


Using Choquet integral in Machine Learning:
what can MCDA bring?

D. Bouyssou1 M. Couceiro1 C. Labreuche2 J.-L. Marichal3 B. Mayag1

Abstract. In this paper we discuss the Choquet integral
model in the realm of Preference Learning, and point out ad-
vantages of learning simultaneously partial utility functions
and capacities rather than sequentially, i.e., first utility func-
tions and then capacities or vice-versa. Moreover, we present
possible interpretations of the Choquet integral model in Pref-
erence Learning based on Shapley values and interaction in-
dices.

1 Introduction

The first application of the Choquet integral in computer sci-
ence appeared in the late 80’s in the field of decision under
uncertainty [21], and early 90’s in the fields of multi-criteria
decision making (MCDM) [7] and data mining [6, 25]. Re-
cently, it has also been used in machine learning (ML) [24])
and preference learning (PL) [4]. The use of the Choquet inte-
gral in MCDM and data mining for almost 20 years has lead
to a wide literature dealing with both theoretical (axioma-
tizations) and practical (methodologies, algorithms) aspects
[10]. The new fields of ML and PL can benefit from this huge
literature. We focus on two aspects in this paper.

The first aspect concerns partial utility functions. As an ag-
gregation function of n input variables, the Choquet integral
requires that these variables are commensurate. By commen-
surate, we mean that a same value (say 0.5) taken by two dif-
ferent input variables must have the same meaning. In MCDA,
this meaning refers to the degree of satisfaction to criteria. For
instance, value 0.5 corresponds to half-satisfaction. The reason
why the Choquet requires commensability is that it compares
the values taken by the n variables. This commensurability
property is obtained by introducing partial utility functions
over the attributes. The use of partial utility functions is well-
established in MCDA. They are much less used in ML and
PL. Sometimes, the attributes are aggregated without having
being normalized. When attributes are normalized, the partial
utility functions are fixed a priori and not learnt. The main
point of the paper is to show that, fixing utility functions a
priori significantly reduces the expressivity of the model. For
instance, if we only consider three criteria, when the utility
functions are fixed, it is not difficult to find two comparisons
that cannot be represented by a Choquet integral model: in
fact 2 comparisons are sufficient (see Section 3.1). Now, when
utility functions are not fixed, the simplest example we came
up with that is not representable by a Choquet integral and
partial utility functions is composed of 6 comparisons (see Sec-
tion 4.1) with only two attributes. Using conditional relative
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importance, we also give a non-representable example com-
posed of 11 comparisons with three attributes (see Section
4.2). Back to the case of two attributes, we show in Section
4.3, some sufficient conditions under which the preference re-
lation can be represented by a Choquet integral and partial
utility functions.

The second aspect is on the interpretation of the model.
Murofushi proposed to use the Shapley value as an impor-
tance index [18], and later introduced an interaction index
[19]. These two concepts are often used to interpret a capac-
ity. The use of these indices might be debatable as one may
argue that the user is interested in the interpretation of the
Choquet integral and not the capacity. We recall some results
– apparently not known from the community in ML and PL
– showning that the Choquet integral can be interpreted in
terms of Shapley and interaction indices. These results show
that the Shapley value is actually equal to the mean value of
the discrete derivative of the Choquet integral over all possible
vectors in [0, 1]n. This assumes that the set of possible alter-
natives is uniformly distributed in [0, 1]n. We show in Section
5 how to extend these results to non uniform distributions
which arises often in ML or even in MCDA. Some connections
with the definition of the Shapley value and interaction indices
on non-Boolean lattices are given.

2 Preliminaries

2.1 The Choquet integral

Let us denote by N = {1, . . . , n} a finite set of n criteria and
X = X1 × · · · × Xn the set of actions (also called alternatives
or options), where for each i ∈ N , Xi represents the set of
possible levels on criterion i. We refer to function ui : Xi → R,
i = 1, . . . , n, as utility function.

The Choquet integral [9, 10, 17, 16] is based on a capacity
µ defined as a set function from the powerset of criteria 2N to
[0, 1] such that:

1. µ(∅) = 0
2. µ(N) = 1
3. ∀A, B ∈ 2N , [A ⊆ B ⇒ µ(A) ≤ µ(B)] (monotonicity).

For an alternative x := (x1, ..., xn) ∈ X, the expression of
the Choquet integral w.r.t. a capacity µ is given by:

Cµ((u1(x1), . . . , un(xn))) :=

n
∑

i=1

(uτ(i)(xτ(i)) −

uτ(i−1)(xτ(i−1))) µ({τ (i), . . . , τ (n)})
where τ is a permutation on N such that uτ(1)(xτ(1)) ≤

uτ(2)(xτ(2)) ≤ · · · ≤ uτ(n−1)(xτ(n−1)) ≤ uτ(n)(xτ(n)), and
uτ(0)(xτ(0)) := 0.

The preferential information of the decision maker is repre-
sented by a binary relation % over X where ≻ is the asym-
metric part of %.

Let Π(2N ) be the set of permutations on N , and Zτ = {z ∈
[0, 1]n : zτ(1) ≥ · · · ≥ zτ(n)}, for τ ∈ Π(2N ). The Choquet in-
tegral Cµ(x) is clearly a weighted sum in each domain Zτ . The
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weights of criteria change from a domain Zτ to another one
Zτ ′ , for τ, τ ′ ∈ Π(2N ). Two alternatives are called comono-
tone if they belong to a same set Zτ . The Choquet integral is
additive for all comonotone alternatives [20].

2.2 Interpretation of a capacity

A capacity is a complex object (it contains 2n parameters),
hence it is useful to provide an interpretation of µ.

The Shapley value [22] is often used in MCDA as a tool to
interpret a capacity [19, 7, 8]. Actually, the concept of Shap-
ley value comes from cooperative game theory and has been
axiomatized in this framework [26]. The Shapley value de-
scribes how the worth obtained by all players shall be fairly
redistributed among themselves [27].

Let us give a construction of the Shapley value in the spirit
of cost allocation (cooperative game theory). N is interpreted
here as the set of players and µ(S) is the cost of the cheapest
way to serve all agents in S, ignoring the players in N \ S

altogether. All players of N agree to participate in the col-
lective use of the common technology or public goods. Con-
sider an ordering τ ∈ Π(2N ) of the players. Assume that
the players are served in the order given by this permuta-
tion. Once the k first players have been served, the marginal
cost of serving the next player according to the permutation
is µ({τ (1), . . . , τ (k + 1)}) − µ({τ (1), . . . , τ (k)}) =: hτ

τ(k+1)(µ).
The Shapley value allocates to agent i her expected marginal
cost over all possible orderings of agents [22]:

φi(µ) :=
1

n!

∑

τ∈Π(2N )

h
τ
i (µ)

=
∑

S⊆N\{i}

|S|!(n − |S| − 1)!

n!
∆iµ(S)

where ∆iµ(S) := µ(S ∪ {i}) − µ(S). Coefficient |S|!(n−|S|−1)!
n!

is the probability that coalition S corresponds precisely to the
set of players preceding player i in a giving ordering.

The interaction index [19] between criteria i and j is defined
by

Iij(µ) :=
∑

A⊂N\{i,j}

|A|!(n − |A| − 2)!

(n − 1)!
∆i,jµ(A)

where ∆i,jµ(A) := µ(A∪{i, j})−µ(A∪{i})−µ(A∪{j})+µ(A).
A positive (resp. negative) interaction depicts a positive (resp.
negative) synergy between criteria – both criteria need to be
satisfied (resp. it is sufficient that only one criterion is met).

This interaction index was extended to any coalition A of
criteria [5]:

IA(µ) =
∑

B⊆N\A

(n − |B| − |A|)!|B|!

(n − |A| + 1)!
∆Aµ(B),

where ∆Aµ(B) =
∑

K⊆A
(−1)|A\K|µ(B ∪K). In particular we

have

I{i}(µ) = φi(µ) and I{i,j}(µ) = Ii,j(µ).

3 Choquet integral: the importance of
learning utility functions and capacities
simultaneously

3.1 The limitation of Choquet integral: a
classical example

A classical example that shows the limitation of the Choquet
integral model is [9]:

The students of a faculty are evaluated on three subjects
Mathematics (M), Statistics (S) and Language skills (L). All
marks are taken from the same scale from 0 to 20. The eval-
uations of eight students are given by the table below:

1 : Mathematics (M) 2 : Statistics (S) 3 : Language (L)
A 16 13 7
B 16 11 9
C 6 13 7
D 6 11 9
E 14 16 7
F 14 15 8
G 9 16 7
H 9 15 8

To select the best students, the dean of the faculty expresses
his preferences:

• for a student good in Mathematics, Language is more im-
portant than Statistics

=⇒ A ≺ B and E ≺ F,

• for a student bad in Mathematics, Statistics is more impor-
tant than Language

=⇒ D ≺ C and H ≺ G.

The two preferences A ≺ B and D ≺ C lead to a contradiction
with the arithmetic mean model because

{

A ≺ B ⇒ 16 wM + 13 wS + 7 wL < 16 wM + 11 wS + 9 wL

D ≺ C ⇒ 6 wM + 11 wS + 9 wL < 6 wM + 13 wS + 7 wL.

Furthermore it is not difficult to see that the other two prefer-
ences, E ≺ F and H ≺ G, are not representable by a Choquet
integral Cµ since

{

E ≺ F ⇒ 7 + 7µ({M, S}) + 2µ({S}) < 8 + 6µ({M, S}) + µ({S})

H ≺ G ⇒ 8 + µ({M, S}) + 6µ({S}) < 7 + 2µ({M, S}) + 7µ({S})

i.e.

{

E ≺ F ⇒ µ({M, S}) + µ({S}) < 1

H ≺ G ⇒ µ({M, S}) + µ({S}) > 1

An important remark in this example is that we try to find a
capacity by assuming that the utility functions are fixed. If the
latter are not fixed, then E ≺ F and H ≺ G can be modeled
by Cµ, for instance, using these following utility functions:

1 : Mathematics (M) 2 : Statistics (S) 3 : Language (L)
E uM (14) = 16 uS(16) = 16 uL(7) = 7
F uM (14) = 16 uS(15) = 15 uL(8) = 8
G uM (9) = 9 uS(16) = 16 uL(7) = 7
H uM (9) = 9 uS(15) = 15 uL(8) = 8
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Indeed these utility functions lead to the system

{

E ≺ F ⇒ 2µ({M, S}) − µ({M}) < 1

H ≺ G ⇒ µ({M, S}) + µ({S}) > 1

Hence a capacity µ such that µ({M, S}) = µ({M}) =
µ({S}) = 0.6 can be found. The utility function given above
show that for the DM, the interpretation of “a good mark” in
mathematics and “a good mark” in statistics is different. Such
an interpretation is not in contradiction with the definition of
commensurate scales: for xi ∈ Xi and xj ∈ Xj ,

ui(xi) ≥ uj(xj) iff the DM considers xi at least as good as
xj .

Of course, if we assume that uM (a) = uS(a) = uL(a), for
all a ∈ [0, 20], then E ≺ F and H ≺ G remain not repre-
sentable by Cµ. This is not surprising because such situations
can be viewed as the representation of preferences in deci-
sion under uncertainty where the Choquet integral model is
well characterized [20, 21]. The four alternatives E, F, G, H

are comonotone and thus the preferences E ≺ F and H ≺ G

violate comonotone additivity.

To show the limitation of the Choquet integral in MCDA,
we look for an example where the utility functions are not
fixed a priori. This is the purpose of the next section.

4 Example non representable by a Choquet
integral

We wish to known under which condition % is representable
by a Choquet integral, i.e. there exists n utility functions ui :
Xi → R and a capacity µ such that for all x, y ∈ X

x % y =⇒ Cµ(u1(x1), . . . , un(xn)) ≥ Cµ(u1(y1), . . . , un(yn)).
(1)

4.1 A counter-example with 2 criteria

Let % be a weak order on the set X = X1 × X2. We are
interested in conditions that would guarantee that % can be
represented using a Choquet integral model, i.e., that there is
a real valued function u1 on X1 a real valued function u2 on
X2 and positive real numbers λ1, ω1, such that:

x % y ⇐⇒ V (x) ≥ V (y),

where V is a real valued function on X such that:

V (x) =

{

λ1u1(x1) + (1 − λ1)u2(x2) if u1(x1) ≥ u2(x2),

ω1u1(x1) + (1 − ω1)u2(x2) otherwise.

Such a model is clearly a particular case of the model stud-
ied in [2] in which

V (x) = F (u1(x1), u2(x2)), (2)

F being nondecreasing in its two arguments. We suppose that
the conditions underlying the latter model hold. They are
given in [2]. We now give an example of a weak order on X

that cannot be represented using a Choquet integral model
whatever the capacity and the functions u1 and u2.

Example 1 Let X1 = {a1, b1, c1, d1, e1, f1} and X2 =
{a2, b2, c2, d2, e2, f2}.

Suppose that the relation % is such that:

(a1, e2) ∼ (b1, d2)

(c1, d2) ∼ (a1, f2)

(c1, e2) 6∼ (b1, f2)

(3)

and

(d1, b2) ∼ (e1, a2)

(f1, a2) ∼ (d1, c2)

(f1, b2) 6∼ (e1, c2)

(4)

It is easy to find a weak order on X that satisfies the conditions
in [2] and that includes the relations (3) and (4). Moreover,
it is not difficult to choose this weak order in such a way as
to satisfy (2) together with:

u1(a1) ≤ u1(b1) ≤ u1(c1) ≤ u1(d1) ≤ u1(e1) ≤ u1(f1)

u2(a2) ≤ u2(b2) ≤ u2(c2) ≤ u2(d2) ≤ u2(e2) ≤ u2(f2)
(5)

Since each of triple of relations (3) and (4) violates the
Thomsen condition [13], they cannot be represented using an
additive model.

Considering the first triple, this implies that it is impossible
that we have

u1(a1) ≥ u2(f2),

or

u2(d2) ≥ u1(c1).

Indeed, if it were the case the representation for the elements
in the triple would be additive, so that the Thomsen condition
would be satisfied.

Similarly, considering the second triple, it is impossible that
we have

u1(d1) ≥ u2(c2)

or

u2(a2) ≥ u1(f1).

Hence, we must have:

u1(a1) < u2(f2),

and

u2(d2) < u1(c1),

and

u1(d1) < u2(c2)

and

u2(a2) < u1(f1).

It is not difficult to see that, together with (5) this leads to
contradiction.

Hence any weak order on X that has a representation in
model (2) satisfying (5) and that contains the relations in
(3) and (4) cannot be represented using the Choquet integral
model.
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4.2 A counter-example with 3 criteria

Let n = 3. We assume that there is an order on attribute 1.
For instance, X1 is a real interval and the utility function is
increasing (e.g. X1 represents the elements of a revenue). An-
other example: X1 = { “very bad”, “bad”, “medium”, “good”,
“very good”, }, where “very bad” is worse than “ bad”, etc.
The ordering on X1 is denoted by ≤ and the strict ordering
by <.

We choose two elements on attributes 2 and 3:

y2, z2 ∈ X2 and y3, z3 ∈ X3.

We choose now eleven elements on attribute 1:

x
1
1, x

2
1, . . . , x

11
1 ∈ X1 with x

1
1 < x

2
1 < · · · < x

11
1 .

We assume that the decision maker provides the following
preferential information:

(x1
1, y2, y3) ≻ (x1

1, z2, z3)

(x2
1, y2, y3) ≺ (x2

1, z2, z3)

(x3
1, y2, y3) ≻ (x3

1, z2, z3)

(x4
1, y2, y3) ≺ (x4

1, z2, z3)

(x5
1, y2, y3) ≻ (x5

1, z2, z3)

(x6
1, y2, y3) ≺ (x6

1, z2, z3)

(x7
1, y2, y3) ≻ (x7

1, z2, z3)

(x8
1, y2, y3) ≺ (x8

1, z2, z3)

(x9
1, y2, y3) ≻ (x9

1, z2, z3)

(x10
1 , y2, y3) ≺ (x10

1 , z2, z3)

(x11
1 , y2, y3) ≻ (x11

1 , z2, z3)

This idea of this example is to introduce sufficiently many
comparisons such that there necessarily exist three compar-
isons of comonotonic alternatives leading to a contradiction.

Lemma 1 The previous example is not representable by (1).

Proof: Assume for a contradiction that there exist utility
functions u1, u2, u3 and a capacity µ representing the previous
example. Note that u1(x1

1) < u1(x2
1) < · · · < u1(x11

1 ). Let
V = {u2(y2), u2(z2), u3(y3), u3(z3)}. These four elements split
the real line R into at most five intervals (−∞, v1], [v1, v2],
[v2, v3], [v3, v4] and [v4, +∞), where v1 ≤ v2 ≤ v3 ≤ v4 and
V = {v1, v2, v2, v4}.

It is not difficult to see that among
u1(x1

1), u1(x2
1), . . . , u1(x11

1 ), at least three of them nec-
essarily belong to the same interval. These three values
necessarily correspond to three successive elements, denoted
by xk

1 , xk+1
1 and xk+2

1 . Hence, in the preferential information,
the comparison obtained from xk

1 and xk+2
1 are the same and

are opposite to the comparison obtained with xk+1
1 . More

precisely, we have two cases:

• In the first case, we have

(xk
1 , y2, y3) ≻ (xk

1 , z2, z3) ,

(xk+1
1 , y2, y3) ≺ (xk+1

1 , z2, z3)

and

(xk+2
1 , y2, y3) ≻ (xk+2

1 , z2, z3). (6)

As u1(xk
1), u1(xk+1

1 ) and u1(xk+2
1 ) belong to the

same interval, the vectors (u1(xk
1), u2(y2), u3(y3)),

(u1(xk+1
1 ), u2(y2), u3(y3)) and (u1(xk+2

1 ), u2(y2), u3(y3))
are comonotone, and (u1(xk

1), u2(z2), u3(z3)),
(u1(xk+1

1 ), u2(z2), u3(z3)) and (u1(xk+2
1 ), u2(z2), u3(z3))

are comonotone. The Choquet integral is a weighted sum
for all comonotone vectors. We denote by (wy

1 , w
y
2 , w

y
3 )

the weights of criteria (obtained from the capacity µ)
for the comonotone vectors (u1(xk

1), u2(y2), u3(y3)),
(u1(xk+1

1 ), u2(y2), u3(y3)) and (u1(xk+2
1 ), u2(y2), u3(y3)).

We denote by (wz
1 , wz

2 , wz
3) the weights of criteria (ob-

tained from the capacity µ) for the comonotone vectors
(u1(xk

1), u2(z2), u3(z3)), (u1(xk+1
1 ), u2(z2), u3(z3)) and

(u1(xk+2
1 ), u2(z2), u3(z3)). Hence (6) gives

u1(xk
1) w

y
1 + u2(y2) w

y
2 + u3(y3) w

y
3

> u1(xk
1) w

z
1 + u2(z2) w

z
2 + u3(z3) w

z
3 (7)

u1(xk+1
1 ) w

y
1 + u2(y2) w

y
2 + u3(y3) w

y
3

< u1(xk+1
1 ) w

z
1 + u2(z2) w

z
2 + u3(z3) w

z
3 (8)

u1(xk+2
1 ) w

y
1 + u2(y2) w

y
2 + u3(y3) w

y
3

> u1(xk+2
1 ) w

z
1 + u2(z2) w

z
2 + u3(z3) w

z
3 (9)

Combining (7) with (8) gives

(u1(xk
1) − u1(xk+1

1 )) (wy
1 − w

z
1) > 0

As u1(xk
1) < u1(xk+1

1 ), we obtain w
y
1 < wz

1 . Combining (9)
with (8) gives

(u1(xk+2
1 ) − u1(xk+1

1 )) (wy
1 − w

z
1) > 0

As u1(xk+2
1 ) > u1(xk+1

1 ), we obtain the opposite inequality
w

y
1 > wz

1 . Hence a contradiction is attained.
• In the second case, we have

(xk
1 , y2, y3) ≺ (xk

1 , z2, z3) ,

(xk+1
1 , y2, y3) ≻ (xk+1

1 , z2, z3) and

(xk+2
1 , y2, y3) ≺ (xk+2

1 , z2, z3). (10)

We proceed similarly and a contradiction is also raised.

From the two counter-examples presented above, we can de-
duce some necessary conditions to represent a preference by
the Choquet integral model when utility functions and capac-
ity are unknown a priori. Therefore we hope to entirely char-
acterized this model in the future works. The search of this
characterization led us to obtain a first sufficient condition in
the case of two criteria.

4.3 Sufficient conditions for
representability by Choquet integrals
with 2 criteria

Let X1, X2 be two arbitrary chains (linearly ordered sets), and
let % be a partial relation on X1 × X2, extendable to a (total)
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preference relation on X1 × X2 (i.e., which does not violate
reflexivity, transitivity and the Pareto condition), and let ≻
be its nonsymmetric part ... Denote by D(%) the universe of
R, i.e., the set of elements x ∈ X1 × X2 that appear in some
couple in %.

Proposition 1 Every partial relation % on X1×X2 for which
D(%) is a finite antichain (w.r.t. the componentwise ordering
of X1 × X2) can be extended to a (total) preference relation
on X1 × X2 that is representable by a Choquet integral.

Proof: Suppose that D(%) = {x1, . . . , xn}, xi = (xi1, xi2),
is an antichain. Without loss of generality, we assume that
x11 < . . . < xn1 and x12 > . . . > xn2; the other possible case
can be dealt with similarly. We shall construct utility functions
ut : Xt → R, t = 1, 2, and a capacity µ : 2N → [0, 1] such that
xi % xj implies Cµ(u1(xi1), u2(xi2)) ≤ Cµ(u1(xj1), u2(xj2)).

Since % is extendable to a (total) preference relation on
X1 × X2, we can partition D(%) into (indifference) classes
C0, C1, . . . that are defined recursively as follows:

1. C0 contains all maximal elements for %, i.e., elements y ∈
D(%) such that there is no z ∈ D(%) for which y ≻ z;

2. if C0, C1, . . . , CK have been defined, then CK+1 contains all
y ∈ D(%) such that y ≻ z for some z ∈ CK , and there is no
z′ ∈ D(%) \

⋃

0≤t≤K
Ct such that y ≻ z′.

Let C0, C1, . . . , CT be the thus defined classes.
Consider the capacity µ : 2N → [0, 1] given by

µ({1}) = µ({2}) = 1
3

and µ({1, 2}) = 1. Hence,
Cµ(u1(a1), u2(a2)) = 2

3
u1(a1) + 1

3
u2(a2) if u1(a1) ≤ u2(a2);

otherwise, Cµ(u1(a1), u2(a2)) = 2
3
u2(a2) + 1

3
u1(a1).

We construct ut : Xt → R on {x1t, . . . , xnt}, t = 1, 2, as
follows. Let s := min{k : xk ∈ C0}. Set u1(xs1) = u2(xs2) =
n. Hence Cµ(u1(xj1), u2(xj2)) = n.

Also, note that u1(xk1) ≤ u2(xk2) if k < s, and u1(xk1) ≥
u2(xk2) if k > s.

Now, take a sufficiently small ǫ > 0, say ǫ = 1
n

. For each
1 ≤ i ≤ n such that xi ∈ CK , define

1. u1(xi1) =
(

n−( |j−i|
2

)−Kǫ
)

and u2(xi2) =
(

n+|j−i|+Kǫ
)

if k < s, and
2. u1(xi1) =

(

n+|j−i|+Kǫ
)

and u2(xi2) =
(

n−( |j−i|
4

)−Kǫ
)

,
otherwise.

It is not difficult to verify that for every 0 ≤ S ≤ T and
y = (y1, y2) ∈ CS, we have Cµ(u1(y1), u2(y2)) = n − Sǫ

3
, and

the proof is now complete.

5 Interpretation of the Choquet integral
model

5.1 The [0, 1]n case

In the context of MCDA, the Shapley value can be seen as the
mean importance of criteria and is thus a useful tool to inter-
pret a capacity [7, 8]. The interpretation of Section 2.2 of the
Shapley value is not satisfactory in MCDA since it completely
ignores the use of the Choquet integral.

The interpretation of the Shapley value (and the Shapley
interaction indices) for the Choquet integral is basically due

to J.L. Marichal who noticed that (see [15, proposition 5.3.3
page 141] and also [11, Definition 10.41 and Proposition 10.43
page 369])

IS(µ) =

∫

[0,1]n

∆SCµ(z)dz

where, for any function f , ∆Sf is defined recursively by

∆Sf(z) = ∆i(∆S\{i}f)(x) for any i ∈ S

∆if(z) = f(z|zi = 1) − f(z|zi = 0)

The Shapley value appears as the mean of relative amplitude
of the range of Cµ w.r.t. criterion i, when the remaining vari-
ables take random values. What is true with Shapley value is
also true for interaction indices.

The following lemma is not difficult to prove:

Lemma 2 We have

IS(µ) =

∫

[0,1]n

∂|S|Cµ

∂zS

(z) dz

where the partial derivative is piecewise continuous.

Here the partial derivative is the local importance of Cµ at
point z.

5.2 The case of a subset of [0, 1]n

The set of options that the decision maker finds feasible is
often far from covering the whole space X. The following ex-
ample shows that only a subset denoted by Ω of X may be
realistic.

Example 2 (Situation awareness) Consider a surveil-
lance system that generates alerts from the information
provided by several sensors such as cameras and radars. The
system provides a situation awareness of the environment,
gathering the identification of the intruder and its accurate
localization [23].

We are interested in assessing the quality of information
provided by the system. To this end, we access the difference
between what the system displays to the user and the real sit-
uation. Three criteria are considered.

• Relevance of identity information: this is the difference be-
tween the identity that is obtained by the system and the real
identity of the intruder. The determination of a wrong iden-
tity has strong consequences on the level of threat associated
to the intruder.

• Rough localization: There are several particular assets that
must be protected in the area that is covered by the surveil-
lance system. Three areas of interest are defined around the
assets: the alert zone which is the area at close range of the
assets, the warning zone which is the area at medium range
of the assets, and the rest of the area. There is a procedure
which indicates the action that must be performed by an op-
erator when an intruder is in one of these three zones. The
system identifies the area to which intruders belong. Clearly,
the identification of a wrong area has a critical consequence
on the safety (if an intruder at close range is not seen as
being in that area) or the relevance (false alarms) of the
system.
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• Fine localization: This is the accuracy of the intruders lo-
calization made by the system, i.e., the distance between the
localization given by the system and the real one. The deci-
sion maker needs to know the accurate location of intruders,
especially, in the alert area in order to perform a dissuasive
action on the intruders.

The last two criteria quantify the consequence with respect to
two different points of view attached to localization. These two
criteria are statistically correlated. Indeed, when the second
criteria is not met, which entails a crude error, then it is not
possible that the last criteria is well-satisfied. This implies that
the satisfaction of last criterion cannot be better than that of
the second criterion. Hence x ∈ X such that x3 > x2 is not
feasible.

In MCDA, our starting point is the subset Ω of real-
istic options in [0, 1]n. One can assume that Ω is convex
and has a non-zero measure, as it is the case in Exam-
ple 2. For τ ∈ Π(2N ) and z ∈ Zτ , those coalitions used
in the computation of the Choquet integral w.r.t. z are
∅, {τ (1)}, {τ (1), τ (2)}, . . . , {τ (1), . . . , τ (n)}. The following set

T := {τ ∈ Π(2N ) , Int(Xτ ) ∩ Ω 6= ∅}

contains those permutations that are reached when computing
the Choquet integral of the elements of Ω. The set of coalitions
that are used in the previous computations is then

F = D(T ) :=
⋃

τ∈T

{∅, {τ (1)}, {τ (1), τ (2)},

. . . , {τ (1), . . . , τ (n)}}.

A convex geometry on N is a family F of subsets of N

satisfying the following properties [3, 12]

(i) ∅ ∈ F , N ∈ F ,
(ii) S ∈ F and T ∈ F implies that S ∩ T ∈ F ,
(iii) ∀S ∈ F \ {N}, ∃i ∈ N \ S such that S ∪ {i} ∈ F .

Note that properties (i) and (ii) allow to define a closure
operator S =

⋂

{T ∈ F : S ⊆ T } for every S ⊆ N .
The set of extreme points of a subset S ∈ F is defined as
ext(S) = {i ∈ S : S \ {i} ∈ F}. From this set, one can de-
fine a shelling process. Starting with the whole set N , one may
successively eliminate extreme points until the empty set is ob-
tained. This process defines maximal chains of F . A chain in F
from S ∈ F to T ∈ F , with S ⊂ T , is a set of nested elements
of F of the form S = Ki1 ⊂ Ki2 ⊂ · · · ⊂ Kim−1 ⊂ Kim

= T

with |Kil
| = il for l = 1, . . . , m, and i1 < i2 < · · · < im. A

maximal chain of F from S ∈ F to T ∈ F , with S ⊂ T , is a
chain of F from S to T for which m = t−s+1 (i.e. il = s+l−1
for all l) with the previous notation. A maximal chain of F is
a maximal chain of F from ∅ to N .

Another interesting case is when the points x are not uni-
formly spread over [0, 1]n. A particular case is when there are
some values in [0, 1]n that are infeasible. Then, when comput-
ing the Choquet integral, some permutations may never occur,
and thus some terms µ(S) (for some coalitions S) may never
be used. The Shapley value has been defined for the situation
of “forbidden” coalitions.

Let F be a convex geometry defined on N . A capacity on
F is a function µ : F → R satisfying the boundary and mono-
tonicity conditions. Bilbao [1] defined the Shapley value of µ

as follows

φ
F
i (µ) =

∑

S⊆N\{i} : S,S∪{i}∈F

CF (S, S ∪ {i})

CF
[µ(S ∪ {i}) − µ(S)] ,

(11)
where CF is the total number of maximal chains of F and
CF (S, S ∪ {i}) is the number of maximal chains of F going
through S and S ∪ {i}.

A reduced game describes the situation where the players in
a coalition P never play separately. As a consequence, they can
be identified to a unique player denoted by [P ]. Let N[P ] :=
(N\P )∪{[P ]}. Let ηP : PP (N) → 2N[P ] be defined by ηP (S) =
S if P 6⊆ S and ηP (S) = (S \ P ) ∪ {[P ]} otherwise. Given F ,
the definition of the set of allowed coalitions FN[P ] on N[P ] is
as follows [14]

FN[P ] = ηP (TP ) = {ηP (S) : S ∈ TP } ,

where TP is the set of the elements of all chains ∅ = S0 ⊂
· · · ⊂ Sk ⊂ Sk+p ⊂ · · · ⊂ Sn = N of elements of F with
|Si| = i, Sk+p = Sk ∪ P and Sk ∈ MP , and where MP :=
{S ⊆ N \ P : ∀T ⊆ P , S ∪ T ∈ F}. The interaction index
IF

P (µ) of coalition P w.r.t. a capacity µ has the expression [14]

I
F
P (µ) =

∑

S∈MP

C
F

N[P ] (S, S ∪ {[P ]}})

C
F

N[P ]

∆P µ(S). (12)

Lemma 2 can be extended to the current setting in the
following way:

Lemma 3 We have

I
F
S (µ) =

∫

∪τ∈T Zτ

∂|S|Cµ

∂zS

(z) dz

where the partial derivative is piecewise continuous.

This formula clearly shows that IF
S (µ) is interpreted as the

interaction among criteria S for the Choquet integral. Ex-
pression (12) provides a combinatorial formulae to compute
IF

S (µ).
Note that ∪τ∈T Zτ appears as an approximation of the fea-

sibility domain Ω. When this approximation is not so good, it
is possible to compute the interaction index by the following
expression

∫

Ω

∂|S|Cµ

∂zS

(z) dz.

This computation might be complex when Ω is itself complex.

6 Conclusion

We have shown the gain in terms of expressivity that is ob-
tained when the partial utility functions are constructed at
the same time as the Choquet integral. With only two at-
tributes, an example of non representativity is constructed.
It is very special in the sense that the alternatives take spe-
cial values on a grid. Moreover, again with two attributes,
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when the learning examples use only alternatives that belong
to an antichain, then we have shown that any weak order over
these alternatives, that does not violates Pareto condition and
transitivity, is representable by a Choquet integral and par-
tial utility functions. Clearly this result is wrong when the
partial utility functions are a priori fixed. With three criteria,
using the idea of conditional relative importance, we need 11
learning examples to contradicts the Choquet integral model.
We believe that these examples are important to construct
axiomatic characterizations of the Choquet integral and its
utility functions.

Next, the Shapley index and interaction indices often used
to interpret a capacity can also be used to interpret a Choquet
integral. Actually the interaction index among criteria S is the
integral over [0, 1]n of the partial derivative of the Choquet
integral w.r.t. criteria in S. This can be easily extended to the
cases when the set of feasible alternatives is not [0, 1]n but a
subset. The corresponding Shapley and interaction indices are
then extension of the original indices on convex geometries.

We hope we have convinced the community working on ML
and PL on the importance of learning not only the capacity
but also partial utility functions.
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