

Characterizations of discrete Sugeno integrals as polynomial functions on chains

30th Linz Seminar on Fuzzy Set Theory

Miguel Couceiro

Joint work with Jean-Luc Marichal

University of Luxembourg

February, 2009

Preliminaries

Let L be a chain with operations \wedge and \vee , and with least and greatest elements 0 and 1, respectively. **E.g.:** $L = [0, 1] \subseteq \mathbb{R}$.

Preliminaries

Let L be a chain with operations \wedge and \vee , and with least and greatest elements 0 and 1 , respectively. **E.g.:** $L = [0, 1] \subseteq \mathbb{R}$.

A **polynomial function** (on L) is any map $f : L^n \rightarrow L$, for $n \geq 1$, obtainable by finitely many applications of the following rules:

- ➊ The projections $\mathbf{x} \mapsto x_i$, $i \in [n]$, and the constant functions $\mathbf{x} \mapsto c$, $c \in L$, are polynomial functions.
- ➋ If $f : L^n \rightarrow L$ and $g : L^n \rightarrow L$ are polynomial functions, then $f \vee g$ and $f \wedge g$ are polynomial functions.

We say that $f: L^n \rightarrow L$ is **S -idempotent**, $S \subseteq L$, if

$$f(c, \dots, c) = c \text{ for every } c \in S.$$

If $S = L$, then f is said to be **idempotent**.

We say that $f: L^n \rightarrow L$ is **S -idempotent**, $S \subseteq L$, if

$$f(c, \dots, c) = c \text{ for every } c \in S.$$

If $S = L$, then f is said to be **idempotent**.

Theorem (Marichal)

The (discrete) Sugeno integrals are exactly those polynomial functions which are idempotent.

We say that $f: L^n \rightarrow L$ is **S -idempotent**, $S \subseteq L$, if

$$f(c, \dots, c) = c \text{ for every } c \in S.$$

If $S = L$, then f is said to be **idempotent**.

Theorem (Marichal)

The (discrete) Sugeno integrals are exactly those polynomial functions which are idempotent.

Fact

Each Sugeno integral $f: L^n \rightarrow L$ is **nondecreasing**, i.e., satisfies

$$\text{for every } \mathbf{a}, \mathbf{b} \in L^n, \quad \mathbf{a} \leq \mathbf{b} \quad \Rightarrow \quad f(\mathbf{a}) \leq f(\mathbf{b}).$$

Examples of nondecreasing functions on $[0, 1] \subseteq \mathbb{R}$

- 1 $f(x_1) = (0.2 \vee x_1) \wedge 0.7.$
- 2 $\text{median}(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_2 \wedge x_3) \vee (x_3 \wedge x_1).$
- 3 $g(x_1, x_2) = x_1 \cdot x_2.$

Examples of nondecreasing functions on $[0, 1] \subseteq \mathbb{R}$

- 1 $f(x_1) = (0.2 \vee x_1) \wedge 0.7.$
- 2 $\text{median}(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_2 \wedge x_3) \vee (x_3 \wedge x_1).$
- 3 $g(x_1, x_2) = x_1 \cdot x_2.$

Problem

Characterize (discrete) Sugeno integrals on chains.

Homogeneity (Fodor and Roubens)

A function $f: L^n \rightarrow L$ is said to be

- ① **min homogenous** if, for every $\mathbf{x} \in L^n$ and $c \in L$,

$$f(\mathbf{x} \wedge c) = f(\mathbf{x}) \wedge c$$

- ② **max homogenous** if, for every $\mathbf{x} \in L^n$ and $c \in L$,

$$f(\mathbf{x} \vee c) = f(\mathbf{x}) \vee c$$

Homogeneity (Fodor and Roubens)

A function $f: L^n \rightarrow L$ is said to be

- ① **min homogenous** if, for every $\mathbf{x} \in L^n$ and $c \in L$,

$$f(\mathbf{x} \wedge c) = f(\mathbf{x}) \wedge c$$

- ② **max homogenous** if, for every $\mathbf{x} \in L^n$ and $c \in L$,

$$f(\mathbf{x} \vee c) = f(\mathbf{x}) \vee c$$

Fact

If f is min and max homogeneous, then it is idempotent.

However, note that...

Every idempotent Boolean function is min and max homog. but not all are nondecreasing, e.g.,

$$f(x_1, x_2, x_3) = (x_1 \wedge \overline{x_2} \wedge \overline{x_3}) \vee (x_1 \wedge x_2 \wedge x_3)$$

Let $L_2^n = \{\mathbf{x} \in L^n : |\{x_1, \dots, x_n\}| \leq 2\}$.

For example...

- ① $(c, c, c), (0, 1, 1), (c, d, c) \in L_2^3$ but,
- ② but $(0, 1, c), (0, d, c), (c, d, e) \notin L_2^3$.

Weak variants of homogeneity

We say that a function $f: L^n \rightarrow L$ is

- (w) **weakly min homogenous** if it is min homog. on L_2^n
- (w) **weakly max homogenous** if it is max homog. on L_2^n

Weak variants of homogeneity

We say that a function $f: L^n \rightarrow L$ is

- (w) **weakly min homogenous** if it is min homog. on L_2^n
- (w) **weakly max homogenous** if it is max homog. on L_2^n
- (b) **Boolean min homogeneous** if it is min homog. on $\{0,1\}^n$
- (b) **Boolean max homogeneous** if it is max homog. on $\{0,1\}^n$

First characterization of Sugeno integrals

Theorem (C. and Marichal)

Let $f: L^n \rightarrow L$ be a nondecreasing function. The following are equivalent:

- (i) f is a Sugeno integral.
- (ii) f is min and max homogenous.
- (iii) f is weakly min and weakly max homogenous.
- (iv) f is Boolean min and Boolean max homogenous.

Minitive and maxitive vector decompositions

For $c \in L$, define the **upper c -cut** and **lower c -cut** of $\mathbf{x} \in L^n$ by

- ❶ $[\mathbf{x}]^c$ whose i th component is 1, if $x_i \geq c$, and x_i , otherwise
- ❷ $[\mathbf{x}]_c$ whose i th component is 0, if $x_i \leq c$, and x_i , otherwise

Minitive and maxitive vector decompositions

For $c \in L$, define the **upper c -cut** and **lower c -cut** of $\mathbf{x} \in L^n$ by

- ① $[\mathbf{x}]^c$ whose i th component is 1, if $x_i \geq c$, and x_i , otherwise
- ② $[\mathbf{x}]_c$ whose i th component is 0, if $x_i \leq c$, and x_i , otherwise

Example:

Let $\mathbf{x} = (0.1, 0.4, 0.7) \in [0, 1]^3$ and $c = 0.5$. Then

- (i) $[\mathbf{x}]^c = (0.1, 0.4, 1)$
- (ii) $[\mathbf{x}]_c = (0, 0, 0.7)$

Minitive and maxitive vector decompositions

Fact

For every $\mathbf{x} \in L^n$ and $c \in L$, we have

- (i) Minitive decomposition: $\mathbf{x} = (\mathbf{x} \vee c) \wedge [\mathbf{x}]^c$
- (ii) Maxitive decomposition: $\mathbf{x} = (\mathbf{x} \wedge c) \vee [\mathbf{x}]_c$

Minitive and maxitive vector decompositions

Fact

For every $\mathbf{x} \in L^n$ and $c \in L$, we have

- (i) Minitive decomposition: $\mathbf{x} = (\mathbf{x} \vee c) \wedge [\mathbf{x}]^c$
- (ii) Maxitive decomposition: $\mathbf{x} = (\mathbf{x} \wedge c) \vee [\mathbf{x}]_c$

Example:

Let $\mathbf{x} = (0.1, 0.4, 0.7) \in [0, 1]^3$ and $c = 0.5$. Then

- (i) $(\mathbf{x} \vee c) \wedge [\mathbf{x}]^c = (0.5, 0.5, 0.7) \wedge (0.1, 0.4, 1) = \mathbf{x}$
- (ii) $(\mathbf{x} \wedge c) \vee [\mathbf{x}]_c = (0.1, 0.4, 0.5) \vee (0, 0, 0.7) = \mathbf{x}$

Horizontal minitivity and maxitivity (Benvenuti, Mesiar and Vivona)

A function $f: L^n \rightarrow L$ is said to be

- 1 horizontally minitive if for every $\mathbf{x} \in L^n$ and $c \in L$,

$$f(\mathbf{x}) = f(\mathbf{x} \vee c) \wedge f([\mathbf{x}]^c)$$

- 2 horizontally maxitive if for every $\mathbf{x} \in L^n$ and $c \in L$,

$$f(\mathbf{x}) = f(\mathbf{x} \wedge c) \vee f([\mathbf{x}]_c)$$

Horizontal minitivity and maxitivity (Benvenuti, Mesiar and Vivona)

A function $f: L^n \rightarrow L$ is said to be

- 1 horizontally minitive if for every $\mathbf{x} \in L^n$ and $c \in L$,

$$f(\mathbf{x}) = f(\mathbf{x} \vee c) \wedge f([\mathbf{x}]^c)$$

- 2 horizontally maxitive if for every $\mathbf{x} \in L^n$ and $c \in L$,

$$f(\mathbf{x}) = f(\mathbf{x} \wedge c) \vee f([\mathbf{x}]_c)$$

Note that...

There are horizontally min. and max. functions which are not

- 1 idempotent: constant functions
- 2 nondecreasing: $(x_1 \wedge \overline{x_2} \wedge \overline{x_3}) \vee (x_1 \wedge x_2 \wedge x_3)$

Weak horizontal minitivity and maxitivity

A function $f: L^n \rightarrow L$ is said to be

- ① **weakly horizontally minitive** if it is horizontally min. on L_2^n
- ② **weakly horizontally maxitive** if it is horizontally max. on L_2^n

Comonotonic vectors (Hardy)

Two vectors $\mathbf{x}, \mathbf{x}' \in L^n$ are said to be **comonotonic**, $\mathbf{x} \sim \mathbf{x}'$, if there is a permutation σ on $[n]$ such that

$$x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(n)} \quad \text{and} \quad x'_{\sigma(1)} \leq x'_{\sigma(2)} \leq \cdots \leq x'_{\sigma(n)}.$$

Comonotonic vectors (Hardy)

Two vectors $\mathbf{x}, \mathbf{x}' \in L^n$ are said to be **comonotonic**, $\mathbf{x} \sim \mathbf{x}'$, if there is a permutation σ on $[n]$ such that

$$x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(n)} \quad \text{and} \quad x'_{\sigma(1)} \leq x'_{\sigma(2)} \leq \cdots \leq x'_{\sigma(n)}.$$

Lemma (C. and Marichal)

For any $\mathbf{x} \leq \mathbf{x}'$ in L^n , there are at most $2n - 1$ vectors \mathbf{y}^i s. t.

$$\mathbf{y}^i \sim \mathbf{y}^{i+1} \quad \text{and} \quad \mathbf{x} \leq \mathbf{y}^1 \leq \cdots \leq \mathbf{y}^{2n-1} \leq \mathbf{x}'.$$

Comonotonic minitivity and maxitivity (Bolaños and Campos)

A function $f: L^n \rightarrow L$ is said to be

- ➊ **comonotonic minitive** if, for every $\mathbf{x} \sim \mathbf{x}'$, we have

$$f(\mathbf{x} \wedge \mathbf{x}') = f(\mathbf{x}) \wedge f(\mathbf{x}')$$

- ➋ **comonotonic maxitive** if, for every $\mathbf{x} \sim \mathbf{x}'$, we have

$$f(\mathbf{x} \vee \mathbf{x}') = f(\mathbf{x}) \vee f(\mathbf{x}')$$

Comonotonic minitivity and maxitivity (Bolaños and Campos)

A function $f: L^n \rightarrow L$ is said to be

- ➊ **comonotonic minitive** if, for every $\mathbf{x} \sim \mathbf{x}'$, we have

$$f(\mathbf{x} \wedge \mathbf{x}') = f(\mathbf{x}) \wedge f(\mathbf{x}')$$

- ➋ **comonotonic maxitive** if, for every $\mathbf{x} \sim \mathbf{x}'$, we have

$$f(\mathbf{x} \vee \mathbf{x}') = f(\mathbf{x}) \vee f(\mathbf{x}')$$

Proposition (C. and Marichal)

If f is comon. minitive or maxitive, then it is nondecreasing.

Comonotonic minitivity and maxitivity (Bolaños and Campos)

A function $f: L^n \rightarrow L$ is said to be

- ① **comonotonic minitive** if, for every $\mathbf{x} \sim \mathbf{x}'$, we have

$$f(\mathbf{x} \wedge \mathbf{x}') = f(\mathbf{x}) \wedge f(\mathbf{x}')$$

- ② **comonotonic maxitive** if, for every $\mathbf{x} \sim \mathbf{x}'$, we have

$$f(\mathbf{x} \vee \mathbf{x}') = f(\mathbf{x}) \vee f(\mathbf{x}')$$

Proposition (C. and Marichal)

If f is comon. minitive or maxitive, then it is nondecreasing.

However...

Constant functions are comonotonic minitive and maxitive, but not idempotent.

Second characterization of Sugeno integrals

Theorem (C. and Marichal)

Let $f: L^n \rightarrow L$ be a function. The following are equivalent:

- (i) f is a Sugeno integral.
- (ii) f is nondecreasing, idempotent, and **A** and **B**.

where: **A** is (weakly) min homogeneous, (weakly) horizontally min. or comonotonic min., and **B** is one of the dual properties.

Second characterization of Sugeno integrals

Theorem (C. and Marichal)

Let $f: L^n \rightarrow L$ be a function. The following are equivalent:

- (i) f is a Sugeno integral.
- (ii) f is nondecreasing, idempotent, and **A** and **B**.

where: **A** is (weakly) min homogeneous, (weakly) horizontally min. or comonotonic min., and **B** is one of the dual properties.

To avoid redundancy...

- 1 If **A** is comonotonic min. or **B** is comonotonic max., then remove "nondecreasing".

Second characterization of Sugeno integrals

Theorem (C. and Marichal)

Let $f: L^n \rightarrow L$ be a function. The following are equivalent:

- (i) f is a Sugeno integral.
- (ii) f is nondecreasing, idempotent, and **A** and **B**.

where: **A** is (weakly) min homogeneous, (weakly) horizontally min. or comonotonic min., and **B** is one of the dual properties.

To avoid redundancy...

- 1 If **A** is comonotonic min. or **B** is comonotonic max., then remove "nondecreasing".
- 2 If **A** is (weakly) min homog. or **B** is (weakly) max homog., then replace idempotency by $\{1\}$ - or $\{0\}$ -idempot., resp.

Median decomposability (Marichal)

For $c \in L$ and $k \in [n]$, set $\mathbf{x}_k^c = (x_1, \dots, x_{k-1}, c, x_{k+1}, \dots, x_n)$.

A function $f: L^n \rightarrow L$ is **median decomposable** if

$$f(\mathbf{x}) = \text{median}(f(\mathbf{x}_k^0), x_k, f(\mathbf{x}_k^1)), \text{ for every } \mathbf{x} \in L^n, k \in [n].$$

Median decomposability (Marichal)

For $c \in L$ and $k \in [n]$, set $\mathbf{x}_k^c = (x_1, \dots, x_{k-1}, c, x_{k+1}, \dots, x_n)$.

A function $f: L^n \rightarrow L$ is **median decomposable** if

$$f(\mathbf{x}) = \text{median}(f(\mathbf{x}_k^0), x_k, f(\mathbf{x}_k^1)), \text{ for every } \mathbf{x} \in L^n, k \in [n].$$

Theorem (Marichal)

Sugeno integrals are exactly those functions which are idempotent and median decomposable.

Weak median decomposability

Let $\overline{L_2^n} = \{\mathbf{x} \in L^n : |\{x_1, \dots, x_n\} \setminus \{0, 1\}| \leq 2\}$.

Weak median decomposability

Let $\overline{L_2^n} = \{\mathbf{x} \in L^n : |\{x_1, \dots, x_n\} \setminus \{0, 1\}| \leq 2\}$.

A function $f: L^n \rightarrow L$ is **weakly median decomposable** if

$$f(\mathbf{x}) = \text{median}(f(\mathbf{x}_k^0), x_k, f(\mathbf{x}_k^1)), \text{ for every } \mathbf{x} \in \overline{L_2^n}, k \in [n].$$

Weak median decomposability

Let $\overline{L_2^n} = \{\mathbf{x} \in L^n : |\{x_1, \dots, x_n\} \setminus \{0, 1\}| \leq 2\}$.

A function $f: L^n \rightarrow L$ is **weakly median decomposable** if

$$f(\mathbf{x}) = \text{median}(f(\mathbf{x}_k^0), x_k, f(\mathbf{x}_k^1)), \text{ for every } \mathbf{x} \in \overline{L_2^n}, k \in [n].$$

There are functions which are...

- 1 median decomposable on $\overline{L_2^n}$ but not nondecreasing.

Weak median decomposability

Let $\overline{L_2^n} = \{\mathbf{x} \in L^n : |\{x_1, \dots, x_n\} \setminus \{0, 1\}| \leq 2\}$.

A function $f: L^n \rightarrow L$ is **weakly median decomposable** if

$$f(\mathbf{x}) = \text{median}(f(\mathbf{x}_k^0), x_k, f(\mathbf{x}_k^1)), \text{ for every } \mathbf{x} \in \overline{L_2^n}, k \in [n].$$

There are functions which are...

- ① median decomposable on $\overline{L_2^n}$ but not nondecreasing.
- ② nondecreasing and median decomposable on L_2^n and which are not Sugeno integrals.

Third characterization of Sugeno integrals

Theorem (C. and Marichal)

Let $f: L^n \rightarrow L$ be a function. The following are equivalent:

- (i) f is a Sugeno integral.
- (ii) f is $\{0, 1\}$ -idempotent and median decomposable.
- (iii) f is nondecreasing, $\{0, 1\}$ -idempotent and weakly median decomposable.

Strong idempotency and componentwise range convexity

A function $f: L^n \rightarrow L$ is **strongly idempotent** if

$$f(x_1, \dots, x_{k-1}, f(\mathbf{x}), x_{k+1}, \dots, x_n) = f(\mathbf{x}), \text{ for every } \mathbf{x} \in L^n, k \in [n].$$

Strong idempotency and componentwise range convexity

A function $f: L^n \rightarrow L$ is **strongly idempotent** if

$$f(x_1, \dots, x_{k-1}, f(\mathbf{x}), x_{k+1}, \dots, x_n) = f(\mathbf{x}), \text{ for every } \mathbf{x} \in L^n, k \in [n].$$

A function $f: L^n \rightarrow L$ has a **componentwise convex range** if, for every $\mathbf{a} = (a_1, \dots, a_n) \in L^n$ and $k \in [n]$, the map

$$x \mapsto f(a_1, \dots, a_{k-1}, x, a_{k+1}, \dots, a_n)$$

has a convex range.

Fourth characterization of Sugeno integrals

Theorem (C. and Marichal)

Let $f: L^n \rightarrow L$ be a function. The following are equivalent:

- (i) f is a Sugeno integral.
- (ii) f is nondecreasing, $\{0, 1\}$ -idempotent, strongly idempotent and has a componentwise convex range.

Fourth characterization of Sugeno integrals

Theorem (C. and Marichal)

Let $f: L^n \rightarrow L$ be a function. The following are equivalent:

- (i) f is a Sugeno integral.
- (ii) f is nondecreasing, $\{0, 1\}$ -idempotent, strongly idempotent and has a componentwise convex range.

Observe that...

In the case $L = [a, b] \subseteq \mathbb{R}$, componentwise range convexity can be replaced by continuity.

Thank you for your attention!

Results appearing in <http://arxiv.org/abs/0811.0309>