An algorithm for producing median formulas for
Boolean functions

Miguel Couceiro*, Erkko Lehtonen*, Jean-Luc Marichal* and Tamads Waldhauser*
*Faculty of Science, Technology and Communication, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
Email: {miguel.couceiro, erkko.lehtonen, jean-luc.marichal, tamas.waldhauser} @uni.lu
TBolyai Institute, University of Szeged
Aradi vértanuk tere 1, H-6720 Szeged, Hungary
Email: twaldha@math.u-szeged.hu

Abstract—We review various normal form representations of
Boolean functions and outline a comparative study between them,
which shows that the median normal form system provides
representations that are more efficient than the classical DNF,
CNF and Reed-Muller (polynomial) normal form representa-
tions. We present an algorithm for producing median normal
form representations of Boolean functions.

I. PRELIMINARIES

Let A be an arbitrary nonempty set. An operation on A is a
map f: A" — A, for some positive integer n, called the arity
of f. Operations on B := {0, 1} are called Boolean functions.
The set of all n-ary operations is denoted by 054”) = A" and
the set of all operations on A is denoted by O 4 := J,,~, (954").
For 1 < i < n, the operation (ay,...,a,) — a; is called the
i-th n-ary projection on A, and it is denoted by xE”), or when
the arity is clear from the context, by x;. We denote the set
of all projections on A by [J4. For a subset C C O 4, we set
cm =cnol.

If fe OXL) and g1,...,9n € OfAm), then the composition

of f with g1,...,g, is the operation f(g1,...,9n) € (’)1(47”)
given by the rule
f(gla v 7gn)(a) = f(gl(a)a v 7gn(a))

for all a € A™.
Let C,D C Q4. The composition of C with D, denoted by
C oD, or simply by CD, is defined as

CoD:={f(g1,---,9n):

fe C("), Jly---yGn € D(m), n,m > 1}.

We say that f is a simple minor of g if f € {g}Ja. The
simple minor relation is a quasi-order (i.e., a reflexive and
transitive relation) on O 4. We say that f and g are equivalent,
denoted f = g, if each is a simple minor of the other. This
is commonly described as follows: f and g are equivalent if
there exists an operation that can be obtained from both f and
g by repeated addition of inessential variables and permutation
of variables. For fi,..., f, € Oa, we denote [f1,..., fn] =
{f€Os:f=fiforsomei=1,... . n}

A clone on A is a set C C O 4 that contains all projections
on A and satisfies CC C C (or equivalently, CC = C).
In the case when A is finite, the set of all clones on A
forms an algebraic lattice, where the lattice operations are the
following: meet is the intersection, join is the smallest clone
that contains the union. The greatest element is the clone O 4
of all operations on A; the least element is the clone 4 of all
projections on A. For sets A of cardinality at least 3, this lattice
is uncountable, and its structure remains a topic of current
research; see, e.g., [5], [8].

In the case when |A| = 2, the lattice of clones on A is
countably infinite, and it was completely described by E. Post
(see [12], or [14], [16], [18] for shorter recent proofs). The
clones of Boolean functions and the lattice of clones on B are
often called Post classes and the Post lattice, respectively. See
the Appendix for a list of Post classes.

The set B™ is a Boolean (distributive and complemented)
lattice of 2" elements under the componentwise ordering of
n-tuples. We will write a < b to denote comparison in this
lattice. The complement of a = (ai,...,a,) is defined as
a:=(1-ay,...,1 —a,). With no danger of ambiguity, we
denote by 0 and 1 the constant tuples (0,...,0) and (1,...,1)
of any length.

The set BB is a Boolean lattice of 22" elements under the
pointwise ordering of functions. Both B" and B®" are vector
spaces over the two-element field GF(2) = B.

For a Boolean function f, the dual of f is defined as
fd(a) = f(@) for all a. The dual of C C Op is defined
as C4 = {fd: f € C}. The dual of a clone is a clone, and it
is well known that dualization gives the only nontrivial order-
automorphism of the Post lattice.

We also denote by 0 and 1 the constant functions of any
arity having value 0 and 1, respectively, everywhere. We
denote the ternary majority function x1xs + 2123+ x2x3 by
and the ternary triple sum x; 4 z2 + x3 by 7, where addition
and multiplication are performed in GF(2).

It is well known that every Boolean function can be repre-
sented in disjunctive normal form (DNF) and in conjunctive
normal form (CNF). This fact can be restated as

Op=V.,oA,ol*=A,0oV,oI".

It is also known that M, = V.o A, = A. oV, so the previous
equalities can be written as Op = M, o I*.

It is also known that every Boolean function is represented
by a unique multilinear polynomial over GF(2), called the
Reed—Muller or Zhegalkin polynomial representation (see [1],
[11], [13], [17]). This fact can be restated as Oy = L. o
A. Allowing only constant-preserving linear functions is not
really a restriction, because O can be substituted for a variable
if necessary.

These facts led to a study of compositions of clones of
Boolean functions [2]. If C and D are clones, then either
CoD =CVDorCoD is not a clone. It is not always the case
that the composition of two clones is a clone. For example, as
one can straightforwardly verify, Iyo I* = I*U[0], and this is
not a clone. These facts were observed in [2], where all pairs
of clones of Boolean functions were classified according to
whether their composition is a clone. From this classification
it followed that every clone can be factorized into ‘“prime”
clones, and in particular the clone Op can be factorized into
minimal clones, i.e., clones that cover the least clone Jg in
the Post lattice. The latter result led to a formalization of the
notion of normal form, which subsumes the classical DNF,
CNF, Reed—Muller polynomial representations. In addition,
we have the so-called median normal form, which was shown
to provide, in a certain sense, more efficient representations
than the said classical normal form systems. Still in [2],
procedures were devised for converting DNF, CNF and Reed—
Muller representations into median representations. However,
no algorithmic approach to obtain median representations
directly was proposed in [2].

Algorithms for producing median representations of
Boolean functions have been considered in the literature; see,
e.g., [10], [15]. These are based on a set of decomposition
rules of the form

[=nlf1, f2, f3),

to be applied recursively, and at each iteration of the algorithm,
the applicable rule and the functions f1, fo, f3 are specified.

In this paper, we provide a simple algorithm to construct
a median representation of an arbitrary Boolean function
directly from its operation table. Our algorithm applies the
same decomposition rule at each iteration, namely the median
decomposition formula (6). Formula (6) holds only for mono-
tone functions; therefore our algorithm first makes a simple
preprocessing step that guarantees that (6) can be applied at
each iteration. In Section II, we recall the formalism of [2]
and some results concerning the comparison of the various
normal form systems, and the algorithm is then presented in
Section III.

II. CLASS COMPOSITION AND NORMAL FORMS

As mentioned, it was observed in [2] that the clone Op can
be represented as a composition of minimal clones. Each of the
seven minimal clones is generated by a single function (see,
e.g., [8]). We refer to the minimum arity of such a generating
function as the arity of the clone. For each of the minimal

clones, there is a unique generating function of minimum arity.
The minimal clones, their generating functions of minimum
arity, and their arities are summarized in the following table.

clone generator arity

SM I 3
L. T 3
A A 2
Ve \Y 2
I* T1 1
Iy 0 1
I 1 1

We impose two simple and natural conditions on the fac-
torization C = C; - - - C,, of a clone C into minimal clones.

Condition 1. The factors occur in descending order of arity
with no repetitions of factors.

Condition 2. For any factorization C = D; ---D,, of C into
minimal clones satisfying Condition 1, there are no integers ¢,
7, k, lwith 0 <4< j<n,0<k<Il<m, such that
Dy---Dp CCi---Ciy
Diy1---Dy CCiy1---Cy,
Diy1 Dy CCjy1---Cp.

Note that Condition 2 implies in particular that no factor
can be dropped off. We say that a factorization satisfying
Condition 1 is redundant, if it does not satisfy Condition 2.

A descending irredundant factorization of the clone C is

a factorization of C into minimal clones that satisfies Condi-
tions 1 and 2.

Theorem 1 ([2]). The descending irredundant factorizations
of Oy are exactly the following:
SMolI"oly,
L.oA.olyo Iy,
LeoVeolgol,

AcoV.oI*,

SMol*ol,
L.oA.olyoly,
L.oV.oli0ly,
V.oA.oI".

Replacing the sequence of unary clones by their compo-

sition in the eight descending irredundant factorizations of
Theorem 1, we get the following five factorizations of Op:

Op=V.oA.ol" (1)
Op=A,0V.oI* 2)
Op=L.,oA.o1 3)
Ogp=L.oV.ol 4
O = SM o Q(1) 5)

Factorizations (1)-(5) express the fact that every Boolean
function has certain normal form representations, namely (1),
(2), (3) correspond to the classical DNF, CNF and Reed-Muller
polynomial representations, respectively, whereas (4) and (5)
correspond to other, less known normal form representations.

The factorization Og = L. o V. o I relates to Og = L. o
A. oI in the same way as CNF relates to DNF. Essentially

the same as Factorization (4) is expressed by Op = LoV, =
Lg o V7. These latter factorizations express the fact that every
function can be represented as a sum of terms, where each
term is a disjunction or 1. It is not difficult to prove that
this representation is unique up to permutation and repetition
of terms and permutation and repetition of variables within
terms.

The factorization Op = SM o Q(1) expresses the fact that
every function can be expressed by repeated applications of
the ternary majority function p to variables, negated variables,
and constants.

We need to introduce some formalism to compare the
efficiency of the normal form representations arising from
these factorizations.

By a normal form system we mean a pair consisting of a
sequence of clones C; and a sequence of functions -,

((Ciy. oy Ch), (1 -

satisfying the following conditions:

e Op =C1---Cr_1Cy,

« Cj, contains only variables, negated variables, or constant

functions,

e C; is generated by v; ¢ Cr, (1 <i <k —1),
Observe that in this case, ((C{,...,Cd), (v, ...,v2 })) also
constitutes a normal form system called the dual system
and the factorization Op = C{---C{ is called the dual
factorization. Note that (1) and (3) are dual to (2) and (4),
respectively, and that (5) is self-dual.

We define an n-ary formula of a normal form sys-
tem ((Ci,...,Crk), (71,---,7k—1)) as a string over C,i") U
{71,-.,7k—1} by the following recursion:

1) The elements of C,(c”) are n-ary formulas.

2) If v; is m-ary and aq,...,a,, are n-ary formulas and
none of the a;’s starts with y; with i > j, then ;a1 - - - ap,
is an n-ary formula.

77k—1))

A formula of a normal form system is then an n-ary formula
for some n, and the length of a formula ® as a string
of symbols is denoted by |®|. Clearly every n-ary formula
represents an n-ary function, and every m-ary function is
represented by an n-ary formula.

Example 1. Consider the n-ary function Z; and a factorization
Op = C;y - - - C. If Cy, contains negated variables, as in Factor-
izations (1), (2), (5), then the function Z; can be represented
by the formula Z; of length 1. On the other hand, if one of the
clones Cy, ..., Cip_1 is generated by a negated variable, i.e., it
is the clone I*, then the function Z; can be represented by the
formula —z; of length 2, where — denotes the unary function
0+ 1, 1 — 0. Finally, @; can be represented by the formula
701z, of length 4 corresponding to Factorizations (3) and (4)
(T generates L. and 0,1, x; € I).

Factorizations (1)—(5) together with the generators V, A, T,
w for the clones V., A., L., SM will be called disjunctive,
conjunctive, polynomial, dual polynomial, and median normal

form systems, denoted D, C, P, Pd, M, respectively, and the
corresponding formulas will be called disjunctive, conjunctive,
polynomial, dual polynomial, and median formulas.

Let A be a normal form system, and denote by F)4 the
set of formulas of A. For a function f € Op, we define the
A-complexity of f, denoted C4(f), as

min{|®| : & € Fy, O represents f}.

Example 2. Let us determine the A-complexity of the ternary
majority (median) function p for the normal form systems
defined above. It is well known that
w(xy, xa,23) = (x1 Axa) V (21 Axg) V (22 A 23)
= ($1 \Y 1‘2) A\ ({)31 V LL’g) A\ (1‘2 V 1‘3)
= 2122 + T1T3 + T2x3
= (Q?l \/562) + (111 \/1‘3) + ($2 \/1'3) + 1.
From these facts it is easy derive the corresponding formulas
representing p in each of the normal form systems.
M: pxix073,
D: VV/\ZEll’Q/\I’l.Ig/\mQZ'g,
C: AAVz1zoVI123VIeTs,
P: tAx1x0 123 AT 23,
Pd. TTVX12x2VT123VIox301.
It is not difficult to see that these formulas are the shortest
possible representations of p in each of the normal form
systems. Therefore,
Cm (:u’) =4,
Cp (,u) = 10,

Cp () =11,
Opa(p) = 13.

Cc(p) =11,

For normal form systems A and B, we say that A is
polynomially as efficient as B, denoted A < B, if there is
a polynomial p with integer coefficients such that Cs(f) <
p(Cp(f)) for all f € Op. The relation < is a quasi-order
on any set of normal form systems. If neither A < B nor
B =< A holds, we say that A and B are incomparable or, to
be more descriptive, that A and B provide representations of
incomparable complexity. In the case of A < B but B £ A,
we say that A is polynomially more efficient than B, or that
A provides a representation of lower complexity than B.
Example 3. We illustrate the fact that C, D, P, P9 are
pairwise incomparable. For detailed explanations, we refer the
reader to [2].

Let n be an even positive integer, and let f,,: B" — B be
given by

(Il \ IQ) VARERIAN (Igi_l V Igi) VARERIVAN (zn—l \ In).
Then Cc(fn) < 2n and Cp(f,) > (n/2)2"/2. Thus, D £ C.
Moreover, by considering the dual functions f (n even) and
the dual systems, we conclude that C ﬁ D.

To see that D £ P, P4 and C £ P, P9, consider, for each
odd n > 1, the n-ary function

Then Cp(f,), Cpa(fn) < 2n but Cp(fn), Co(fn) > n27 L
To show that P £ D, C, P9, consider for each n > 2 the
n-ary function
fo=z1 V-V,

Then CD(fn)ch<fn)a CPd(.fn) < 2n but OP(fTL) >2" -1
Dually, it can be shown that P4 £ D, C, P.

Example 4. Let us now illustrate the fact that D, C, P, P4 £
M. For each k > 1, let n = 2k + 1, and consider the n-ary
self-dual monotone function fj, defined inductively as follows

1= p(x1, 22, x3)
fro = 1 fo—1, Tok, Tap+1) (k> 2).

Then Cm(fx) < 3k + 1, but Cp(fx), Cc(fr), Ce(fi),
Cpa(fp) > 21 — 1.

Example 5. As shown in [2], we also have M < D, C, P, P4,
To see that M < D, just observe that

a/\b::u’(07a'ab)7
aVb=pu(l,a,b).

Using these identities, one can easily convert every disjunctive
formula ® into a median formula U representing the same
function such that |¥| < 2|®|. Thus, for every f € Op, we
have that Cvi(f) < 2Cp(f); hence M < D. Dually, M < C.

In [2], a method was presented for converting a polynomial
formula ® into a median formula ¥ representing the same
function such that || < 180|®|2. Thus, for every f € Op,
we have that Ch(f) < 180(Cp(f))?; hence we also have
M < P. Dually, M < Pd.

Examples 3-5 illustrate the key points of the proof of the
following theorem.

Theorem 2 ([2]). The disjunctive, conjunctive, polynomial,
and dual polynomial normal form systems provide represen-
tations of pairwise incomparable complexities. The median
normal form system M provides representations of lower
complexity than the other four normal form systems D, C,
P, P4,

III. THE ALGORITHM

The part of the proof of Theorem 2 in [2] that showed that
M < D, C,P,P? provided algorithms for translating DNF,
CNF, Reed-Muller polynomial representations into median
formulas. However, no hints were given how to construct
median formulas directly from the operation table of a Boolean
function. In the remainder of this paper, we will describe such
an algorithm for producing median formulas directly.

A. The case of monotone functions

Let (L; A, V) be a bounded distributive lattice, and denote
the least and the greatest elements of L by 0 and 1, respec-
tively. The median function on L is the ternary operation
med: L3 — L given by the rule

med(x1, o, x3) := (1 Axa) V (1 Axg) V (22 A x3)
= (z1 Vaa) A (z1Va3)A(z2Vxs3),

for all z1, 22,23 € L. Note that when L = B, med = p.

In [3], [4], [9], it was shown that lattice polynomial func-
tions on a bounded distributive lattice (L; A, V) (i.e., members
of the clone on L generated by A, V and all constants ¢ € L)
can be axiomatized by the following property. A function
fi L™ — L is said to be median decomposable if for every
i €{1,...,n}, the following equality holds:

f(xlv"'vxn) =
med(f(:cl, ey Li—1, O, Lit1ye-- ,In), i,

f(xla" 7xn)) (6)
Theorem 3 ([3], [4], [9]). Let (L;A,V) be a bounded dis-
tributive lattice. A function f: L™ — L is a lattice polynomial
function if and only if it is median decomposable.

. axi—hlaxi-‘rla--

In the case L = B, Tohma [15] provided a similar and
somewhat more general decomposition with respect to a given
variable, under the assumption that the function is monotone
in that variable; see Theorem 1 in [15]. For monotone Boolean
functions, (6) is a particular instance of Tohma’s decomposi-
tion scheme. However, Tohma’s decomposition scheme does
not generalize as such to arbitrary bounded distributive lattices.

It is well known that every monotone Boolean function is
a lattice polynomial function on (B; A, V). Thus Theorem 3
gives rise to Algorithm 1 to construct median normal forms
of monotone functions.

Algorithm 1 MMNF - Median normal form for monotone
Boolean functions
Input: a monotone Boolean function f: B" — B
Output: a median normal form representation of f
1: if n > 2 then
a «— MMNEF(f(x1,...,2n-1,0))
ﬂ — MMNF(f(iCl, ey L1, 1))
return pox,
else if f = 0 then
return 0
else if f =1 then
return 1
else
10: return x;
11: end if

R A A S o

Remark 1. In Algorithm 1, on lines 2-3, f(z1,...,Zn—1,C)
(¢ € B) denotes the (n — 1)-ary function obtained from f
by substituting the constant ¢ for x,. The set of monotone
Boolean functions is a clone; hence f(x1,...,%n_1,¢) is
monotone whenever f is monotone. Therefore the recursive
calls on lines 2-3 are legitimate.

Remark 2. In fact, Algorithm 1, with obvious changes, can be
used to produce a median representation for any polynomial
function over an arbitrary bounded distributive lattice L.

B. The general case

To deal with the general case, when f: B" — B is
not necessarily monotone, we construct a monotone function

gf: B2" — B in such a way that f can be recovered from g ¥
by substituting negated variables for some variables. In this
way, we can apply Algorithm 1 to obtain a median normal
form representation of gy, in which we can then perform the
said substitutions of negated variables in order to obtain a
median normal form representation of f.

Let f: B® — B be an arbitrary Boolean function. Define
gr: B — B as follows: for all a := (a1,...,a2,) € B*",

let b:= (a1,...,a,), ¢ := (apt1,---,02,), and let
0 if w(a) <mn,
1 if w(a) > n,
a) = 7
gz(a) f(b) ifb—c. (7)
0 otherwise.

Here, w(a) denotes the Hamming weight of a, i.e., the number
of 1’s in a. It is easy to verify that gy is monotone. Moreover,
for all b € B", f(b) = gs(b,b); hence

f=gr(x1,.. ., 20, T1,..., Tn)-

Remark 3. Observe that we could have defined g; in any way
in the “otherwise” case, i.e., on the tuples a with w(a) = n
and b # €, and it would still have our desired properties.

This construction leads to Algorithm 2.

Algorithm 2 GENMNF - Median normal form for Boolean
functions
Input: a Boolean function f: B" — B
Output: a median normal form representation of f
1: if f is monotone then
2: return MMNF(f)

3: else

4: Construct gy as in (7).

5. w <« MMNF(gy)

6: fori=1tondo

7: Replace each occurrence of x,,; in w by ;.
8: end for

9: return w

10: end if

Example 6. In order to illustrate the use of our algorithm, let
us produce a median formula for the function f: B? — B
defined by the following operation table.

1 | T2 f($175!72)
0 0 0
0 1 1
1 0 1
1 1 0

Since f is not monotone, we first need to construct
gf: B* — B; it is the 4-ary function whose true points are
the following: 0110, 1001, 0111, 1011, 1101, 1110, 1111.

Then we apply Algorithm 1 to g;. Figure 1 presents the
parsing tree of the median formula constructed by the algo-
rithm. Each internal node and some leaves carry an extra label,

namely, gy or a function obtained from gy by substituting
constants for variables as produced by the algorithm when
making a recursive call. Finally, we substitute z; for 3 and
T3 for x4, and we obtain the following median formula for f:

w0207 102 123 1 xox 1T 1 221, (8)

IV. CONCLUDING REMARKS AND FUTURE WORK

In Section II, we saw that the median normal form system
provides representations of lower complexity than the classi-
cal disjunctive, conjunctive, polynomial and dual polynomial
systems. However, the algorithms we presented here may not
produce median formulas of the lowest possible complexity.
This fact asks for ways of simplifying median formulas, in
analogy with known resolution procedures for DNF and CNF.
For instance, using the identities

N(x7xay) =2z, ,LL(LL‘,E, y) =Y,

(8) simplifies to
ppOZTTToTo 1 x21.

In fact, (6) constitutes a simplification rule in itself. For ex-
ample, Algorithm 1 applied to each function fj, of Example 4
produces an unoptimal representation, which becomes optimal
under the simplification rule given by (6). The development
of these resolution procedures constitutes a topic of ongoing
research.

ACKNOWLEDGMENT

The fourth author acknowledges that the present project
is supported by the National Research Fund, Luxembourg,
and cofunded under the Marie Curie Actions of the European
Commission (FP7-COFUND), and supported by the Hungar-
ian National Foundation for Scientific Research under grant
no. K77409.

The authors would like to thank the anonymous reviewers
for their constructive remarks which helped improve this
manuscript.

APPENDIX — POST CLASSES

We make use of notations and terminology appearing in [6]
and [7].

e Op: the clone of all Boolean functions;

o Tj: the clone of 0-preserving functions, i.e.,

TO = {fEOBf((L,O) :0},
o T7: the clone of 1-preserving functions, i.e.,
Thn={fe0p: f(1,...,1)=1};

. TC = T() N Tl;
e M:: the clone of monotone functions, i.e.,

M ={f€Og: f(a) < f(b) whenever a < b};

. MOZMOT(), M1 :MﬁTl, MCZMQTC;
¢ S: the clone of self-dual functions, i.e.,

S={fe0p:f'=r}h

gy (w1, 22, 23,0) Ty gr (w1, 22,23, 1)
Il Il
1 B
g5(x1,22,0,0) x3 g5(x1,22,1,0) g5 (w1,22,0,1) x3 gf(w1,22,1,1)
Il Il Il Il
T T /T\ /T\
97(21,0,0,0) x> gs(x1,1,0,0) 97(71,0,1,0) x> gg(x1,1,1,0) 97(1,0,0,1) 2 gs(21,1,0,1) gr(21,0,1,1) z2 gg(21,1,1,1)
Il Il Il Il Il Il Il Il
0 0 0 1 T T T 1
Fig. 1. The parsing tree of a median formula of gy, for the f given in Example 6.
« S.=SNT,, SM =SnM, REFERENCES

L: the clone of all linear functions, i.e.,
L={feOp:f=co+crz1+ - +cpay

., cn € B}

Lo=LNTy, L =LNTy,LS=LNS,L.=LNT,.

for some n > 0 and ¢, ..

Let a € B. A set A C B" is said to be a-separating if there

is 7, 1 < i < n, such that for every (a1, ...,

an) € A we have

a; = a. A function f is said to be a-separating if f~'(a)
is a-separating. The function f is said to be a-separating of
rank k > 2 if every subset A C f~!(a) of size at most k is
a-separating.

U,,: the clone of 1-separating functions of rank m > 2;

Uso = ﬂkzg Uk;
.0, =1.n0,,, MU,, = MNU,,, M.U,, = M.NU,,
form=2,...,00;

W, the clone of 0-separating functions of rank m > 2;
Weo =i Was

TWp = T Wy, MWy, = M N Wy,, MW, =
M.NW,, form=2,...,00;

A: the clone of all conjunctions and constants, i.e.,

A=z A Axy :n>1]UI0]U[L];
AO ZAﬁTo, A1 :AﬂTl, Ac :AOTC;
V' the clone of all disjunctions and constants, i.e.,
V=[z1V---Vaz,:n>1U[0]U[1];

Vo=VNnTy, Vi=VnT, V.=VnT

Q(1): the clone of projections, negations, and constants;
I*: the clone of projections and negations;

I: the clone of projections and constants;

IO :ImTo, Il :IﬂTl;

I.: the clone of projections.

[1]

[3]
[4]

[5]

[6]
[7]
[8]
[9]
[10]
(11]

[12]

[13]

[14]

[15]

[16]

(17]

F. M. Brown, Boolean Reasoning: The Logic of Boolean Equations, 2nd
ed., Dover, Mineola, NY, 2003.

M. Couceiro, S. Foldes and E. Lehtonen, Composition of Post classes
and normal forms of Boolean functions, Discrete Math. 306 (2006)
3223-3243.

M. Couceiro and J.-L. Marichal, Polynomial functions over bounded
distributive lattices, arXiv:0901.4888.

M. Couceiro and J.-L. Marichal, Characterizations of discrete Sugeno
integrals as polynomial functions over distributive lattices, Fuzzy Sets
and Systems 161 (2010) 694-707.

K. Denecke and S. L. Wismath, Universal Algebra and Applications
in Theoretical Computer Science, Chapman & Hall/CRC, Boca Raton,
2002.

S. Foldes and G. R. Pogosyan, Post classes characterized by functional
terms, Discrete Appl. Math. 142 (2004) 35-51.

S. W. Jablonski, G. P. Gawrilow and W. B. Kudrjawzew, Boolesche
Funktionen und Postsche Klassen, Vieweg, Braunschweig, 1970.

D. Lau, Function Algebras on Finite Sets, Springer-Verlag, Berlin,
Heidelberg, 2006.

J.-L. Marichal, Weighted lattice polynomials, Discrete Math. 309 (2009)
814-820.

F. Miyata, Realization of arbitrary logical functions using majority
elements, IEEE Trans. on Electronic Computers EC-12 (1963) 183-191.
D. E. Muller, Application of Boolean algebra to switching circuit design
and to error correction, IRE Trans. Electron. Comput. 3(3) (1954) 6-12.
E. L. Post, The Two-Valued Iterative Systems of Mathematical Logic,
Annals of Mathematical Studies, vol. 5, Princeton University Press,
Princeton, 1941.

I. S. Reed, A class of multiple-error-correcting codes and the decoding
scheme, IRE Trans. Inf. Theory 4(4) (1954) 38-49.

M. Reschke and K. Denecke, Ein neuer Beweis fiir die Ergebnisse
von E. L. Post iiber abgeschlossene Klassen Boolescher Funktionen,
Elektronische Informationsverarbeitung und Kybernetik 25(7) (1989)
361-380.

Y. Tohma, Decompositions of logical functions using majority decision
elements, IEEE Trans. on Electronic Computers EC-13 (1964) 698-705.
A. B. Ugol'nikov, On closed Post classes, Izv. Vyssh. Uchebn. Zaved.
Mat. 7(314) (1988) 79-88 (in Russian); translated in Sov. Math. 32(7)
(1988) 131-142.

I. I. Zhegalkin, On the calculation of propositions in symbolic logic,
Mat. Sb. 34 (1927) 9-28 (in Russian).

[18] I. E. Zverovich, Characterizations of closed classes of Boolean functions
in terms of forbidden subfunctions and Post classes, Discrete Appl. Math.
149 (2005) 200-218.

