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Summary

Two emergent properties in aggregation the-
ory are investigated, namely horizontal max-
itivity and comonotonic maxitivity (as well
as their dual counterparts) which are com-
monly defined by means of certain functional
equations. We present complete descriptions
of the function classes axiomatized by each
of these properties, up to weak versions of
monotonicity, in the cases of horizontal max-
itivity and minitivity. While studying the
classes axiomatized by combinations of these
properties, we introduce the concept of quasi-
polynomial function which appears as a natu-
ral extension of the well-established notion of
polynomial function. We present further ax-
iomatizations for this class both in terms of
functional equations and natural relaxations
of homogeneity and median decomposability.

Keywords: Aggregation function, discrete
Sugeno integral, polynomial function, quasi-
polynomial function, horizontal maxitivity
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1 INTRODUCTION

Aggregation functions arise wherever aggregating in-
formation is important: applied and pure mathemat-
ics (probability, statistics, decision theory, functional
equations), operations research, computer science, and
many applied fields (economics and finance, pattern
recognition and image processing, data fusion, etc.).
For recent references, see Beliakov et al. [1] and Gra-
bisch et al. [8].

A noteworthy aggregation function is the so-called

discrete Sugeno integral, which was introduced by
Sugeno [12, 13] and which has been widely investi-
gated in aggregation theory, due to its many applica-
tions for instance in fuzzy set theory, decision making,
and image analysis. For general background, see also
the edited book [9].

A convenient way to introduce the discrete Sugeno in-
tegral is via the concept of (lattice) polynomial func-
tions, i.e., functions which can be expressed as com-
binations of variables and constants using the lattice
operations ∧ and ∨. As shown by Marichal [10], the
discrete Sugeno integrals are exactly those polynomial
functions f : Ln → L which are idempotent, that is,
satisfying f(x, . . . , x) = x. Several axiomatizations of
the class of discrete Sugeno integrals (as idempotent
polynomial functions) have been recently given; see
[4].

Of particular interest in aggregation theory, are the
so-called horizontal maxitivity and comonotonic max-
itivity (as well as their dual counterparts), usually ex-
pressed in terms of certain functional equations, and
which we now informally describe.

Let L be a bounded chain. For every x ∈ Ln and every
c ∈ L, consider the horizontal maxitive decomposition
of x obtained by “cutting” it with c, namely x = (x∧
c)∨[x]c, where [x]c is the n-tuple whose ith component
is 0, if xi 6 c, and xi, otherwise. A function f :Ln → L
is said to be horizontally maxitive if

f(x) = f(x ∧ c) ∨ f([x]c)

for every x ∈ Ln and every c ∈ L.

A function f :Ln → L is said to be comonotonic max-
itive if, for any two vectors x and x′ in the same stan-
dard simplex of Ln, we have

f(x ∨ x′) = f(x) ∨ f(x′).

As we are going to see (Lemma 6 below), these (as
well as their duals) are closely related and constitute



properties shared by discrete Sugeno integrals. Still,
and as it will become evident, no combination of these
with their dual forms suffices to fully describe the class
of Sugeno integrals. Thus, and given their emergence
in aggregation theory, it is natural to ask which classes
of functions are axiomatized by combinations of these
properties or, in fact, by each of these properties.

In this paper, we answer this question for both the
maxitive and minitive comonotonic properties, and for
horizontal maxitivity and minitivity properties, up to
certain weak variants of monotonicity. While looking
at combinations of the latter properties, we reach a
natural generalization of polynomial functions, which
we call quasi-polynomial functions and which are best
described by the following equation

f(x1, . . . , xn) = p(ϕ(x1), . . . , ϕ(xn)),

where p is a polynomial function and ϕ a nondecreas-
ing function (see Theorem 10 below). Searching for al-
ternative descriptions, we introduce weaker versions of
well-established properties, such as homogeneity and
median decomposability, to provide further axiomati-
zations of the class of quasi-polynomial functions, ac-
cordingly.

This paper is organized as follows. We start by re-
calling basic notions and terminology in lattice func-
tion theory, as well as present some known results,
needed throughout this paper (Section 2). In Section
3, we study the properties of horizontal maxitivity and
comonotonic maxitivity, as well as their dual forms,
and determine those function classes axiomatized by
each of this properties. Combinations of the latter
are then considered in Section 4.1, where the notion
of quasi-polynomial function is introduced. In Section
4.2, we propose weaker versions of homogeneity and
median decomposability, and provide further charac-
terizations of quasi-polynomial functions, accordingly.

2 BASIC NOTIONS AND
PRELIMINARY RESULTS

In this section we recall basic terminology as well as
some results needed in the current paper. For general
background we refer the reader to, e.g., Burris and
Sankappanavar [3] and Rudeanu [11].

2.1 GENERAL BACKGROUND

Throughout this paper, let L be a bounded chain with
operations ∧ and ∨, and with least and greatest ele-
ments 0 and 1, respectively. A subset S of a chain L
is said to be convex if for every a, b ∈ S and every
c ∈ L such that a 6 c 6 b, we have c ∈ S. For any
subset S ⊆ L, we denote by S the convex hull of S,

that is, the smallest convex subset of L containing S.
For every a, b ∈ S such that a 6 b, the interval [a, b]
is the set [a, b] = {c ∈ L : a 6 c 6 b}. For any integer
n > 1, let [n] = {1, . . . , n}.

For any bounded chain L, we regard the Cartesian
product Ln, n > 1, as a distributive lattice endowed
with the operations ∧ and ∨ given by

(a1, . . . , an) ∧ (b1, . . . , bn) = (a1 ∧ b1, . . . , an ∧ bn),
(a1, . . . , an) ∨ (b1, . . . , bn) = (a1 ∨ b1, . . . , an ∨ bn).

The elements of L are denoted by lower case letters
a, b, c, . . ., and the elements of Ln, n > 1, by bold face
letters a,b, c, . . .. We also use 0 and 1 to denote the
least element and greatest element, respectively, of Ln.
For c ∈ L and x = (x1, . . . , xn) ∈ Ln, set

x ∧ c = (x1 ∧ c, . . . , xn ∧ c),
x ∨ c = (x1 ∨ c, . . . , xn ∨ c).

The range of a function f :Ln → L is defined by
Rf = {f(x) : x ∈ Ln}. A function f :Ln → L is
said to be nondecreasing (in each variable) if, for ev-
ery a,b ∈ Ln such that a 6 b, we have f(a) 6 f(b).
The diagonal section of f , denoted δf , is defined as
the unary function given by δf (x) = f(x, . . . , x). Note
that if f is nondecreasing, then δf is nondecreasing
and Rδf

= Rf = [f(0), f(1)].

2.2 POLYNOMIAL FUNCTIONS AND
THEIR REPRESENTATIONS

In this paper the so-called polynomial functions will
play a fundamental role. Formally, an n-ary polyno-
mial function on L is any function f : Ln → L which
can be obtained by finitely many applications of the
following rules:

(i) For each i ∈ [n] and each c ∈ L, the projection
x 7→ xi and the constant function x 7→ c are poly-
nomial functions from Ln to L.

(ii) If f and g are polynomial functions from Ln to
L, then f ∨ g and f ∧ g are polynomial functions
from Ln to L.

Polynomial functions are also called lattice func-
tions (Goodstein [7]), algebraic functions (Burris and
Sankappanavar [3]) or weighted lattice polynomial
functions (Marichal [10]). Idempotent polynomial
functions (i.e., satisfying f(c, . . . , c) = c for every
c ∈ L) are referred to by aggregation theorists as (dis-
crete) Sugeno integrals.

As observed by Goodstein [7] (see also Rudeanu [11]),
polynomial functions are exactly those functions which



can be represented by formulas in disjunctive and con-
junctive normal forms. In fact, each polynomial func-
tion f :Ln → L is uniquely determined by its restric-
tion to {0, 1}n. Due to their relevance in the sequel,
we recall some known results concerning normal form
representations of polynomial functions in the special
case where L is a chain. The following result is due to
Goodstein [7].
Proposition 1. (a) Every polynomial function is

completely determined by its restriction to {0, 1}n.

(b) A function g: {0, 1}n → L can be extended to a
polynomial function f :Ln → L if and only if it
is nondecreasing. In this case, the extension is
unique.

(c) For any f :Ln → L, the following are equivalent:

(i) f is a polynomial function.
(ii) There exists α: 2[n] → L such that

f(x) =
∨
I⊆[n]

(
α(I) ∧

∧
i∈I

xi
)
. (1)

(iii) There exists β: 2[n] → L such that

f(x) =
∧
I⊆[n]

(
β(I) ∨

∨
i∈I

xi
)
. (2)

The expressions given in (1) and (2) are usually re-
ferred to as the disjunctive normal form (DNF) rep-
resentation and the conjunctive normal form (CNF)
representation, respectively, of the polynomial func-
tion f .

As observed by Marichal [10], the DNF and CNF rep-
resentations of polynomial functions f :Ln → L are
not necessarily unique. However, from among all the
possible set functions α (resp. β) defining the DNF
(resp. CNF) representation of f , only one is isotone
(resp. antitone), namely the function αf : 2[n] → L
(resp. βf : 2[n] → L) defined by

αf (I) = f(eI) (resp. βf (I) = f(e[n]\I)), (3)

where eI denotes the element of {0, 1}n whose ith com-
ponent is 1 if and only if i ∈ I.

In the case when L is a chain, it was shown in [4]
that the DNF and CNF representations of polynomial
functions f :Ln → L can be refined and given in terms
of standard simplices of Ln. Let σ be a permutation
on [n]. The standard simplex of Ln associated with σ
is the subset Lnσ ⊂ Ln defined by

Lnσ = {x = (x1, . . . , xn) ∈ Ln:xσ(1) 6 · · · 6 xσ(n)}.

For each i ∈ [n], define S↑σ(i) = {σ(i), . . . , σ(n)} and
S↓σ(i) = {σ(1), . . . , σ(i)}. As a matter of convenience,
set S↑σ(n+ 1) = S↓σ(0) = ∅.

Proposition 2. For any function f :Ln → L, the fol-
lowing conditions are equivalent:

(i) f is a polynomial function.

(ii) For any permutation σ on [n] and every x ∈ Lnσ,

f(x) =
n+1∨
i=1

(
αf (S↑σ(i)) ∧ xσ(i)

)
,

where xσ(n+1) = 1.

(iii) For any permutation σ on [n] and every x ∈ Lnσ,

f(x) =
n∧
i=0

(
βf (S↓σ(i)) ∧ xσ(i)

)
,

where xσ(0) = 0.

3 MOTIVATING
CHARACTERIZATIONS

Even though horizontal maxitivity and comonotonic
maxitivity, as well as their dual counterparts, play
an important role in aggregation theory (as proper-
ties shared by noteworthy classes of aggregation func-
tions), they have not yet been described indepen-
dently. In this section we investigate each of these
properties and determine their corresponding function
classes (up to weak versions of monotonicity, in the
cases of horizontal maxitivity and minitivity).

3.1 HORIZONTAL MAXITIVITY AND
MINITIVITY

Recall that a function f :Ln → L is said to be

• horizontally maxitive if, for every x ∈ Ln and
every c ∈ L, we have

f(x) = f(x ∧ c) ∨ f([x]c),

where [x]c is the n-tuple whose ith component is
0, if xi 6 c, and xi, otherwise.

• horizontally minitive if, for every x ∈ Ln and ev-
ery c ∈ L, we have

f(x) = f(x ∨ c) ∧ f([x]c),

where [x]c is the n-tuple whose ith component is
1, if xi > c, and xi, otherwise.

Let us consider the following weak forms of nonde-
creasing monotonicity:

(P1) f(e ∧ c) 6 f(e′ ∧ c) for every e, e′ ∈ {0, 1}n such
that e 6 e′ and every c ∈ L.



(D1) f(e ∨ c) 6 f(e′ ∨ c) for every e, e′ ∈ {0, 1}n such
that e 6 e′ and every c ∈ L.

(P2) f(e∧c) 6 f(e∧c′) for every e ∈ {0, 1}n and every
c, c′ ∈ L such that c 6 c′.

(D2) f(e∨c) 6 f(e∨c′) for every e ∈ {0, 1}n and every
c, c′ ∈ L such that c 6 c′.

Theorem 3. A function f :Ln → L is horizontally
maxitive and satisfies P1 if and only if there exists
g:Ln → L satisfying P2 such that

f(x) =
∨
I⊆[n]

g
(
eI ∧

∧
i∈I

xi

)
. (4)

In this case, we can choose g = f .

Similarly, we obtain the dual characterization:
Theorem 4. A function f :Ln → L is horizontally
minitive and satisfies D1 if and only if there exists
g:Ln → L satisfying D2 such that

f(x) =
∧
I⊆[n]

g
(
e[n]\I ∨

∨
i∈I

xi

)
.

In this case, we can choose g = f .

From Theorems 3 and 4 we get:
Corollary 5. A function f :Ln → L is horizontally
maxitive (resp. horizontally minitive) and satisfies P1

(resp. D1) if and only if there are unary nondecreasing
functions ϕI :L→ L, for I ⊆ [n], such that

f(x) =
∨
I⊆[n]

(
αf (I) ∧

∧
i∈I

ϕI(xi)
)

(resp. f(x) =
∧
I⊆[n]

(
βf (I) ∨

∨
i∈I

ϕI(xi)
)
),

where the set function αf (resp. βf ) is defined in (3).
In this case, we can choose ϕI(x) = f(eI ∧ x) (resp.
ϕI(x) = f(e[n]\I ∨ x)) for every I ⊆ [n].
Remark 1. (i) Theorem 3 (resp. Theorem 4) pro-

vides the description of those horizontally max-
itive (resp. horizontally minitive) functions which
are nondecreasing.

(ii) Every Boolean function f : {0, 1}n → {0, 1} sat-
isfying f(0) 6 f(x) (resp. f(x) 6 f(1)) is hor-
izontally maxitive (resp. horizontally minitive).
Moreover, not all such functions are nondecreas-
ing, thus showing that condition P1 (resp. D1) is
necessary in Theorem 3 (resp. Theorem 4).

(iii) As shown in [?], polynomial functions f :Ln → L
are exactly those Rf -idempotent (i.e., satisfying
f(c, . . . , c) = c for every c ∈ Rf ) which are nonde-
creasing, horizontally maxitive, and horizontally
minitive.

(iv) The concept of horizontal maxitivity was intro-
duced, in the case when L is the real interval [0, 1],
by Benvenuti et al. [2] as a general property of the
Sugeno integral.

3.2 COMONOTONIC MAXITIVITY AND
MINITIVITY

Two vectors x,x′ ∈ Ln are said to be comonotonic if
there exists a permutation σ on [n] such that x,x′ ∈
Lnσ. A function f :Ln → L is said to be

• comonotonic maxitive if, for any two comonotonic
vectors x,x′ ∈ Ln, we have

f(x ∨ x′) = f(x) ∨ f(x′).

• comonotonic minitive if, for any two comonotonic
vectors x,x′ ∈ Ln, we have

f(x ∧ x′) = f(x) ∧ f(x′).

Note that for any x ∈ Ln and any c ∈ L, the vectors
x ∨ c and [x]c are comonotonic. As a consequence, if
a function f :Ln → L is comonotonic maxitive (resp.
comonotonic minitive), then it is horizontally maxitive
(resp. horizontally minitive). It was also observed in
[4] that if f is comonotonic maxitive or comonotonic
minitive, then it is nondecreasing. Moreover, we ob-
tain the following result.

Lemma 6. A function f :Ln → L is comonotonic
maxitive (resp. comonotonic minitive) if and only if
it is horizontally maxitive (resp. horizontally minitive)
and satisfies P1 (resp. D1).

Combining Theorems 3 and 4 with Lemma 6, we im-
mediately obtain the descriptions of the classes of
comonotonic maxitive and minitive functions.

Theorem 7. A function f :Ln → L is comonotonic
maxitive if and only if there exists g:Ln → L satisfying
P2 such that

f(x) =
∨
I⊆[n]

g
(
eI ∧

∧
i∈I

xi

)
.

In this case, we can choose g = f .

Theorem 8. A function f :Ln → L is comonotonic
minitive if and only if there exists g:Ln → L satisfying
D2 such that

f(x) =
∧
I⊆[n]

g
(
e[n]\I ∨

∨
i∈I

xi

)
.

In this case, we can choose g = f .

As before, we have the following corollary.



Corollary 9. A function f :Ln → L is comonotonic
maxitive (resp. comonotonic minitive) if and only if
there are unary nondecreasing functions ϕI :L → L,
for I ⊆ [n], such that

f(x) =
∨
I⊆[n]

(
αf (I) ∧

∧
i∈I

ϕI(xi)
)

(resp. f(x) =
∧
I⊆[n]

(
βf (I) ∨

∨
i∈I

ϕI(xi)
)
),

where the set function αf (resp. βf ) is defined in (3).
In this case, we can choose ϕI(x) = f(eI ∧ x) (resp.
ϕI(x) = f(e[n]\I ∨ x)) for every I ⊆ [n].

Remark 2. (i) An alternative description of comono-
tonic maxitive (resp. comonotonic minitive) func-
tions was obtained in Grabisch et al. [8, §2.5] in
the case when L is a real interval.

(ii) It was shown in [4] that polynomial functions
f :Ln → L are exactly those Rf -idempotent
functions which are comonotonic maxitive and
comonotonic minitive.

(ii) Comonotonic minitivity and maxitivity were in-
troduced in the context of Sugeno integrals in de
Campos et al. [5].

4 QUASI-POLYNOMIAL
FUNCTIONS

Motivated by the results of Section 3 concerning hori-
zontal maxitivity and comonotonic maxitivity, as well
as their dual counterparts, we now study combinations
of these properties. This will lead to a relaxation of the
notion of polynomial function, which we will refer to as
quasi-polynomial function. Accordingly, we introduce
weaker variants of well-established properties, such as
homogeneity and median decomposability, which are
then used to provide further axiomatizations of the
class of quasi-polynomial functions.

4.1 MOTIVATION AND DEFINITION

Combinations of those properties studied in Section 3
are considered in the following result.

Theorem 10. Let f :Ln → L be a function. The
following assertions are equivalent:

(i) f is horizontally maxitive, horizontally minitive,
and satisfies P1 or D1.

(ii) f is comonotonic maxitive and minitive.

(iii) f is horizontally maxitive and comon. minitive.

(iv) f is comon. maxitive and horizontally minitive.

(v) There exist a polynomial function p:Ln → L and
a nondecreasing function ϕ:L→ L such that

f(x1, . . . , xn) = p(ϕ(x1), . . . , ϕ(xn)).

If these conditions hold then we can choose for p the
unique polynomial function pf extending f |{0,1}n and
for ϕ the diagonal section δf of f .

Theorem 10 motivates the following definition.
Definition 11. We say that a function f :Ln → L
is a quasi-polynomial function (resp. a discrete quasi-
Sugeno integral, a quasi-term function) if there exist
a polynomial function (resp. a discrete Sugeno inte-
gral, a term function) p:Ln → L and a nondecreasing
function ϕ:L→ L such that f = p ◦ ϕ, that is,

f(x1, . . . , xn) = p(ϕ(x1), . . . , ϕ(xn)). (5)

Remark 3. (i) Note that each quasi-polynomial func-
tion f :Ln → L can be represented as a combina-
tion of constants and a nondecreasing unary func-
tion ϕ (applied to the projections x 7→ xi) using
the lattice operations ∨ and ∧.

(ii) In the setting of decision-making under uncer-
tainty, the nondecreasing function ϕ in (5) can
be thought of as a utility function and the corre-
sponding quasi-polynomial function as a (qualita-
tive) global preference functional ; see for instance
Dubois et al. [6].

Note that the functions p and ϕ in (5) are not neces-
sarily unique. For instance, if f is a constant c ∈ L,
then we could choose p ≡ c and ϕ arbitrarily, or p
idempotent and ϕ ≡ c. We now describe all possible
choices for p and ϕ. For any integers m,n > 1, any
vector x ∈ Lm, and any function f :Ln → L, we define
〈x〉f ∈ Lm as the m-tuple

〈x〉f = median(f(0),x, f(1)),

where the median is taken componentwise.
Proposition 12. Let f :Ln → L be a quasi-
polynomial function and let pf : Ln → L be the unique
polynomial function extending f |{0,1}n . We have

{(p, ϕ): f = p◦ϕ} = {(p, ϕ): pf = 〈p〉f and δf = 〈ϕ〉p},

where p and ϕ stand for polynomial and unary nonde-
creasing functions, respectively. In particular, we have
f = pf ◦ δf .

It was shown in Marichal [10] that every polynomial
function p:Ln → L can be represented as 〈q〉p for some
discrete Sugeno integral q:Ln → L. Combining this
with Proposition 12, we obtain the next result.
Corollary 13. The class of quasi-polynomial func-
tions is exactly the class of discrete quasi-Sugeno in-
tegrals.



4.2 FURTHER AXIOMATIZATIONS

We now propose weaker variants of some properties of
polynomial functions, namely, homogeneity and me-
dian decomposability, to provide alternative axiomati-
zations of the class of quasi-polynomial functions. For
background see [4].

4.2.1 Quasi-homogeneity

We say that a function f :Ln → L is quasi-max ho-
mogeneous (resp. quasi-min homogeneous) if for every
x ∈ Ln and c ∈ L, we have

f(x∨c) = f(x)∨δf (c) (resp. f(x ∧ c) = f(x) ∧ δf (c)).

Lemma 14. Let f :Ln → L be nondecreasing
and quasi-min homogeneous (resp. quasi-max homo-
geneous). Then f is quasi-max homogeneous (resp.
quasi-min homogeneous) if and only if it is horizon-
tally maxitive (resp. horizontally minitive).

Combining Theorem 10 and Lemma 14, we obtain
a characterization of quasi-polynomial functions in
terms of quasi-min and quasi-max homogeneity.
Theorem 15. A function f :Ln → L is a quasi-
polynomial function if and only if it is nondecreasing,
quasi-max homogeneous, and quasi-min homogeneous.

4.2.2 Quasi-median decomposability

In complete analogy with the previous subsection we
propose the following weaker variant of median decom-
posability (see [4]). We say that a function f :Ln → L
is quasi-median decomposable if, for every x ∈ Ln and
every k ∈ [n], we have

f(x) = median
(
f(x0

k), δf (xk), f(x1
k)
)
.

Note that every nondecreasing unary function is quasi-
median decomposable.

Observe that ∨ and ∧, as well as any nondecreasing
function ϕ:L → L, are quasi-median decomposable.
Also, it is easy to see that any combination of constants
and a nondecreasing unary function ϕ using ∨ and ∧ is
quasi-median decomposable and hence, by Remark 3
(i), every quasi-polynomial function is quasi-median
decomposable. In fact, we have following:
Theorem 16. A function f :Ln → L is a quasi-
polynomial function if and only if δf is nondecreasing
and f is quasi-median decomposable.
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