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System

Definition. A system consists of several interconnected units

Assumptions:

1 The system and the units are of the crisply on/off kind

2 A serially connected segment of units is functioning if and
only if every single unit is functioning
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3 A system of parallel units is functioning if and only at least

one unit is functioning
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System

Example. Home video system

1. Blu-ray player
2. DVD player
3. LCD monitor
4. Amplifier
5. Speaker A
6. Speaker B
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Structure function

Definition.
The state of a component i ∈ [n] = {1, . . . , n} can be represented
by a Boolean variable

xi =

{
1 if component i is functioning

0 if component i is in a failed state

The state of the system is described from the component states
through a Boolean function φ : {0, 1}n → {0, 1}

φ(x1, . . . , xn) =

{
1 if the system is functioning

0 if the system is in a failed state

This function is called the structure function of the system



Structure function

Series structure

1 2 3r r
φ(x) = x1 x2 x3 =

3∏
i=1

xi

Parallel structure
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φ(x) = 1− (1− x1)(1− x2)(1− x3) =
3∐

i=1

xi



Structure function

Home video system
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φ(x) = (x1 q x2) x3 x4 (x5 q x6)



Coherent and semicoherent systems

Definition.
Let φ : {0, 1}n → {0, 1} be a structure function on [n] = {1, ..., n}.

The system is said to be semicoherent if

φ is nondecreasing : x 6 x′ ⇒ φ(x) 6 φ(x′)

φ(0) = 0, φ(1) = 1

The system is said to be coherent if, in addition

every component is relevant to φ:

∃x ∈ {0, 1}n : φ(1i , x) 6= φ(0i , x)

where
(1i , x) = (x1, . . . ,

(i)

1 , . . . , xn)

(0i , x) = (x1, . . . ,
(i)

0 , . . . , xn)



Representations of Boolean functions

Boolean function ←→ set function

φ : {0, 1}n → {0, 1} v : 2[n] → {0, 1}

v(A) = φ(eA) A ⊆ [n]

→ We write φv instead of φ

Representations of a Boolean function

φv (x) =
∑

A⊆[n]

v(A)
∏
i∈A

xi

∏
i∈[n]\A

(1− xi )



Representations of Boolean functions

Alternative representations

φv (x) =
∑

A⊆[n]

mv (A)
∏
i∈A

xi

where
mv (A) =

∑
B⊆A

(−1)|A|−|B| v(B)

If φv is nondecreasing and nonconstant:

φv (x) =
∐

A⊆[n]
v(A)=1

∏
i∈A

xi

(Hammer and Rudeanu 1968)



System and component lifetimes

Any component i ∈ [n] has a random lifetime : Ti

The system has a random lifetime : TS

The structure function induces a functional relationship between
the variables T1, . . . ,Tn and the variable TS

Example:

1 2 3r r
φ(x) = x1 x2 x3 =

3∏
i=1

xi

TS = T1 ∧ T2 ∧ T3 =
3∧

i=1

Ti



System and component lifetimes

Home video system
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φ(x) = (x1 q x2) x3 x4 (x5 q x6)

TS = (T1 ∨ T2) ∧ T3 ∧ T4 ∧ (T5 ∨ T6)

In general,
TS = p(T1, . . . ,Tn)

where p : Rn
+ → R+ is an n-ary lattice polynomial function

⇒ Formal parallelism between two representations of systems:
structure functions and lattice polynomial functions



Lattice polynomial functions

Let L ⊆ [−∞,∞] a totally ordered bounded lattice
⇒ ∧ = min and ∨ = max

The class of n-ary lattice polynomial (l.p.) functions is defined as
follows:

(i) For any k ∈ [n], the projection (t1, . . . , tn) 7→ tk is an n-ary
l.p. function

(ii) If p and q are n-ary l.p. functions then p ∧ q and p ∨ q are
n-ary l.p. functions

(iii) Every n-ary l.p. function is constructed by finitely many
applications of the rules (i) and (ii).

Example:
p(t1, t2, t3) = (t1 ∧ t2) ∨ t3



Lattice polynomial functions

Let a = inf L and b = sup L

l.p. function ←→ set function

p : Ln → L w : 2[n] → {a, b}

w(A) = p(ea,b
A ) A ⊆ [n]

Example : ea,b
{1,2} = (b, b, a, . . . , a)

→ We write pw instead of p

Representations of an l.p. function (Birkhoff 1967)

pw (t) =
∨

A⊆[n]
w(A)=b

∧
i∈A

ti



Formal parallelism between the two representations

Ti = random lifetime of component i ∈ [n]
Xi (t) = Ind(Ti > t) = random state of i at time t > 0

0 Ti

Xi (t)

tt

Failure
���

-
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Xi (t) =

{
1 if i is functioning at time t

0 if i is in a failed state at time t

For the system:
TS = system lifetime
XS(t) = Ind(TS > t) = random state of the system at time t > 0



Formal parallelism between the two representations

Home video system

pw (T) = (T1 ∨ T2) ∧ T3 ∧ T4 ∧ (T5 ∨ T6)

φv (X(t)) =
(
X1(t)q X2(t)

)
X3(t) X4(t)

(
X5(t)q X6(t)

)
φv is also an l.p. function that has just the same max-min form as

pw but applied to binary arguments

φv ←→ pw

w = γ ◦ v

γ : {0, 1} → {a, b}, γ(0) = a, γ(1) = b

As the lifetimes are [0,∞]-valued, we now assume that
a = 0 and b =∞



Formal parallelism between the two representations

Theorem. (Dukhovny and M. 2008)

Consider a system whose structure function φv : {0, 1}n → {0, 1} is
nondecreasing and nonconstant. Then we have

TS = pw (T1, . . . ,Tn) (1)

where w = γ ◦ v . Conversely, any system fulfilling (1) for some
l.p. function pw : Ln → L has the nondecreasing and nonconstant
structure function φv , where v = γ−1 ◦ w

The proof mainly lies on the immediate identities

Ind(E ∧ E ′) = Ind(E ) ∧ Ind(E ′)

Ind(E ∨ E ′) = Ind(E ) ∨ Ind(E ′)

valid for all events E and E ′



Formal parallelism between the two representations

Proof. For every t > 0 we have

φv (X(t)) =
∐

A⊆[n]
v(A)=1

∏
i∈A

Xi (t)

=
∨

A⊆[n]
v(A)=1

∧
i∈A

Ind(Ti > t) = Ind
( ∨

A⊆[n]
v(A)=1

∧
i∈A

Ti > t

)

= Ind(pw (T) > t)

Hence, we have

XS(t) = φv (X(t)) ∀t > 0

⇔ Ind(TS > t) = Ind(pw (T) > t) ∀t > 0

⇔ TS = pw (T)



Advantages of the lattice polynomial language

Properties of l.p. functions reveal properties of structure
functions

Example. Any l.p. function p : Ln → L satisfies trivially the
functional equations

p(u ∧ t1, . . . , u ∧ tn) = u ∧ p(t1, . . . , tn) ∀u ∈ L

p(u ∨ t1, . . . , u ∨ tn) = u ∨ p(t1, . . . , tn) ∀u ∈ L

The corresponding equations for the structure functions are

φ(y x1, . . . , y xn) = y φ(x1, . . . , xn) ∀y ∈ {0, 1}
φ(y q x1, . . . , y q xn) = y q φ(x1, . . . , xn) ∀y ∈ {0, 1}



Advantages of the lattice polynomial language

Properties of structure functions reveal properties of l.p.
functions

Example. Pivotal decomposition of the structure function

φ(x) = xi φ(1i , x) + (1− xi )φ(0i , x)

Bridge structure
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φ(x) = x3 φ(13, x) + (1− x3)φ(03, x)

φ(13, x) = (x1 q x2)(x4 q x5)

φ(03, x) = (x1 x4)q (x2 x5)



Advantages of the lattice polynomial language

Corresponding property of the l.p. functions ?

p(t) = median
(
p(ai , t), ti , p(bi , t)

)
where

median(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1)

Proof.

φ(x) = median
(
φ(0i , x), xi , φ(1i , x)

)
=

(
φ(0i , x) ∧ xi

)︸ ︷︷ ︸
redundant

∨
(
xi ∧ φ(1i , x)

)
∨

(
φ(1i , x) ∧ φ(0i , x)

)︸ ︷︷ ︸
=φ(0i ,x)

= xi φ(1i , x) q φ(0i , x)

= xi φ(1i , x) + φ(0i , x)− xi φ(1i , x)︸ ︷︷ ︸
redundant

φ(0i , x)

= xi φ(1i , x) + (1− xi )φ(0i , x)



Reliability analysis

Reliability function of component i ∈ [n]

Ri (t) = Pr(Ti > t) = Pr(Xi (t) = 1) = E[Xi (t)]

= probability that component i does not fail in the interval [0, t]

System reliability function

RS(t) = Pr(TS > t) = Pr(XS(t) = 1) = E[XS(t)]

= probability that the system does not fail in the interval [0, t]



Reliability analysis

Theorem. (Dukhovny 2007)

RS(t) =
∑

A⊆[n]

v(A) Pr(X(t) = eA)

Remarks.

(i) All the needed information is the distribution of X(t)
(the knowledge of the joint distribution of T is not necessary)

(ii) The distribution of X(t) can be easily expressed in terms of
the joint probability generating function of X(t)

G (z, t) = E
[ n∏

i=1

z
Xi (t)
i

]
(|zi | 6 1).

We have

Pr(X(t) = eA) =
∑
B⊆A

(−1)|A|−|B| G (eB , t)



Reliability analysis

When T1, . . . ,Tn are independent, we have

RS(t) =
∑

A⊆[n]

v(A)
∏
i∈A

Ri (t)
∏

i∈[n]\A

(1− Ri (t))

Alternative expression (Dukhovny and M. 2008)

RS(t) =
∑

A⊆[n]

mv (A) Pr(Ti > t ∀i ∈ A)

In case of independence

RS(t) =
∑

A⊆[n]

mv (A)
∏
i∈A

Ri (t)



Mean time-to-failure of the system

The mean time-to-failure of the system is defined as

MTTFS = E[TS ]

It is easy to show that

MTTFS =

∫ ∞

0
RS(t) dt

(Rausand and Høyland 2004)

In case of independence

MTTFS =
∑

A⊆[n]

v(A)

∫ ∞

0

∏
i∈A

Ri (t)
∏

i∈[n]\A

(1− Ri (t)) dt

MTTFS =
∑

A⊆[n]

mv (A)

∫ ∞

0

∏
i∈A

Ri (t) dt



Mean time-to-failure of the system

Example. Assume Ri (t) = e−λi t , i = 1, . . . , n

MTTFS =
∑

A⊆[n]

mv (A)

∫ ∞

0

∏
i∈A

e−λi t dt

=
∑

A⊆[n]

mv (A)

∫ ∞

0
e−λAt dt

(
λA =

∑
i∈A

λi

)
=

∑
A⊆[n]
A 6=∅

mv (A)
1

λA

Series structure: MTTFS =
1

λ[n]

Parallel structure: MTTFS =
∑

A⊆[n]
A 6=∅

(−1)|A|−1 1

λA



Another advantage of the lattice polynomial language

Generalization to weighted lattice polynomial functions

Suppose there are

(i) collective upper bounds on lifetimes of certain subsets of units
(imposed by the physical properties of the assembly)

Sq q
T c subset lifetime = T ∧ c

(ii) collective lower bounds (imposed by back-up blocks with
constant lifetimes)

Sq qT

c subset lifetime = T ∨ c



Another advantage of the lattice polynomial language

The lifetime of a general system with upper and/or lower bounds
can be described through a weighted lattice polynomial function

TS = p(T1, . . . ,Tn)

Example.

1 2r r
Suppose that the lifetime of component #2 must lies in the time
interval [c , d ]

TS = T1 ∧median(c ,T2, d)

= T1 ∧
(
c ∨ (T2 ∧ d)

)
= (c ∧ T1) ∨ (d ∧ T1 ∧ T2)



Weighted lattice polynomial functions

The class of n-ary weighted lattice polynomial (w.l.p.) functions is
defined as follows:

(i) For any k ∈ [n] and any c ∈ L, the projection
(t1, . . . , tn) 7→ tk and the constant function (t1, . . . , tn) 7→ c
are n-ary w.l.p. function

(ii) If p and q are n-ary w.l.p. functions then p ∧ q and p ∨ q are
n-ary w.l.p. functions

(iii) Every n-ary w.l.p. function is constructed by finitely many
applications of the rules (i) and (ii).



Weighted lattice polynomial functions

w.l.p. function ←→ set function

p : Ln → L w : 2[n] → L

w(A) = p(ea,b
A ) A ⊆ [n]

→ We write pw instead of p

Representations of a w.l.p. function (Goodstein 1967)

pw (t) =
∨

A⊆[n]

(
w(A) ∧

∧
i∈A

ti
)



Weighted lattice polynomial functions

Example (cont’d)

1 2r r
TS = (c ∧ T1) ∨ (d ∧ T1 ∧ T2)

pw (t1, t2) = (c ∧ t1) ∨ (d ∧ t1 ∧ t2)

A w(A)

∅ 0
{1} c
{2} 0
{1, 2} d

We can show that

XS(t) =
(
Ind(c > t) X1(t)

)
q

(
Ind(d > t) X1(t) X2(t)

)



Weighted lattice polynomial functions

Representation of w.l.p. functions (DNF)

pw (t) =
∨

A⊆[n]

w(A) ∧
∧
i∈A

ti

Theorem. (Dukhovny and M. 2008)

If TS = pw (T1, . . . ,Tn) then

XS(t) =
∐

A⊆[n]

vt(A)
∏
i∈A

Xi (t) (t > 0)

where vt(A) = Ind(w(A) > t)



Reliability analysis

Exact reliability formulas (Dukhovny and M. 2008)

RS(t) =
∑

A⊆[n]

vt(A) Pr(X(t) = eA)

RS(t) =
∑

A⊆[n]

mvt (A) Pr(Ti > t ∀i ∈ A)

In case of independence

RS(t) =
∑

A⊆[n]

vt(A)
∏
i∈A

Ri (t)
∏

i∈[n]\A

(1− Ri (t))

RS(t) =
∑

A⊆[n]

mvt (A)
∏
i∈A

Ri (t)



Mean time-to-failure of the system

MTTFS =

∫ ∞

0
RS(t) dt

=
∑

A⊆[n]

∫ ∞

0
mvt (A)

∏
i∈A

Ri (t) dt

=
∑

A⊆[n]

∫ ∞

0

( ∑
B⊆A

(−1)|A|−|B|vt(B)

) ∏
i∈A

Ri (t) dt

=
∑

A⊆[n]

∑
B⊆A

(−1)|A|−|B|
∫ ∞

0
Ind(w(B) > t)

∏
i∈A

Ri (t) dt

=
∑

A⊆[n]

∑
B⊆A

(−1)|A|−|B|
∫ w(B)

0

∏
i∈A

Ri (t) dt



Mean time-to-failure of the system

Example. Assume Ri (t) = e−λi t , i = 1, . . . , n

MTTFS =
∑

A⊆[n]

∑
B⊆A

(−1)|A|−|B|
∫ w(B)

0

∏
i∈A

e−λi t dt

=
∑

A⊆[n]

∑
B⊆A

(−1)|A|−|B|
∫ w(B)

0
e−λAt dt

(
λA =

∑
i∈A

λi

)
= w(∅) +

∑
A⊆[n]
A 6=∅

∑
B⊆A

(−1)|A|−|B|
1− e−λAw(B)

λA



Conclusion

We have discussed the formal parallelism between two
representations of systems

Structure functions

Lattice polynomial functions

→ Their languages are equivalent in many ways



Advantages

Generalization to w.l.p. functions + exact reliability formulas

Exact formulas for the distribution functions of w.l.p.
functions of random variables

Y = pw (X1, . . . ,Xn)

Several special cases can be investigated

Symmetric w.l.p. functions : w(A) = f (|A|)
The reliability of any subsystem depends only on the number
of units in the subsystem Pr(X(t) = eA) = gt(|A|)
· · ·



Thank you for your attention !
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