Reliability analysis and lattice polynomial system representation

Alexander Dukhovny* Jean-Luc Marichal**

*San Francisco State University
**University of Luxembourg

System

Definition. A system consists of several interconnected units

Assumptions:

(1) The system and the units are of the crisply on/off kind
(2) A serially connected segment of units is functioning if and only if every single unit is functioning

(3) A system of parallel units is functioning if and only at least one unit is functioning

System

Example. Home video system

1. Blu-ray player
2. DVD player
3. LCD monitor
4. Amplifier
5. Speaker A
6. Speaker B

Structure function

Definition.

The state of a component $i \in[n]=\{1, \ldots, n\}$ can be represented by a Boolean variable

$$
x_{i}= \begin{cases}1 & \text { if component } i \text { is functioning } \\ 0 & \text { if component } i \text { is in a failed state }\end{cases}
$$

The state of the system is described from the component states through a Boolean function $\phi:\{0,1\}^{n} \rightarrow\{0,1\}$

$$
\phi\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if the system is functioning } \\ 0 & \text { if the system is in a failed state }\end{cases}
$$

This function is called the structure function of the system

Structure function

Series structure

Parallel structure

$$
\phi(\mathbf{x})=1-\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)=\coprod_{i=1}^{3} x_{i}
$$

Structure function

Home video system

Coherent and semicoherent systems

Definition.

Let $\phi:\{0,1\}^{n} \rightarrow\{0,1\}$ be a structure function on $[n]=\{1, \ldots, n\}$.
The system is said to be semicoherent if

- ϕ is nondecreasing : $\mathbf{x} \leqslant \mathbf{x}^{\prime} \Rightarrow \phi(\mathbf{x}) \leqslant \phi\left(\mathbf{x}^{\prime}\right)$
- $\phi(\mathbf{0})=0, \phi(\mathbf{1})=1$

The system is said to be coherent if, in addition

- every component is relevant to ϕ :

$$
\exists \mathbf{x} \in\{0,1\}^{n}: \phi\left(1_{i}, \mathbf{x}\right) \neq \phi\left(0_{i}, \mathbf{x}\right)
$$

where

$$
\begin{array}{r}
\left(1_{i}, \mathbf{x}\right)=\left(x_{1}, \ldots, \stackrel{(i)}{1}, \ldots, x_{n}\right) \\
\left(0_{i}, \mathbf{x}\right)=\left(x_{1}, \ldots, 0, \ldots, x_{n}\right)
\end{array}
$$

Representations of Boolean functions

$$
\left.\begin{array}{rl}
\begin{array}{l}
\text { Boolean function } \\
\phi:\{0,1\}^{n} \rightarrow\{0,1\}
\end{array} & \longleftrightarrow
\end{array} \begin{array}{l}
\text { set function } \\
\\
v: 2^{[n]} \rightarrow\{0,1\}
\end{array}\right] \begin{array}{cl}
v(A)=\phi\left(\mathbf{e}_{A}\right) \quad A \subseteq[n]
\end{array}
$$

\rightarrow We write ϕ_{v} instead of ϕ

Representations of a Boolean function

$$
\phi_{v}(\mathbf{x})=\sum_{A \subseteq[n]} v(A) \prod_{i \in A} x_{i} \prod_{i \in[n] \backslash A}\left(1-x_{i}\right)
$$

Representations of Boolean functions

Alternative representations

$$
\phi_{v}(\mathbf{x})=\sum_{A \subseteq[n]} m_{v}(A) \prod_{i \in A} x_{i}
$$

where

$$
m_{v}(A)=\sum_{B \subseteq A}(-1)^{|A|-|B|} v(B)
$$

If ϕ_{v} is nondecreasing and nonconstant:

$$
\phi_{v}(\mathbf{x})=\coprod_{\substack{A \subseteq[n] \\ v(A)=1}} \prod_{i \in A} x_{i}
$$

(Hammer and Rudeanu 1968)

System and component lifetimes

Any component $i \in[n]$ has a random lifetime : T_{i} The system has a random lifetime: T_{S}

The structure function induces a functional relationship between the variables T_{1}, \ldots, T_{n} and the variable T_{S}

Example:

$$
\begin{gathered}
\phi(\mathbf{x})=x_{1} x_{2} x_{3}=\prod_{i=1}^{3} x_{i} \\
T_{S}=T_{1} \wedge T_{2} \wedge T_{3}=\bigwedge_{i=1}^{3} T_{i}
\end{gathered}
$$

System and component lifetimes

Home video system

In general,

$$
T_{S}=p\left(T_{1}, \ldots, T_{n}\right)
$$

where $p: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$is an n-ary lattice polynomial function
\Rightarrow Formal parallelism between two representations of systems: structure functions and lattice polynomial functions

Lattice polynomial functions

Let $L \subseteq[-\infty, \infty]$ a totally ordered bounded lattice
$\Rightarrow \wedge=\min$ and $\vee=\max$

The class of n-ary lattice polynomial (I.p.) functions is defined as follows:
(i) For any $k \in[n]$, the projection $\left(t_{1}, \ldots, t_{n}\right) \mapsto t_{k}$ is an n-ary I.p. function
(ii) If p and q are n-ary l.p. functions then $p \wedge q$ and $p \vee q$ are n-ary l.p. functions
(iii) Every n-ary I.p. function is constructed by finitely many applications of the rules (i) and (ii).

Example:

$$
p\left(t_{1}, t_{2}, t_{3}\right)=\left(t_{1} \wedge t_{2}\right) \vee t_{3}
$$

Lattice polynomial functions

Let $a=\inf L$ and $b=\sup L$

$$
\begin{array}{ll}
\text { I.p. function } \longleftrightarrow & \text { set function } \\
p: L^{n} \rightarrow L & w: 2^{[n]} \rightarrow\{a, b\}
\end{array}
$$

$$
w(A)=p\left(\mathbf{e}_{A}^{a, b}\right) \quad A \subseteq[n]
$$

Example : $\mathbf{e}_{\{1,2\}}^{a, b}=(b, b, a, \ldots, a)$ \rightarrow We write p_{w} instead of p

Representations of an I.p. function (Birkhoff 1967)

$$
p_{w}(\mathbf{t})=\bigvee_{\substack{A \subseteq[n] \\ w(A)=b}} \bigwedge_{i \in A} t_{i}
$$

Formal parallelism between the two representations

$T_{i}=$ random lifetime of component $i \in[n]$ $X_{i}(t)=\operatorname{Ind}\left(T_{i}>t\right)=$ random state of i at time $t \geqslant 0$

$$
X_{i}(t)= \begin{cases}1 & \text { if } i \text { is functioning at time } t \\ 0 & \text { if } i \text { is in a failed state at time } t\end{cases}
$$

For the system:
$T_{S}=$ system lifetime
$X_{S}(t)=\operatorname{Ind}\left(T_{S}>t\right)=$ random state of the system at time $t \geqslant 0$

Formal parallelism between the two representations

Home video system

$$
\begin{gathered}
p_{w}(\mathbf{T})=\left(T_{1} \vee T_{2}\right) \wedge T_{3} \wedge T_{4} \wedge\left(T_{5} \vee T_{6}\right) \\
\phi_{v}(\mathbf{X}(t))=\left(X_{1}(t) \amalg X_{2}(t)\right) X_{3}(t) X_{4}(t)\left(X_{5}(t) \amalg X_{6}(t)\right)
\end{gathered}
$$

ϕ_{v} is also an l.p. function that has just the same max-min form as p_{w} but applied to binary arguments

$$
\begin{gathered}
\phi_{v} \longleftrightarrow p_{w} \\
w=\gamma \circ v \\
\gamma:\{0,1\} \rightarrow\{a, b\}, \gamma(0)=a, \gamma(1)=b
\end{gathered}
$$

As the lifetimes are $[0, \infty]$-valued, we now assume that $a=0$ and $b=\infty$

Formal parallelism between the two representations

Theorem. (Dukhovny and M. 2008)

Consider a system whose structure function $\phi_{v}:\{0,1\}^{n} \rightarrow\{0,1\}$ is nondecreasing and nonconstant. Then we have

$$
\begin{equation*}
T_{S}=p_{w}\left(T_{1}, \ldots, T_{n}\right) \tag{1}
\end{equation*}
$$

where $w=\gamma \circ v$. Conversely, any system fulfilling (1) for some l.p. function $p_{w}: L^{n} \rightarrow L$ has the nondecreasing and nonconstant structure function ϕ_{v}, where $v=\gamma^{-1} \circ w$

The proof mainly lies on the immediate identities

$$
\begin{aligned}
\operatorname{Ind}\left(E \wedge E^{\prime}\right) & =\operatorname{Ind}(E) \wedge \operatorname{Ind}\left(E^{\prime}\right) \\
\operatorname{Ind}\left(E \vee E^{\prime}\right) & =\operatorname{Ind}(E) \vee \operatorname{Ind}\left(E^{\prime}\right)
\end{aligned}
$$

valid for all events E and E^{\prime}

Formal parallelism between the two representations

Proof. For every $t \geqslant 0$ we have

$$
\begin{aligned}
\phi_{v}(\mathbf{X}(t)) & =\coprod_{\substack{A \subseteq[n] \\
v(A)=1}} \prod_{i \in A} X_{i}(t) \\
& =\bigvee_{\substack{A \subseteq[n] \\
v(A)=1}} \bigwedge_{i \in A} \operatorname{Ind}\left(T_{i}>t\right)=\operatorname{Ind}\left(\bigvee_{\substack{A \subseteq[n] \\
v(A)=1}} \bigwedge_{i \in A} T_{i}>t\right) \\
& =\operatorname{Ind}\left(p_{w}(\mathbf{T})>t\right)
\end{aligned}
$$

Hence, we have

$$
\begin{array}{ll}
& X_{S}(t)=\phi_{V}(\mathbf{X}(t)) \quad \forall t \geqslant 0 \\
\Leftrightarrow & \operatorname{Ind}\left(T_{S}>t\right)=\operatorname{Ind}\left(p_{w}(\mathbf{T})>t\right) \quad \forall t \geqslant 0 \\
\Leftrightarrow & T_{S}=p_{w}(\mathbf{T})
\end{array}
$$

Advantages of the lattice polynomial language

Properties of I.p. functions reveal properties of structure functions

Example. Any I.p. function $p: L^{n} \rightarrow L$ satisfies trivially the functional equations

$$
\begin{array}{ll}
p\left(u \wedge t_{1}, \ldots, u \wedge t_{n}\right)=u \wedge p\left(t_{1}, \ldots, t_{n}\right) & \forall u \in L \\
p\left(u \vee t_{1}, \ldots, u \vee t_{n}\right)=u \vee p\left(t_{1}, \ldots, t_{n}\right) & \forall u \in L
\end{array}
$$

The corresponding equations for the structure functions are

$$
\begin{aligned}
\phi\left(y x_{1}, \ldots, y x_{n}\right) & =y \phi\left(x_{1}, \ldots, x_{n}\right) & & \forall y \in\{0,1\} \\
\phi\left(y \amalg x_{1}, \ldots, y \amalg x_{n}\right) & =y \amalg \phi\left(x_{1}, \ldots, x_{n}\right) & & \forall y \in\{0,1\}
\end{aligned}
$$

Advantages of the lattice polynomial language

Properties of structure functions reveal properties of I.p. functions

Example. Pivotal decomposition of the structure function

$$
\phi(\mathbf{x})=x_{i} \phi\left(1_{i}, \mathbf{x}\right)+\left(1-x_{i}\right) \phi\left(0_{i}, \mathbf{x}\right)
$$

Bridge structure

$$
\begin{gathered}
\phi(\mathbf{x})=x_{3} \phi\left(1_{3}, \mathbf{x}\right)+\left(1-x_{3}\right) \phi\left(0_{3}, \mathbf{x}\right) \\
\phi\left(1_{3}, \mathbf{x}\right)=\left(x_{1} \amalg x_{2}\right)\left(x_{4} \amalg x_{5}\right) \\
\phi\left(0_{3}, \mathbf{x}\right)=\left(\begin{array}{ll}
x_{1} & \left.x_{4}\right) \amalg\left(x_{2} x_{5}\right)
\end{array}\right.
\end{gathered}
$$

Advantages of the lattice polynomial language

Corresponding property of the l.p. functions ?

$$
p(\mathbf{t})=\operatorname{median}\left(p\left(a_{i}, \mathbf{t}\right), t_{i}, p\left(b_{i}, \mathbf{t}\right)\right)
$$

where

$$
\operatorname{median}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \wedge x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right) \vee\left(x_{3} \wedge x_{1}\right)
$$

Proof.

$$
\begin{aligned}
\phi(\mathbf{x}) & =\operatorname{median}\left(\phi\left(0_{i}, \mathbf{x}\right), x_{i}, \phi\left(1_{i}, \mathbf{x}\right)\right) \\
& =\underbrace{\left(\phi\left(0_{i}, \mathbf{x}\right) \wedge x_{i}\right)}_{\text {redundant }} \vee\left(x_{i} \wedge \phi\left(1_{i}, \mathbf{x}\right)\right) \vee \underbrace{\left(\phi\left(1_{i}, \mathbf{x}\right) \wedge \phi\left(0_{i}, \mathbf{x}\right)\right)}_{=\phi\left(0_{i}, \mathbf{x}\right)} \\
& =x_{i} \phi\left(1_{i}, \mathbf{x}\right) \amalg \phi\left(0_{i}, \mathbf{x}\right) \\
& =x_{i} \phi\left(1_{i}, \mathbf{x}\right)+\phi\left(0_{i}, \mathbf{x}\right)-x_{i} \underbrace{\phi\left(1_{i}, \mathbf{x}\right)}_{\text {redundant }} \phi\left(0_{i}, \mathbf{x}\right) \\
& =x_{i} \phi\left(1_{i}, \mathbf{x}\right)+\left(1-x_{i}\right) \phi\left(0_{i}, \mathbf{x}\right)
\end{aligned}
$$

Reliability analysis

Reliability function of component $i \in[n]$

$$
R_{i}(t)=\operatorname{Pr}\left(T_{i}>t\right)=\operatorname{Pr}\left(X_{i}(t)=1\right)=\mathrm{E}\left[X_{i}(t)\right]
$$

$=$ probability that component i does not fail in the interval $[0, t]$

System reliability function

$$
R_{S}(t)=\operatorname{Pr}\left(T_{S}>t\right)=\operatorname{Pr}\left(X_{S}(t)=1\right)=\mathrm{E}\left[X_{S}(t)\right]
$$

$=$ probability that the system does not fail in the interval $[0, t]$

Reliability analysis

Theorem. (Dukhovny 2007)

$$
R_{S}(t)=\sum_{A \subseteq[n]} v(A) \operatorname{Pr}\left(\mathbf{X}(t)=\mathbf{e}_{A}\right)
$$

Remarks.
(i) All the needed information is the distribution of $\mathbf{X}(t)$ (the knowledge of the joint distribution of \mathbf{T} is not necessary)
(ii) The distribution of $\mathbf{X}(t)$ can be easily expressed in terms of the joint probability generating function of $\mathbf{X}(t)$

$$
G(\mathbf{z}, t)=\mathrm{E}\left[\prod_{i=1}^{n} z_{i}^{x_{i}(t)}\right] \quad\left(\left|z_{i}\right| \leqslant 1\right)
$$

We have

$$
\operatorname{Pr}\left(\mathbf{X}(t)=\mathbf{e}_{A}\right)=\sum_{B \subseteq A}(-1)^{|A|-|B|} G\left(\mathbf{e}_{B}, t\right)
$$

Reliability analysis

When T_{1}, \ldots, T_{n} are independent, we have

$$
R_{S}(t)=\sum_{A \subseteq[n]} v(A) \prod_{i \in A} R_{i}(t) \prod_{i \in[n] \backslash A}\left(1-R_{i}(t)\right)
$$

Alternative expression (Dukhovny and M. 2008)

$$
R_{S}(t)=\sum_{A \subseteq[n]} m_{v}(A) \operatorname{Pr}\left(T_{i}>t \forall i \in A\right)
$$

In case of independence

$$
R_{S}(t)=\sum_{A \subseteq[n]} m_{v}(A) \prod_{i \in A} R_{i}(t)
$$

Mean time-to-failure of the system

The mean time-to-failure of the system is defined as

$$
\mathrm{MTTF}_{S}=\mathrm{E}\left[T_{S}\right]
$$

It is easy to show that

$$
\operatorname{MTTF}_{S}=\int_{0}^{\infty} R_{S}(t) d t
$$

(Rausand and Høyland 2004)

In case of independence

$$
\begin{aligned}
& \operatorname{MTTF}_{S}=\sum_{A \subseteq[n]} v(A) \int_{0}^{\infty} \prod_{i \in A} R_{i}(t) \prod_{i \in[n] \backslash A}\left(1-R_{i}(t)\right) d t \\
& \operatorname{MTTF}_{S}=\sum_{A \subseteq[n]} m_{v}(A) \int_{0}^{\infty} \prod_{i \in A} R_{i}(t) d t
\end{aligned}
$$

Mean time-to-failure of the system

Example. Assume $R_{i}(t)=e^{-\lambda_{i} t}, i=1, \ldots, n$

$$
\begin{aligned}
\operatorname{MTTF}_{S} & =\sum_{A \subseteq[n]} m_{v}(A) \int_{0}^{\infty} \prod_{i \in A} e^{-\lambda_{i} t} d t \\
& =\sum_{A \subseteq[n]} m_{v}(A) \int_{0}^{\infty} e^{-\lambda_{A} t} d t \quad\left(\lambda_{A}=\sum_{i \in A} \lambda_{i}\right) \\
& =\sum_{\substack{A \subseteq[n] \\
A \neq \varnothing}} m_{v}(A) \frac{1}{\lambda_{A}}
\end{aligned}
$$

Series structure: \quad MTTF $_{S}=\frac{1}{\lambda_{[n]}}$
Parallel structure: MTTF $_{S}=\sum_{\substack{A \subseteq[n] \\ A \neq \varnothing}}(-1)^{|A|-1} \frac{1}{\lambda_{A}}$

Another advantage of the lattice polynomial language

Generalization to weighted lattice polynomial functions

Suppose there are
(i) collective upper bounds on lifetimes of certain subsets of units (imposed by the physical properties of the assembly)

subset lifetime $=T \wedge c$
(ii) collective lower bounds (imposed by back-up blocks with constant lifetimes)

subset lifetime $=T \vee c$

Another advantage of the lattice polynomial language

The lifetime of a general system with upper and/or lower bounds can be described through a weighted lattice polynomial function

$$
T_{S}=p\left(T_{1}, \ldots, T_{n}\right)
$$

Example.

Suppose that the lifetime of component \#2 must lies in the time interval $[c, d]$

$$
\begin{aligned}
T_{S} & =T_{1} \wedge \operatorname{median}\left(c, T_{2}, d\right) \\
& =T_{1} \wedge\left(c \vee\left(T_{2} \wedge d\right)\right) \\
& =\left(c \wedge T_{1}\right) \vee\left(d \wedge T_{1} \wedge T_{2}\right)
\end{aligned}
$$

Weighted lattice polynomial functions

The class of n-ary weighted lattice polynomial (w.l.p.) functions is defined as follows:
(i) For any $k \in[n]$ and any $c \in L$, the projection $\left(t_{1}, \ldots, t_{n}\right) \mapsto t_{k}$ and the constant function $\left(t_{1}, \ldots, t_{n}\right) \mapsto c$ are n-ary w.l.p. function
(ii) If p and q are n-ary w.l.p. functions then $p \wedge q$ and $p \vee q$ are n-ary w.l.p. functions
(iii) Every n-ary w.l.p. function is constructed by finitely many applications of the rules (i) and (ii).

Weighted lattice polynomial functions

$$
\begin{array}{ll}
\begin{array}{ll}
\text { w.l.p. function } \longleftrightarrow & \text { set function } \\
p: L^{n} \rightarrow L & w: 2^{[n]} \rightarrow L \\
& w(A)=p\left(\mathbf{e}_{A}^{a, b}\right) \\
& A \subseteq[n]
\end{array}
\end{array}
$$

\rightarrow We write p_{w} instead of p

Representations of a w.l.p. function (Goodstein 1967)

$$
p_{w}(\mathbf{t})=\bigvee_{A \subseteq[n]}\left(w(A) \wedge \bigwedge_{i \in A} t_{i}\right)
$$

Weighted lattice polynomial functions

Example (cont'd)

$$
\begin{gathered}
\bullet 1 \\
T_{S}=\left(c \wedge T_{1}\right) \vee\left(d \wedge T_{1} \wedge T_{2}\right) \\
p_{w}\left(t_{1}, t_{2}\right)=\left(c \wedge t_{1}\right) \vee\left(d \wedge t_{1} \wedge t_{2}\right) \\
\begin{array}{c|c|}
\hline A & w(A) \\
\hline \varnothing & 0 \\
\{1\} & c \\
\{2\} & 0 \\
\{1,2\} & d \\
\hline
\end{array}
\end{gathered}
$$

We can show that

$$
X_{S}(t)=\left(\operatorname{Ind}(c>t) X_{1}(t)\right) \amalg\left(\operatorname{Ind}(d>t) X_{1}(t) X_{2}(t)\right)
$$

Weighted lattice polynomial functions

Representation of w.l.p. functions (DNF)

$$
p_{w}(\mathbf{t})=\bigvee_{A \subseteq[n]} w(A) \wedge \bigwedge_{i \in A} t_{i}
$$

Theorem. (Dukhovny and M. 2008)
If $T_{S}=p_{w}\left(T_{1}, \ldots, T_{n}\right)$ then

$$
X_{S}(t)=\coprod_{A \subseteq[n]} v_{t}(A) \prod_{i \in A} X_{i}(t) \quad(t \geqslant 0)
$$

where $v_{t}(A)=\operatorname{Ind}(w(A)>t)$

Reliability analysis

Exact reliability formulas (Dukhovny and M. 2008)

$$
\begin{aligned}
& R_{S}(t)=\sum_{A \subseteq[n]} v_{t}(A) \operatorname{Pr}\left(\mathbf{X}(t)=\mathbf{e}_{A}\right) \\
& R_{S}(t)=\sum_{A \subseteq[n]} m_{v_{t}}(A) \operatorname{Pr}\left(T_{i}>t \forall i \in A\right)
\end{aligned}
$$

In case of independence

$$
\begin{aligned}
& R_{S}(t)=\sum_{A \subseteq[n]} v_{t}(A) \prod_{i \in A} R_{i}(t) \prod_{i \in[n] \backslash A}\left(1-R_{i}(t)\right) \\
& R_{S}(t)=\sum_{A \subseteq[n]} m_{v_{t}}(A) \prod_{i \in A} R_{i}(t)
\end{aligned}
$$

Mean time-to-failure of the system

$$
\begin{aligned}
\operatorname{MTTF}_{S} & =\int_{0}^{\infty} R_{S}(t) d t \\
& =\sum_{A \subseteq[n]} \int_{0}^{\infty} m_{v_{t}}(A) \prod_{i \in A} R_{i}(t) d t \\
& =\sum_{A \subseteq[n]} \int_{0}^{\infty}\left(\sum_{B \subseteq A}(-1)^{|A|-|B|} v_{t}(B)\right) \prod_{i \in A} R_{i}(t) d t \\
& =\sum_{A \subseteq[n]} \sum_{B \subseteq A}(-1)^{|A|-|B|} \int_{0}^{\infty} \operatorname{Ind}(w(B)>t) \prod_{i \in A} R_{i}(t) d t \\
& =\sum_{A \subseteq[n]} \sum_{B \subseteq A}(-1)^{|A|-|B|} \int_{0}^{w(B)} \prod_{i \in A} R_{i}(t) d t
\end{aligned}
$$

Mean time-to-failure of the system

Example. Assume $R_{i}(t)=e^{-\lambda_{i} t}, i=1, \ldots, n$

$$
\begin{aligned}
\operatorname{MTTF}_{S} & =\sum_{A \subseteq[n]} \sum_{B \subseteq A}(-1)^{|A|-|B|} \int_{0}^{w(B)} \prod_{i \in A} e^{-\lambda_{i} t} d t \\
& =\sum_{A \subseteq[n]} \sum_{B \subseteq A}(-1)^{|A|-|B|} \int_{0}^{w(B)} e^{-\lambda_{A} t} d t \quad\left(\lambda_{A}=\sum_{i \in A} \lambda_{i}\right) \\
& =w(\varnothing)+\sum_{\substack{A \subseteq[n] \\
A \neq \varnothing}} \sum_{B \subseteq A}(-1)^{|A|-|B|} \frac{1-e^{-\lambda_{A} w(B)}}{\lambda_{A}}
\end{aligned}
$$

Conclusion

We have discussed the formal parallelism between two representations of systems

- Structure functions
- Lattice polynomial functions
\rightarrow Their languages are equivalent in many ways

Advantages

- Generalization to w.l.p. functions + exact reliability formulas
- Exact formulas for the distribution functions of w.l.p. functions of random variables

$$
Y=p_{w}\left(X_{1}, \ldots, X_{n}\right)
$$

- Several special cases can be investigated
- Symmetric w.l.p. functions : $w(A)=f(|A|)$
- The reliability of any subsystem depends only on the number of units in the subsystem $\operatorname{Pr}\left(\mathbf{X}(t)=\mathbf{e}_{A}\right)=g_{t}(|A|)$
- ...

Thank you for your attention !

A. Dukhovny and J.-L. Marichal, Reliability analysis of semicoherent systems through their lattice polynomial descriptions
arXiv : 0809.1332

