

Behavioral analysis of aggregation functions

J.-L. Marichal¹, M. Grabisch², R. Mesiar³, E. Pap⁴

¹University of Luxembourg, Luxembourg

²University of Panthéon-Sorbonne, France

³Slovak University of Technology, Slovakia

⁴University of Novi Sad, Serbia

Aggregation functions over $[0, 1]$

Definition. An *aggregation function* in $[0, 1]^n$ is a function $A : [0, 1]^n \rightarrow [0, 1]$ satisfying

- (i) nondecreasing monotonicity (in each variable)
- (ii) $A(0, \dots, 0) = 0$ and $A(1, \dots, 1) = 1$

Consider a problem that requires the use of an aggregation function

Question: Given an aggregation function A , how can we justify its use in the problem under consideration?

- Analyze the expression of A
- Examine its main properties or, better, find axiomatizations
- Explore its *behavioral properties*

Behavioral analysis of aggregation functions

→ offers a better understanding of the general behavior of A with respect to its variables

This is typically done through *indices* or *parameters*

Arithmetic mean

ID Card

$$A(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n x_i$$

Properties	Axiomatizations	Behavioral indices
Continuous	1. Continuity + ...	$\phi_i(A) = 1/n$
Symmetric	...	$AC(A) = 1$
Idempotent	2. ...	$orness(A) = 1/2$
...

→ Possibility of comparing various aggregation functions

Behavioral analysis of aggregation functions

For instance, let P be a target property (reference) for aggregation

$P = \text{"A is symmetric"}$

$P = \text{"A}(x, \dots, x) = x \ \forall x"$

$P = \text{"A}(\mathbf{x}) \leq x_k \ \forall \mathbf{x}"$

Define the degree to which A satisfies property P :

$$\theta_P(A) \in [0, 1]$$

$\theta_P(A) \approx 1$: A almost satisfies property P

$\theta_P(A) \approx 0$: A barely satisfies property P

Behavioral analysis of aggregation functions

Other indices:

- Typical value of $A(\mathbf{x})$
- Influence degree of each input variable over $A(\mathbf{x})$
- Interaction degree of each subset of variables in the computation of $A(\mathbf{x})$
- ...

Importance indices

Idea: Given an aggregation function A , what is the degree of influence of variable x_k over A ? Denote it by $\phi_k(A)$

Example: Weighted arithmetic mean

$$\text{WAM}_w(\mathbf{x}) = \sum_{i=1}^n w_i x_i$$

where $\sum_i w_i = 1$, and $w_i \geq 0$

Intuitively,

$$\phi_k(A) = w_k$$

Measure of the *contribution* of x_k in the computation of $\text{WAM}_w(\mathbf{x})$

Importance indices

... and in general?

Proposal: Assume A is differentiable

$\frac{\partial A}{\partial x_k}(\mathbf{x})$ = rate of change w.r.t. x_k of A at \mathbf{x}

⇒ Average rate of change w.r.t. x_k of A

$$\phi_k(A) = \int_{[0,1]^n} \frac{\partial A}{\partial x_k}(\mathbf{x}) d\mathbf{x}$$

Examples:

$$\phi_k(\text{WAM}_w) = w_k$$

$$\phi_k(\text{WGM}_w) = \begin{cases} \prod_{i \neq k} \frac{1}{w_i + 1} & \text{if } w_k > 0 \\ 0 & \text{if } w_k = 0 \end{cases}$$

Importance indices

Note that

$$\int_0^1 \frac{\partial A}{\partial x_k}(\mathbf{x}) dx_k = A(1_k, \mathbf{x}) - A(0_k, \mathbf{x}) = \Delta_k A(\mathbf{x})$$

where

$$\begin{aligned} (1_k, \mathbf{x}) &= (x_1, \dots, \overset{(k)}{1}, \dots, x_n) \\ (0_k, \mathbf{x}) &= (x_1, \dots, \overset{(k)}{0}, \dots, x_n) \end{aligned}$$

Therefore

$$\phi_k(A) = \int_{[0,1]^n} \frac{\partial A}{\partial x_k}(\mathbf{x}) d\mathbf{x} = \int_{[0,1]^n} \Delta_k A(\mathbf{x}) d\mathbf{x}$$

The assumption of differentiability is no longer necessary!

Importance indices

Definition.

- *Importance index of coordinate k on A*

$$\phi_k(A) = \int_{[0,1]^n} \Delta_k A(\mathbf{x}) d\mathbf{x}$$

- *Normalized importance index of coordinate k on A*

$$\bar{\phi}_k(A) = \frac{\phi_k(A)}{\sum_{i=1}^n \phi_i(A)}$$

Examples:

$$\bar{\phi}_k(\text{WAM}_{\mathbf{w}}) = w_k$$

$$\bar{\phi}_k(\text{OWA}_{\mathbf{w}}) = 1/n$$

where $\text{OWA}_{\mathbf{w}}(\mathbf{x}) = \sum_{i=1}^n w_i x_{(i)}$, with $x_{(1)} \leq \dots \leq x_{(n)}$

Importance indices

A more general case: Choquet integral $A = \mathcal{C}_\mu$

Let $[n] = \{1, \dots, n\}$

$$\mathcal{C}_\mu(\mathbf{x}) = a_\emptyset + \sum_{i \in [n]} a_{\{i\}} x_i + \sum_{\{i,j\} \subseteq [n]} a_{\{i,j\}} (x_i \wedge x_j) + \dots + a_{[n]} (x_1 \wedge \dots \wedge x_n)$$

where the set function $a : 2^{[n]} \rightarrow \mathbb{R}$ is such that \mathcal{C}_μ is an aggregation function

$$\bar{\phi}_k(\mathcal{C}_\mu) = \phi_k^\mu := \sum_{S \ni k} \frac{1}{|S|} a_S$$

(Shapley value for k associated to μ)

Importance indices

Analyzing the distribution of the influences of the input variables...

Case of WAM_w:

- If $\mathbf{w} = (w_1, \dots, w_n) = (\frac{1}{n}, \dots, \frac{1}{n})$
→ uniform contribution (evenness, regularity, dispersion)

$$H_S(\mathbf{w}) = -\frac{1}{\ln n} \sum_{i=1}^n w_i \ln w_i = 1$$

- If $\mathbf{w} = (w_1, \dots, w_n) = (0, 0, \dots, 1, \dots, 0)$
→ Dirac measure (irregularity, concentration)

$$H_S(\mathbf{w}) = -\frac{1}{\ln n} \sum_{i=1}^n w_i \ln w_i = 0$$

Importance indices

Definition. *Index of uniformity of arguments contribution*,
associated with A:

$$AC(A) = H_S(\bar{\phi}_1(A), \dots, \bar{\phi}_n(A))$$

Measure of:

- Regularity of the importances of the variables in the comput. of A
- Uniformity of the increasing monotonicity of A

Case of the Choquet integral $A = \mathcal{C}_\mu$

$$AC(\mathcal{C}_\mu) = H_S(\phi_1^\mu, \dots, \phi_n^\mu)$$

(Yager, 1999)

$$AC(\text{WAM}_\mathbf{w}) = H_S(\mathbf{w}) \qquad \qquad AC(\text{OWA}_\mathbf{w}) = 1$$

Importance indices

Generalization: What is the influence of variables $\{x_j, x_k\}$ over A?
Is it $\bar{\phi}_j(A) + \bar{\phi}_k(A)$?

Definition.

Importance index of coordinates j and k on A

$$\phi_{\{j,k\}}(A) = \int_{[0,1]^n} (A(1_{\{j,k\}}, \mathbf{x}) - A(0_{\{j,k\}}, \mathbf{x})) d\mathbf{x}$$

Examples:

$$\phi_{\{j,k\}}(\text{WAM}_w) = w_j + w_k$$

$$\phi_{\{j,k\}}(\text{OWA}_w) = \frac{1}{n-1} \sum_{i=1}^n w_i \min(i, 2, n-i+1, n-1)$$

Typical value

Suppose $\mathbf{X} = (X_1, \dots, X_n)$ is a random vector uniformly distributed over $[0, 1]^n$

Definition. *Average value of A over $[0, 1]^n$*

$$E(A(\mathbf{X})) = \bar{A} = \int_{[0,1]^n} A(\mathbf{x}) d\mathbf{x}$$

(we assume A integrable)

Examples:

$$\overline{GM} = \int_{[0,1]^n} GM(\mathbf{x}) d\mathbf{x} = \left(\frac{n}{n+1}\right)^n$$

$$\overline{Min} = \int_{[0,1]^n} Min(\mathbf{x}) d\mathbf{x} = \frac{1}{n+1}$$

$$\overline{Max} = \int_{[0,1]^n} Max(\mathbf{x}) d\mathbf{x} = \frac{n}{n+1}$$

Typical value

Suppose that A satisfies

$$\text{Min} \leq A \leq \text{Max}$$

Then

$$\overline{\text{Min}} \leq \overline{A} \leq \overline{\text{Max}}$$

Refinement: Relative position of \overline{A} within the interval $[\overline{\text{Min}}, \overline{\text{Max}}]$
→ *Global orness value* (Dujmović, 1974)

$$\text{orness}(A) = \frac{\overline{A} - \overline{\text{Min}}}{\overline{\text{Max}} - \overline{\text{Min}}} \in [0, 1]$$

Example: Geometric mean

$$\text{orness}(\text{GM}) = -\frac{1}{n-1} + \frac{n+1}{n-1} \left(\frac{n}{n+1} \right)^n$$

Typical value

Suppose that A satisfies

$$0 \leq A \leq \overline{M_{in}}$$

Then

$$0 \leq \overline{A} \leq \overline{M_{in}}$$

Refinement: Relative position of \overline{A} within the interval $[0, \overline{M_{in}}]$
→ *Global idempotency value* (Kolesárova, 2006)

$$\text{idemp}(A) = \frac{\overline{A} - 0}{\overline{M_{in}} - 0} = \frac{\overline{A}}{\overline{M_{in}}} \in [0, 1]$$

Example: Product

$$\text{idemp}(\Pi) = \frac{n+1}{2^n}$$

All these behavioral parameters can be found in...

M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap, *Aggregation functions*, Cambridge University Press, Cambridge, UK, 2009

Thank you for your attention!