ON TWO GENERALIZATIONS OF ASSOCIATIVITY

MIGUEL COUCEIRO AND JEAN-LUC MARICHAL

Let X be an arbitrary nonempty set. We regard vectors \mathbf{x} in X^n as n-strings over X. We set $X^* = \bigcup_{n \in \mathbb{N}} X^n$ endowed with concatenation for which we adopt the juxtaposition notation. For instance, if $\mathbf{x} \in X^n$, $y \in X$, and $\mathbf{z} \in X^m$, then $\mathbf{x}y\mathbf{z} \in X^{n+1+m}$.

In the sequel, we will be interested both in functions of a given fixed arity (i.e., functions $f: X^n \to X$) as well as in functions defined on X^* , that is, of the form $g: X^* \to X$. Given a function $g: X^* \to X$, we denote by g_n the n-ary component of g, that is, the restriction of g to X^n . In this way, each function $g: X^* \to X$ can be regarded as a family $(g_n)_{n \in \mathbb{N}}$ of functions $g_n: X^n \to X$.

We are interested in the associativity property, traditionally considered on binary functions. Recall that a function $f \colon X^2 \to X$ is said to be associative if f(f(xy)z) = f(xf(yz)) for every $x, y, z \in X$. This algebraic property was extended to functions $f \colon X^n \to X$, $n \ge 1$, as well as to functions $g \colon X^* \to X$ in somewhat different ways.

A function $f: X^n \to X$ is said to be associative if, for every $\mathbf{xz}, \mathbf{x'z'} \in X^{n-1}$ and every $\mathbf{y}, \mathbf{y'} \in X^n$ such that $\mathbf{xyz} = \mathbf{x'y'z'}$, we have $f(\mathbf{x}f(\mathbf{y})\mathbf{z}) = f(\mathbf{x'}f(\mathbf{y'})\mathbf{z'})$. This generalization of associativity to n-ary functions goes back to Dörnte [4] and led to the generalization of groups to n-groups (polyadic groups). In a somewhat different context, this notion has been recently used to completely classify closed intervals made of equational classes of Boolean functions; see [2].

On a different setting, associativity can be generalized to functions on X^* as follows. We say that a function $g \colon X^* \to X$ is associative if, for every $\mathbf{xyz}, \mathbf{x'y'z'} \in X^*$ such that $\mathbf{xyz} = \mathbf{x'y'z'}$, we have $g(\mathbf{x}g(\mathbf{y})\mathbf{z}) = g(\mathbf{x'}g(\mathbf{y'})\mathbf{z'})$. Alternative formulations of this definition appeared in the theory of aggregation functions, where the arity is not always fixed; see for instance [1, 10, 12, 13].

In general, the latter definition is more restrictive on the components g_n of $g: X^* \to X$. For instance, the ternary real function f(xyz) = x - y + z is associative but cannot be the ternary component of an associative function $g: \mathbb{R}^* \to \mathbb{R}$.

However, in the case of lattice polynomial functions (i.e., functions which can be obtained as combinations of projections and constant functions using the lattice operations \land and \lor) the two notions of associativity are essentially the same. More precisely, given a bounded distributive lattice L, we have that a polynomial function $f: L^n \to L$ is associative if and only if it is the n-ary component of some associative function $g: L^* \to L$ (see [3]).

These two examples give rise to the following problem:

Problem. For any fixed integer $n \ge 1$, determine the class of functions $f: X^n \to X$ which satisfy the following property: f is associative if and only if there exists an associative function $g: X^* \to X$ such that $g_n = f$.

1

¹The first extensive study on polyadic groups was due to Post [15]. This study was followed by several contributions towards the classification and description of *n*-groups and similar "superassociative" structures; to mention a few, see [5, 6, 7, 8, 9, 11, 14, 16].

References

- G. Beliakov, A. Pradera, and T. Calvo. Aggregation Functions: A Guide for Practitioners. Studies in Fuziness and Soft Computing. Springer, Berlin, 2007.
- M. Couceiro. On the lattice of equational classes of Boolean functions and its closed intervals.
 J. Mult.-Valued Logic Soft Comput., 14(1-2):81-104, 2008.
- [3] M. Couceiro, J.-L. Marichal. Associative polynomial functions over bounded distributive lattices. Order–A Journal on the Theory of Ordered Sets and its Applications, in press.
- [4] W. Dörnte. Untersuchengen über einen verallgemeinerten Gruppenbegriff. Math. Z., 29 (1928) 1–19.
- [5] W. A. Dudek. Varieties of polyadic groups. Filomat, 9 (1995) 657–674.
- [6] W. A. Dudek. On some old and new problems in n-ary groups. Quasigroups and Related Systems, 8 (2001) 15–36.
- [7] W. A. Dudek, K. Glazek, B. Gleichgewicht. A note on the axiom of n-groups. Coll. Math. Soc. J. Bolyai, 29 "Universal Algebra", Esztergom (Hungary), 1977, 195–202.
- [8] K. Glazek. Bibliography of n-groups (polyadic groups) and some group-like n-ary systems, Proceedings of the Symposium on n-ary Structures, Macedonian Academy of Sciences and Arts, Skopje (1982) 253–289.
- [9] K. Glazek, B. Gleichgewicht. Remarks on n-groups as abstract algebras. Colloq. Math., 17 (1967) 209–219.
- [10] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation Functions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, UK, 2009.
- [11] M. Hosszú. On the explicit form of n-group operations. Publ. Math. Debrecen 10 (1963) 88–92.
- [12] E. P. Klement, R. Mesiar, and E. Pap. Triangular norms, volume 8 of Trends in Logic—Studia Logica Library. Kluwer Academic Publishers, Dordrecht, 2000.
- [13] J.-L. Marichal. Aggregation operators for multicriteria decision aid. PhD thesis, Institute of Mathematics, University of Liège, Liège, Belgium, December 1998.
- [14] J. D. Monk, F. M. Sioson. On the general theory of m-groups. Fund. Math., 72 (1971) 233– 244.
- [15] E. L. Post. Polyadic groups, Trans. Amer. Math. Soc. 48 (1940) 208–350.
- [16] D. Zupnik. Polyadic semigroups, Publ. Math. Debrecen 14 (1967) 273–279.

Mathematics Research Unit, FSTC, University of Luxembourg, 6, rue Coudenhove-Kalergi, L-1359 Luxembourg-Kirchberg, Luxembourg.

E-mail address: miguel.couceiro[at]uni.lu

Mathematics Research Unit, FSTC, University of Luxembourg, 6, rue Coudenhove-Kalergi, L-1359 Luxembourg-Kirchberg, Luxembourg.

E-mail address: jean-luc.marichal[at]uni.lu