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Abstract— Two emergent properties in aggregation theory are in-
vestigated, namely horizontal maxitivity and comonotonic maxitivity
(as well as their dual counterparts) which are commonly defined by
means of certain functional equations. We present complete descrip-
tions of the function classes axiomatized by each of these proper-
ties, up to weak versions of monotonicity, in the cases of horizontal
maxitivity and minitivity. While studying the classes axiomatized by
combinations of these properties, we introduce the concept of quasi-
polynomial function which appears as a natural extension of the
well-established notion of polynomial function. We present further
axiomatizations for this class both in terms of functional equations
and natural relaxations of homogeneity and median decomposabil-
ity. As noteworthy particular cases, we investigate those subclasses
of quasi-term functions and quasi-weighted maximum and minimum
functions, and present characterizations accordingly.
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1 Introduction

Aggregation functions arise wherever aggregating informa-
tion is important: applied and pure mathematics (probability,
statistics, decision theory, functional equations), operations
research, computer science, and many applied fields (eco-
nomics and finance, pattern recognition and image processing,
data fusion, etc.). For recent references, see Beliakov et al. [1]
and Grabisch et al. [10].

A noteworthy aggregation function is the so-called discrete
Sugeno integral, which was introduced by Sugeno [15, 16] and
which has been widely investigated in aggregation theory, due
to its many applications for instance in fuzzy set theory, de-
cision making, and image analysis. For general background,
see also the edited book [11].

A convenient way to introduce the discrete Sugeno integral
is via the concept of (lattice) polynomial functions, i.e., func-
tions which can be expressed as combinations of variables and
constants using the lattice operations A and V. As shown by
Marichal [13], the discrete Sugeno integrals are exactly those
polynomial functions f : L™ — L which are idempotent, that
is, satisfying f(x,...,z) = x. Several axiomatizations of the
class of discrete Sugeno integrals (as idempotent polynomial
functions) have been recently given; see [4].

Of particular interest in aggregation theory, are the so-called
horizontal maxitivity and comonotonic maxitivity (as well as
their dual counterparts), usually expressed in terms of certain
functional equations, and which we now informally describe.

Let L be a bounded chain. For every x € L™ and every
¢ € L, consider the horizontal maxitive decomposition of x
obtained by “cutting” it with ¢, namely x = (x A ¢) V [X].,

where [x]. is the n-tuple whose ith component is 0, if z; <
¢, and z;, otherwise. A function f: L™ — L is said to be
horizontally maxitive if

f) = fene) Vv f([xe)

forevery x € L™ and every c € L.

A function f: L™ — L is said to be comonotonic maxitive
if, for any two vectors x and x’ in the same standard simplex
of L™, we have

flxvx) = fx) Vv ).

As we are going to see (Lemma 6 below), these (as well
as their duals) are closely related and constitute properties
shared by discrete Sugeno integrals. Still, and as it will be-
come evident, no combination of these with their dual forms
suffices to fully describe the class of Sugeno integrals. Thus,
and given their emergence in aggregation theory, it is natural
to ask which classes of functions are axiomatized by combina-
tions of these properties or, in fact, by each of these properties.

In this paper, we answer this question for both the maxi-
tive and minitive comonotonic properties, and for horizontal
maxitivity and minitivity properties, up to certain weak vari-
ants of monotonicity. While looking at combinations of the
latter properties, we reach a natural generalization of polyno-
mial functions, which we call quasi-polynomial functions and
which are best described by the following equation

f(il'l, oo 7xn) = p(QD(1'1), cee ,gD(l’n)),

where p is a polynomial function and ¢ a nondecreasing func-
tion (see Theorem 10 below). Searching for alternative de-
scriptions, we introduce weaker versions of well-established
properties, such as homogeneity and median decomposabil-
ity, to provide further axiomatizations of the class of quasi-
polynomial functions, accordingly.

This paper is organized as follows. We start by recalling
basic notions and terminology in lattice function theory, as
well as present some known results, needed throughout this
paper (Section 2). In Section 3, we study the properties of
horizontal maxitivity and comonotonic maxitivity, as well as
their dual forms, and determine those function classes axiom-
atized by each of this properties. Combinations of the latter
are then considered in Section 4.1, where the notion of quasi-
polynomial function is introduced. In Section 4.2, we propose
weaker versions of homogeneity and median decomposabil-
ity, and provide further characterizations of quasi-polynomial
functions, accordingly. In Section 5, we introduce and axiom-
atize few noteworthy subclasses of quasi-polynomial func-
tions, namely, those of quasi-term functions and those quasi-
weighted maximum and minimum functions.



2 Basic notions and preliminary results

In this section we recall basic terminology as well as some
results needed in the current paper. For general background
we refer the reader to, e.g., Burris and Sankappanavar [3] and
Rudeanu [14].

2.1 General background

Throughout this paper, let L be a bounded chain with opera-
tions A and V, and with least and greatest elements 0 and 1,
respectively. A subset S of a chain L is said to be convex if
for every a,b € S and every ¢ € L such that a < ¢ < b, we
have ¢ € S. For any subset S C L, we denote by .S the convex
hull of .S, that is, the smallest convex subset of L containing
S. For every a,b € S such that a < b, the interval [a, b] is the
set [a,b] = {c¢ € L : a < ¢ < b}. For any integer n > 1, let
[n] ={1,...,n}.

For any bounded chain L, we regard the Cartesian product
L™, n > 1, as a distributive lattice endowed with the opera-
tions A and V given by

7an)/\(b17...
,an)\/(bl,...

s bn) =
)
The elements of L are denoted by lower case letters a, b, ¢, . . .,

and the elements of L™, n > 1, by bold face letters a, b, c, . . ..
We also use 0 and 1 to denote the least element and greatest el-

(a1 /\bl,..
(a1 \/bl,..

Sy an Aby),
Sy an Vby).

(al,...

(al,...

ement, respectively, of L. Forc € Landx = (21,...,%,) €
L™, set
XAc = (z1A¢, ..., xpnAc) and xVe = (x1Vc,...,zVe).

The range of a function f: L™ — L is defined by Ry =
{f(x) : x € L™}. A function f: L™ — L is said to be non-
decreasing (in each variable) if, for every a,b € L™ such
that a < b, we have f(a) < f(b). The diagonal section
of f, denoted Jy, is defined as the unary function given by
dr(x) = f(x,...,z). Note that if f is nondecreasing, then s
is nondecreasing and Rs, = Ry = [f(0), f(1)].

2.2 Polynomial functions and their representations

In this paper the so-called polynomial functions will play a
fundamental role. Formally, an n-ary polynomial function on
L is any function f : L™ — L which can be obtained by
finitely many applications of the following rules:

(i) Foreachi € [n] and each ¢ € L, the projection x +— x;
and the constant function x — ¢ are polynomial func-
tions from L™ to L.

(ii) If f and g are polynomial functions from L™ to L, then
fVgand f A g are polynomial functions from L™ to L.

Polynomial functions are also called lattice functions
(Goodstein [9]), algebraic functions (Burris and Sankap-
panavar [3]) or weighted lattice polynomial functions
(Marichal [13]). Idempotent polynomial functions (i.e., sat-
isfying f(c,...,¢) = c for every ¢ € L) are referred to by
aggregation theorists as (discrete) Sugeno integrals, and those
obtained from projections by finitely many applications of (ii)
are usually referred to as (lattice) term functions. A notewor-
thy term function that we shall make use in the sequel is the
median function, defined by

median(z,y,z) = (x Ay) V (y A z) V(2 A z).

As observed by Goodstein [9] (see also Rudeanu [14]),
polynomial functions are exactly those functions which can
be represented by formulas in disjunctive and conjunctive nor-
mal forms. In fact, each polynomial function f: L™ — L is
uniquely determined by its restriction to {0, 1}". Due to their
relevance in the sequel, we recall some known results con-
cerning normal form representations of polynomial functions
in the special case where L is a chain. The following result is
due to Goodstein [9].

Proposition 1. (a) Every polynomial function is completely
determined by its restriction to {0, 1}".

(b) A function g:{0,1}" — L can be extended to a polyno-
mial function f: L™ — L if and only if it is nondecreas-
ing. In this case, the extension is unique.

(c) Forany f: L™ — L, the following are equivalent:

(i) f is a polynomial function.
(ii) There exists a: 2 — I such that

0=\ (a()r A\ w). 6))
1C[n] icl
(iii) There exists 3: 2" — L such that
f) =N\ BV ). 2)

IC[n] i€l

The expressions given in (1) and (2) are usually referred to
as the disjunctive normal form (DNF) representation and the
conjunctive normal form (CNF) representation, respectively,

of the polynomial function f.

Remark 1. By requiring o and 3 to be nonconstant functions
from 20"l to {0, 1} and satisfying a(2) = 0 and 3(2) = 1,
respectively, we obtain the analogue of (c) of Proposition 1
for term functions.

As observed by Marichal [13], the DNF and CNF represen-
tations of polynomial functions f: L™ — L are not necessarily
unique. For instance, we have

X1 \Y (1’1 /\SCQ) =1 =T /\(Il \/1’2).

However, from among all the possible set functions « (resp.
() defining the DNF (resp. CNF) representation of f, only one
is isotone (resp. antitone), namely the function ovy: ol — L
(resp. By: 2["l — L) defined by

ap(I)= f(er)  (resp. B¢(1) = fleppns)), ()

where e; denotes the element of {0, 1}™ whose ith component
islifandonlyifi € I.

In the case when L is a chain, it was shown in [4] that
the DNF and CNF representations of polynomial functions
f:L™ — L can be refined and given in terms of standard
simplices of L™. Let o be a permutation on [n|. The stan-
dard simplex of L™ associated with o is the subset L)) C L"
defined by

Lr={(x1,..

For each i € [n], define SI(i) = {o(i),...,0(n)} and
SL(i) = {o(1),...,0(i)}. As a matter of convenience, set
Sln+1)=5L0) = 2.

.,fﬂn) eL™ To(1) S To2) S 00 S 'To(n)}'



Proposition 2. For any function f: L™ — L, the following
conditions are equivalent:

(i) f is a polynomial function.
(ii) For any permutation o on [n] and every x € L7, we have
n+1

\/ (ar(S10) A zo),

i=1

fx) =

where Ty (n41) = 1.

(iii) For any permutation o on [n] and every x € L7, we have

n

Fx) = N (Br(SE@) A o)),

i=0
where x4y = 0.

3 Motivating characterizations

Even though horizontal maxitivity and comonotonic maxitiv-
ity, as well as their dual counterparts, play an important role in
aggregation theory (as properties shared by noteworthy classes
of aggregation functions), they have not yet been described in-
dependently. In this section we investigate each of these prop-
erties and determine their corresponding function classes (up
to weak versions of monotonicity, in the cases of horizontal
maxitivity and minitivity).

3.1 Horizontal maxitivity and minitivity

Recall that a function f: L™ — L is said to be

e horizontally maxitive if, for every x € L™ and every c €
L, we have

fx) = fxne)v £([xe),

where [x]. is the n-tuple whose ith component is 0, if
z; < ¢, and x;, otherwise.

e horizontally minitive if, for every x € L™ and every ¢ €
L, we have

f(x) = f(xVve)n (]9,

where [x]€ is the n-tuple whose ith component is 1, if
x; > ¢, and x;, otherwise.

Let us consider the following weak forms of nondecreasing
monotonicity:

(P1) flene) < f(e Ac)forevery e, e € {0,1}" such that
e< e andeveryce L.

(D1) f(eVe) < f(e V) forevery e, e € {0,1}™ such that
e< e andeveryce L.

(P2) flenc) < f(end) forevery e € {0,1}" and every
c,c’ € Lsuchthate < c.

(D2) f(eVe) < f(ev ) for every e € {0,1}" and every
c,c’ € Lsuchthatc < c.

Theorem 3. A function f: L™ — L is horizontally maxitive
and satisfies Py if and only if there exists g: L™ — L satisfy-
ing P such that

fx)= \/ g(e; A /\xz)

1C[n] i€l
In this case, we can choose g = f.
Similarly, we obtain the following dual characterization:

Theorem 4. A function f: L™ — L is horizontally minitive
and satisfies D1 if and only if there exists g: L™ — L satisfy-
ing Do such that

f(x)= /\ g<e[n]\l \ \/ Iz)
IC[n] il
In this case, we can choose g = f.
From Theorems 3 and 4 we have the following corollary.

Corollary 5. A function f: L™ — L is horizontally maxitive
(resp. horizontally minitive) and satisfies P (resp. D1) if and
only if there are unary nondecreasing functions pr: L — L,
for I C [n), such that

r® =\ (@A N i)
IC[n] iel

(resp. f(x) = /\ (ﬁf(I)\/\/goj(xi))),
I1C[n] icl

where the set function oy (resp. By) is defined in (3). In this
case, we can choose pr(x) = f(er A x) (resp. or(x) =
flempr Vv x)) forevery I C [n].

Remark 2. (i) Theorem 3 (resp. Theorem 4) provides the
description of those horizontally maxitive (resp. horizon-
tally minitive) functions which are nondecreasing.

(i) Every Boolean function f:{0,1}" — {0,1} satisfying
f(0) < f(x) (resp. f(x) < f(1)) is horizontally maxi-
tive (resp. horizontally minitive). Moreover, not all such
functions are nondecreasing, thus showing that condition
P, (resp. Dy) is necessary in Theorem 3 (resp. Theo-
rem 4).

(iii) As shown in [4], polynomial functions f:L" —

L are exactly those Rj-idempotent (i.e., satisfying

f(c,...,c) = cforevery c € R¢) which are nondecreas-

ing, horizontally maxitive, and horizontally minitive.

(iv) The concept of horizontal maxitivity was introduced, in
the case when L is the real interval [0, 1], by Benvenuti

et al. [2] as a general property of the Sugeno integral.

3.2 Comonotonic maxitivity and minitivity

Two vectors x,x’ € L™ are said to be comonotonic if there
exists a permutation o on [n] such that x, x’ € L?. A function
f: L™ — L is said to be

e comonotonic maxitive if, for any two comonotonic vec-
tors x,x’ € L™, we have

fxvx) = fx)Vv ().



e comonotonic minitive if, for any two comonotonic vec-
tors x,x’ € L™, we have

fxAX) = f(x) A f(X).

Note that for any x € L™ and any ¢ € L, the vectors
x V ¢ and [x]¢ are comonotonic. As a consequence, if a func-
tion f: L™ — L is comonotonic maxitive (resp. comonotonic
minitive), then it is horizontally maxitive (resp. horizontally
minitive). It was also observed in [4] that if f is comonotonic
maxitive or comonotonic minitive, then it is nondecreasing.
Moreover, we obtain the following result.

Lemma 6. A function f: L™ — L is comonotonic maxitive
(resp. comonotonic minitive) if and only if it is horizontally
maxitive (resp. horizontally minitive) and satisfies P1 (resp.

D.).

Combining Theorems 3 and 4 with Lemma 6, we imme-
diately obtain the descriptions of the classes of comonotonic
maxitive and comonotonic minitive functions.

Theorem 7. A function f: L™ — L is comonotonic maxitive
if and only if there exists g: L™ — L satisfying Po such that

\/ g(e;/\ /\xl)

1C[n) il

fx) =

In this case, we can choose g = f.

Theorem 8. A function f: L™ — L is comonotonic minitive
if and only if there exists g: L™ — L satisfying Do such that

fx =N\ g(e[n]\l v/ xz)
1C[n] i€l
In this case, we can choose g = f.
As before, we have the following corollary.

Corollary 9. A function f: L™ — L is comonotonic maxi-
tive (resp. comonotonic minitive) if and only if there are unary
nondecreasing functions pr: L — L, for I C [n], such that

o0 =\ (ar()A N wr(x)
IC[n] iel
(resp. f(x) = /\ (Br(I) v \/(p;(:vi))),
IC[n] iel

where the set function o (resp. By) is defined in (3). In this

case, we can choose pr(z) = f(er A x) (resp. pr(x) =
fleppr Vv x)) forevery I C [n].
Remark 3. (i) An alternative description of comonotonic

maxitive (resp. comonotonic minitive) functions was ob-
tained in Grabisch et al. [10, §2.5] in the case when L is
areal interval.

(ii) It was shown in [4] that polynomial functions f: L™ —
L are exactly those R s-idempotent functions which are
comonotonic maxitive and comonotonic minitive.

(ii) Comonotonic minitivity and maxitivity were introduced
in the context of Sugeno integrals in de Campos et al. [5].

4 Quasi-polynomial functions

Motivated by the results of Section 3 concerning horizontal
maxitivity and comonotonic maxitivity, as well as their dual
counterparts, we now study combinations of these properties.
This will lead to a relaxation of the notion of polynomial func-
tion, which we will refer to as quasi-polynomial function. Ac-
cordingly, we introduce weaker variants of well-established
properties, such as homogeneity and median decomposability,
which are then used to provide further axiomatizations of the
class of quasi-polynomial functions.

4.1 Motivation and definition

We start by looking at combinations of those properties stud-
ied in Section 3. These are considered in the following result.

Theorem 10. Let f: L™ — L be a function. The following
assertions are equivalent:

(i) f is horizontally maxitive, horizontally minitive, and sat-

isfies P1 or D1.
(ii) f is comonotonic maxitive and comonotonic minitive.
(iii) f is horizontally maxitive and comonotonic minitive.
(iv) f is comonotonic maxitive and horizontally minitive.

(v) There exist a polynomial function p: L™ — L and a non-
decreasing function p: L — L such that

f(])1, s

If these conditions hold then we can choose for p the unique
polynomial function py extending f|o,1y» and for o the diag-
onal section 05 of f.

,$n) = p(@(xl)’ R 90('7;”))

Theorem 10 motivates the following definition.

Definition 11. We say that a function f: L™ — L is a quasi-
polynomial function (resp. a discrete quasi-Sugeno integral, a
quasi-term function) if there exist a polynomial function (resp.
a discrete Sugeno integral, a term function) p: L™ — L and a
nondecreasing function ¢: L — L such that f = po ¢, that is,

flz, .. xn) = ple(zr), ..., o(xn)). )

Remark 4. (i) Note that each quasi-polynomial function
f: L™ — L can be represented as a combination of con-
stants and a nondecreasing unary function ¢ (applied to
the projections x +— ;) using the lattice operations V
and A.

(i) In the setting of decision-making under uncertainty, the
nondecreasing function ¢ in (4) can be thought of as a
utility function and the corresponding quasi-polynomial
function as a (qualitative) global preference functional,
see for instance Dubois et al. [6].

Note that the functions p and ¢ in (4) are not necessarily
unique. For instance, if f is a constant ¢ € L, then we could
choose p = c and ¢ arbitrarily, or p idempotent and ¢ = c. We
now describe all possible choices for p and . For any integers
m,n > 1, any vector x € L™, and any function f: L™ — L,
we define (x)¢ € L™ as the m-tuple

(x) = median(f(0),x, f(1)),

where the right-hand side median is taken componentwise.



Proposition 12. Let f: L™ — L be a quasi-polynomial func-
tion and let py : L™ — L be the unique polynomial function
extending f|o,1y». We have

{(p,): f=pov}={(p,¢):ps = (p)yand 55 = (p)p},

where p and @ stand for polynomial and unary nondecreasing
functions, respectively. In particular, we have f = p¢ o d.

It was shown in Marichal [13] that every polynomial func-
tion p: L™ — L can be represented as {(q), for some discrete
Sugeno integral ¢: L™ — L. Combining this with Proposi-
tion 12, we obtain the next result.

Corollary 13. The class of quasi-polynomial functions is ex-
actly the class of discrete quasi-Sugeno integrals.

4.2 Further axiomatizations

We now recall some properties of polynomial functions,
namely homogeneity and median decomposability, and we
propose weaker variants of these to provide alternative axiom-
atizations of the class of quasi-polynomial functions.

4.2.1 Quasi-homogeneity

Let S be a subset of L. A function f: L™ — L is said to be
S-max homogeneous (resp. S-min homogeneous) if for every
x € L™ and every ¢ € S, we have

fxve)=fx)ve

Although polynomial functions p: L™ — L share both of these
properties for any S C R, this is not the case for quasi-
polynomial functions. For instance, let f1, f2:[0,1] — [0, 1]
be respectively given by fi(z) = 22 and fo(x) = /7.
Clearly, f; and f5 are quasi-polynomial functions but, e.g.,
for x = ¢, we have

(resp. f(x Ac) = f(x) Ac).

filxve) < fi(x) Ve and falx Ae) > falz) Ac.

This example motivates the following relaxations. We say
that a function f: L™ — L is quasi-max homogeneous (resp.
quasi-min homogeneous) if for every x € L™ and ¢ € L, we
have

f(xVe) = f(x)Vis(c) (resp. f(x Ac) = f(x) ANdf(c)).

Observe that if f is ﬁf-idempotent (i.e., satisfying
f(c,...,c) = cforevery c € Ry¢), then R y-min homogeneity
(resp. R y-max homogeneity) is equivalent to quasi-min ho-
mogeneity (resp. quasi-max homogeneity).

Lemma 14. Let f: L™ — L be nondecreasing and quasi-
min homogeneous (resp. quasi-max homogeneous). Then f
is quasi-max homogeneous (resp. quasi-min homogeneous) if
and only if it is horizontally maxitive (resp. horizontally mini-
tive).

Combining Theorem 10 and Lemma 14, we obtain a charac-
terization of quasi-polynomial functions in terms of quasi-min
homogeneity and quasi-max homogeneity.

Theorem 15. A function f: L™ — L is a quasi-polynomial
function if and only if it is nondecreasing, quasi-max homoge-
neous, and quasi-min homogeneous.

4.2.2  Quasi-median decomposability

A function f: L™ — L is said to be median decomposable
[13] if, for every x € L™ and every k € [n], we have

f(x) = median (f(x), zx, f(x})),

where x§, = (21,...,Zk—1,C, Lht1,...,%,) forany ¢ € L.
As Marichal [13] showed, the class of polynomial functions
are exactly those functions which are median decomposable.

In complete analogy with the previous subsection we pro-
pose the following weaker variant of median decomposability.
We say that a function f: L™ — L is quasi-median decompos-
able if, for every x € L™ and every k € [n], we have

f(x) = median (f(x3), ¢ (@), f(xz))-

Note that every nondecreasing unary function is quasi-median
decomposable.

Observe that V and A, as well as any nondecreasing func-
tion ¢: L — L, are quasi-median decomposable. Also, it
is easy to see that any combination of constants and a non-
decreasing unary function ¢ using V and A is quasi-median
decomposable and hence, by Remark 4 (i), every quasi-
polynomial function is quasi-median decomposable. Our fol-
lowing result asserts that quasi-median decomposable func-
tions f: L™ — L with a nondecreasing diagonal section d¢
are exactly the quasi-polynomial functions.

Theorem 16. A function f: L™ — L is a quasi-polynomial
Sfunction if and only if 04 is nondecreasing and f is quasi-
median decomposable.

5 Some special classes of quasi-polynomial
functions

In this final section we consider few noteworthy subclasses of
quasi-polynomial functions, namely those of quasi-term func-
tions and quasi-weighted maximum and minimum functions,
and provide characterizations accordingly.
5.1 Quasi-term functions
We say that a function f: L™ — L is
e conservative if, for every x € L™, we have f(x) €
{J)l, SR ,Z‘n}.
e quasi-conservative if, for every x € L™, we have f(x) €
{6¢(z1),...,05(xn)}
Note that, if f is idempotent, then it is quasi-conservative if

and only if it is conservative.

Theorem 17. A quasi-polynomial function f: L™ — L is a
quasi-term function if and only if it is quasi-conservative.
5.2 Quasi-weighted maximum and minimum functions

A function f: L™ — L is said to be a weighted maximum
function if there are vy, v1,...,v, € L such that

f(x) =woV \/ (vi A ;).

i€[n]

&)

Similarly, f: L™ — L is said to be a weighted minimum func-
tion if there are wg, w1, . . ., w, € L such that

f(x)=wo A /\ (w; V ;).

i€[n]

(6)



We say that a function f: L™ — L is a quasi-weighted max-
imum function (resp. a quasi-weighted minimum function) if
there exist a weighted maximum function (resp. a weighted
minimum function) p: L™ — L and a nondecreasing function
@: L — Lsuchthat f =po .

To present a axiomatization of each of these classes, we
need to recall some terminology. We say that a function
f:L™ — Lis

e maxitive if, for every x,x’ € L", we have f(x V x') =

fE)V ).

e minitive if, for every x,x’ € L™, we have f(x A x') =
F(x) A f(X).

We first recall the descriptions of maxitive and minitive
functions; see Dubois and Prade [8] and Marichal [12].

Proposition 18. A function f:L"™ — L is maxitive (resp.
minitive) if and only if there are nondecreasing unary func-
tions f;: L — L (i € [n]) such that, for everyx € L",

)=\ filw)  (resp. f(x) = N filw)).
i€[n]

1€[n]

Theorem 19. Let f: L™ — L be a quasi-polynomial function.
Then f is a quasi-weighted maximum function (resp. quasi-
weighted minimum function) if and only if it is maxitive (resp.
minitive).

Remark 5. (i) Idempotent weighted maximum functions
f:L™ — L are those functions (5) for which vg = 0
and Vg v; = 1. Dually, idempotent weighted mini-
mum functions f: L™ — L are those functions (6) for
which wo = 1 and A;ep,yw; = 0. These functions were
introduced on real intervals by Dubois and Prade [7] in
fuzzy set theory.

(ii) As observed in Proposition 12, the underlying weighted
maximum function (resp. weighted minimum function)
defining a given quasi-weighted maximum function
(resp. quasi-weighted minimum function) can be chosen
to be idempotent.
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