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1 Introduction

Aggregation functions arise wherever aggregating information is important: applied and pure math-
ematics (probability, statistics, decision theory, functional equations), operations research, computer
science, and many applied fields (economics and finance, pattern recognition and image processing,
data fusion, etc.). For recent references, see Beliakov et al. [2] and Grabisch et al. [9].

Let I be a real interval, bounded or not. Given an aggregation function F : In→R, it is often useful
to define values or indices that offer a better understanding of the general behavior of F with respect
to its variables. These indices may constitute a kind of identity card of F and enable one to classify
the aggregation functions according to their behavioral properties.

For example, given an internal aggregation function A (“internal” means Min 6 A 6 Max, where
Min and Max are the minimum and maximum functions, respectively), it might be convenient to ap-
praise the degree to which A is conjunctive, that is, close to Min. Similarly, it might be very instructive
to know which variables, among x1, . . . ,xn, have the greatest influence on the output value A(x).

In this note, we present various indices, such as: andness and orness degrees of internal functions,
idempotency degrees of conjunctive and disjunctive functions, importance and interaction indices,
tolerance indices, and dispersion indices.

Sometimes different indices can be considered to measure the same behavior. In that case it is
often needed to choose an appropriate index according to the nature of the underlying aggregation
problem.

The material presented here is a summary of [9, Chapter 10], a forthcoming monograph on aggre-
gation functions written by the authors.

2 Expected values and distribution functions

A very informative treatment of a given function F : In → R consists in applying it to a random
input vector and examining the behavior of the output signal by computing its distribution function.
However, determining an explicit form of the distribution remains very difficult in general.

Instead, we can calculate the expected value or, more generally, the moments of the output variable
and derive indices that would provide information on the location of the output values within the range
of the function.
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3 Importance indices

When using a given aggregation function A of n variables, one may wonder which are the most
influential variables in the computation of A(x), if any. We may say that no such variable exists if A is
symmetric. In case symmetry does not hold, e.g., for weighted aggregation functions and for integral-
based ones, it is very instructive to know the level or percentage of contribution of each variable in the
computation of the result. We call this level of contribution or influential power the importance index.

For weighted aggregation functions, a naive answer to the above question is to take as importance
index simply the weight of each variable. A first simple reason to discard this idea is that the definition,
meaning and normalization of weights differ from one aggregation function to another: just consider
the weighted arithmetic mean, with weights in [0,1] summing up to 1, and the weighted maximum,
whose weights are in [0,1] with no summation condition, but whose maximum value is 1. A second
reason is that intuitively, a weight value, say 0.5, does not have the same effect in a weighted arithmetic
mean as in a weighted geometric mean.

A natural approach when I is a bounded closed interval [a,b] is to compute an average of the
marginal contribution of variable xi.

4 Interaction indices

Although the notion of importance index is useful to analyze a given aggregation function, the de-
scription it provides is still very primitive. Take for example the arithmetic mean, the minimum, and
the maximum. Since they are symmetric, they have the same importance index for all coordinates,
yet they are extremely different aggregation functions, because the minimum operator is a conjunc-
tive aggregation function, the maximum operator is disjunctive, and the arithmetic mean is neither
conjunctive nor disjunctive.

The question is how to quantify or describe the difference between these aggregation functions,
which are indistinguishable by the importance index. Since andness and orness are reserved to internal
aggregation functions, other indices have to be found.

The key of the problem lies in the interrelation between variables. The notion of importance index
is based on the variation of the aggregated value vs. the total variation of a given variable, the others
being fixed. We may consider the variation induced by the mixed variation of two variables, or more.
This is expressed by the second order (total) variation of A with respect to coordinates i and j.

5 Tolerance indices

Some internal aggregation functions are more or less intolerant (respectively, tolerant) in the sense
that they are bounded from above (respectively, below) by one of the input values or by a function of
these values.

Here, we mainly deal with internal aggregation functions having veto and/or favor coordinates as
well as k-conjunctive and k-disjunctive internal aggregation functions. Starting from the properties of
these functions, we define indices that provide degrees to which an internal aggregation function is
intolerant or tolerant.

6 Measures of arguments contribution and involvement

Given an aggregation function A, we consider in this final section the following two indices:
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1. The index of uniformity of arguments contribution, which measures the uniformity of contribution
of the n components of x ∈ In in the computation of the aggregated value A(x).

2. The index of arguments involvement, which measures the proportion of arguments among x1, . . . ,xn

that are involved in the computation of the aggregated value A(x).

References

1. J. F. Banzhaf. Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review, 19:317–343, 1965.
2. G. Beliakov, A. Pradera, and T. Calvo. Aggregation Functions: A Guide for Practitioners. Studies in Fuziness and Soft

Computing. Springer, Berlin, 2007.
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