Reliability analysis and lattice polynomial system representation

Alexander Dukhovny* Jean-Luc Marichal**

*San Francisco State University **University of Luxembourg

System

Definition. A system consists of several interconnected units

Assumptions:

- The system and the units are of the crisply *on/off* kind
- A serially connected segment of units is functioning if and only if every single unit is functioning

A system of parallel units is functioning if and only at least one unit is functioning

Example. Home video system

- 1. Blu-ray player
- 2. DVD player
- 3. LCD monitor
- 4. Amplifier
- 5. Speaker A
- 6. Speaker B

Definition.

The *state of a component* $i \in [n] = \{1, ..., n\}$ can be represented by a Boolean variable

$$x_i = \begin{cases} 1 & \text{if component } i \text{ is functioning} \\ 0 & \text{if component } i \text{ is in a failed state} \end{cases}$$

The *state of the system* is described from the component states through a Boolean function $\phi : \{0, 1\}^n \rightarrow \{0, 1\}$

$$\phi(x_1, \dots, x_n) = \begin{cases} 1 & \text{if the system is functioning} \\ 0 & \text{if the system is in a failed state} \end{cases}$$

This function is called the structure function of the system

Structure function

Series structure

Parallel structure

Home video system

 $\phi(\mathbf{x}) = (x_1 \amalg x_2) x_3 x_4 (x_5 \amalg x_6)$

Definition.

Let $\phi: \{0,1\}^n \rightarrow \{0,1\}$ be a structure function on $[n] = \{1,...,n\}$.

The system is said to be *semicoherent* if

• ϕ is nondecreasing : $\mathbf{x} \leqslant \mathbf{x}' \Rightarrow \phi(\mathbf{x}) \leqslant \phi(\mathbf{x}')$

•
$$\phi(\mathbf{0}) = 0, \ \phi(\mathbf{1}) = 1$$

The system is said to be *coherent* if, in addition

• every component is relevant to ϕ :

$$\exists \mathbf{x} \in \{0,1\}^n : \phi(1_i,\mathbf{x}) \neq \phi(0_i,\mathbf{x})$$

where

$$(1_i, \mathbf{x}) = (x_1, \dots, \stackrel{(i)}{1}, \dots, x_n)$$

 $(0_i, \mathbf{x}) = (x_1, \dots, \stackrel{(i)}{0}, \dots, x_n)$

Representations of Boolean functions

Boolean function
$$\longleftrightarrow$$
 set function
 $\phi: \{0,1\}^n \to \{0,1\}$ $v: 2^{[n]} \to \{0,1\}$

$$v(A) = \phi(\mathbf{e}_A) \qquad A \subseteq [n]$$

 \rightarrow We write $\phi_{\mathbf{v}}$ instead of ϕ

Representations of a Boolean function

$$\phi_{\mathbf{v}}(\mathbf{x}) = \sum_{A \subseteq [n]} \mathbf{v}(A) \prod_{i \in A} x_i \prod_{i \in [n] \setminus A} (1 - x_i)$$

Representations of Boolean functions

Alternative representations

$$\phi_{\nu}(\mathbf{x}) = \sum_{A \subseteq [n]} m_{\nu}(A) \prod_{i \in A} x_i$$

where

$$m_{\nu}(A) = \sum_{B \subseteq A} (-1)^{|A| - |B|} \nu(B)$$

If ϕ_{v} is nondecreasing and nonconstant:

$$\phi_{\mathbf{v}}(\mathbf{x}) = \prod_{\substack{A \subseteq [n] \\ \mathbf{v}(A) = 1}} \prod_{i \in A} x_i$$

(Hammer and Rudeanu 1968)

System and component lifetimes

Any component $i \in [n]$ has a random lifetime : T_i The system has a random lifetime : T_S

The structure function induces a functional relationship between the variables T_1, \ldots, T_n and the variable T_S

Example:

$$\phi(\mathbf{x}) = x_1 \ x_2 \ x_3 = \prod_{i=1}^3 x_i$$
$$T_S = T_1 \land T_2 \land T_3 = \bigwedge_{i=1}^3 T_i$$

System and component lifetimes

Home video system

In general,

$$T_S = p(T_1,\ldots,T_n)$$

where $p: \mathbb{R}^n_+ \to \mathbb{R}_+$ is an *n*-ary lattice polynomial function

⇒ Formal parallelism between two representations of systems: structure functions and lattice polynomial functions

Lattice polynomial functions

Let $L \subseteq [-\infty, \infty]$ a totally ordered bounded lattice $\Rightarrow \land = \min \text{ and } \lor = \max$

The class of *n*-ary lattice polynomial (l.p.) functions is defined as follows:

- (i) For any $k \in [n]$, the projection $(t_1, \ldots, t_n) \mapsto t_k$ is an *n*-ary l.p. function
- (ii) If p and q are n-ary l.p. functions then p ∧ q and p ∨ q are n-ary l.p. functions
- (iii) Every n-ary l.p. function is constructed by finitely many applications of the rules (i) and (ii).

Example:

$$p(t_1, t_2, t_3) = (t_1 \wedge t_2) \vee t_3$$

Lattice polynomial functions

Let $a = \inf L$ and $b = \sup L$

$$\begin{array}{rcl} \text{I.p. function} & \longleftrightarrow & \text{set function} \\ p: L^n \to L & w: 2^{[n]} \to \{a, b\} \\ & & & \\ \hline & & \\ w(A) = p(\mathbf{e}_A^{a,b}) & A \subseteq [n] \end{array}$$

$$\begin{array}{r} \text{Example}: \ \mathbf{e}_{\{1,2\}}^{a,b} = (b,b,a,\ldots,a) \\ & & \rightarrow \text{We write } p_w \text{ instead of } p \end{array}$$

Representations of an I.p. function (Birkhoff 1967)

$$p_w(\mathbf{t}) = igvee_{\substack{A \subseteq [n] \ w(A) = b}} igwee_{i \in A} t_i$$

Formal parallelism between the two representations

 T_i = random lifetime of component $i \in [n]$ $X_i(t) = \text{Ind}(T_i > t)$ = random state of i at time $t \ge 0$

For the system:

 $T_S =$ system lifetime $X_S(t) =$ Ind $(T_S > t) =$ random state of the system at time $t \ge 0$ Home video system

$$p_{w}(\mathbf{T}) = (T_{1} \lor T_{2}) \land T_{3} \land T_{4} \land (T_{5} \lor T_{6})$$

$$\phi_{v}(\mathbf{X}(t)) = (X_{1}(t) \amalg X_{2}(t)) X_{3}(t) X_{4}(t) (X_{5}(t) \amalg X_{6}(t))$$

 ϕ_{v} is also an l.p. function that has just the same max-min form as p_{w} but applied to binary arguments $\phi_{v} \longleftrightarrow p_{w}$ $w = \gamma \circ v$ $\gamma \colon \{0, 1\} \to \{a, b\}, \ \gamma(0) = a, \ \gamma(1) = b$

As the lifetimes are $[0,\infty]$ -valued, we now assume that a=0 and $b=\infty$

Theorem. (Dukhovny and M. 2008)

Consider a system whose structure function $\phi_v: \{0,1\}^n \to \{0,1\}$ is nondecreasing and nonconstant. Then we have

$$T_S = p_w(T_1, \ldots, T_n) \tag{1}$$

where $w = \gamma \circ v$. Conversely, any system fulfilling (1) for some l.p. function $p_w : L^n \to L$ has the nondecreasing and nonconstant structure function ϕ_v , where $v = \gamma^{-1} \circ w$

The proof mainly lies on the immediate identities

$$\begin{array}{lll} \operatorname{Ind}(E \wedge E') &=& \operatorname{Ind}(E) \wedge \operatorname{Ind}(E') \\ \operatorname{Ind}(E \vee E') &=& \operatorname{Ind}(E) \vee \operatorname{Ind}(E') \end{array}$$

valid for all events E and E'

Proof. For every $t \ge 0$ we have

$$\begin{split} \phi_{v}(\mathbf{X}(t)) &= \prod_{\substack{A \subseteq [n] \\ v(A) = 1}} \prod_{i \in A} X_{i}(t) \\ &= \bigvee_{\substack{A \subseteq [n] \\ v(A) = 1}} \bigwedge_{i \in A} \operatorname{Ind}(T_{i} > t) = \operatorname{Ind}\left(\bigvee_{\substack{A \subseteq [n] \\ v(A) = 1}} \bigwedge_{i \in A} T_{i} > t\right) \\ &= \operatorname{Ind}(p_{w}(\mathbf{T}) > t) \end{split}$$

Hence, we have

$$\begin{aligned} X_{S}(t) &= \phi_{v}(\mathbf{X}(t)) & \forall t \ge 0 \\ \Leftrightarrow & \operatorname{Ind}(T_{S} > t) = \operatorname{Ind}(p_{w}(\mathbf{T}) > t) & \forall t \ge 0 \\ \Leftrightarrow & T_{S} = p_{w}(\mathbf{T}) \end{aligned}$$

Properties of I.p. functions reveal properties of structure functions

Example. Any l.p. function $p: L^n \to L$ satisfies trivially the functional equations

$$\begin{array}{lll} p(u \wedge t_1, \ldots, u \wedge t_n) &=& u \wedge p(t_1, \ldots, t_n) & \forall u \in L \\ p(u \vee t_1, \ldots, u \vee t_n) &=& u \vee p(t_1, \ldots, t_n) & \forall u \in L \end{array}$$

The corresponding equations for the structure functions are

$$\begin{aligned} \phi(y x_1, \dots, y x_n) &= y \phi(x_1, \dots, x_n) & \forall y \in \{0, 1\} \\ \phi(y \amalg x_1, \dots, y \amalg x_n) &= y \amalg \phi(x_1, \dots, x_n) & \forall y \in \{0, 1\} \end{aligned}$$

Advantages of the lattice polynomial language

Properties of structure functions reveal properties of I.p. functions

Example. Pivotal decomposition of the structure function

$$\phi(\mathbf{x}) = x_i \, \phi(\mathbf{1}_i, \mathbf{x}) + (1 - x_i) \phi(\mathbf{0}_i, \mathbf{x})$$

Bridge structure

 $\phi(\mathbf{x}) = x_3 \, \phi(1_3, \mathbf{x}) + (1 - x_3) \phi(0_3, \mathbf{x})$

$$\phi(1_3, \mathbf{x}) = (x_1 \amalg x_2)(x_4 \amalg x_5) \phi(0_3, \mathbf{x}) = (x_1 x_4) \amalg (x_2 x_5)$$

Advantages of the lattice polynomial language

Corresponding property of the l.p. functions ? $p(\mathbf{t}) = \text{median}(p(a_i, \mathbf{t}), t_i, p(b_i, \mathbf{t}))$

where

$$\mathrm{median}(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_2 \wedge x_3) \vee (x_3 \wedge x_1)$$

Proof.

$$\begin{split} \phi(\mathbf{x}) &= \operatorname{median}(\phi(0_i, \mathbf{x}), x_i, \phi(1_i, \mathbf{x})) \\ &= \underbrace{(\phi(0_i, \mathbf{x}) \land x_i)}_{redundant} \lor (x_i \land \phi(1_i, \mathbf{x})) \lor \underbrace{(\phi(1_i, \mathbf{x}) \land \phi(0_i, \mathbf{x}))}_{=\phi(0_i, \mathbf{x})} \\ &= x_i \phi(1_i, \mathbf{x}) \amalg \phi(0_i, \mathbf{x}) \\ &= x_i \phi(1_i, \mathbf{x}) + \phi(0_i, \mathbf{x}) - x_i \underbrace{\phi(1_i, \mathbf{x})}_{redundant} \phi(0_i, \mathbf{x}) \\ &= x_i \phi(1_i, \mathbf{x}) + (1 - x_i) \phi(0_i, \mathbf{x}) \end{split}$$

Reliability function of component $i \in [n]$

$$R_i(t) = \mathsf{Pr}(T_i > t) = \mathsf{Pr}(X_i(t) = 1) = \operatorname{E}[X_i(t)]$$

= probability that component i does not fail in the interval [0, t]

System reliability function

$$R_{\mathcal{S}}(t) = \Pr(T_{\mathcal{S}} > t) = \Pr(X_{\mathcal{S}}(t) = 1) = \operatorname{E}[X_{\mathcal{S}}(t)]$$

= probability that the system does not fail in the interval [0, t]

Reliability analysis

Theorem. (Dukhovny 2007)

$$R_{S}(t) = \sum_{A \subseteq [n]} v(A) \operatorname{Pr}(\mathbf{X}(t) = \mathbf{e}_{A})$$

Remarks.

(i) All the needed information is the distribution of X(t) (the knowledge of the joint distribution of T is not necessary)
(ii) The distribution of X(t) can be easily expressed in terms of the *joint probability generating function* of X(t)

$$G(\mathbf{z},t) = \mathrm{E}\Big[\prod_{i=1}^{n} z_i^{X_i(t)}\Big] \qquad (|z_i| \leq 1).$$

We have

$$\Pr(\mathbf{X}(t) = \mathbf{e}_A) = \sum_{B \subseteq A} (-1)^{|A| - |B|} G(\mathbf{e}_B, t)$$

Reliability analysis

When T_1, \ldots, T_n are independent, we have

$$R_{\mathcal{S}}(t) = \sum_{A \subseteq [n]} v(A) \prod_{i \in A} R_i(t) \prod_{i \in [n] \setminus A} (1 - R_i(t))$$

Alternative expression (Dukhovny and M. 2008)

$$R_{\mathcal{S}}(t) = \sum_{A \subseteq [n]} m_{v}(A) \operatorname{Pr}(T_{i} > t \ \forall i \in A)$$

In case of independence

$$R_{S}(t) = \sum_{A \subseteq [n]} m_{v}(A) \prod_{i \in A} R_{i}(t)$$

Mean time-to-failure of the system

The *mean time-to-failure* of the system is defined as

 $\mathrm{MTTF}_{S} = \mathrm{E}[T_{S}]$

It is easy to show that

$$\mathrm{MTTF}_{\mathcal{S}} = \int_0^\infty R_{\mathcal{S}}(t) \, dt$$

(Rausand and Høyland 2004)

In case of independence

$$\text{MTTF}_{S} = \sum_{A \subseteq [n]} v(A) \int_{0}^{\infty} \prod_{i \in A} R_{i}(t) \prod_{i \in [n] \setminus A} (1 - R_{i}(t)) dt$$
$$\text{MTTF}_{S} = \sum_{A \subseteq [n]} m_{v}(A) \int_{0}^{\infty} \prod_{i \in A} R_{i}(t) dt$$

Mean time-to-failure of the system

Example. Assume $R_i(t) = e^{-\lambda_i t}$, i = 1, ..., n

$$\begin{array}{lll} \mathrm{MTTF}_{\mathcal{S}} &=& \displaystyle\sum_{A \subseteq [n]} m_{\nu}(A) \int_{0}^{\infty} \prod_{i \in A} e^{-\lambda_{i} t} \, dt \\ &=& \displaystyle\sum_{A \subseteq [n]} m_{\nu}(A) \int_{0}^{\infty} e^{-\lambda_{A} t} \, dt \qquad \left(\lambda_{A} = \sum_{i \in A} \lambda_{i}\right) \\ &=& \displaystyle\sum_{\substack{A \subseteq [n] \\ A \neq \emptyset}} m_{\nu}(A) \, \frac{1}{\lambda_{A}} \end{array}$$

 $\begin{array}{ll} \text{Series structure:} & \mathrm{MTTF}_{\mathcal{S}} = \frac{1}{\lambda_{[n]}} \\ \text{Parallel structure:} & \mathrm{MTTF}_{\mathcal{S}} = \sum_{\substack{A \subseteq [n] \\ A \neq \varnothing}} (-1)^{|A|-1} \, \frac{1}{\lambda_A} \end{array}$

Another advantage of the lattice polynomial language

Generalization to weighted lattice polynomial functions

Suppose there are

 (i) collective upper bounds on lifetimes of certain subsets of units (imposed by the physical properties of the assembly)

$$\begin{array}{c|c} \hline S \\ \hline T \\ \hline c \\ \hline \end{array} \quad subset lifetime = T \land c$$

(ii) collective lower bounds (imposed by back-up blocks with constant lifetimes)

subset lifetime = $T \lor c$

The lifetime of a general system with upper and/or lower bounds can be described through a weighted lattice polynomial function

$$T_S = p(T_1,\ldots,T_n)$$

Example.

Suppose that the lifetime of component #2 must lies in the time interval [c, d]

$$T_5 = T_1 \wedge \operatorname{median}(c, T_2, d)$$

= $T_1 \wedge (c \lor (T_2 \land d))$
= $(c \land T_1) \lor (d \land T_1 \land T_2)$

The class of *n*-ary weighted lattice polynomial (w.l.p.) functions is defined as follows:

- (i) For any k ∈ [n] and any c ∈ L, the projection
 (t₁,...,t_n) → t_k and the constant function (t₁,...,t_n) → c are n-ary w.l.p. function
- (ii) If p and q are n-ary w.l.p. functions then p ∧ q and p ∨ q are n-ary w.l.p. functions
- (iii) Every *n*-ary w.l.p. function is constructed by finitely many applications of the rules (i) and (ii).

Weighted lattice polynomial functions

w.l.p. function
$$\longleftrightarrow$$
 set function
 $p: L^n \to L$ $w: 2^{[n]} \to L$

$$w(A) = p(\mathbf{e}_A^{a,b}) \qquad A \subseteq [n]$$

 \rightarrow We write p_w instead of p

Representations of a w.l.p. function (Goodstein 1967)

$$p_w(\mathbf{t}) = igvee_{A\subseteq [n]} ig(w(A) \wedge igwedge_{i\in A} t_i ig)$$

Weighted lattice polynomial functions

Example (cont'd)

$$p_w(t_1, t_2) = (c \land t_1) \lor (d \land t_1 \land t_2)$$

Α	w(A)
Ø	0
$\{1\}$	с
{2}	0
$\{1,2\}$	d

We can show that

 $X_{\mathcal{S}}(t) = \left(\operatorname{Ind}(c > t) X_1(t)\right) \amalg \left(\operatorname{Ind}(d > t) X_1(t) X_2(t)\right)$

Representation of w.l.p. functions (DNF)

$$p_w(\mathbf{t}) = \bigvee_{A \subseteq [n]} w(A) \wedge \bigwedge_{i \in A} t_i$$

Theorem. (Dukhovny and M. 2008) If $T_S = p_w(T_1, ..., T_n)$ then $X_S(t) = \prod_{A \subseteq [n]} v_t(A) \prod_{i \in A} X_i(t) \qquad (t \ge 0)$ where $v_t(A) = \operatorname{Ind}(w(A) > t)$

Exact reliability formulas (Dukhovny and M. 2008)

$$R_{S}(t) = \sum_{A \subseteq [n]} v_{t}(A) \operatorname{Pr}(\mathbf{X}(t) = \mathbf{e}_{A})$$
$$R_{S}(t) = \sum_{A \subseteq [n]} m_{v_{t}}(A) \operatorname{Pr}(T_{i} > t \ \forall i \in A)$$

In case of independence

$$R_{\mathcal{S}}(t) = \sum_{A \subseteq [n]} v_t(A) \prod_{i \in A} R_i(t) \prod_{i \in [n] \setminus A} (1 - R_i(t))$$

$$R_{\mathcal{S}}(t) = \sum_{A \subseteq [n]} m_{v_t}(A) \prod_{i \in A} R_i(t)$$

Mean time-to-failure of the system

$$\begin{split} \text{MTTF}_{S} &= \int_{0}^{\infty} R_{S}(t) \, dt \\ &= \sum_{A \subseteq [n]} \int_{0}^{\infty} m_{v_{t}}(A) \prod_{i \in A} R_{i}(t) \, dt \\ &= \sum_{A \subseteq [n]} \int_{0}^{\infty} \left(\sum_{B \subseteq A} (-1)^{|A| - |B|} v_{t}(B) \right) \prod_{i \in A} R_{i}(t) \, dt \\ &= \sum_{A \subseteq [n]} \sum_{B \subseteq A} (-1)^{|A| - |B|} \int_{0}^{\infty} \text{Ind}(w(B) > t) \prod_{i \in A} R_{i}(t) \, dt \\ &= \sum_{A \subseteq [n]} \sum_{B \subseteq A} (-1)^{|A| - |B|} \int_{0}^{w(B)} \prod_{i \in A} R_{i}(t) \, dt \end{split}$$

Example. Assume $R_i(t) = e^{-\lambda_i t}$, i = 1, ..., n

$$\text{MTTF}_{S} = \sum_{A \subseteq [n]} \sum_{B \subseteq A} (-1)^{|A| - |B|} \int_{0}^{w(B)} \prod_{i \in A} e^{-\lambda_{i}t} dt$$

$$= \sum_{A \subseteq [n]} \sum_{B \subseteq A} (-1)^{|A| - |B|} \int_{0}^{w(B)} e^{-\lambda_{A}t} dt \qquad \left(\lambda_{A} = \sum_{i \in A} \lambda_{i}\right)$$

$$= w(\emptyset) + \sum_{\substack{A \subseteq [n] \\ A \neq \emptyset}} \sum_{B \subseteq A} (-1)^{|A| - |B|} \frac{1 - e^{-\lambda_{A}w(B)}}{\lambda_{A}}$$

Conclusion

We have discussed the formal parallelism between two representations of systems

- Structure functions
- Lattice polynomial functions
- \rightarrow Their languages are equivalent in many ways

Advantages

- Generalization to w.l.p. functions + exact reliability formulas
- Exact formulas for the distribution functions of w.l.p. functions of random variables

$$Y = p_w(X_1,\ldots,X_n)$$

- Several special cases can be investigated
 - Symmetric w.l.p. functions : w(A) = f(|A|)
 - The reliability of any subsystem depends only on the number of units in the subsystem Pr(X(t) = e_A) = g_t(|A|)

• • • •

Thank you for your attention !

A. Dukhovny and J.-L. Marichal, *Reliability analysis of* semicoherent systems through their lattice polynomial descriptions

arXiv : 0809.1332