a spherical polygon � this
will be useful below.

Proof of Lemma 5.5. For the �rst case, consider a small deformation that increases slightly the α1i, 2 ≤ i ≤ 4.
This deforms α into a spherical simplex α′, with vertices v2, v3 and v4 very close to the antipode of v1. The
(spherical) Schlä�i formula, applied to a 1-parameter formula deforming this simplex to a segment of length π,
shows that the volume of this simplex is equal to π(α′12 + α′13 + α′14 − π), and the result follows for α.
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The same argument works in the second case, the corresponding spherical simplex now has v1, v2 very close
and almost antipodal to both v3 and v4. �

There is a quite di�erent way to de�ne this �volume� of domains in the extended hyperbolic space, in terms
of an analytic continuation [CK06].

5.3. Smoothness. For a closed triangulated 3-manifold (M,T ), the volume V of an angle system x ∈ AS(T )
is the sum of the volume of its angled 3-simplexes. Thus v : AS(T )→ R is a C1 smooth function. Moreover it
is real analytic outside the set of Euclidean type simplices.

6. Critical points

This section contains the proof of Theorem 1.3.

6.1. Gluing conditions. Suppose (M,T ) is a connected triangulated closed 3-manifold so that AS(T ) 6= ∅.
We will consider the volume optimization V : AS(T )→ R.

Lemma 6.1. Let θ0 ∈ AS(T ) be a critical point of V on AS(T ). Then, for each edge e of T , the lengths of e
for all the simplices containing it are equal.

This follows from the de�nition of ω. By the classi�cation lemma 4.5 and the connectivity of M , we see that
the types of any two 3-simplexes in T in ω are the same.

If ω is a local maximum point of V , then it cannot happen that all 3-simplices in ω are Euclidean simplices.
Indeed, if otherwise, the volume of ω is zero. However, if we perturb ω slightly in AS(T ) to obtain a new point
ω′, then all simplices in ω′ can be hyperbolic and spherical simplices. Thus V (ω′) > V (ω) which contradicts
the local maximum condition.

According to Lemma 3.7, for non-Euclidean type simplices, edge lengths determine the isometry type. So we
obtain,

Corollary 6.2. Suppose ω is not of Euclidean type. The faces of the simplices can be glued isometrically.
Furthermore, θ0 de�nes in this way either a spherical structure or a HS-structure h on M .

Indeed, there are two possibilities. Namely either all simplieces in ω are of spherical type, or they are all of
hyperbolic type. In the spherical type case, all simplices are spherical and are glued by isometries so that the
sum of angles around each edge is 2π. Thus we obtain a spherical metric on M . In the case where all simplices

are of hyperbolic type, by Lemma 4.5, we realize each simplex in ω as a geometric tetrahedron in H̃S
3
so that

their faces can be glued isometrically. Thus, we obtain an HS-structure on M . Indeed, there are two subcases
which could occur. In the �rst case, all simplices are hyperbolic. Thus we obtain a hyperbolic metric on M . In
the second case, some simplex is a �ipped hyperbolic. Then we obtain an HS-structure on M by gluing these
geometric tetrahedra in HS-geometry.

Note that all vertices of T are in the hyperbolic part of this HS-structure.

6.2. Normal spheres in HS-structures. Continuing the proof of Theorem 1.3, we consider here an HS-
structure h on M , along with a triangulation T with all vertices of T in the hyperbolic part of h. Suppose
moreover that the de Sitter part MdS for h is non-empty. Let M0 be a connected component of MdS .

Then M0 is geodesically complete, so it is isometric either to the de Sitter space dS3 or to its quotient by the
antipodal map (see [Mes07, ABB+07]). Therefore any plane in the tangent space to M0 at a point is tangent
to a (unique) totally geodesic space-like plane in M0, which is homeomorphic either to S2 (in the �rst case) or
to RP 2 (in the second case). Each of those totally geodesic surfaces is a normal surface in the triangulation T
of M .

This simple argument shows that each connected component of the de Sitter part of h corresponds to a
normal surface in (M,T ).
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6.3. Normal spheres for Euclidean critical points of V . In this section we consider the same question as
in �6.2, about normal surfaces in (M,T ), but for critical points of V for which all simplices are of Euclidean
type. The arguments are of the somehow similar but are less geometric and more combinatorial, because the
geometric structures on the simplices cannot be glued to obtain a geometric structure of Euclidean type on M .

We have seen in �5.2 that to each �ipped (resp. doubly �ipped) Euclidean simplex s in T can be associated
a spherical triangle (resp. a quadrilateral). The edges of this triangle (resp. quadrilateral) are associated to the
2-faces of T which have exactly two edges of length iπ. Each such face bounds two simplices which are both
either �ipped or doubly �ipped. It follows that the triangles (resp. quadrilaterals) can be glued along their
edges to obtain a closed surface Σ (which in general is not connected) � however this gluing cannot in general
be isometric for the spherical metrics since the lengths of the edges do not match. Moreover, the vertices of the
triangulation of Σ correspond to the edges of T of length iπ.

Remark 6.3. The angles of the triangles (resp. quadrilateral) at each vertex sum up to 2π.

Proof. The angles of the triangles (resp. quadrilateral) adjacent to each vertex of Σ are equal to the angles of
the simplices of T at the corresponding edge of length iπ. Those angle sum up to 2π by de�nition of a angle
structure on T . �

Corollary 6.4. Each connected component of Σ is homeomorphic either to the sphere or to the projective plane.
The sum of the areas of the faces of Σ is an integer multiple of 2π.

Proof. Let Σ0 be a connected component of Σ, let F0 be the set of its 2-faces, and let V0 be the set of its vertices.
Given f ∈ F0 and v ∈ V0, we write v ' f if v is adjacent to f , in this case we call θf,v the angle of f at v.

Let a(f) be the area of the face f of Σ. For each face f ∈ F0 of Σ0, we have by the Gauss-Bonnet formula∑
v∈V0,v'f

(π − θf,v) = 2π − a(f) .

Summing over the faces of Σ0 yields that

∑
f∈F0

 ∑
v∈V0,v'f

(π − θf,v)

 = 2π#F0 −
∑
f∈F0

a(f) .

The number of wedges in the triangulation of Σ0 is twice the number of edges, which we denote by #E0.
Therefore ∑

f∈F0

∑
v∈V0,v'f

π = 2π#E0 .

Moreover the angles of the faces at each vertex sum up to 2π, so that∑
f∈F0

∑
v∈V0,v'f

θf,v) = 2π#V0 .

Using the de�nition of the Euler characteristic, we obtain that∑
f∈F0

a(v) = 2π#V0 − 2πE0 = 2πF0 = 2πχ(Σ0) ,

and both parts of the corollary follow immediately. �

Corollary 6.5. At a critical point of V where all simplices are of Euclidean type, V is an integer multiple of
2π2.

Proof. Lemma 5.5 shows that the volume of each �ipped (resp. doubly �ipped) simplex is equal to π times the
area of the corresponding triangle (resp. quadrilateral) in Σ. So the total volume is π times the area of Σ, so
that it is a non-negative integer multiple of 2π2. �

The proof of Theorem 1.3 is obtained by putting together the results of this section.
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7. Further questions

The main point presented here is that extended hyperbolic structures have a natural role when constructing
geometric structures on manifolds by maximization of volume over triangulated manifolds. This leads to a
number of questions, for which answers would presumably help make progress on the understanding of geometric
structures on 3-manifolds.

Question 7.1. If M is a connected sum of several hyperbolic 3-manifolds, does M support an HS-structure?

Another, more general question, is whether the constructions considered here can be extended to encompass
angles structures with some ideal vertices. This would mean allowing angle structures on simplices for which
the sum of the angles at a vertex is equal to, rather than less than, 2π. Our hope is that such ideal vertices
would permit critical points of the volume to realize torus decompositions of non atoroidal 3-manifolds. Another
possibility, adding some �exibility to the construction, would be to allow for vertices in the de Sitter part of the
extended hyperbolic space.

Another natural question is of course to understand the critical points of V on the boundary of AS(T ),
hopefully showing that those boundary critical points correspond to collapsings.

A last, more technical question, is whether existence of a critical point of V on AS(T ) for which all simplices
are of Euclidean type has topological consequences on M . For instance, if all simplices are Euclidean (rather
than only of Euclidean type), does it follow that M admits an Euclidean metric or more generally is M a
connected sum of Seifert �bered spaces? This is not obvious since the angles of the simplices add up to 2π at
the edges of T , but the edge lengths do not match so that the faces of the simplices cannot be isometrically
glued.
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