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Résumé

Considérons un système semicohérent consistant en un certain nombre de composants inter-
connectés. Un tel système peut être décrit par sa fonction de structure qui exprime, à chaque
instant, l’état du système en termes des états de ses composants. De manière équivalente, le
système peut aussi être décrit au moyen d’un polynôme latticiel qui exprime la durée de vie
du système en termes des durées de vie des composants. Par exemple, lorsque des composants
sont connectés en série, la durée de vie du segment ainsi constitué est le minimum de durées
de vie des composants.

Dans notre présentation, nous mettons en évidence le parallélisme formel entre ces deux
descriptions et nous montrons que les langages correspondants sont équivalents sur plusieurs
aspects. Nous montrons aussi que le langage des polynômes latticiels offre des avantages
significatifs. Par exemple, en exploitant la propriété de distributivité de la fonction indicatrice
par rapport aux opérations latticielles, nous montrons que la description par les polynômes
latticiels constitue un outil très naturel pour mettre en relation la structure du système avec
le treillis des événements typiques de fiabilité de la forme T ≤ t, où T est une durée de vie
aléatoire. Cet outil met donc en relation l’objectif du système, qui est encodé dans le polynôme
latticiel, avec l’équipement du système, qui est exprimé dans la distribution des durées de vie
des composants.

Ensuite, nous établissons une liste de formules exactes pour le calcul de la fiabilité du système,
aussi bien dans le cas où les durées de vie des composants sont indépendantes que dans le
cas général dépendant. Ces formules permettent alors de fournir des expressions exactes de
certains paramètres de fiabilité tels que la durée de vie moyenne du système.

Un autre avantage du langage des polynômes latticiels est qu’il nous permet d’étendre notre
étude au cas plus général où nous considérons des bornes supérieures collectives sur la durée
de vie de certains sous-ensembles de composants imposées par des conditions externes (telles
que des propriétés physiques de l’assemblage) ou même des bornes inférieures imposées par
exemple par des dispositifs de sécurité ayant une durée de vie constante. En termes de durées
de vie, de tels systèmes peuvent être décrits par des polynômes latticiels pondérés. En termes
de variables d’état, nous verrons qu’une “version pondérée” des fonctions de structure est
alors requise. Nous en déduisons alors des formules exactes généralisées pour le calcul de la
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fiabilité et de la durée de vie moyenne de ces systèmes ainsi dotés de bornes supérieures et
inférieures.

Finalement, nous montrons comment nos résultats peuvent fournir des formules exactes pour
exprimer la fonction de répartition et les moments des polynômes latticiels pondérés de va-
riables aléatoires.
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