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Abstract. In this paper, based on [14], we present some well established
construction methods for aggregation functions as well as some new ones.
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There is a well-known demand for an ample variety of aggregation functions
having predictable and tailored properties to be used in modelling processes.
Several construction methods have been introduced and developed for extending
the known classes of aggregation functions (defined either on [0, 1] or, possibly,
on some other domains). There are several construction methods, introduced in
many fields [1–5, 7, 9, 14, 15, 24, 25]. Obviously, new construction methods should
be a central issue in the rapidly developing field of aggregation functions. In this
paper we present some well established construction methods as well as some
new ones.

The first group of construction methods can be characterized “from simple
to complex”. They are based on standard arithmetical operations on the real
line and fixed real functions. The second group of construction methods starts
from given aggregation functions to construct new ones. Here we can start either
from aggregation functions with a fixed number of inputs (e.g., from binary func-
tions only) or from extended aggregation functions. Observe that some methods
presented are applicable to all aggregation functions (for example, transforma-
tion), while some of them can be applied only to specific cases. Finally, there
are construction methods allowing us to find aggregation functions when only
some partial knowledge about them is available. For more details on this topic
we recommend [14], Chapter 6. In our presentation we will discuss these items:

- transformation of aggregation functions (recall the classical transformation
of the sum into the product),

- composed aggregation (recall recursive aggregation functions, convex sums,
etc.),

- weighted aggregation functions (quantitative and qualitative approaches),
- aggregation based on optimalisation (mixture operators, for example),
- ordinal sums of aggregation functions (covering in one formula well-known

ordinal sums of t-norms and t-conorms).
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Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske. Ser. II 13 (1958), 243–248.

5. Beliakov, G.,Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practition-
ers, Studies in Fuziness and Soft Computing, Springer, Berlin, 2007.

6. Birkhoff, G.: Lattice theory, Third edition. American Mathematical Society Collo-
quium Publication, Vol. XXV. American Mathematical Society, Providence, R. I.,
1967.

7. Bouchon-Meunier, B. (ed.): Aggregation and fusion of imperfect information, Stud-
ies in Fuzziness and Soft Computing. 12. Heidelberg: Physica-Verlag, 1998.

8. Bullen, P. S.: Handbook of means and their inequalities, Mathematics and its Ap-
plications 560, Kluwer Academic Publishers Group, Dordrecht, 2003.

9. Calvo, T. and Mayor, G. and Mesiar, R. (eds.), Aggregation operators, Studies
Fuzziness Soft Computing 97, Physica, Heidelberg, 2002.

10. Calvo, T., Mesiar, R., Yager, R.R.: Quantitative Weights and Aggregation, IEEE
Trans. Fuzzy Syst. 12 (2004), 62-69.

11. Calvo, T., Pradera, A.: Double aggregation operators, Fuzzy Sets and Systems
142(1) (2004), 15-33.

12. Cutello, V., Montero, J.: Recursive connective rules, Int. J. Intelligent Systems 14
(1999), 3-20.

13. Fujimoto, K., Murofushi, T., Sugeno, M.: Canonical hierarchical decomposition of
Choquet integral over finite set with respect to null additive fuzzy measure, Internat.
J. Uncertain. Fuzziness Knowledge-Based Systems 6 (1998), 345-363.

14. Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions, Cam-
bridge University Press (in press).

15. Klement, E. P., Mesiar, R., Pap, E.: Triangular norms, Trends in Logic—Studia
Logica Library 8, Kluwer Academic Publishers, Dordrecht, 2000.

16. Luo, X., Jennings, N. R.: A spectrum of compromise aggregation operators for
multi-attribute decision making, Artificial Intelligence 171 (2007), 161-184.

17. Ovchinikov, S., Dukhovny: Integral representation of invariant functionals, J.
Math. Anal. Appl. 244(1) (2000), 228-232.



Contribution to some construction methods 3

18. Marques, P., Ricardo, A., Ribeiro, R. A.: Aggregation with generalized mixture
operators using weighting functions, Fuzzy Sets and Systems 137 (2003), 43-58.
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