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1 Introduction

We are interested in the so-called discrete Sugeno integral, which was introduced by
Sugeno [9, 10] and widely investigated in aggregation theory, due to the many appli-
cations in fuzzy set theory, data fusion, decision making, pattern recognition, image
analysis, etc. For general background, see [1, 6] and for a recent reference, see [5].

A convenient way to introduce the discrete Sugeno integral is via the concept of
(lattice) polynomial functions, i.e., functions which can be expressed as combinations
of variables and constants using the lattice operations ∧ and ∨. More precisely, given a
bounded chain L, by an n-ary polynomial function we simply mean a function f : Ln →
L defined recursively as follows:

(i) For each i ∈ [n] = {1, . . . ,n} and each c ∈ L, the projection x 7→ xi and the constant
function x 7→ c are polynomial functions from Ln to L.

(ii) If f and g are polynomial functions from Ln to L, then f ∨g and f ∧g are polynomial
functions from Ln to L.

(iii) Any polynomial function from Ln to L is obtained by finitely many applications of
the rules (i) and (ii).

As shown by Marichal [7], the discrete Sugeno integrals are exactly those polyno-
mial functions f : Ln → L which are idempotent, that is, satisfying f (x, . . . ,x) = x.

In this paper, we are interested in defining this particular class of lattice polynomial
functions by means of properties which appear naturally in aggregation theory. We start
in §2 by introducing the basic notions needed in this paper and presenting general char-
acterizations of lattice polynomial functions as obtained in Couceiro and Marichal [2,
3]. In §3, we particularize these characterizations to axiomatize the subclass of discrete
Sugeno integrals.



2 Characterizations of polynomial functions

Let L be a bounded chain and let S be a nonempty subset of L. A function f : Ln → L is
said to be

– S-idempotent if for every c ∈ S, f (c, . . . ,c) = c.
– S-min homogenous if f (x∧ c) = f (x)∧ c for all x ∈ Ln and c ∈ S.
– S-max homogenous if f (x∨ c) = f (x)∨ c for all x ∈ Ln and c ∈ S.
– horizontally S-minitive if f (x) = f (x∨ c)∧ f ([x]c) for all x ∈ Ln and c ∈ S, where

[x]c is the n-tuple whose ith component is 1, if xi > c, and xi, otherwise.
– horizontally S-maxitive if f (x) = f (x∧ c)∨ f ([x]c) for all x ∈ Ln and c ∈ S, where

[x]c is the n-tuple whose ith component is 0, if xi 6 c, and xi, otherwise.
– median decomposable if f (x) = median

(
f (x0

k),xk, f (x1
k)

)
for all x∈ Ln and k ∈ [n],

where xc
k = (x1, . . . ,xk−1,c,xk+1, . . . ,xn) for all c ∈ L.

– strongly idempotent if f (x1, . . . ,xk−1, f (x),xk+1, . . . ,xn) = f (x) for all x ∈ Ln and
k ∈ [n].

Two vectors x and x′ in Ln are said to be comonotonic, denoted x ∼ x′, if (xi −
x j)(x′i− x′j) > 0 for every i, j ∈ [n]. A function f : Ln → L is said to be

– comonotonic minitive if f (x∧x′) = f (x)∧ f (x′) whenever x∼ x′.
– comonotonic maxitive if f (x∨x′) = f (x)∨ f (x′) whenever x∼ x′.

For integers 0 6 p 6 q 6 n, define

L(p,q)
n = {x ∈ Ln : |{x1, . . . ,xn}∩{0,1}|> p and |{x1, . . . ,xn}|6 q}.

For instance, (c,d,c) ∈ L(0,2)
n , (0,c,d),(1,c,d) ∈ L(1,3)

n , but (0,1,c,d) /∈ L(0,2)
n ∪L(1,3)

n .
Let S be a nonempty subset of L. We say that a function f : Ln → L is

– weakly S-min homogenous if f (x∧ c) = f (x)∧ c for all x ∈ L(0,2)
n and c ∈ S.

– weakly S-max homogenous if f (x∨ c) = f (x)∨ c for all x ∈ L(0,2)
n and c ∈ S.

– weakly horizontally S-minitive if f (x) = f (x∨ c)∧ f ([x]c) for all x ∈ L(0,2)
n and

c∈ S, where [x]c is the n-tuple whose ith component is 1, if xi > c, and xi, otherwise.
– weakly horizontally S-maxitive if f (x) = f (x∧ c)∨ f ([x]c) for all x ∈ L(0,2)

n and
c∈ S, where [x]c is the n-tuple whose ith component is 0, if xi 6 c, and xi, otherwise.

– weakly median decomposable if f (x)= median
(

f (x0
k),xk, f (x1

k)
)

for all x∈L(0,2)
n ∪

L(1,3)
n and k ∈ [n].

A subset S of a lattice L is said to be convex if for every a,b ∈ S and every c ∈ L
such that a 6 c 6 b, we have c ∈ S. For any subset S ⊆ L, we denote by S the convex
hull of S, that is, the smallest convex subset of L containing S. The range of a function
f : Ln → L is defined by R f = { f (x) : x ∈ Ln}.

A function f : Ln → L is said to be nondecreasing (in each variable) if, for every
a,b ∈ Ln such that a 6 b, we have f (a) 6 f (b). Note that if f is nondecreasing, then
R f = [ f (0), f (1)]. We say that a function f : Ln → L has a componentwise convex range
if, for every a ∈ Ln and k ∈ [n], the function x 7→ f k

a (x) = f (a1, . . . ,ak−1,x,ak+1, . . . ,an)
has a convex range.



Theorem 1. Let f : Ln → L be a function. The following conditions are equivalent:

(i) f is a polynomial function.
(ii) f is median decomposable.

(ii-w) f is nondecreasing and weakly median decomposable.
(iii) f is nondecreasing, strongly idempotent, has a componentwise convex range.
(iv) f is nondecreasing, R f -min homogeneous, and R f -max homogeneous.

(iv-w) f is nondecreasing, weakly R f -min homogeneous, and weakly R f -max homoge-
neous.

(v) f is nondecreasing, R f -min homogeneous, and horizontally R f -maxitive.
(v-w) f is nondecreasing, weakly R f -min homogeneous, and weakly horizontally R f -

maxitive.
(vi) f is nondecreasing, horizontally R f -minitive, and R f -max homogeneous.

(vi-w) f is nondecreasing, weakly horizontally R f -minitive, and weakly R f -max homo-
geneous.

(vii) f is nondecreasing, R f -idempotent, horizontally R f -minitive, and horizontally
R f -maxitive.

(vii-w) f is nondecreasing, R f -idempotent, weakly horizontally R f -minitive, and weakly
horizontally R f -maxitive.

(viii) f is R f -min homogeneous and comonotonic maxitive.
(viii-w) f is weakly R f -min homogeneous and comonotonic maxitive.

(ix) f is comonotonic minitive and R f -max homogeneous.
(ix-w) f is comonotonic minitive and weakly R f -max homogeneous.

(x) f is R f -idempotent, horizontally R f -minitive, and comonotonic maxitive.
(x-w) f is R f -idempotent, weakly horizontally R f -minitive, and comonotonic maxitive.

(xi) f is R f -idempotent, comonotonic minitive, and horizontally R f -maxitive.
(xi-w) f is R f -idempotent, comonotonic minitive, and weakly horizontally R f -maxitive.

(xii) f is R f -idempotent, comonotonic minitive, and comonotonic maxitive.

Remark 1. In the special case when L is a bounded real interval [a,b], by requiring
continuity in each of the conditions of Theorem 1, we can replace R f with R f and
remove componentwise convexity in (iii) of Theorem 1.

3 Characterizations of discrete Sugeno integrals

Recall that discrete Sugeno integrals are exactly those lattice polynomial functions
which are idempotent. In fact, {0,1}-idempotency suffices to completely characterize
this subclass of polynomial functions.

We say that a function f : Ln → L is

– Boolean min homogeneous if f (x∧ c) = f (x)∧ c for all x ∈ {0,1}n and c ∈ L.
– Boolean max homogeneous if f (x∨ c) = f (x)∨ c for all x ∈ {0,1}n and c ∈ L.

Theorem 2. Let f : Ln → L be a function. The following conditions are equivalent:



(i) f is a discrete Sugeno integral.
(ii) f is {0,1}-idempotent and median decomposable.

(ii-w) f is nondecreasing, {0,1}-idempotent, and weakly median decomposable.
(iii) f is nondecreasing, {0,1}-idempotent, strongly idempotent, has a componentwise

convex range.
(iv) f is nondecreasing, Boolean min homogeneous, and Boolean max homogeneous.
(v) f is nondecreasing, {1}-idempotent, L-min homogeneous, and horizontally L-maxitive.

(v-w) f is nondecreasing, {1}-idempotent, weakly L-min homogeneous, and weakly hor-
izontally L-maxitive.

(vi) f is nondecreasing, {0}-idempotent, horizontally L-minitive, and L-max homoge-
neous.

(vi-w) f is nondecreasing, {0}-idempotent, weakly horizontally L-minitive, and weakly
L-max homogeneous.

(vii) f is nondecreasing, L-idempotent, horizontally L-minitive, and horizontally L-maxitive.
(vii-w) f is nondecreasing, L-idempotent, weakly horizontally L-minitive, and weakly hor-

izontally L-maxitive.
(viii) f is {1}-idempotent, L-min homogeneous, and comonotonic maxitive.

(viii-w) f is {1}-idempotent, weakly L-min homogeneous, and comonotonic maxitive.
(ix) f is {0}-idempotent, comonotonic minitive, and L-max homogeneous.

(ix-w) f is {0}-idempotent, comonotonic minitive, and weakly L-max homogeneous.
(x) f is L-idempotent, horizontally L-minitive, and comonotonic maxitive.

(x-w) f is L-idempotent, weakly horizontally L-minitive, and comonotonic maxitive.
(xi) f is L-idempotent, comonotonic minitive, and horizontally L-maxitive.

(xi-w) f is L-idempotent, comonotonic minitive, and weakly horizontally L-maxitive.
(xii) f is L-idempotent, comonotonic minitive, and comonotonic maxitive.

Remark 2. (i) As in Remark 1, when L is a bounded real interval [a,b], componentwise
convexity can be replaced with continuity in (iii) of Theorem 2.

(ii) The characterizations given in (iv) and (xii) of Theorem 2 were previously estab-
lished, in the case of real variables, by Marichal [8, §4.3]. The one given in (viii)
was established, also in the case of real variables, by de Campos and Bolaños [4]
with the redundant assumption of nondecreasing monotonicity.
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