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INTRODUCTION

L’ altimétrie par satellite a relancé la recherche en océanographie. La mission altimétrique
Topex/Poseidon, qui est actuellement en phase opérationnelle, apporte chaque jour une
moisson considérable d’informations nouvelles sur les variations de la surface océanique. Ce
satellite est une composante du programme WOCE (World Ocean Circulation Experiment)
qui associe données satellites, observations in-situ et modeles numériques. Ces informations
sont une composante essentielle a la description de la circulation générale océanique, dont la
compréhension est fondamentale pour la prédiction climatique.

*

La couverture des mesures altimétriques est fonction des caractéristiques de I’orbite du
satellite porteur de I’instrument de mesure radar. Par exemple, I'intervalle de temps qui
sépare deux passages successifs du satellite Topex/Poseidon au-dessus d’un méme point,
appelé période de répétitivité, est de ’ordre de 10 jours. La couverture des mesures
altimétriques est synoptique pour les phénomenes océaniques dont les temps caractéristiques
sont supérieurs & 10 jours. Par contre, les mouvements océaniques, dont les périodes
caractéristiques sont de 1’ordre ou inférieures a 10 jours, ne sont plus observés de maniere
synoptique et sont vus par le satellite comme des variations lentes de la hauteur de la surface
océanique. Ainsi, les marées océaniques, dont les principaux constituants ont des périodes
voisines de la journée et de la demi-journée, voient leurs spectres repliés vers les longues
périodes (de quelques semaines a quelques années) masquant, dans les mesures altimétriques,
les signaux de la dynamique océanique mensuelle 2 interannuelle. Le probléme est sérieux
puisque I’amplitude des marées en plein océan (de I’ordre de 50 cm) est comparable ou
supérieure aux topographies dynamiques associées a la circulation méso-échelle et aux grands
systtmes de courants océaniques. Il est donc nécessaire de corriger les mesures altimétriques
des marées océaniques pour atteindre la mesure directe des variations du niveau des océans.
Leur détermination avec une précision centimétrique est un des principaux objectifs de la
mission Topex/Poseidon. Cet objectif devrait étre atteint compte tenu de la précision
instrumentale des altimétres qui est d’environ 2 cm et de la précision du calcul d’orbite qui est
aujourd’hui meilleure que 8 cm rms [Nouel, 1993]. Dans ce contexte, un modele de marées
océaniques d’une précision centimétrique s’avére indispensable.

*

La précision des modeles globaux de marée océanique n’est pas suffisante pour répondre
aux besoins de la mission Topex/Poseidon. Ainsi, par exemple, un controle sur un ensemble
de mesures pélagiques [Woodworth, 1985] montre que la précision globale de la prédiction de
la marée a partir du modele de Schwiderski [1980a-b], qui est actuellement un des meilleurs
modeles, serait de I’ordre de 15 cm avec toutefois des erreurs plus importantes dans les mers
littorales. C’est dans ce contexte qu’a été entrepris le développement d’une modélisation par
éléments finis des marées océaniques [Vincent, 1987] dont les premilres solutions pour les
océans Atlantique [Genco, 1993], Indien [Lyard, 1992] et Pacifique [Canceill, 1993]
devraient étre d’une précision meilleure que celle des modeles existants. Cependant, la
précision ultime de ce modele hydrodynamique dépend en partie des paramétres d’entrée qui
sont des données externes telles que les conditions spécifiées aux limites ouvertes et la
bathymétrie dont la méconnaissance en certaines régions empéche d’atteindre la précision
centimétrique.

Pour échapper au type de contraintes externes que subissent les modeles en raison de
I’incertitude sur les données d’entrée, nous avons tenté de restituer la marée a I’aide d’une
approche empirique. Cette démarche, complémentaire de la modélisation hydrodynamique,



présente le grand intérét de fournir une évaluation directe de la marée océanique qui n’est pas
basée sur des hypothéses controversées concernant la modélisation de la friction ou le choix
du coefficient de viscosité. De plus, le probleme de la méconnaissance de la bathymétrie est
éludé.

L'analyse des mesures altimétriques pour en extraire le signal des marées océaniques n'est
pas une démarche nouvelle. Des résultats qualitatifs obtenus entre autres par Mazzega [1983]
a partir des données du satellite Seasat ont montré la faisabilité de cette approche. Depuis,
Cartwright et Ray [1991] ont calculé a partir des mesures altimétriques du satellite Geosat des
solutions de la marée océanique dont les précisions décimétriques sont comparables aux
solutions du modele hydrodynamique de Schwiderski. A la suite des premiéres tentatives et
sur la base des enseignements que 1'on peut en tirer, nous présentons dans cette thése une
nouvelle méthode d'analyse des mesures altimétriques pour restituer les marées océaniques
avec une précision subdécimétrique. Nous montrons que cette méthode, basée sur la théorie
du probléme inverse, est une généralisation des méthodes développées précédemment; elle
permet, de plus, d’analyser conjointement aux mesures altimétriques des mesures de natures
différentes comme, par exemple, les observations marégraphiques. Les méthodes inverses
permettent en outre 1’estimation du bilan d’erreur formelle sur la solution, information qui est
tout aussi importante que la solution elle-mé&me et qui est fondamentale pour son exploitation
ultérieure.

En raison de la complexité des traitements de la mesure altimétrique, la restitution des
marées avec une précision centimétrique ne peut &tre garantie. Nous avons vu que les
modeles hydrodynamiques ont leurs propres limitations. Les solutions issues d’une
modélisation hydrodynamique et de 1’analyse de mesures, ayant été calculées de maniére
indépendante, se prétent 2 un mélange harmonieux au travers de techniques d’assimilation
[Bennett et McIntosh, 1982; Jourdin, 1992]. Ces techniques devraient permettre d’obtenir des
modeles de marées avec une précision centimétrique. Cet objectif ultime motive le
développement en paralléle de modeles hydrodynamiques et de modeles empiriques.

*

Dans le premier chapitre, les modeles de marée terrestre, de marée océanique ainsi que de
leurs interactions sont passés en revue. Le second chapitre décrit I'ensemble des mesures
directes ou indirectes des marées océaniques : marégraphiques, gravimétriques de marée
terrestre et d'altimétrie par satellite. Nous décrivons brievement les instruments et les
méthodes d'analyse afin de mieux appréhender le bilan d’erreur de ces mesures. Nous
insistons sur leur complémentarité pour la restitution des marées océaniques et nous
présentons les caractéristiques spatiales et spectrales remarquables des marées qui sont
exploitées dans les différentes méthodes d'analyse. Les mesures altimétriques sont fortement
contaminées par l'erreur radiale d'orbite et nous exposons dans le troisitme chapitre une
méthode originale de correction de l'erreur d'orbite que nous avons appliquée aux données du
satellite Geosat. Le quatrieme chapitre présente de maniere heuristique la méthode d'analyse
par inversion des mesures marégraphiques, gravimétriques et altimétriques. Les solutions
obtenues pour différentes combinaisons de mesures sont discutées dans le dernier chapitre.
Un premier atlas des principales ondes de marées océaniques a été calculé par inversion
conjointe de mesures marégraphiques et altimétriques du satellite Geosat. Des tests pour en
evaluer la précison sont présentés et une discussion sur les améliorations potentielles est
amorcée.
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Figure L1 : Repére de centre 0 (centre de la Terre). M est l'astre perturbateur (Lune ou Soleil) a
la distance p de T et une distance zénithale z de P.



CHAPITRE I : LES PHENOMENES DE MAREES

Dans ce chapitre, nous rappelons I’expression des développements classiques du potentiel
générateur des marées. Ensuite, nous passons en revue les différentes manifestations des
marées : marées terrestres, marées de surcharge océanique et marées océaniques.

L1 - Le potentiel générateur des marées

Dans un systéme planétaire (Soleil-Terre ou Terre-Lune), il y a un équilibre global entre la
force centrifuge et la force gravitationnelle. Cependant, des forces de marées apparaissent a
l'intérieur des corps célestes 2 cause des inégalités locales entre la force gravitationnelle
différente en tout point de 'astre et la force axifuge uniforme due a la révolution képlérienne.

Le potentiel des marées, dans un repere géocentrique, s'écrit au point P de coordonnées
(r,p,A) [Melchior, 1983] :

— n
WEP) =GM E; gy P, (cos 2) (1.1)

ol r, ¢, A sont le rayon, la latitude et la longitude, G la constante d'attraction universelle, M
la masse de l'astre perturbateur, d la distance de 'astre au centre de la Terre (Figure 1.1), Py
est le polyndme de Legendre d'ordre n, et z la distance zénithale de l'astre au point P. Les
deux premiers termes d'ordre 2 et 3 s’écrivent :

Wi (P) = QZML%@ cos2z- 1) (1.2)
Wa(P) = GZML% (5 cos? z - 3 cos z)] (1.3)

Au premier ordre, le rapport M/d3 détermine l'influence des astres. Bien que sa masse soit
beaucoup plus faible, la Lune a une influence double de celle du Soleil en raison de sa plus
grande proximité de la Terre. Les autres plangtes ont des influences par rapport a I’effet total
de l'ordre de 104 et la galaxie entire de seulement 10718, La faible valeur du rapport t/d (=
1/60 pour la Lune) permet de négliger les termes d'ordre supérieur a 3. A titre indicatif, le
potentiel d'ordre 2 contient 98% de l'effet total de la Lune et 99% de l'effet du Soleil.
Toutefois, les observations des marées terrestres étant de plus en plus précises grice aux
gravimétres supraconducteurs, les termes d'ordre 3 et 4 sont parfois considérés [Ducarme,
1989].

I.1.1 - Le développement de Laplace
La formule du triangle de position de l'astronomie sphérique,
cosz=sin ¢ sin &+ cos $ cos & cos H(P) (1.4)
fait apparaitre les coordonnées astronomiques (¢,A) du point P ainsi que & et H(P) qui sont
respectivement la déclinaison et l'angle horaire de 1'astre perturbateur. En introduisant cette

nouvelle expression dans le terme d'ordre 2 du potentiel des marées (€q. 1.2), on obtient le
développement classique de Laplace :

11
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Figures 1.2 : Distribution géographique du potentiel des marées : (a) fonction sectorielle; (b)

Fonction tesserale; (c) fonction zonale [tiré de Melchior, 1983].
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permettant de séparer les marées en trois familles de fonctions harmoniques, appelées
especes. Les marées de périodes voisines de 12 heures, appelées marées semi-diurnes, sont
sectorielles. Les marées diurnes de périodes voisines de 24 heures sont tesserales tandis que
les marées 4 longues périodes (14 jours, 6 mois,...) sont zonales. Les Figures 1.2 montrent la
distribution géographique du potentiel des marées pour chacune des trois familles.

Les forces de marées sectorielles (semi-diurnes) sont responsables du freinage séculaire de
la vitesse de la rotation de la Terre. Les couples dus aux forces de marées tesserales (diurnes)
provoquent une déviation de l'axe d'inertie polaire (c’est-a-dire I'axe de symétrie) de la Terre
dans I’espace. Enfin, les forces de marées zonales (longues périodes) font varier
périodiquement I'aplatissement de la Terre provoquant des variations de sa vitesse de rotation
qui se traduisent par une variation de la longueur du jour.

La composante verticale de la force de marée est

OWz _GMt (3 cog2z - 1) (1.6)
or d3

C’est I’expression de la marée gravimétrique que mesurerait un gravimetre si la Terre était
parfaitement rigide. Par ailleurs, a la surface terrestre (en r=a), le potentiel de marée W
déplace la surface équipotentielle par rapport au centre de masse d'une distance donnée par
I'expression :

(3cos?2z- 1) (1.7)

ol g est l'accélération gravitationnelle de la Terre. Ce déplacement de la surface
équipotentielle est appelée marée d'équilibre.

I.1.2 - Le développement de Doodson

Le développement de Laplace, bien qu'il ait le mérite de faire apparaitre les trois especes
de marées, est d’un usage difficile. En effet, les termes en (r/d), & et H subissent des
variations temporelles complexes dues aux mouvements orbitaux du Soleil et de la Lune
autour de la Terre. Ces termes peuvent étre calculés avec une grande précision 2 partir de 6
variables indépendantes :

A

le temps lunaire moyen compté a partir de la culmination inférieure de
la Lune
la longitude moyenne de la Lune
la longitude moyenne du Soleil
la longitude du périgée lunaire
'=-N ol N est la longitude du noeud ascendant de la Lune
Ps la longitude moyenne du périhélie

Zs T e

13



14

Table 1.1 : Les principales ondes de marée.

Notation Nombre Nature Vitesse Période  Amplitude
de caractéris- angulaire en en (=A)dela
Darwin tique de degrés par heures marée
Doodson heure d'équilibre
solaire (cm)
moyenne
Ondes semi-diurnes : A cos2¢ cos(argument)
N, 245.655  lunaire elliptique 28.4397 12.66 4.7
M, 255.555  lunaire principale 28.9841 12.42 24.3
S, 273.555  solaire principale 30.0000 12.00 11.3
KM 275.555  lunaire déclinationnelle 30.0821 11.97 2.1
K,S 275.555  solaire déclinationnelle 30.0821 11.97 1.0
Ondes diurnes : A sin 2¢ sin(argument)
Q1 135.655  lunaire elliptique 13.3987 26.87 1.9
0] 145.555  lunaire principale 13.9430 25.82 10.1
P 163.555  solaire principale 14.9589 24.07 4.7
KM 166.555 lunaire déclinationnelle 15.0411 2393 9.7
K;S 166.555 solaire déclinationnelle 15.0411 23.93 4.5
Ondes de longue période : A (1-3 sinzq) ) cos(argument)
Ssa 057.555 solaire déclinationnelle 0.0821 182.70j 1.0
Mp 065.455  lunaire elliptique 0.5444 27.55j 1.1
Mt 075.555  lunaire déclinationnelle 1.0980 13.66j 2.1



dont les périodes connues & sept décimales prés sont respectivement 24.84 heures, 27.32
jours, 365.24 jours, 8.85 ans, 18.61 ans et 20942 ans. Les expressions de ces variables en
fonction du temps furent établies par Newcomb en 1895 pour le Soleil et par Brown [1919]
pour la Lune 2 partir de réductions d'un grand nombre d'observations méridiennes absolues du
Soleil et de la Lune. Le grand intérét de ces nouvelles variables provient du fait que ce sont
des fonctions quasi-linéaires du temps.

En introduisant ces formules dans le développement de Laplace, Doodson [1921] obtint un
développement purement harmonique du potentiel des marées. Ce développement comportait
386 ondes dont les constituants harmoniques ont des arguments combinaisons linéaires des 6
variables indépendantes. Le potentiel des marées s'exprime alors sous la forme d'une somme
de termes du type :

AG, 0, t){ &= }[(a1f+az S+as h+aspras N+as po)t ] (1.8)
sin

ol ~ est la dérivée par rapport au temps. En général, les coefficients aj (entiers) sont compris
entre -4 et +4. Cette constatation inspira & Doodson une codification pour l'argument sous
forme d'un nombre caractéristique définit par la suite de 6 entiers :

ai (az +5) (a3 +5) . (3.4 +5) (a5 +5) (a6 +5) (1.9)

Cette classification a l'avantage de ranger les arguments dans l'ordre croissant de leurs
vitesses angulaires. Les especes d’ondes sont différenciées par la valeur de ag; & l'intérieur des
especes, les groupes se différencient par la valeur de a; et les divers constituants des groupes
par la valeur de a3. Les especes d'ondes sont séparables par I'analyse harmonique sur des
séries d'observation de quelques jours. I1 faut 1 mois d'enregistrement pour séparer les
groupes et 1 an pour séparer les constituants. G.H. Darwin [1883] baptisa par des symboles
les harmoniques de marées les plus énergétiques dont les plus importants sont reproduits dans
la Table I.1.

Les calculs de Doodson ont été vérifiés par Cartwright et Tayler [1971] ainsi que par
Cartwright et Edden [1973] qui ont réactualisé les constantes astronomiques et utilisé une
méthode de décomposition spectrale. On trouvera dans Ducarme [1989] une comparaison des
performances et des précisions des développements du potentiel des marées les plus récents
de Xi Qin Wen [1987] et Tamura [1987].

1.2 - Les marées terrestres

A la suite de ce bref rappel sur le potentiel et les forces de marées, nous discutons la
modélisation des déformations de marée d’une Terre sans océan. Nous verrons que, pour une
Terre & symétrie sphérique et stratifiée, les déformations sont complétement caractérisées par
trois paramétres sans dimension, appelés nombres de Love. L’ellipticité, I’inélasticité de la
Terre et les hétérogénéités latérales de la structure terrestre influent sur les déformations de
marées et sont prises en compte dans les modeles.

1.2.1 - Terre élastique

Les forces de marées déforment la Terre solide, engendrant ce que I'on appelle les marées
terrestres. A la fréquence des marées, la réponse de la Terre est statique et dépend
principalement de son élasticité. Un modele de Terre & symétrie sphérique, sans rotation, dont
les paramétres d’élasticité de Lamé et la densité ne dépendent que de la distance par rapport
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au centre de la Terre, constitue une trés bonne approximation au premier ordre. Le calcul des
marées terrestres requiert la résolution des équations du mouvement formulées pour un corps
élastique, auto-gravitant, sphérique et stratifié¢ [voir par exemple, Melchior, 1983]. Les forces
extérieures sont dérivées du potentiel de marée d'ordre 2, Wa(r,9,A). Les solutions, en raison
de la symétrie sphérique, s'expriment uniquement en fonction du second degré du
développement en harmonique sphérique sous la forme :

pour le déplacement radial

=y Vi) 110

pour le déplacement horizontal nord-sud

L b® aW,(r,0.1)

2 % (1.11)
pour le déplacement horizontal est-ouest
_ L@ Wiroh) _
g cosd oA
etle poténtiel gravifique dii & la déformation
v = k(o) Walr.o.0) (1.13)

Les valeurs des fonctions radiales hy(r), 12(r) et ko(r) & la surface de la Terre (r=a) sont
appelés nombres de Love (12 est aussi appelé nombre de Shida). Ces nombres de Love sont
sans dimension et pratiquement sans dépendance en fréquence (sauf en cas de résonance).

Dans l'équation (1.10), on peut remarquer que le déplacement radial dii & la marée en
surface est proportionnel i la marée d'équilibre. Cela permet d'interpréter d'une manicre trés
simple le nombre de Love hp, comme étant le rapport entre le déplacement vertical 2 la
surface de la Terre et 1’élévation de la marée d'équilibre. Le résultat essentiel de cette théorie
est que tout paramétre de déformation due aux marées, observable a la surface de la Terre
considérée comme sphérique, peut étre écrit sous la forme d'une combinaison de nombres de
Love. Une des plus importantes est le facteur gravimétrique 6 :

§,=1+hy -%kz (1.14)

La marée gravimétrique théorique s'écrit alors :

Ag= 5, a% (1.15)

Ainsi, le facteur gravimétrique est défini comme le rapport de 'amplitude de marée observée
sur l'amplitude théorique de la marée sur une Terre parfaitement rigide.



Les nombres de Love sont calculés & partir d’un modele sismique de la constitution interne
de 1a Terre. Nous reproduisons ci-dessous les valeurs numériques des nombres de Love pour
une Terre élastique, qui sont aujourd’hui les plus largement utilisées [Wahr, 1981]:

hy =0.609
kp =0.302
12 =0.0852 (1.16)
oy =1.156

Les valeurs des nombres de Love sont relativement bien contraintes malgré notre
connaissance incompléte de la structure interne de la Terre. Le facteur gravimétrique est
connu 3 + 0.5% . En cas de désaccord entre la prédiction théorique et 1'observation, on ne met
généralement pas en cause le modele théorique de marées terrestres, mais on incrimine plutdt
des effets dus aux hétérogénéités latérales et a la surcharge des marées océaniques. Un
modele de Terre élastique, & symétrie sphérique et stratifiée est assez précis pour la plupart
des applications. Cependant, les effets de I’ellipticité de la Terre et de sa rotation ainsi que de
son inélasticité doivent étre considérés si 1’on désire atteindre des précisions meilleures que
1%.

L.2.2 - Terre élastique, elliptique et en rotation

Wahr [1981] a résolu les équations du mouvement pour une Terre élastique, elliptique, en
rotation et auto-gravitante. En raison de la perte de la symétrie sphérique, les solutions ne
peuvent plus étre exprimées par une combinaison simple des trois nombres de Love. Les
parametres équivalents aux nombres de Love deviennent dépendants de la latitude ainsi que le
facteur gravimétrique dont I’expression théorique est :

8 = 1.160 - 0.005 [125 (7 sin2¢ - 1))] (1.17)

L’introduction de ellipticité et de la rotation dans les équations modifient de 1% le
facteur gravimétrique. Wahr fit une étude de sensibilité des solutions en fonction des modeles
de Terre élastique calculés 2 partir de données récentes d’oscillations libres, d’ondes internes
(body wave) et d’ondes de surface. Il trouva que la marée gravimétrique varie d’environ 0.1%
selon le modgle choisi.

Le noyau liquide terrestre, enfermé dans le manteau ellipsoidal, poss¢éde un mode propre
consistant en une précession rétrograde de son axe de rotation due au couple de pression du
fluide exercé sur la frontiere elliptique. Ce mode libre, appelé “Free Core Nutation” (FCN) ou
“nearly diurnal Free Wobble” en anglais, engendre une résonance dans la bande de fréquence
des marées diurnes. Le modele elliptique de Wahr permet d’obtenir la résonance du noyau. La
Figure 1.3 montre ’effet de la résonance dans la bande diurne des marées sur le facteur
gravimétrique . La fréquence de marée y est trés proche de la fréquence de résonance FCN;
son facteur gravimétrique est amplifié d’une dizaine de pour-cent alors que celui des
harmoniques P; et K; est atténué de quelques pour-cent. Matthew et al. [1991], considérant
que la graine solide peut avoir des mouvements propres et indépendants du noyau liquide et
du manteau, ont trouvé deux nouvelles fréquences. Celles-ci dépendent de V’ellipticité
dynamique de la graine et du couple gravitationnel exercé par le noyau et le manteau ainsi
que du couple de pression du fluide 2 la frontiere graine-noyau. Ils trouvérent un “Inner Core
Wobble” prograde qui ne contribue pas aux marées terrestres et un “diurnal Free Inner Core
Nutation” (FICN) rétrograde en plein milieu de la bande diurne des marées. Comme on peut
le voir dans la Figure 1.3, I’effet de cette résonance sur les marées est tout i fait négligeable.
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Figure 1.3 : Effet des résonances dues au Free Core Nutation (FCN) et au Free Inner Core
Nutation (FICN) sur le facteur garvimétrique 6 dans la bande de fréquence des marées
diurnes [tiré de Melchior, 1992].



1.2.3 - Terre inélastique

Les modeles que nous avons discutés jusqu’d présent, qu’ils soient sphériques ou
elliptiques, considerent la Terre comme un corps parfaitement élastique. Cependant, le
comportement viscoélastique de la Terre, dans la bande des fréquences des marées, joue un
role important dans la compréhension des mécanismes de dissipation de I’énergie des marées
et de 1’évolution de I’orbite lunaire. En raison de son inélasticité, la Terre répond avec un
léger retard aux forces de marées. Ce déphasage crée un couple agissant sur la Terre et sur la
Lune qui ralentit la rotation de la Terre et accélere le Lune sur son orbite provoquant son
éloignement de notre planéte d’environ 3.7 cm par an [Lambeck, 1988]. Pour calculer les
effets de I’inélasticité de la Terre, on introduit des nombres de Love complexes et on doit
formuler des hypothéses sur les mécanismes de dissipation aux périodes des marées. Zschau
[1978] a trouvé que la partie imaginaire des nombres de Love est 1000 fois plus petite que la
partie réelle. La dissipation de ’énergie des marées dans la Terre solide est donc tres faible et
ne représente que quelques pour-cent de la dissipation totale. La quasi totalit¢ de 1’énergie
dissipée provient des marées océaniques. Le retard de phase de la marée gravimétrique est
inférieure 4 0.01°. Les déphasages observés dans les enregistrements de marées
gravimétriques sont de I’ordre de 0.4 [Melchior, 1989]. Ceux-ci ne sont pas attribués a des
effets provoqués par les propriétés visqueuses de la Terre, mais plutdt aux conséquences de la
dissipation de 1’énergie par le travail de la pression des marées océaniques, exercée sur le
fond des océans, contre la marée de la Terre solide [Schwiderski, 1985].

Les nombres de Love complexes sont fonctions de la fréquence & cause de I’inélasticité et
du processus de dissipation qui lui est associé. Pour les ondes diurnes et semi-diurnes, les
modeles montrent une augmentation de la valeur des nombres de Love d’environ 2% (par
rapport aux nombres de Love pour une Terre élastique) qui se répercute sur le facteur
gravimétrique qui augmente d’environ 0.2%. Les effets de I’inélasticité sont plus importants
pour les marées & longues périodes.

L2.4 - Terre elliptique et inélastique

L’effet de I’inélasticité du manteau a été incorporé dans le modele de Wahr par Dehant
[1987] qui a utilisé des profils de paramétres rhéologiques complexes. Les équations
différentielles deviennent complexes ainsi que les parametres de marée. Cette étude a conduit
a4 une augmentation du facteur gravimétrique de 1’ordre de quelques dixieémes de pour-cent
expliquant une partie de 1’écart entre les observations et les modeles théoriques.

L.2.5 - Hétérogénéités latérales de la structure terrestre

Ziirn et al.[1976] ont montré avec un modgle aux éléments finis qu’une zone de subduction
provoque une anomalie dans la composante verticale du déplacement de marée de 1’ordre de
0.8%. Beaumont et Berger [1974] trouverent qu’une inhomogénéité dans la crofite terrestre
peut modifier cette méme composante jusqu’a 0.3%. Par ailleurs, Molodensky et Kramer
[1980] ont calculé que les variations latérales de la structure du manteau supérieur terrestre
changent le facteur gravimétrique de seulement 0.3%.

I.3 - Les marées de surcharge océanique

Jusqu’a présent, nous avons considéré les déformations de marées pour une Terre sans
océan. Comme les modes normaux des océans couvrent les bandes de fréquences occupées
par les marées, les océans répondent dynamiquement au forgage des marées et présentent les
mémes périodicités que les marées terrestres. Les marées océaniques représentent une charge
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Figures 1.4 : Fonctions de Green du déplacement radial élastique et inélastique calculées
avec le modéle PREM pour les ondes de marées M et My : (a) phases en degrés et (b)

amplitudes normalisées selon Farrell [1972].

Tablfﬁ 1.2 : Effets gr"avimétriques de surcharge océanique pour I’ onde principale de
marée M3, Les amplitudes sont en microgal et les phases en degrés [tiré de Francis et

Mazzega, 1990)].

Station Gutenberg- PREM PREM

Bullen Inelastic

Bruxelles 1.880 (63.1) 1.885 (62.9) 1.856 (63.0)
Kiev 0.631 (11.8) 0.624 (11.6) 0.620 (11.4)
Novosibirsk 0.219 (-133.1) 0.219 (-133.1) 0.216 (-133.2)
Madrid 4,067 (100.4) 3.964 (100.5) 4,035 (100.2)
M'Bour 3.797 (-29.8) 3.776 (-29.8) 3.804 (-29.8)
Bangui 1.670 (67.4) 1.687 (67.5) 1.671 (67.3)
Cartagena 2.649 (76.6) 2.656 (76.6) 2.623 (76.6)
Manaus 2.377 (56.1) 2.376 (56.3) 2.359 (56.1)
Alice Springs 0.543 (-78.9) 0.562 (-80.5) 0.554 (-80.6)
South Pole 0.738 (-45.7) 0.738 (-b5.4) 0.731 (-45.7)




périodique sur le fond des océans qui déforme la Terre dans son ensemble. Cette marée
additionnelle est appelée marée de surcharge océanique ou effet indirect. L’analyse spectrale
d’enregistrements de marées terrestres ne permet pas de séparer les contributions de la marée
directe de celles de la marée de surcharge océanique. Diverses méthodes ont été développées
afin d’évaluer les effets de surcharge océanique & partir de modeles spectraux de marée
océanique et d’un modele de Terre [voir Baker, 1985]. En 1972, Farrell a publi€ la méthode la
plus précise et la plus couramment utilisée : la réponse de la Terre soumise au poids d’une
charge ponctuelle en surface est calculée pour un mode¢le donné de la structure interne de la
Terre. Les fonctions de Green des différentes composantes de la déformation sont tabulées en
fonction de la distance angulaire o entre le point d’application de la charge et la station
d’observation. Nous reproduisons ci-dessous les expressions des fonctions de Green pour le
déplacement radial:

u(o) = & 2 hy, Py(cos o) (1.18)

n=0

I’accélération gravitationnelle:

£ %" [n+2hy - nn+1) ky] Py(cos ) (1.19)
® n=0
et le potentiel:
(p(oc)- Z 1+ k) Py(cos o) (1.20)

oll m. est la masse de la Terre, h’, et k’, sont les nombres de Love de charge dont les valeurs
dépendent du modele de Terre considéré, et P, les polyndmes de Legendre. Ensuite, le
modele de marée océanique est convolué avec une des fonctions de Green pour obtenir ’effet
total de surcharge correspondant:

E(q),x)=pwf f G(o) He'\' ) ds’ (1.21)

ol @, A sont la latitude et la longitude de la station, py, la densité moyenne de I’eau de mer, G
une des fonctions de Green et h I’élévation de marée sur I’élément de surface dS’ de
coordonnées géographiques @’, A’. L’angle o est calculé par la formule du triangle sphérique:

cos oL =sin @’ sin @+ cos@’ cos @ sin (A-A") (1.22)
L’intégrale doit &tre calculée séparément pour chaque onde de marée.
L3.1 - Les fonctions de Green

Les fonctions de Green, comme nous 1I’avons vu, traduisent la réponse de la Terre au poids
d’une charge ponctuelle en surface. La résolution numérique de I’équation du mouvement, de
la relation tension-déformation et de 1’équation de Poisson pour une Terre sphérique,
stratifiée et gravitante soumise i une charge unitaire et ponctuelle en surface fournit les
valeurs des nombres de Love de charge. Ces équations prennent en compte les propriétés
rhéologiques de la Terre. Les nombres de Love de charge sont donc fonctions du modele
sismologique utilisé. A courte distance, les fonctions de Green sont sensibles aux structures
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Figures 1.5 : Cartes cotidales du déplacement vertical induit par la surcharge océanique de
I'onde de marée M, (a) amplitudes en millimétres; (b) phase en degrés.



régionales de la crofite terrestre et du manteau, tandis que pour des distances supérieures
500 km, une structure stratifiée comme celle décrite par les modeles globaux sans
inhomogénéité latérale suffit amplement. Cela signifie qu’une description plus réaliste de la
réponse & une charge en surface peut &tre obtenue grace & un raffinement local du modele de
Terre pres du site d’observation.

Les fonctions de Green peuvent étre classées suivant deux types : celles qui ont été
calculées en faisant I’hypothe¢se que la Terre répond de maniere élastique dans la bande des
fréquences des marées et celles qui ont été calculées en tenant compte de la viscoélasticité du
manteau. Les principales différences entre les fonctions de Green élastiques et viscoélastiques
(voir Figures 1.4) apparaissent pour des distances entre le point d’application de la charge et le
site d’observation inférieures & 1°. La faible viscosité de 1’asthénosphere en est la cause. Tous
les travaux effectués sur les fonctions de Green montrent que les estimations des effets de
surcharge varient suivant le type de fonction de Green utilisé de I’ordre du pour-cent, c’est-a-
dire de quelques centitmes de microgal pour les effets gravimétriques et de quelques
centiemes de millimetres pour les déplacements [Francis, 1992]. A titre d’exemple, les
estimations des effets gravimétriques de surcharge océanique en différentes stations pour les
deux types de fonctions de Green sont reproduites dans la Table 1.2. Les amplitudes varient
de 1 a2 % et les phases de seulement 1°. Nous avons choisi une station cotiére et une station
continentale sur chaque continent afin d’assurer la généralisation des conclusions. Les
différences observées correspondent au niveau de précision des performances instrumentales
actuelles. En 1’absence de grosses hétérogénéités locales dans la structure terrestre dont
I’impact sur les effets de surcharge océanique est mal connu, I’incertitude sur les estimations
des effets de surcharge est due au premier chef aux erreurs des modeles de marée océanique.

1.3.2 - Cartes globales d’effets de surcharge océanique

Francis et Mazzega [1990] ont calculé des cartes d’effets de surcharge océanique a partir
du modele hydrodynamique de marée de Schwiderski [1980a et b] et des fonctions de Green
calculées a partir de PREM pour une Terre élastique [Francis et Dehant, 1987]. Les cartes
mondiales d’amplitude et de phase du déplacement vertical induit par la surcharge océanique
de I’onde semi-diurne principale M, sont reproduites dans les Figures 1.5. L’amplitude peut
atteindre S cm en plein océan et exceptionnellement jusqu’a 10 cm 13 ol les marées sont les
plus fortes. Sur les continents, I’effet est de 1’ordre du centimétre et diminue en fonction de
I’éloignement des cdtes d’environ 1 cm par 1000 km. La carte de I’effet gravimétrique
présente des contours similaires avec des amplitudes sur les continents de quelques microgals.
Les cartes des effets de surcharge pour deux ondes de méme espéce se ressemblent et
ressemblent aux cartes de marée océanique a partir desquelles elles ont été calculées, car la
convolution est un opérateur linéaire qui agit comme un filtre passe-bas.

L4 - Les marées océaniques

Les marées océaniques sont des mouvements périodiques et réguliers du niveau de la mer.
La force dominante responsable dérive du potentiel gravitationnel luni-solaire a la surface de
la Terre qui varie de mani¢re périodique. Les mouvements engendrés par cette force sont
appelés marées gravitationnelles pour les différencier des mouvements plus faibles engendrés
par des forces d’origine météorologique ou des marées radiationnelles causées par le
rayonnement solaire.

En 1790, Laplace déclare les marées océaniques comme étant “... ce probleéme, le plus
épineux de toute la mécanique céleste “. Ses travaux, parmi lesquels un essai sur le ” Flux et
reflux des marées ~ ainsi que le chapitre sur les marées dans son “ Trait€ de Mécanique
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céleste” [1799-1823], sont A la base de la recherche moderne en ce domaine. Ses principales
contributions sont : (1) la séparation des marées en trois esp&ces distinctes (cfr. §1.1) ; (2) la
formulation des équations dynamiques liant les déplacements verticaux et horizontaux aux
composantes horizontales de la force génératrice des marées; (3) I’hypothése que la marée,
quel que soit 1’endroit, présente toujours le méme contenu spectral que celui de la force
génératrice des marées car les phénomenes linéaires jouent un réle dominant dans les
¢quations. Laplace obtint des solutions des équations dynamiques pour un océan couvrant
tout le globe et trouva que les solutions dépendent fortement de la profondeur du fluide. 11 en
vint  la conclusion qu’un traitement réaliste de la bathymétrie et des frontieres continentales
détruit tout espoir d’obtenir une solution analytique.

En 1868, William Thomson (Lord Kelvin), inspiré par 1’hypothése (3) formulée par
Laplace, proposa une expression empirique pour décrire la hauteur de la marée € en n’importe
quel point P :

Ce(t)= D, Ancos(an t - Gy + Xn) (1.23)

ol My, est la vitesse angulaire de 1’onde n donnée par la mécanique céleste, A, et Gy
I’amplitude et la phase de 1’onde n qui sont déterminées empiriquement 2 partir de 1’analyse
d’enregistrement de marée au point P, et x, I’argument astronomique ou phase 2 1’instant
origine. Cette représentation, a la base de la méthode harmonique d’analyse et de prédiction
de la marée, s’avéra rapidement bien plus efficace que toute autre formulation.

L.4.1 - Les équations hydrodynamiques de Laplace

Les équations générales de Navier-Stokes, qui permettent de décrire la dynamique des
océans, en considérant, dans le cadre de 1’étude des marées, les hypothéses simplificatrices
suivantes :

. Fluide homogeéne et incompressible

. Rotation uniforme (permettant la linéarisation des équations)

. Terre sphérique

. Terre rigide

. Champ gravitationnel terrestre uniforme 2 la surface et invariant dans
le temps

. Océan peu profond pour lequel la force de Coriolis associée a la
composante horizontale de la rotation terrestre et 1’accélération
verticale des particules du fluide peuvent étre négligées. Les vitesses
verticales sont négligeables par rapport aux vitesses horizontales
(hypothese de base des ondes longues)
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Figures 1.7 : (a) Rms de I’amplitude de la marée forcée par I’ harmonique sphérique P, du
potentiel des marées pour un océan hémisphérique d’'une profondeur de 4,4 km. Chaque
courbe correspond @ un choix différent du coefficient de friction. Les coefficients utilisés
correspondent respectivement @ des temps d’ amortissement de 60, 30, 20, 15 et 12 heures.
Ce dernier donne les pics de résonance dont les amplitudes sont les plus faibles. Plus le
coefficient de friction est important, plus les différents pics de résonance se confondent. Les
Jréquences positives correspondent A la marée provoquée par un astre se déplacant de I’ est
vers I'ouest, les fréquences négatives a un mouvement de I'astre de I’ ouest vers I'est. (b)
Cartes cotidales pour une fréquence quasi résonante a 2 cycles par jour (S;) avec un
coefficient de friction d’un temps d’ amortissement de 15 heures. (a). Les lignes continues sont
les amplitudes par rapport @ la marée d’ équilibre (¢’ est-A-dire pour une fréquence nulle) et
les lignes pointillées représentent les phases 0, 90, 180 et 270 degrés avec le sens de rotation
indiqué par les fléches. La solution n’est pas symétrique par rapport au méridien central Q
cause de la dissipation par frottement [Figures tirées de Webb, 1980)].



avee

(6,A) colatitude et longitude est
(u,v) composantes sud et est de la vitesse moyennée sur la profondeur

4 élévation de la surface libre au-dessus du niveau de référence (surface non perturbée)
r potentiel des forces extérieures

g accélération de pesanteur en surface

a rayon terrestre moyen

Q vitesse angulaire de la rotation de la Terre

h(8,\) profondeur de I’océan (non perturbé)

F composantes de la dissipation par friction généralement spécifiées en fonction de (u,v)

Les deux premieres équations expriment la conservation de la quantité¢ du mouvement pour
un fluide homogene sur une sphére en rotation. La troisiéme équation exprime la conservation
de la masse dans un fluide homogene incompressible. Ces équations hydrodynamiques de
Laplace forment un syst¢tme d’équations différenticlles hyperboliques et sont linéaires
conditions de linéariser les termes de dissipation. Dans ce cas, les solutions présentent les
mémes caractéristiques temporelles que celle du potentiel des marées dont dérivent les forces
extérieures. En décomposant le potentiel des marées en ses différents harmoniques, on obtient
une équation elliptique en 8 et A pour chaque fréquence de marée. La solution est obtenue par
superposition linéaire des solutions calculées séparément pour chaque fréquence du potentiel
générateur des marées.

Les équations de Laplace sont assorties de conditions aux limites qui peuvent étre de
natures diverses :

1. Probléme de Dirichlet : les valeurs observées de la marée sont incorporées dans le modele
soit le long des cotes soit le long des frontieéres ouvertes.

2. Probléme de Neumann : La composante de la vitesse normale 2 la limite du domaine
d’intégration est nulle. Cette condition d’imperméabilité est équivalente a une réflexion de
I’onde incidente par la cote.

3. Condition type mixte : I’élévation de marée est imposée en certains points et les courants
en d’autres.

Les solutions spectrales de marée océanique sont présentées sous forme de cartes cotidales
(Figures 1.6). On appelle ligne cotidale le lieu des points ou la pleine mer de I’onde se produit
au méme instant. Le lieu des points tels que 1’amplitude soit constante s’appelle ligne
d’isomarnage (ou ligne d’égale amplitude). Les points amphidromiques sont les points ol
I’amplitude est nulle.

1.4.2 - Solutions analytiques

Plusieurs travaux ont été publiés sur la résolution analytique des équations linéaires de
Laplace. La solution générale du probléme est la somme de la solution des équations sans
second membre et d’une solution particulie¢re des équations complétes. Ces deux solutions
partielles correspondent respectivement aux oscillations libres ou modes propres dont les
fréquences dépendent de la géométrie des bassins, et aux oscillations entretenues ou modes
forcés dont les fréquences sont celles du potentiel générateur. Si une de ces fréquences est
proche d’une fréquence propre, il y a résonance, ce qui se traduit par une amplification de
I’oscillation entretenue. Ce dernier point justifie 'intérét de 1’étude des oscillations libres des
bassins océaniques.

Les études menées concernent uniquement des océans hémisphériques a profondeur
constante et limités par des méridiens distants de 180°. Doodson [1938] obtint les premiéres
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Figure 1.8 : Carte de la différence entre I estimation de I effet de surcharge par I intégrale de
convolution et par un simple coefficient proportionnel & la marée océanique. L’ amplitude du
déplacement radial pour I'onde M3 est en millimétres[tiré de Francis et Mazzega, 1990].



solutions pour une fréquence donnée sans dissipation d’énergie. Proudman [1917] exprima
les marées sous la forme d’un développement en fonction des modes normaux lagrangiens
des océans, valide, en principe, quelle que soit la forme de 1’océan. Le spectre complet des
fréquences propres a été calculé par Longuet-Higgins et Pond [1970]. Enfin, Webb [1980]
calcula une solution de marée forcée par une variable continue en fréquence avec un terme de
dissipation par frottement linéaire. Les résultats obtenus (Figures 1.7) confirment que les
fréquences des ondes semi-diurnes tombent effectivement dans le domaine des fréquences
propres ce qui laisse présager 1’existence de phénomenes de résonance. Ils montrent aussi que
les élévations de la surface libre ont tendance a étre plus fortes prés la cote, ce qui est
cohérent avec les observations. L’introduction de conditions aux limites plus réalistes
augmente trés rapidement la complexité des calculs et nécessite une résolution numérique.

~
N

1.4.3 - Solutions globales de marées océaniques

Depuis 1970, grice aux calculateurs de plus en plus puissants, de nombreux modeles
globaux de marées océaniques ont vu le jour. Nous ne présenterons que certains d’entre-eux
afin d’illustrer les différentes approches. On trouvera une présentation plus détaillée de
certains modeles dans Cartwright [1977] et Hendershott [1977].

Un modele obtenu 2 partir d’observations seules (par exemple par interpolation des
données) est dit empirique. Si les données d’observation sont incluses dans un modele
numérique pour le contraindre, le modele est alors qualifi¢ de modele semi-empirique. Si, par
contre, les données ne servent que comme points de comparaison entre le résultat numérique
et la nature, le modele est dit purement hydrodynamique. Les meilleures solutions actuelles
sont du type semi-empirique; leurs précisions sont voisines des modeles empiriques calculés a
partir de données des satellites altimétriques. Les développements actuels en modélisation des
marées océaniques sont orientés vers les méthodes d’assimilation qui ont pour but de
contraindre les modeles hydrodynamiques par les observations & 1’aide de méthodes
d’optimisation.

Nous présentons succinctement les différents modeles en évoquant les différentes options
qui ont été choisies pour traiter le terme de dissipation par friction et le potentiel des effets de
surcharge. Les modeles basés sur des décompositions en modes normaux ou en fonctions de
Proudman de I’océan mondial seront abordés ainsi que les modeles d’assimilation.

Des études sur les courants dans les rivieres et les chenaux ont permis de dériver une
expression empirique des termes de dissipation par frottement qui s’écrit :

Fg=—S-ufu2+v2

h+{
(1.25)
F, =< v{u2+v2
h+{

oll ¢ est une constante universelle égale a 0.002510.0005. La profondeur h qui apparait dans
I’expression refléte bien le role important que jouent les mers littorales dans la dissipation de
Pénergie. La plupart des modeles utilisent I’expression (1.25) telle quelle tant pour les mers
littorales que celles qui couvrent des régions profondes et peu profondes. Sa forme non-
lindaire interdit en général toute décomposition spectrale en les différents constituants
harmoniques. Les solutions ne peuvent étre obtenues que par une intégration spatiale et
temporelle incluant les principaux harmoniques de marée. Sous 1’hypoth¢se de I’existence
d’une onde dominante (généralement M5), LeProvost [1973a-b] a montré que 1’expression
des termes de dissipation peut étre linéarisée par un développement en série de Fourier. Ce
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résultat permet de linéariser également les équations de Laplace et donc de rechercher des
solutions spectrales [Vincent et LeProvost, 1988]. A I’inverse, Accad et Pekeris [1978] et
Parke et Hendershott [1980] éliminent les termes de dissipation dans les équations, mais
permettent A I’énergie de se dissiper au travers de certaines fronti¢res ouvertes dans des zones
littorales. Pour cela, ils reldchent la contrainte d’imperméabilité aux frontieres continentales.
D’autres auteurs [par exemple, Zahel, 1977 et Schwiderski, 1980a] introduisent en plus du
terme de dissipation par frottement, un terme représentant la dissipation de 1’énergie par
viscosité latérale traduisant que les courants des marées peuvent injecter de I’énergie dans les
tourbillons horizontaux. Le formalisme comprend un coefficient arbitraire dont la valeur varie
dans une fourchette assez large. Ce terme a 1’avantage d’assurer a la solution une stabilité
numérique.

La surcharge océanique produit une variation du potentiel qui agit sur la marée océanique
elle-méme. Tenir compte de ce potentiel additionnel complique grandement la résolution des
équations. Le potentiel de surcharge est calculé, comme nous I’avons déja vu, par intégration
de la solution de la marée en hauteur sur tous les océans transformant I’équation de Laplace
en une équation intégro-différentielle. Hendershott [1972] proposa un schéma itératif qui ne
converge qu’en présence d’un terme de dissipation de 1’énergie. Parke et Hendershott [1980],
bien que leur modele soit non dissipatif, utiliserent ce schéma itératif pour construire a partir
d’une premiére solution un ensemble de fonctions de base leur permettant d’interpoler au sens
des moindres carrés les données sur les iles. Accad et Pekeris [1978] proposerent une
procédure qui converge lentement mais dont la convergence peut étre accélérée en remplagant
I'intégrale de charge par un terme proportionnel 2 la hauteur de marée. Cette approximation a
aussi été utilisée par Schwiderski [1980a-b] pour simplifier les équations. Elle donne de bons
résultats en plein océan mais est discutable en mers littorales (Figure 1.8) ol les modgles sont
généralement contraints par des données de marégraphie cotiere. Actuellement, les
modélisateurs introduisent dans les équations 1’effet de surcharge calculé a partir des cartes de
Schwiderski [LeProvost et Vincent, 1991].

Une alternative  la résolution des équations hydrodynamiques consiste a déterminer les
modes normaux des océans et leurs fréquences de résonance. Les modes normaux ont été
calculés par Gotlib et Kagan [1980] sur une grille 5°x5° et par Platzman et al. [1981] avec un
modele aux éléments finis sur une gille 3°x3°. Sanchez [1991] calcula les fonctions de
Proudman pour tous les océans sur une grille 4°x4" avec des conditions réalistes. Il a résolu
I’équation 1.24 sans terme de potentiel générateur avec une condition d’imperméabilité le
long des frontidres continentales. Aucun terme de dissipation par frottement n’est inclus;
toutefois, il semblerait que les fréquences propres ne soient que faiblement affectées par les
effets dissipatifs. Sanchez et al. [1985] optérent pour une décomposition des marées
océaniques sur les fonctions de Proudman calculées au préalable sur ’entiereté des océans.
Les fonctions de Proudman sont fondamentalement les fonctions propres de I’équation de
conservation de la masse avec des frontieres continentales imperméables. Elles sont encore
plus élémentaires que les modes normaux et en un sens moins restrictives en ce qui concerne
les hypotheses physiques. Sanchez [1991] compte calculer des solutions globales en
décomposant les marées sur une base de fonctions de Proudman dont les coefficients seront
obtenus par un ajustement par moindres carrés d’observations altimétriques et/ou
marégraphiques. L’avantage d’une telle décomposition par rapport une décompostion
classique en polyndmes de Legendre est que 1’on peut obtenir la méme précision en ajustant
un plus petit nombre de coefficients.

La tendance actuelle de la recherche en marée océanique porte sur l'utilisation de
méthodes d’assimilation. Garrett et Greenberg [1977] ont publié la premicre étude théorique
sur I’assimilation en marées océaniques. Les techniques d’assimilation sont en quelque sorte
une généralisation des méthodes semi-empiriques qui présentent ’avantage d’€tre plus
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Table 1.3 : Caractéristiques des principaux modeéles numériques de marée océanique que nous avons discutés.

Modele Type Résolution spatiale Conditions Mode de dissipation Onde Potentiel
limites
imperméabilité Frottement linéaire potentiel complet
Zahel (1977) semi-empirique 1 degré + + M2 +
glissement viscosité latérale charge
Accad et Pekeris hydrodynamique 2 degrés radiation rien Mo, So potentiel complet
(1978) +
charge
Parke et semi-empirique 6 degrés élévations aux cotes rien M2, S82,K1 potentiel complet
Hendershott (1980) +
charge
Schwiderski (1980) semi-empirique 1 degré interpolation frottement linéaire + | Mp, S2, N2, K>, potentiel complet
données viscosité latérale 01.K1,P1,Q1., +
+ Mm. Mg, Sa charge
condition de flux
entrant / flux sortant
Platzman (1981) modes normaux 4.5 degrés rien rien My rien
Gotlib et Kagan hydrodynamique 5 degrés réflexion et frottement M potentiel complet
(1982) + paramétrisation de quadratique pas de charge
modes normaux I’effet de plateaux




rigoureuses et plus complétes. De premiéres solutions sur les océans ont été obtenues par
Zahel [1991] et Jourdin [1992] en perturbant 1’équation de continuité et les conditions aux
limites de type Dirichlet aux frontiéres ouvertes afin de minimiser I’écart aux données. Le
probléme ainsi formulé est linéaire. Dans 1’avenir, d’autres paramétres seront relachés tels
que la bathymétrie et les coefficients de friction rendant le probléme non-linéaire.

L’altimétrie par satellite a ouvert de nouveaux sentiers en recherche sur les marées
océaniques a I’échelle globale. Certains auteurs [Mazzega, 1985; Woodworth et Cartwright,
1986] ont construit des cartes cotidales de I’onde M, a partir des données du satellite
altimétrique Seasat. Ces cartes sont qualitativement correctes mais n’égalent pas en précision
les derniers modeles semi-empiriques. Les raisons principales sont le manque de données
(Seasat n’a fonctionné que quatre mois) et les erreurs trop importantes affectant les données.
Ces travaux n’étaient que préliminaires. En effet, depuis, Cartwright et Ray [1991] ont publié
A partir des données altimétriques de Geosat des solutions (Figures 1.9) pour les 8 ondes
principales de marée, qui semblent étre de qualité équivalente au modele de Schwiderski,
meilleur modele semi-empirique 2 ce jour.

1.5 - Conclusions

Parmi les différentes manifestations des marées que nous avons présentées, les marées
terrestres apparaissent comme le phénomeéne le mieux connu ou du moins le mieux modélisé.
Les marées de surcharge océanique sont relativement bien modélisées. Cependant, la
précision des estimations des effets de surcharge dépend essentiellement de la précision des
modeles globaux des marées océaniques. Modéliser les marées océaniques est un probleme
plus compliqué. Les approches théoriques aident 2 la compréhension physique du
phénoméne, mais ne permettent pas de les calculer et de les prédire avec une précision
subdécimétrique. Les approches semi-empiriques donnent les meilleurs résultats et
connaissent aujourd’hui un regain d’intérét au travers des méthodes d’assimilation. Enfin, les
modeles purement empiriques actuels obtenus par analyse de mesures altimétriques sont aussi
précis que les meilleurs modeles semi-empiriques. Dans I’avenir, il semblerait qu’une
amélioration des modeles des marées passe par des méthodes d’assimilation de données de
tous ordres (gravimétriques, marégraphiques et altimétriques) dans les modeles
hydrodynamiques.
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Figure 11.1 : Schéma d’un marégraphe a flotteur.
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CHAPITRE II : L’OBSERVATION DES MAREES

Modéliser les marées océaniques 4 partir des observations, tel est notre objectif.
L’ensemble des solutions empiriques que nous avons obtenues ont été calculées a partir de
mesures marégraphiques, gravimétriques de marée terrestre et d’altimétrie par satellite.
L’intérét de ces trois types de mesures réside dans la complémentarité de leur nature, de leur
répartition géographique et des caractéristiques des erreurs qui les affectent. Dans ce chapitre,
nous passons en revue les instruments de mesures les plus répandus ainsi que les méthodes
classiques d’analyse des observations afin de mieux cerner leur bilan d’erreur qui est un
élément essentiel pour la méthode d’analyse que nous exposons dans le chapitre IV. Nous
avons regroupé la marégraphie et la gravimétrie sous la méme section, car elles concernent
des séries temporelles en un site et les méthodes d’analyse sont les mémes. L’altimétrie est
traitée & part car elle est de nature trés différente compte tenu de son €chantillonnage spatio-
temporel.

IL.1 - La marégraphie et la gravimétrie
I1.1.1 - Les marégraphes
I1.1.1.1- Echelles de marée

Depuis deux si¢cles, la hauteur du niveau de la mer dans les ports est mesurée visuellement
sur une mire graduée. Cette méthode a I’avantage d’étre peu cofiteuse, simple et facile a
mettre en oeuvre. Le choix de ’emplacement de I’échelle est un probléme essentiel. 11 faut
tout d’abord veiller a ce que la marée puisse étre observée complétement; par conséquent,
I’endroit doit &tre choisi de maniére & maintenir le pied de 1’échelle constamment dans I’eau.
11 faut aussi s’affranchir le plus possible des phénomenes locaux qui peuvent entraver la libre
propagation de la marée. Enfin, les échelles doivent étre soigneusement nivelées par rapport &
des reperes géodésiques bien définis du voisinage, le cas échéant, au nivellement général du
pays. Cette opération permet le rattachement ultérieur lors du remplacement de 1’échelle, ce
qui est indispensable pour le suivi du niveau moyen de la mer.

Par mer calme, on peut déterminer la hauteur du niveau de I’eau & I’aide d’une mire avec
une précision de 2 cm. Des expériences ont montré qu’un opérateur expérimenté peut
atteindre une précision de 5 cm sur les lectures en présence de vagues d’une amplitude de 1.5
m. Malgré tout, des erreurs systématiques existent a cause soit d’un biais de lecture inhérent &
I’opérateur soit de la différence entre 1’éclairage du jour et de la nuit.

Le syst¢me de lecture des échelles de marée peut €tre amélioré en enfermant la mire dans
un tube transparent de 2.5 cm de diamétre. Ce dernier est alors connecté & un autre tube d’un
diamétre de 0.4 cm et d’une longueur de 2.7 m [Pugh, 1987]. Ce dispositif moyenne le signal
sur 30 secondes, ce qui est suffisant pour atténuer les effets des vagues et permettre ainsi une
lecture plus aisée.

Aujourd’hui, les mesures visuelles sont abandonnées en raison du probléme de la main
d’oeuvre (une lecture était faite tous les quarts d’heure).
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I1.1.1.2 - Marégraphes a flotteurs

Des la seconde moitié du XIX ieme sjdcle, les enregistreurs automatiques a flotteurs ont été
installés dans la plupart des stations marégraphiques permanentes. C’est le seul instrument
encore utilisé actuellement qui mesure directement la hauteur du niveau de I’eau, c’est-a-dire
la grandeur physique recherchée. La Figure II.1 reprend les composants principaux des
marégraphes a flotteurs. Un flotteur est disposé dans un tube vertical en communication avec
la mer. Le tube est inséré dans un puits et doit plonger bien en dessous du niveau le plus bas
que peut atteindre la surface 2 mesurer. Le fond du tube se termine en “cone” qui repose sur
un autre tube scellé sur le fond. Ce tube “support™ a de petites ouvertures qui opposent une
résistance au flux entrant. L’ orifice conique retient le flux afin d’amortir les variations rapides
de la hauteur de I’eau (houle et clapotis) tout en évitant une réduction de 1’amplitude ou un
déphasage de la marée. Un fil métallique posé sur une poulie est fixé au flotteur par 1’'une de
ses extrémités tandis qu’a I’autre un contrepoids y est suspendu. La rotation de I’axe de la
poulie sous I’effet du déplacement vertical du flotteur commande le déplacement rectiligne
d’un chariot portant un style (Figure II1.2). Celui-ci trace la courbe de marée sur une feuille de
papier posée sur un tambour entrainé par un mouvement d’horlogerie. De nos jours, les
enregistrements numériques sont de plus en plus utilisés.

Le bon fonctionnement d’une station nécessite une installation soignée et une surveillance
réguliere. 11 faut vérifier périodiquement I’horloge ainsi que la calibration et, au moins une
fois par an, il faut rattacher le marégraphe par nivellement. Enfin, bien que les marégraphes a
flotteurs soient robustes et de manipulation relativement simple, ils présentent certains
désavantages : ils sont cofiteux et difficiles & installer; ils nécessitent la construction d’un
puits; la précision est de I’ordre de 2 cm en hauteur et de 2 minutes en temps & cause de
I’épaisseur de la courbe sur le papier; la lecture des courbes pour de longues périodes est
fastidieuse et est propice aux erreurs; enfin, I’égalité des niveaux intérieurs et extérieurs peut
étre perturbée par divers phénomenes (bouchage des orifices de communication par des
algues, coquillages, ...; écart de la densité moyenne de I’eau & P’intérieur et a 'extérieur du
puits dans le cas de site prés d’un estuaire; effets dynamiques d’écoulement autour du puits;
détérioration du puits).

I1.1.1.2 - Marégraphes a pression

Une autre approche consiste & mesurer la pression en un point fixe sous la surface de I’eau
et de la convertir en hauteur en utilisant I’équation d’équilibre hydrostatique :

P=Pao+pgD @2.1)

ol P est la pression mesurée, P la pression atmosphérique en surface, p la densité moyenne
de la colonne d’eau au-dessus de la sonde, g 1’accélération gravitationnelle, et D la
profondeur. Les mesures doivent étre corrigées de la pression atmosphérique et des effets
dynamiques d’écoulement autour de la sonde. De méme, la connaissance de la densité
moyenne sur la colonne d’eau est indispensable. Pour les mesures par petit fond, on se
contente en général de la densité en surface; pour les mesures par grands fonds (supérieurs a
200 m), on conserve en général la pression comme parametre.

Les avantages de ce type de marégraphes sont multiples : la construction préalable d’un
puits est inutile; le systtme d’enregistrement peut &tre éloigné du point de mesure; on peut
I'installer presque partout.

Lorsque le capteur de pression est placé en surface, la pression est transmise depuis le fond
par un tube d’air par exemple (marégraphes 2 fuite). La pression du tuyau est mesurée par un
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Figure 11.4 : Schéma d'un gravimétre LaCoste Romberg.
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manometre. Dans le cas d’un capteur sur le fond, 'enregistreur peut étre placé au fond
(marégraphes plongeurs) ou en surface. Le principe des capteurs de pression des marégraphes
plongeurs est basé sur la déformation d’un élément sensible ou sur la modification d’une de
ses propriétés sous 'influence des variations de pression. Les meilleurs capteurs sont les
capteurs & quartz dont la fréquence de résonance du cristal varie en fonction de la pression. La
grandeur mesurée n’est malheureusement jamais une fonction simple de la pression et dépend
d’autres parameétres tels que la température, le vieillissement, la tension d’alimentation, ... Ce
qui limite les performances des instruments par la nécessité de dispositions particuliéres et
d’une calibration sérieuse. Le vieillissement provoque une dérive instrumentale qui rend trés
aléatoire 1’observation des phénomenes & longues périodes. Ceci dit, les marégraphes a
pression restent les instruments les plus précis.

I1.1.2. - Les gravimeétres

Les premires observations des marées terrestres ont été réalisées au moyen de clinométres
dans les années 1890. Les premiers enregistrements avec des gravimetres datent d’une
soixantaine d’années et les mesures avec des extensométres ont débuté dans les années 1950.
Nous ne présenterons que les gravimétres car nous ne nous sommes pas servis des autres
types de mesures qui sont trop sensibles aux effets locaux et régionaux.

I1.1.2.1 - Gravimetres LaCoste Romberg

La construction de tout gravimetre répond au principe suivant : opposer a la pesanteur une
force constante qui lui est presque égale et mesurer 1’appoint. L’instrument actuellement le
plus répandu est le LaCoste Romberg (Figure I1.4). La force antagoniste dans ce type
d’instrument est la force élastique exercée par un ressort auquel une masse est suspendue. Par
construction, le gravimétre amplifie mécaniquement au maximum le mouvement de la masse.
La position de la masse peut tre ajustée grice & une vis micrométrique qui, par un systtme de
levier, monte ou descend la masse. Le gravimetre est calibré en comptant le nombre de tours
de vis nécessaire pour que la masse reste immobile lorsque le gravimétre est transporté entre
deux stations dont on connait la différence de pesanteur. La variation de pesanteur due aux
marées engendre une déflexion de la masse qui est détectée électroniquement par un capteur
capacitif, Pour détecter des variations de 1’ordre de 10-10 g (0.1 microgal), une grande stabilité
mécanique du gravimétre est nécessaire. Tout le systéme est compensé en pression et la
température est controlée au millieme de degré.

Les gravimetres astatisés présentent deux problémes majeurs lorsqu’ils fonctionnent en
mode déflexion. Primo, la sensibilité des instruments varie en fonction de 1’inclinaison de
I’appareil. Par exemple, une seconde d’inclinaison du gravimetre suivant la direction du fléau
peut provoquer une variation de la sensibilité€ d’un pour-cent. Une détermination trés précise
de la sensibilité est impossible & cause du second probléme : la réponse des instruments
astatisés est trés lente en raison de I’hystérésis du ressort. Pour le signal de marée, I’effet de
cet hystérésis se traduit par un retard de phase instrumental important qui peut atteindre 2
degrés et une dépendance en fréquence de la réponse en amplitude. Ces problémes liés aux
instruments astatis€s en mode déflexion ont été résolus en modifiant les gravimétres en
méthode de zéro : 1a masse est maintenue en position fixe par une contre-réaction mécanique
entretenue par le signal du capteur capacitif qui actionne un moteur ajustant en continu la vis
de mesure. Mieux, le signal du capteur capacitif est appliqué aux plaques extérieures
provoquant une contre-réaction électrostatique qui fournit une force électrostatique de rappel.
Un tel dispositif rend la sensibilité des gravimetres invariante, car on mesure directement la
force de rappel. De plus, le déphasage instrumental dii A I’hystérésis est €liminé.
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L’inconvénient majeur des gravimétres a ressort est la dérive instrumentale liée a la
rhéologie des ressorts. Les causes sont multiples : les chocs de transport, les variations de
température bien que les instruments soient thermostatés, I’humidité et le vieillissement des
ressorts. La résolution des LaCoste Romberg peut atteindre 0.1 microgal apres élimination de
la dérive instrumentale qui peut varier entre 1 et 100 microgal par jour.

I1.1.2.2 - Gravimetres supraconducteurs

Dans les gravimétres supraconducteurs (Figure II.5), le ressort mécanique est remplacé par
un ~ ressort ~ magnétique pratiquement sans dérive. Une masse supraconductrice est mise en
lévitation dans un gradient du champ magnétique engendré par une paire de bobines
supraconductrices. La position de la masse est détectée par un transducteur de déplacement
par pont capacitif et une force de contre-réaction €lectromagnétique maintient la masse en
position fixe. Les variations du courant de contre-réaction constituent la mesure des variations
de g. Grice a la stabilité inhérente des courants persistants dans un supraconducteur,
I’instrument a un rapport signal sur bruit trés élevé et une faible dérive instrumentale de
I’ordre de 5 microgal par an. Le gravimétre supraconducteur est donc un instrument tres
attrayant pour mesurer les marées a longues périodes ainsi que les variations séculaires de
gravité. La résolution atteint 10 nanogal (=10-11 g). La calibration se fait par ajustement de
I’amplitude de Ionde de marée M, & la valeur déterminée au méme site par un autre
gravimétre. Un réseau est opérationnel actuellement en Europe. I1 comporte quatre stations :
Bruxelles, Wettzell, Strasbourg et Postdam. Plus d’une dizaine de gravimetres
supraconducteurs sont installés de par le monde; parmi les pays qui possédent des
gravimetres, citons : 1a Chine, le Japon, le Canada, I’Italie et la Grece.

I1.1.3 - Méthodes d’analyse

L’objectif de I’analyse des observations marégraphiques et gravimétriques est de réduire le
nombre considérable de mesures & un nombre restreint de paramétres. Ceux-ci doivent étre
choisis de telle sorte qu’ils permettent de reproduire les courbes observées et de faire des
prédictions. L’analyse harmonique est un outil théorique particulirement bien adapt€ a
I’analyse des enregistrements de marées en raison de leur caractere périodique évident, qui
peut présenter des variantes suivant les lieux considérés (Figure I1.6). D’autres méthodes
d’analyse non-harmonique n’utilisent pas le développement a priori de la marée en une
somme de termes périodiques de périodes déterminées. Ces méthodes reposent sur la
recherche de relations entre les diverses manifestations de la marée et d’autres paramétres
bien connus comme des éléments astronomiques ou le potentiel générateur des marées.

L’objectif principal de I’analyse des mesures marégraphiques est de se donner les moyens
de faire les prédictions les plus précises possibles & des fins, par exemple, de navigation. En
marde terrestre, les prédictions sont utilisées pour réduire les mesures de gravimétrie de
terrain. De plus, la comparaison entre les valeurs calculées des amplitudes et phases
théoriques avec les constantes observées correspondantes fournit des contraintes sur les
parametres rhéologiques de la Terre et des informations sur les effets de surcharge océanique.

I1.1.3.1 - Analyse harmonique
I1.1.3.1.1 - Généralités

Les observations de marées {(t) peuvent étre séparées en deux composantes :

L) = Cnl®) + () (2.2)
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Table 1.1 : Ordre dans lequel les constituants semidiurnes sont sélectionnés dans le
programme d’analyse harmonique de Foreman et Henry [1989] en fonction de la durée des
enregistrements.
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Table 1.2 : Ordre dans lequel les constituants diurnes sont sélectionnés dans le programme
d’analyse harmonique de Foreman et Henry [1989] en fonction de la durée des
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ol {m(t) est la composante des marées et £(t) le bruit composé des variations accidentelles du
signal dues essentiellement aux influences météorologiques. En outre, €(t) contient les erreurs
instrumentales et de dépouillement des observations. Réécrivant la composante des marées
sous la forme harmonique déduite du développement du potentiel générateur (éq. 1.23), on
obtient :

L) =, Aqcos(@nt-Ga+xa)+EQR) 2.3)
=Y Apcos(@y t- 0y)+E(t) 2.4)

Ol @ =a1 T +a $+a; h+as p+as N'+ as ps est la vitesse angulaire (cfr. §1.1.2).

La transformation de Fourier permet d’obtenir les valeurs des constantes harmoniques A, et
Oy :

E((o) = I (1) efotdt= Em ()+ () (2.5)
soit B
) =L T (An e So-mn) + Ay Bor0,) + o) 2.6)

ol I’accent circonflexe représente la transformée de Fourier et 6(w—w,) est 1a distribution de
Dirac centrée en o,

Classiquement, 1’analyse harmonique d’une série temporelle discréte et finie a un pouvoir
de résolution limité par trois contraintes : I’existence du bruit dans les observations, la durée
finie des observations qui empéche la séparation des ondes de fréquences trop proches et la
nature discréte de la série qui réduit I’intervalle de variation des fréquences accessibles.

Théoriquement, le spectre de fréquence des marées contient une infinité de termes. Mais,
en pratique, on se limite aux composantes dont I’amplitude est supérieure a 1’ordre de
grandeur du bruit instrumental. L’analyse harmonique fournit un spectre formé de la
superposition des raies spectrales de marée et du spectre continu du bruit. I1 est impossible de
séparer les deux contributions sans hypothése supplémentaire sur le spectre du bruit. En
général, le spectre du bruit est rouge (c’est-a-dire que le spectre est plus énergétique vers les
basses fréquences) A cause des dérives lentes des instruments. Connaissant mal le bruit
instrumental, on le considére en général comme un signal aléatoire dont le spectre est blanc
(équipartition de 1’énergie spectrale en fonction de la fréquence).

La durée des observations T est toujours finie. On ne peut donc bien séparer deux ondes 1
et j que si leur vitesses angulaires vérifient le critere de Rayleigh :

T.lo—o 121 @.7)

Dans le cas contraire, les ondes sont mal séparées. La durée d’observation doit &tre d’autant
plus grande que les ondes & séparer sont plus proches (Table I1.1 et I1.2). Si le bruit n’est pas
trop important et si le signal a un caractére périodique trés marqué comme dans le cas des
marées, le critére de Rayleigh peut étre quelque peu adouci [Foreman et Henry, 1989]. De
plus, la séparation d’ondes théoriquement non séparables est possible moyennant des
hypoth&ses supplémentaires reliant les constantes harmoniques sur la base de mesures
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antérieures ou des rapports entre les coefficients du potentiel générateur. Ces principes sont a
la base de 1a méthode d’inférence.

Les périodes de p, N’ et ps sont supérieures & 9 ans. Pour les données d’observations
courantes, de I’ordre de I’année, le critére de séparation n’est pas vérifi€ pour les termes dont
les arguments astronomiques différent d’une combinaison linéaire de p, N et ps. Considérons
les ondes k de nombres arguments aj, a; et az donnés. Parmi celles-ci, désignons w, 1’onde
qui a ’amplitude connue ou estimée maximum tandis que les autres ondes sont dites ondes
perturbatrices de cette onde n. Les contributions des ondes perturbatrices peuvent étre
interprétées comme des modulations de la phase et de I’amplitude de I’onde n. Ce sont des
quantités lentement variables avec le temps que 1’on peut supposer constantes et €gales a leurs
valeurs moyennes sur la période d’observation; les corrections dites nodales sont apportées
pour tenir compte de ces modulations. En pratique, pour calculer ces corrections, il faut faire
des hypotheses sur les rapports de I’onde principale sur les ondes modulatrices et sur les
déphasages a partir des coefficients astronomiques. On trouvera dans Godin [1972] un exposé
détaillé sur les corrections nodales.

Le dernier point concerne une conséquence de la discrétisation des séries d’observation. A
chaque pas d’échantillonnage At correspond une fréquence de coupure dite fréquence de
Nyquist. Toute fréquence supérieure a celle-ci ne peut pas étre estimée et est aliasée. Pour
éviter le phénomene d’aliasing, qui est le repliement du spectre des fréquences au-dela de la
fréquence de Nyquist vers les basses fréquences, il faut choisir le pas d’échantillonnage de
sorte que I’énergie spectrale soit pratiquement nulle au-dela de la fréquence de Nyquist.

I1.1.3.1.2 - Méthode d’élimination

Le but des méthodes d’élimination est d’amplifier par un filtrage appropri€ des
observations, une onde déterminée tout en éliminant plus ou moins les autres ondes et le bruit.
Le filtrage est réalisé par combinaisons linéaires simples (coefficients entiers) des
observations. Darwin a mis au point la “méthode des heures spéciales” qui est basée sur la
constatation que les phases des ondes T, prennent la méme valeur & des instants séparés de T;
tandis que les phases des autres ondes prennent des valeurs A peu prés uniformément réparties
sur [0, 2%} pourvu que la durée d’observation considérée soit assez longue.

En 1928, Doodson proposa une méthode, encore utilisée aujourd’hui dans les pays de
I’école anglaise, qui consiste & séparer successivement les différentes especes a ’aide de
combinaisons journaliéres appropriées des observations horaires, puis les groupes a I'intérieur
de chaque espéce A I’aide de combinaisons mensuelles des valeurs précédentes et enfin les
sous-groupes A I’intérieur de chaque groupe a ’aide de combinaisons annuelles [voir
Melchior, 1983].

11.1.3.1.3 - Méthode des moindres carrés

On recherche les constantes harmoniques A, et o, qui minimisent selon le critére des
moindres carrés 1’expression suivante [voir Foreman et Henry, 1989]:

Noos Nabs
2 lefe)|2= 3 | Gt~ X Ancos{onti- on)|? 28

Les inconnues sont déterminées en formant et en résolvant numériquement les équations
normales. Cette méthode n’a pu étre mise en oeuvre qu’avec la mise en service d’ordinateurs
assez puissants. L’avantage de ce type de méthode est qu’elle s’applique quel que soit
I’échantillonnage des données. On fait I’hypothése que le bruit suit une loi de probabilité



gaussienne et centrée. Il faut donc veiller & ce qu’il n’y ait pas d’erreur systématique dans les
observations.

En pratique, on peut tenter d’estimer en une étape un trés grand nombre d’ondes.
Cependant, la recherche d’ondes théoriquement non séparables conduit & un systtme mal
conditionné. On ne peut donc se soustraire au critere de Rayleigh.

I1.1.3.2 - Analyse non-harmonique

On peut distinguer deux catégories de méthodes d’analyse non-harmoniques : la méthode
des concordances et la méthode de réponse ou de convolution.

11.1.3.2.1 - Méthode des concordances

La méthode des concordances repose sur la recherche de relations empiriques existant
entre la marée et divers paramétres dont la connaissance permet la prédiction de la marée. On
relie, par exemple, les heures des pleines et basses mers A des quantités astronomiques
observables. La comparaison des marées entre ports voisins montre que le régime de la marée
varie en général lentement le long de la c6te. Ainsi, on peut, & partir de la connaissance de la
marée dans un port de référence, en déduire la marée dans un port proche [Simon, 1991]. Les
méthodes des concordances peuvent porter sur ’heure ou la hauteur de la pleine mer.
L’efficacité de ces méthodes est le fait de la cohérence spatiale de la marée qui se traduit par
une corrélation spatiale des diverses manifestations de la marée.

I1.1.3.2.2 - Méthode de réponse

A partir de 1966, Munk et Cartwright ont développé la méthode de réponse dans laquelle
la marée est considérée comme la réponse du systtme océan & diverses excitations. Par
I’analyse des observations, on recherche & déterminer la fonction de transfert de ce syst¢me
connaissant la fonction temporelle de forgage. L’avantage de cette méthode est qu’elle permet
de prendre en compte des variations du niveau de la mer qui ne sont pas uniquement d’origine
astronomique. La hauteur d’eau {(t) est exprimée en terme d’une intégrale de convolution
dont le noyau U(t) représente les causes physiques des variations de { :

()= j w(t) . U(t-1) dt (2.9)

ol la fonction w est caractéristique du point considéré et est déterminée en minimisant par
moindres carrés les écarts entre la valeur de I’intégrale et les observations. U(t) comprend le
potentiel générateur des marées calculé a ’aide d’un développement en harmoniques
sphériques :

+°  4n

Uet)=Y, Y, dum(t) Yomlor) 2.10)

n=2 m=n

En raison de la convergence rapide du développement, on peut se limiter aux termes n< 3. La
méthode de réponse ne nécessite pas le développement harmonique du potentiel générateur
qui contient bien plus de termes que le développement en harmoniques sphériques, ni le choix
préalable des fréquences a rechercher. En plus, la totalité du potentiel est automatiquement
prise en compte ainsi que les corrections nodales. Le théoréme de convolution permet de
réécrire 1’équation (2.9) en fonction des transformées de Fourier :
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Figure I1.7 : Spectre de la marée a Honolulu avec une résolution de 1 cycle par an et pour
" harmonique sphérique semidiurne Pj. Le premier diagramme est le spectre de la marée
gravitationnelle d’ équilibre & Honolulu (normalisée a 104 cm?); quelques nombres de
Doodson ainsi que quelques symboles de Darwin sont indiqués. Dans les deux diagrammes,
la hauteur totale des colonnes représente le spectre de la hauteur d’ eau : la partie remplie du
premier spectre représente I'énergie cohérente avec la marée d’équilibre; la partie non
remplie du second représente la partie non cohérente. Dans le quatriéme diagramme, les
parties réelles et imaginaires de I’ admittance sont indiquées respectivement par des points et
des cercles. Enfin, dans le cinquiéme diagramme, sont dessinées I’amplitude et la phase de
I'admittance . Les lignes verticales représentent I’ intervalle de confiance d’ une probabilité de
95% et les lignes continues sont les fonctions d’ admittance dérivées par la méthode de

convolution.
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Yw)= ﬁ w0). O(o) 2.11)

L’accent circonflexe représente la transformation de Fourier. La transformée de Fourier de
w(t) est interprétable physiquement comme la fonction de transfert entre le potentiel
générateur de la marée et la marée observée, appelée admittance. L’exemple (Figure I1.7) tiré
de Munk et Cartwright [1966] montre le caracteére extrémement lisse des fonctions
d’admittance.

Les constantes harmoniques sont obtenues a partir des valeurs de 1’admittance aux
fréquences des marées. Une fois I’admittance déterminée, la prédiction de la marée s’obtient
en calculant I’intégrale de convolution (2.9). Les prédictions ainsi obtenues sont de qualité
semblable a celles calculées par la méthode harmonique.

On peut introduire dans U(t) d’autres causes de variations du niveau de la mer, telles que la
pression atmosphérique, le vent ou le rayonnement solaire. Munk et Cartwright [1966]
donnent une expression de la fonction d’entrée du rayonnement solaire pour représenter les
marées radiationnelles qui distordent la courbe d’admittance qui est en général assez lisse.
L’intégrale de convolution peut aussi étre complétée :

C(t)=f wi(t). U(t-t) dt + j f wa(t,7' ) U(t-t) U(t-t') dt dt’ +... 2.12)

-0

ol la premidre intégrale représente les termes linéaires de la réponse de I’océan a I’excitation
et les suivants permettent la prise en compte des non linéarités.

En outre, la méthode de réponse permet d’étudier la corrélation entre le niveau d’eau
observé en un point et n’importe quelle fonction du temps. Une des particularités de la
méthode est qu’elle permet de calculer les fonctions de transfert pour chaque fonction
d’entrée suffisamment décorrélée, dont les raies spectrales ne sont pas séparables par une
analyse de Fourier.

La méthode de réponse a été utilisée pour analyser les observations de marée
graviméterique. Les premier résultats ont été obtenus par Lambert [1974]. Depuis, De Meyer
[1982] a généralisé la méthode afin d’introduire les effets dus a la température, la pression
atmosphérique, la dérive instrumentale, ...

I1.1.4 - Banques de données
I1.1.4.1 - Marégraphie

Les constantes harmoniques utilisées dans ce travail proviennent de I’International
Hydrographic Organization (IHO) [1979] et de I’International Association for the Physical
Sciences of Ocean (IAPSO).

L’THO a en charge une banque de données marégraphiques qui, dans la version dont nous
disposons, contient 4011 stations (données IAPSO exclues). Les stations sont essentiellement
cotieres et insulaires (Figures I1.8). Les premiéres stations marégraphiques automatiques sont
apparues vers 1830 et les premiéres campagnes de mesures intensives ont débuté dans les
années 1880. Durant les guerres, il y a eu moins d’installations de nouvelles stations
marégraphiques. La durée des observations varie de quelques jours 2 une centaine d’années.
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Figures I1.8 : Localisation des stations marégraphiques (IHO et IAPSO) et gravimétriques
(ICET).



Les durées les plus courantes sont de 1’ordre de 30 jours et 1 an qui correspondent aux durées
nécessaires pour séparer respectivement les groupes et les constituants (Figures I1.9).

L’IAPSO apporte son soutien & la réalisation d’une compilation de constantes de marées
pélagiques, c’est-a-dire des constantes de marées obtenues a 1’aide de marégraphes a pression
situés en haute mer a des profondeurs supérieures & 100 m et éloignés d’au moins un mile
nautique des cOtes. C’est une initiative récente (de quelques dizaines d’années), qui n’a pu
étre lancée qu’apres la mise au point technique des marégraphes de grand fond dans les
années 1965. Ces données sont particulierement importantes a plusieurs titres. Elles
fournissent une mesure des constantes harmoniques en certains points spécifiques en haute
mer qui sont bien plus précises que n’importe quel modele numérique. De telles données
permettent de valider les modeles ou méme de les améliorer. Elles sont exemptes d’effets
locaux présents dans les mers littorales ou engendrés par la topographie cotiére. La
compilation la plus récente comprend 347 stations réparties de fagon inégale sur I’ensemble
des océans (Figures I1.8)[Smithson, 1992]. L’ Atlantique nord ainsi que la partie nord-est du
Pacifique sont bien quadrillés. Il y a un déséquilibre entre les deux hémispheres nord et sud
en ce qui concerne la répartition géographique et le nombre de stations. La situation est
particuliérement ficheuse dans le Pacifique sud, puisqu’il n’y a aucune mesure. La durée des
observations varie entre 0,7 jour et 1,75 an. Les durées sont généralement supérieures a 30
jours et plus de 20% des stations ont observé pendant au moins 1 an.

En ce qui concerne la qualité des données, aucune information concernant le bruit des
mesures ou les méthodes d’analyse utilisées n’est fournie dans la banque de données IHO. On
peut raisonnablement supposer que plus les données sont récentes et la durée d’observation
longue, plus les constantes harmoniques sont précises. Les criteres de qualité, a défaut de
toute autre information, seront donc la longueur et ’époque des enregistrements. Une des
caractéristiques décevantes de cette banque est la grande inhomogénéité de la qualité des
mesures. La compilation IAPSO, quant a elle, doit certainement €tre plus uniforme d’un point
de vue qualité, car les mesures sont issues d’instruments de fabrication similaire d’une trés
haute technologie et les analyses ont vraisemblablement été effectuées avec des programmes
“modernes” de performance équivalente. Des indications sur les programmes d’analyse qui
ont été utilisés et sur les variances résiduelles sont fournies dans la compilation.

11.1.4.2 - Gravimétrie

Le Centre International des Marées Terrestres (ICET) tient & jour une banque de données
gravimétriques [Ducarme, 1984]. Les premiéres observations sont issues des campagnes de
mesure organisées dans le cadre du programme de 1’année internationale de géophysique
(1957-1958). A partir de 1973, I’Observatoire Royal de Belgique a organisé conjointement
avec I'ICET des mesures le long de profils mondiaux parcourant I’ Asie, le Sud Pacifique,
I’ Afrique et I’ Amérique Latine. Ces profils comprennent quelques 125 stations.

La Banque de données de marées terrestres contient les paramétres de marées
gravimétriques de 352 stations temporaires et permanentes. La durée moyenne des
observations est de 6 mois ce qui permet de déterminer les constantes harmoniques de 9
ondes principales : Q1, Oy, Py, Ky pour les ondes diurnes, My, N», S;, K, pour les semi-
diurnes et une onde terdiurne M3 (cf. Tables II.1 et I1.2).

Récemment, Melchior [1992] a épuré la Banque de données de marées terrestres en
contrdlant minutiecusement chaque étape de la chaine de traitement au niveau des
observations, des calibrations et des réductions. Ce contrdle sévére n’a pu étre fait que st le
Centre disposait des données originales ou si les résultats publi€s contiennaient toutes les
informations nécessaires pour la vérification. Des 352 stations de la Banque originelle,
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Figure I1.10 : Couverture de I orbite répétitive a 17 Jours du satellite Geosat [tiré de Jourdan,
1990].



seulement 211 sont incluses dans la nouvelle Banque de données (DB92). Les principaux
résultats de ce travail sont une réduction d’un facteur 2 de la dispersion des paramétres de
marée par rapport au jeu de données originelles et un accord avec les meilleurs modeles de
Terre en ce qui concerne les valeurs moyennes calculées, continent par continent, de
I’amplitude des facteurs gravimétriques des deux ondes principales O; et M.

I1.2 - L’altimétrie par satellite

L’histoire de I’altimétrie par satellite débute en 1973 avec la plate-forme Skylab qui
emporta le premier altimétre. Depuis, d’autres satellites ont embarqué un altimétre. Les
principales missions ainsi que leurs caractéristiques sont reprises dans la Table IL.3.
Actuellement, deux missions altimétriques sont en cours. Il s’agit du satellite ERS1 de
I’Agence Spatiale Européenne (ESA) et du satellite franco-américain TOPEX/POSEIDON
qui est un projet commun de la NASA et du Centre National d’Etudes Spatiales (CNES).
Dans cette étude, nous ne traiterons que des données de I’altimétre du satellite Geosat.

Les satellites altimétriques ont des orbites quasi-circulaires a des altitudes comprises entre
800 et 1300 km. A de telles altitudes, les forces de frottement atmosphérique sont faibles et la
puissance nécessaire pour 1’émission et la réception d’onde électromagnétique est
raisonnable. Le satellite effectue une révolution circum terrestre en une centaine de minutes
avec une vitesse de 7 & 8 km/s. Les orbites sont généralement répétitives, ¢’est-a-dire que le
satellite repasse périodiquement au-dessus de la méme trace au sol. La couverture spatiale
dépend de I’inclinaison de I’ orbite et de la période du cycle orbital du satellite (Figure I1.10).

Les mesures précises de distance entre le satellite et la surface de 1la mer couplées avec un
positionnement du satellite sur son orbite par rapport A un ellipsoide de référence permettent
de cartographier la hauteur de la surface de I’océan dans ce méme référentiel. La surface
instantanée de 1’océan comporte une partie stationnaire et une partie variable. La partie
stationnaire définit la surface moyenne océanique qui se compose du géoide, surface
équipotentielle du champ terrestre qui correspond a la surface des océans au repos, et de la
topographie dynamique permanente engendrée par les courants océaniques stationnaires de la
circulation permanente. Cette surface permanente est perturbée par les variabilités
temporelles telles que les marées océaniques, les tourbillons, les courants générés par le vent,
les variations de pression, ... La hauteur instantanée de I’océan h; par rapport a I’ellipsoide de
référence s’obtient par la formule suivante (Figure I1.11) :

hj=h-H=N+h¢+ ¢ (2.13)
avec
h la hauteur du satellite par rapport a I’ellipsoide de référence
H la distance du satellite & la surface instantanée de I’océan
N la hauteur du géoide par rapport a I’ellipsoide de référence
h 1a hauteur dynamique de la circulation générale
€ les variations du niveau de I’océan dus aux autres phénomenes océaniques

I1.2.1 - La mesure altimétrique

Un altimétre est un radar qui mesure le temps de parcours aller-retour d’une impulsion
qu’il émet et qui est réfléchie par la surface de I’océan a la verticale du satellite. La distance
H du centre de phase de ’antenne du radar a la surface océanique est :

H=c% (2.14)
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Figure 11.11 : Principe de la mesure altimétrique.



ol ¢ est la vitesse de la lumiére et At le temps de parcours aller-retour. Le radar envoie des
impulsions rectangulaires A une fréquence d’une dizaine de gigahertz correspondant a une
longueur d’onde de quelques centimétres. La tache du faisceau du radar couvre au sol un
disque d’un diametre de quelques kilometres qui varie suivant I’état de la mer. L’impulsion
retour est regue dans une fenétre d’écoute prépositionnée par une boucle de poursuite grice
aux mesures antérieures. Comme le signal retour est fortement bruité en raison de la rugosité
de la surface de la mer, les échos retour sont moyennés sur un millier d’impulsions
élémentaires.

L’analyse de la forme du signal retour regu par I’altimetre (Figure I1.12) permet de
déterminer trois caractéristiques physiques de la surface de ’océan : le temps du milieu du
front de montée fournit la distance du satellite 3 la surface de la mer; de la largeur du front de
montée on peut déduire la hauteur significative des vagues (c’est-2-dire I’amplitude des
vagues et de la houle); et I’intensité du signal retour est une mesure de la diffusion du signal
par les vagues et donc du module du vent. En outre, de la forme du signal retour, on extrait
aussi des paramétres de la mesure: une mesure du bruit et une estimation de I’angle d’attitude.

Les mesures de la hauteur de la mer trés précises dont les erreurs sont inférieures a 10
centimétres sont trés difficiles A réaliser. Les nombreuses sources d’erreurs peuvent étre
classées suivant deux catégories : celles liées a 1a mesure altimétrique elle-méme (instrument
et surface réfléchissante) et celles liées a 1a méconnaissance de 1’orbite précise du satellite.

I1.2.2 - Les erreurs et les corrections de la mesure altimétrique

La hauteur altimétrique doit étre corrigée des erreurs instrumentales, de celles dues i la
propagation dans ’ionosphére et la tropospheére et d’autres lies a 1’état de la mer. Les
estimations des erreurs sur les différentes corrections, que nous présentons, concernent les
mesures altimétriques du satellite Geosat que nous avons utilisées. Toutefois, nous donnons
aussi les estimations actuelles des erreurs des mesures altimétriques du satellite
Topex/Poseidon. Ainsi, on pourra juger des progrés accomplis en ce domaine.

Les mesures altimétriques sont corrigées de trois types d’erreur d’origine instrumentale.
Une correction pour tenir compte du délai de transition dans les circuits électroniques des
instruments est appliquée ainsi qu’une correction lie & la géométrie du satellite qui prend en
compte la distance entre le centre de gravité du satellite et le centre de phase du radar. Enfin,
une correction dite “d’attitude” due au dépointage du radar lorsque le satellite n’est pas orienté
suivant la verticale. L’erreur résiduelle est un signal aléatoire (bruit blanc) dont le r.m.s.
estimé est de I’ordre de 3 cm pour Geosat.

L’ionosphére ralentit la propagation des ondes électromagnétiques de manilre
proportionnelle A son contenu en électrons libres intégré sur la verticale et inversement
proportionnelle au carré de la fréquence des ondes. Dans le cas de Geosat, le contenu en
électrons est estimé & partir de modeles semi-empiriques de 1’ionosphére qui prennent en
compte les variations géographiques et diurnes qui sont importantes pour les longueurs
d’onde de I’ordre de 10 000 km et des périodes de I’ordre de quelques heures. Les corrections
ionosphériques varient de 2 2 20 cm. Les valeurs maximales sont atteintes en périodes
d’intense activité solaire et sont estimées & 4 cm r.m.s. prés. Les erreurs sont plus grandes
prés de I’équateur magnétique et des zones aurorales (jusqu’a 10 cm).

L’atmosphére retarde aussi les ondes électromagnétiques car I’indice de réfraction du
milieu varie dans la troposphére avec sa densité et son contenu en vapeur d’eau. On distingue
deux corrections 'une dite correction de troposphere séche et ’autre dite correction de
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LA FORME DU SIGNAL RETOUR RECU PAR L’ALTIMETRE a des caractéristiques
trés précises. L’onde émise par ’altimetre se propage selon une calotte sphérique. L’aire
de lintersection de cette onde avec la surface de 1a mer croit jusqu’a une valeur constante
(2 partir du temps 3); la puissance de ’impulsion retour croit, en conséquence, jusqu’a un
palier (a). La forme de I'impulsion retour est trés abrupte en cas de mer plate, alors que
les angles sont arrondis lorsque la mer est agitée ; la forme de cette impulsion permet de
mesurer la hauteur des vagues (5). En outre, ie temps d’arrivée d’une impulsion est aléatoire,
car la superposition des réflexions par les différentes « facettes », qui forment la surface
de la mer perturbe fortement le signal retour. Cette difficulté est résolue par le meyennage
d’un millier d’impulsions retour environ (¢).

Figure 11.12 : Forme du signal retour recu par I’ altimétre (tiré de Perigaud et Minster, 1985).




troposphére humide. La correction de troposphére séche est fonction de la latitude et de la
pression a la surface de I’océan. Elle peut étre estimée avec une bonne précision a partir des
modeles météorologiques. Cette correction est la plus importante en amplitude (environ 2 m)
et sa variation temporelle est tres faible. La correction troposphérique humide (ou de vapeur
d’eau) est calculée a partir de modeles météorologiques ou a partir de mesures par radiométrie
micro-onde. Ces derni¢res permettent une détermination du contenu intégré en vapeur d’eau
avec une précision comparable a celle des radiosondages. Les précisions sur la correction en
hauteur sont d’environ 2 a 3 cm. Les corrections utilisées dans cette étude ont été calculées 2
partir de moyennes mensuelles du contenu en vapeur d’eau déduites de cinq années de
données du radiometre SMMR (Scanning Multichannel Microwave Radiometer) de Nimbus
7. Les valeurs varient entre 6 et 30 cm et les écarts entre ces corrections et celles calculées 2
partir du modele météorologique FNOC (Fleet Numerical Oceanographic Center) peuvent
atteindre 5 cm. Cette valeur est représentative de I’incertitude sur ce type de correction.

Le creux des vagues tend a focaliser I'impulsion retour vers le satellite alors que les crétes
dispersent 1’énergie du signal. Il en résulte une surestimation de la hauteur altimétrique,
appelée biais électromagnétique. Ce biais dépend de 1’état de la mer et peut étre estimé via la
hauteur significative des vagues (appelée H1/3), qui est elle-méme déduite de la forme de
I’onde de I’écho du radar. L’ordre de grandeur du biais électromagnétique est de 2% de H1/3,
c’est-a-dire de 2 cm pour 1 m de creux. L’incertitude sur cette correction est d’environ 50%.

Enfin, un ensemble de corrections concernant la surface océanique est aussi appliqué. Il
s’agit des corrections de marées terrestres, des effets de surcharge océanique et de pression
atmosphérique (barométre inverse). La derniére source d’erreur qui affecte la mesure
altimétrique concerne le positionnement du satellite.

I1.2.3 - Calcul de ’orbite

Tout au long de la durée de leurs missions, les satellites sont suivis par un réseau de
stations de poursuite dont les mesures sont un élément indispensable du calcul d’orbite. Les
observations sont typiquement des mesures de distance (laser) ou des mesures de vitesse
(Doppler). Dans la procédure de détermination de I’orbite, ces mesures sont couplées & un
modele dynamique qui décrit 1’évolution en fonction du temps d’un vecteur d’état du satellite.
Ce vecteur d’état comprend 6 composantes (3 pour la position et 3 pour la vitesse) qui sont
définies dans un systéme de référence inertiel. Le modéle dynamique se présente sous la
forme d’un systtme d’équations différentielles du second ordre, appelé équation du
mouvement. Le mouvement d’un point massique se déplacant dans le champ gravitationnel
d’une planéte s’exprime, dans un syst¢me de référence inertiel, sous la forme :

X=VV+i+.+ L, 2.15)

avec X représentant le vecteur accélération du satellite de masse unitaire, V le potentiel
gravitationnel de la Terre et f; représentent les forces additionnelles non conservatives, telles
que les forces de frottement atmosphérique, les effets de la pression de radiation solaire, les
effets des marées terrestres et océaniques, ...

Le but de Porbitographie est la détermination d’une orbite qui “colle” au mieux aux
mesures de poursuites selon le critére des moindres carrés. Des programmes informatiques
spécialisés sont capables de traiter simultanément tous les types de données. L’ensemble des
inconnues ajustées par moindres carrés 2 partir des observations sont typiquement :
® un vecteur d’état initial, c’est-a-dire les 6 composantes du vecteur d’état au temps

correspondant au début de I'intégration des équations du mouvement.
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Table 114 : Bilan d’erreur des mesures altimétriques du satellite Geosat et estimations
actuelles des erreurs sur les mesures de Ialtimétre Poseidon embarqué sur le satellite
Topex/Poseidon (chiffres entre parenthéses).

Source d’erreur Cause d’erreur Amplitude Résidu aprés  Longueur d’onde
(cm) correction caractéristique
(cm rms) (km)

Emreur de bruit 2 (2.5)

I’altimetre biais 2 (1.5) plusicurs jours

Troposhére masse d’air 230 1 (0.7) 1000
vapeur d’eau 6-30 3(1.2) 200

Ionosphére électrons libres 2-20 4 (1.7) > 1000

Eau liquide nuages-pluies 10-100 30-50

Etat de la mer biais 4 2 (2.5) 200-1000
électromagnétique

Orbite gravité 10 km 85-25 (2.2) > 40 000
GM 2 (1.0) 10 000
trainée 300 10 (1.0) 10 000
radiation solaire 300 5 (>3) 10 000
horloges 10 10 000
ionosphere 5 (1.0) 10 000
troposphere 1 (1) 10 000
albedo terrestre 1 6D 10 000
marées 2 (2.0 10 000

Géoide gravité 100 m 50 2000-5000

Table IL.5.: Caractéristiques spatio-temporelles des principaux signaux océanographiques
affectant le niveau de la mer.

Phénoméne Amplitude Echelle spatiale Période
(cm) (km) (jours)

gyres

- moyenne 100 > 1000

- variations 10 > 1000 > 300

Tourbillons 25 ~50 > 30

Courants le long des cotes ouest

- moyenne 100 100

- variations 100 100 > 10

Courants le long des cotes est

- moyenne 20 500

- variations 10 500 > 10

Courants équatoriaux

- moyenne 20 > 500

- variations 10 > 500 >50

El Nifio 20 > 500 ~ 1000



e les paramétres libres des modeles de force; typiquement, les paramétres des modeles de
frottement atmosphérique, de pression de radiation solaire, eftc...

e les paramétres des instruments de poursuite; tels que le biais et la dérive de I’horloge de la
station de poursuite, ...

e les coordonnées géographiques de certaines stations de poursuite.

L’orbite du satellite est calculée par intégration numérique de 1’équation (2.15). Les termes
intégrés sont le vecteur d’état lui-méme et une matrice de transition qui relie les variations du
vecteur d’état au temps considéré par rapport au vecteur d’état initial. L’intégration
numérique est initialisée A 1’aide d’un vecteur d’état a priori calculé avec un modele de force
approché. On obtient ainsi une trajectoire apparente qui est utilisée pour linéariser la
procédure d’ajustement du modele. Ensuite, les paramétres approchés sont réévalués par
ajustement par moindres carrés. En général, la procédure est réitérée jusqu’a I’obtention d’une
convergence. D’habitude, toutes les inconnues ne sont pas traitées en une étape; la procédure
du calcul d’orbite est subdivisée en plusieurs phases dans lesquelles des groupes séparés
d’inconnues sont traités individuellement. L’orbite est calculée sur des arcs de quelques jours
(17 jours pour les orbites GEM-T1 de Geosat et 6 jours pour les orbites GEM-T2). Ces arcs
d’intégration sont indépendants et disjoints entrainant des sauts importants d’orbite aux points
de transition entre deux arcs. Ces sauts sont dus essentiellement aux forces non conservatives
et aux erreurs d’estimation des conditions initiales. Pour plus de détails, nous renvoyons aux
documents techniques de Valorge [1990] qui décrit le logiciel d’orbitographie ZOOM
développé au CNES et de Rowton et al. [1992] qui décrit le programme de calcul d’orbite
GEODYN II du Goddard Space Flight Center (NASA).

Le calcul d’orbite fournit une trajectoire “apparente” du satellite. Il en résulte une erreur sur
le positionnement du satellite dont la composante radiale intéresse au premier titre
I’altimétrie. Les sources principales de 1’erreur d’orbite peuvent étre classées suivant quatre
catégories : le potentiel gravitationnel, les effets des forces de frottement atmosphérique, de
pression de radiation solaire et du positionnement des stations de poursuite. En outre, la
précision des observations détermine aussi la qualité de I’orbite. Toutes ces influences sont a
grande longueur d’onde et particulierement importantes a la fréquence de 1 cycle par
révolution. Dans le cas des orbites de Geosat, I’effet dominant provient des erreurs sur le
champ de gravité. Les erreurs radiales des orbites de Geosat sont de 1’ordre de 85 ¢cm r.m.s
pour GEM-T1 et 35 cm pour GEM-T2 [Haines et al., 1989]. Afin d’illustrer le progres
accompli depuis dans le calcul d’orbite, il faut savoir qu’actuellement on atteint une précision
de I’ordre de 5 cm r.m.s sur la position radiale de Topex/Poseidon [Nouel, 1993]. Ces progres
sont dus & I’amélioration du champ de potentiel terrestre mais aussi et surtout grice a la
densité et la précision des mesures de poursuite délivrées par le systéme de localisation
DORIS. Aujourd’hui, a I’heure du satellite altimétrique Topex/Poseidon, ce sont les effets des
forces de surface (ou non conservatives) qui jouent le rdle le plus important.

I1.2.4 - Bilan d’erreur et signal océanique

Nous venons de décrire I’ensemble des corrections qu’il faut appliquer a la mesure
altimétrique pour son exploitation correcte en océanographie. Un récapitulatif des différentes
sources d’erreur sur les mesures altimétriques des satellites Geosat et Topex/Poseidon est
présenté dans la Table I1.4. On peut constater que les sources principales d’erreurs
proviennent de la détermination de 1’orbite au travers du terme H et du géoide N. Ces deux
composantes ont pour méme origine les erreurs du modele du champ gravitationnel. I existe
une relation directe et non-dynamique entre le géoide et le champ gravifique alors que le
champ gravifique est lié dynamiquement au travers d’équations différentielles a 1'erreur
radiale d’orbite. Les erreurs du géoide ont une signature spatio-temporelle stationnaire (en
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tout cas sur des échelles de temps de la décennie) qui ne pénalise pas la recherche de signaux
qui présentent des variabilités temporelles comme les marées océaniques.

La Table II.5 donne les ordres de grandeur des dimensions spatiales et des périodes
caractéristiques des principaux phénomenes océaniques, hormis les marées. La comparaison
entre les caractéristiques de ces phénomenes et les caractéristiques des erreurs résiduelles
aprés corrections de la mesure altimétrique (Table IL.4) indique que leurs amplitudes sont du
méme ordre de grandeur mais que leurs signatures spatio-temporelles sont relativement bien
distinctes. Ce dernier constat justifie I’engouement des océanographes pour I’altimétrie par
satellite puisque, malgré le rapport signal sur bruit faible (qui dans le cas de Topex/Poseidon
est bien plus €levé), la différenciation des caractéristiques spectrales des signaux et des
erreurs permet 1’élaboration de procédures d’analyse des données capables d’extraire les
signaux désirés.

I1.3 - Conclusions

L’ensemble des mesures marégraphiques, gravimétriques et altimétriques, que nous avons
décrites dans ce chapitre, semble a priori d’une trés grande complémentarité pour la
restitution globale des constantes harmoniques des principaux constituants des marées
océaniques. Cette complémentarité a plusieurs facettes :

(1) istribution ‘aphi. : les mesures marégraphiques sont plutdt cotieres et les
mesures de marée graviméirique sont continentales, alors que les mesures altimétriques
couvrent ’ensemble des océans, avec toutefois une moins bonne couverture le long des cdtes
(en cause des défauts des corrections prés des continents) et aux latitudes élevées (en raison
de I’inclinaison de 1’ orbite).

(2) La nature des données : les données marégraphiques sont des constantes harmoniques
tandis que les données altimétriques se présentent sous la forme de séries spatio-temporelles.
En outre, les constantes marégraphiques sont les quantités physiques recherchées, fournissant
ainsi des valeurs ponctuelles et donc locales des cartes cotidales. Les constantes harmoniques
des données gravimétriques sont reliées aux constantes harmoniques des marées océaniques
au travers d’une intégrale de convolution, apportant donc une information non plus locale
mais globale. Le grand avantage des données altimétriques, qui est leur couverture spatiale
presque compléte du globe, est contrebalancé par le fait qu’elles doivent &tre converties de
séries temporelles en constantes harmoniques de la marée océanique.

(3) Le nombre de données : on dispose de I’ordre de 102 constantes harmoniques de stations
de marée gravimétrique, de ’ordre de 103 constantes harmoniques de stations marégraphiques
et de I’ordre de 107 mesures altimétriques.

(4) Le bilan des erreurs : les erreurs sur les mesures marégraphiques, gravimétriques et
altimétriques sont 2 la fois non corrélées et completement différentes. On peut approcher les
erreurs sur les mesures marégraphiques par un bruit blanc. Dans les erreurs sur les mesures
gravimétriques, il faut considérer non seulement les erreurs instrumentales mais aussi les
signaux géophysiques autres que les effets de surcharge océanique qui sont enregistrés par les
gravimétres. Ces signaux sont mal connus et restent un sujet de recherche trés controversé.
Enfin, les mesures altimétriques présentent un bilan d’erreur (voir §11.2.4) trés complexe mais
qui est relativement bien connu.



Les analyses des mesures marégraphiques par les méthodes harmoniques et non-
harmoniques mettent en évidence un ensemble de caractéristiques remarquables des marées
océaniques. L’analyse harmonique révéle que la marée en plein océan est un phénomene
linéaire. Quant 3 la méthode de réponse, elle montre que la réponse du systéme océan aux
sollicitations de la force génératrice des marées, en fonction de la fréquence, est extrémement
lisse (les effets des marées radiationnelles mis 2 part). Enfin, les méthodes des concordances
reposent sur la corrélation spatiale des marées sur des distances de I’ordre du millier de
kilometres. Ces propriétés seront quantifiées a ’aide d’un modele hydrodynamique des
marées et exploitées dans la méthode d’analyse conjointe des mesures marégraphiques,
gravimétriques et altimétriques.
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CHAPITRE III : ESTIMATION DE L’ERREUR RADIALE D’ORBITE
PAR DEMODULATION COMPLEXE

II1.1 - Introduction

Comme nous 1’avons vu dans le chapitre II, le signal dominant dans les mesures
altimétriques de Geosat est I’erreur radiale d’orbite. Le r.m.s. du signal de I’erreur d’orbite est
estimé 2 environ 85 cm dans le cas des éphémérides calculées a partir du champ de gravité
GEM-T1. Les premiers essais de modélisation des marées océaniques par inversion de mesures
altimétriques seules [Mazzega et Jourdin, 1991] n’ont pas donné de résultats satisfaisants eu
égard 2 la précision centimétrique recherchée. Les causes vraisemblables sont 1’amplitude
considérable de I’erreur d’orbite par rapport a celle du signal de marée et le nombre insuffisant
de mesures analysées. Le modele de covariance de I’erreur d’orbite utilisé étant homogene ne
permet pas de représenter la complexité du comportement de I’erreur d’orbite. Nous avons donc
décidé de réduire la composante de ’erreur d’orbite dans les mesures altimétriques
indépendamment et avant toute tentative d’inversion.

Le probléme de la réduction du signal de I’erreur radiale d’orbite présent dans les mesures
altimétriques n’est pas nouveau. De nombreuses méthodes empiriques ont été développées en
attendant que des modeles trés précis du champ de gravité soient disponibles. Les techniques
couramment utilisées consistent 2 minimiser les différences de hauteur observées a 'intersection
des profils ascendants et des profils descendants de mesures altimétriques [Rummel and Rapp,
1977] ou de minimiser les différences de hauteur de mesures altimétriques le long d’arcs
colinéaires si I’orbite est répétitive [Cheney et al., 1983]. La minimisation est réalisée en
ajustant par moindres carrés des fonctions d’erreur qui prennent en compte la nature a grande
longueur d’onde de I’erreur d’orbite. Plusieurs travaux ont été menés en particulier sur le choix
judicieux des fonctions d’erreur d’orbite. Ainsi, en fonction de la longueur des segments
ajustés, ’erreur d’orbite est décrite soit par des polyndmes du premier, second ou troisicme
degré, soit par des fonctions sinusoidales [Tai, 1988; Schrama, 1989]. Douglas et al. [1984] de
méme que Houry et al. [1993] vont jusqu’a modéliser I’erreur d’orbite par une série de Fourier.
Certains auteurs [Wunsch et Zlotnicki, 1984] prennent en compte I’erreur d’orbite dans leur
analyse objective en utilisant une fonction de covariance a priori, qui peut étre déterminée
directement & partir des mesures altimétriques [Sirkes and Wunsch, 1990]. Cette derniere
méthode a I’avantage de fournir des informations a posteriori sur les bandes spectrales qui sont
affectées par la correction d’erreur d’orbite; et elle permet une plus grande flexibilité pour
décrire la structure de I’erreur d’orbite ainsi que sa corrélation avec le signal. Cependant, quelle
que soit la formulation choisie, les méthodes de différences sont incapables d’estimer les
erreurs communes aux points de croisement des arcs ascendants et descendants. Ces erreurs
systématiques, que 1’on appelle erreurs d’orbite géographiquement corrélées, sont
cartographiées dans les cartes de la topographie de la surface océanique [Tapley and
Rosborough, 1985; Mazzega, 1986]. Schrama [1992] a publié une revue complete sur les
diverses définitions et formulations des erreurs géographiquement corrélées et a démontré que
ces erreurs invariantes aux points de croisement appartiennent au noyau du syst¢me normal. En
outre, les variabilités observées aux points de croisement ne sont pas dues uniquement 2
Ierreur d’orbite. Rares sont les études qui ont été conduites afin de quantifier I’impact sur les
signaux océanographiques des méthodes de minimisation des écarts au points de croisement
[Tai, 1991; Houry et al., 1993].

Confronté A ce probléme d’insensibilité des méthodes de différence 2 la partie invariante (qui
peut varier d’un arc d’intégration & 1’autre) de 1’erreur d’orbite, nous avons décidé d’estimer le
spectre complet (partie stationnaire et variable) de 'erreur d’orbite & partir des données de la
hauteur de la surface océanique par rapport au géoide. Le calcul des caractéristiques spectrales
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des séries altimétriques présente des difficultés techniques liées a 'irrégularité de leur
échantillonnage [Sirkes et Wunsch, 1990; Houry et al., 1993]. Nous montrerons comment
nous avons résolu ce probléme pour notre application particuli¢re en utilisant une procédure
basée sur I’analyse objective. Chelton et Schlax [1993] ont montré que ’amplitude et la phase
de ’erreur d’orbite varient. Cela signifie que 1’analyse harmonique classique par transformée de
Fourier, qui est dédiée A ’analyse des signaux stationnaires, n’est pas 1’outil qui convient a
I’analyse des données altimétriques. C’est pourquoi, nous avons pensé a appliquer la méthode
de démodulation complexe qui permet d’estimer les variations de I’amplitude et de la phase
d’une fréquence fixée en fonction du temps. Cette méthode permet d’estimer a partir des
mesures altimétriques le spectre de ’erreur d’orbite dont les fréquences sont prédites
théoriquement.

Dans ce chapitre, nous décrirons les données utilisées ainsi que la méthode de démodulation
complexe que nous leur avons appliquée. Les résultats de la démodulation d’une série simulée
sont exposés afin de convaincre de I’efficacité de la méthode. Ensuite, les résultats de la
démodulation d’un an de données Geosat sont présentés et interprétés en faisant appel a la
théorie linéaire de “ I’erreur d’orbite” formulée par Kaula [1966]. Les contributions des signaux
géophysiques (surface moyenne et marées) et des erreurs résiduelles des corrections de
propagation sont aussi étudiées afin d’estimer I’effet de la correction de I’erreur d’orbite sur ces
différents signaux.

I11.2 - Analyse de Fourier des mesures altimétriques

Les mesures altimétriques, qui seront analysées par inversion, couvrent une période
d’environ 1 an comprenant 22 cycles répétitifs de 17 jours (= 375 jours) et qui débute en
novembre 1986. Les orbites ont été intégrées par arcs de 17 jours avec le champ de gravité
GEM-T1 [Haines et al., 1990; 1992]. Les corrections des effets de la troposphére seéche et
humide, des effets de I’'ionosphére ainsi que des marées terrestres qui sont fournies dans les
Geophysical Data Records (GDRs) [Cheney et al., 1987] ont été appliquées aux données. La
correction de biais électromagnétique n’a pas été appliquée parce que les valeurs fournies sont
peu fiables. De plus, comme les caractéristiques spectrales des marées et de la correction du
biais électromagnétique sont différentes, la recherche du signal des marées ne devrait pas €tre
trop pénalisée. La hauteur calculée de la mer h¢ par rapport au géoide peut alors s’écrire sous la
forme :

he=h-H-N (3.1a)
ha=hc+ €env + N + Eorb (3.1b)

avec
h la hauteur du satellite par rapport a I'ellipsoide de référence,
H la distance du satellite A 1a surface de 1la mer (¢’est-a-dire 1la mesure altimétrique),
N est la hauteur du géoide du champ de gravit¢ GEM-T1 par rapport a 1’ellipsoide,
h, est 1a hauteur de la mer par rapport au géoide déduite de 1’altimétrie par satellite,
Eenv SONt les erreurs résiduelles aprés corrections de propagation et instrumentales,
en sont les erreurs de commission et d’omission du modele de géoide, et
€orb €8t ’erreur radiale d’orbite.

On peut réécrire la hauteur de la mer sous une autre forme :

he, =TSO(p) + TSO(v) + M (3.2a)



h,=TSO(p) + TSO(V) + M + Eenv + EN + Eorb (3.2b)

ot TSO(p,v) représentent respectivement les parties permanente et variable de la topographie de
la surface océanique et M les marées océaniques. Dans la suite, le terme données altimétriques
(DA) sera utilisé pour h,. L’exploitation correcte de 1’altimétrie par satellite nécessite de séparer
les différents termes du second membre de 1’équation (3.2b). En principe, cet objectif n’est
réalisable qu’a condition que les caractéristiques spectrales des différents termes ne se
recouvrent pas. Il est donc opportun, dans un premier temps, d’estimer le contenu spectral des
DA avant de tenter d’isoler la composante qui nous intéresse ici, c¢’est-2-dire I’erreur d’orbite.

Les algorithmes classiques de Transformée de Fourier (Fast Fourier Transform) exploitent
I’équidistance de I’échantillonnage des données et ne peuvent donc pas étre appliqués aux séries
temporelles de mesures altimétriques, car elles présentent de nombreuses interruptions en raison
des passages au-dessus des continents et du mauvais fonctionnement occasionnel de I’altimetre.
Toutefois, il existe des algorithmes spécialement congus pour 1’analyse de Fourier de données
non-équidistantes [Scargle, 1982] dont Laudet [ 1988] s’est inspiré pour écrire le code que nous
utilisons. Cependant, il faut &tre conscient que les spectres calculés sont fortement “pollués” par
I’effet de “leakage”. Rappelons que les spectres calculés numériquement sont les résultats d’une
convolution entre le spectre vrai et le spectre de 1a fonction d’échantillonnage qui prend la valeur
1 aux dates des mesures et 0 ailleurs. Dans le cas de séries discrétes & échantillonnage
équidistant, la fonction d’échantillonnage est une fenétre rectangulaire dont le spectre est un
sinus cardinal. Le spectre subit en quelque sorte une diffraction parce que la série temporelle a
une durée finie. Dans le cas des séries altimétriques, ce spectre de “ diffraction “ est la
transformée de Fourier d’une suite de fonctions rectangulaires et est donc bien plus riche
qu’une simple fonction sinus cardinal. Les spectres calculés sont alors enrichis artificiellement
et comportent des raies spectrales non existantes dans le signal réel. Théoriquement, on peut a
partir de la connaissance de 1’échantillonnage temporel des données calculer le spectre
“diffractant” et s’en servir pour nettoyer le spectre “pollué” par une méthode de déconvolution.
En pratique, des difficultés numériques surgissent, car la déconvolution est un probléme mal
posé. Nous avons tenté de déconvoluer les spectres des DA : la méthode que nous avons mise
au point ainsi que les causes des résultats peu satisfaisants sont exposées dans 1’ Annexe.

Le spectre de Fourier des mesures altimétriques du premier cycle de 17 jours de Geosat se
révele extrémement riche (Figure III.1). Les spectres de tous les autres cycles sont analogues :
I’énergie spectrale est maximale autour de 1 cycle par révolution (cy/rev) équivalent a 14.3
cycles par jour et le reste de I’énergie est répartie autour des sous-harmoniques 2, 3, 4 ...
cy/rev. Bien que les spectres des différents cycles présentent de grandes similitudes quant a la
structure, on observe de grandes variations de 1’amplitude et de la phase des principaux pics.
Par exemple, I’amplitude du 1 cy/rev varie suivant les cycles de 40 cm a 140 cm. Dans un
premier temps, nous avons vérifi€ que ces fluctuations n’étaient pas le fait de 1’échantillonnage
qui varie 1égerement d’un cycle i I’autre. Pour cela, une fonction test, formée de la somme de 6
sinusoides dont les fréquences sont comprises entre 15 et 110 cycles par jour, a été
échantillonnée aux dates des mesures altimétriques des différents cycles. Les spectres
d’amplitude et de phase de cette fonction test calculés pour chaque cycle varient d’a peine
quelques pour-cent démontrant le rdle secondaire que jouent les différences d’échantillonnage
sur les fluctuations des caractéristiques spectrales observées dans les DA. Par ailleurs,
I’étalement des pics spectraux ne peut pas étre expliqué que par le leakage et suggere une non
stationnarité des harmoniques a ’intérieur méme des cycles, comme le prouvent les résultats
des spectres calculés sur des périodes de trois jours (Figures II1.3). Le choix d’une période de
trois jours n’est pas fortuit, il correspond a la durée du sous-cycle de Geosat, ¢’est-2-dire 4 une
couverture compléte du globe. De ce fait, les fonctions d’échantillonnage (panne de I’altimetre
exclue) sont pratiquement les mémes d’un cycle a 1’autre de telle sorte que I’effet de leakage est
presque le méme d’une sous-série & 1’autre permettant de comparer leurs spectres respectifs.
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Figure III.1 : Périodogramme du premier cycle des données altimétriques de Geosat qui
compte 17 jours (8/11/86 au 25/11/86). L’ orbite a été calculée avec le modéle du potentiel
gravitationnel terrestre GEM-T1. Le pic en 21 cycles par jour, indiqué par une fleche, a été
rajouté pour tester la méthode de démodulation (cfr. §111.3.3).



Ces signes de non stationnarité des harmoniques a I’intérieur des cycles ont motivé le recours a
la démodulation complexe.

II1.3 - Démodulation complexe
I11.3.1 - Principe

Soit x(t) une série temporelle qui est formée de la somme d’un signal périodique perturbé et
d’un bruit e(t) :

x(t) = A(t) cos[ot + ¢p(1)] + £(t) (3.3)

avec {A(t)}et {$(t)} des variations lentes de I’amplitude et de la phase. Extraire les séries
temporelles { A(t)}et {¢(t)}, tel est le but de la démodulation complexe [Bloomfield, 1976]. On
peut interpréter la démodulation complexe comme une version locale de I’analyse harmonique :
c¢’est harmonique, puisque I’on décrit I’amplitude et la phase d’une oscillation; et ¢’est local,
puisque seules les données confinées autour du temps t sont impliquées dans le processus de
détermination de I’amplitude et de la phase de 1’oscillation. Ecrivant (3.3) sous forme
complexe, on a

x() = % A®) (LoD + -ilOHOM]} + (1) (3.4)

Multipliant par elot
y(D= % A el¢(t)4 % A () e-l20tH0M] 4 g(t) e-ioot 3.5)

Le premier terme du second membre est celui que 1’on veut déterminer. Il peut étre séparé
des deux autres sous les hypothéses suivantes :

(1) {A(®)}et {d(t)} sont des fonctions lisses et, par conséquent, le premier terme aussi,

(2) Le spectre du troisi®me terme du second membre ne contient pas d’énergie aux basses
fréquences, c’est-d-dire que le spectre de €(t) ne contient pas d’énergie autour de la
fréquence .

Si ces conditions sont remplies, le premier terme varie plus lentement que les deux autres et

peut étre extrait en appliquant un filtre passe-bas a la série y(t).

II1.3.2 - Cas particulier des mesures altimétriques

L’application de la méthode de déconvolution aux DA pose des problemes liés a
Iirrégularité de I’échantillonnage. En effet, on ne peut pas appliquer les méthodes de filtrage
classiques qui sont réservées aux séries temporelles dont le pas d’échantillonnage est constant.
Afin de s’affranchir de ce probléme, nous procédons en trois étapes :

(1) Calcul du spectre de Fourier des DA d’un arc d’intégration complet avec I’algorithme de
Scargle [1982].

(2) Filtrage et interpolation des DA sur un ensemble de points équidistants a 1’aide d’une
analyse objective. Un choix judicieux des covariances du signal et du bruit permet de
construire un filtre dont la bande passante (Figure IT1.2) est bien adaptée a notre probleme.
La fonction de covariance du signal est simplement un cosinus de fréquence égale a la
fréquence de démodulation, tandis que la covariance du bruit est formé d’une somme de
cosinus, dont les fréquences sont les fréquences principales révélées par le spectre i la
premiére étape hormis la fréquence démodulée, plus un bruit blanc. Apres filtrage, on
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obtient une série échantillonnée sur un pas régulier qui ne contient plus que la fréquence
choisie et ses modulations.

(3) Démodulation complexe et filtrage a 1’aide d’un filtre construit par moindres carrés,
spécialement étudié pour atténuer les effets de Gibbs [Bloomfield, 1976].

Ces trois étapes doivent étre réitérées pour chaque fréquence démodulée. Cette procédure
donne de bons résultats a condition que la longueur des interruptions dans les données ne soit
pas trop grande par rapport & la longueur d’onde du signal recherché et que le signal et le bruit
ne soient pas trop corrélés. Ces conditions sont respectées dans le cas des séries de DA que
nous avons traitées.

I11.3.3 - Démodulation d’une série simulée

La procédure de démodulation décrite dans le paragraphe précédent a été testée sur une série
simulée. Cette série est formée du premier cycle des DA auquel on a additionné une fonction
sinusoidale de fréquence 21 cy/jour modulée en amplitude et en phase. La fréquence choisie
correspond & une bande de fréquence faible en énergie ce qui permet de tester la méthode dans
des conditions réalistes. Dans les Figures II1.3 sont comparées les modulations de I’amplitude
et de la phase telles qu’elles ont été spécifiées (lignes continues) et les résultats de la
démodulation (lignes pointillées). Les points représentent les résultats des spectres calculés sur
une fenétre glissante d’une longueur de trois jours. Les différences entre les lignes continues et
pointillées proviennent des modulations de la fréquence 21 cy/jour déja présentes dans la série
originelle des DA. Nous 1’avons vérifié en démodulant la série originelle, les résultats
correspondant exactement a la différence entre les lignes continues et pointillées. Nous
considérons donc ce test comme une bonne validation de la méthode.

I11.3.4 - Démodulation complexe des mesures altimétriques

Un peu plus d’une année (22 cycles) de données Geosat initialement échantillonnées toutes
les secondes ont été moyennées sur une minute. Les effets de 1’erreur radiale d’orbite ont des
périodes supérieures 4 25 minutes, justifiant ce moyennage. Il en résulte une série de 258 000
données couvrant 375 jours.

La démodulation complexe des 3 fréquences principales (1, 2, 3 cy/rev) a permis de mettre
en évidence dans les DA des variations des amplitudes et phases non seulement d’un cycle a
I’autre mais aussi a 'intérieur méme des cycles.

1 cycle par révolution

Les séries temporelles des modulations en amplitude et phase de la fréquence 1 cy/rev du
premier cycle des DA sont reproduites dans les Figures II1.4. Les lignes pointillées sont les
résultats bruts qui ont été lissés en y appliquant un filtre passe-bas dont la fréquence de coupure
est de 2 cy/jour (lignes continues). Afin de valider ces résultats, les amplitudes et phases
(points) de la fréquence 1 cy/rev ont été déterminées par une analyse de Fourier sur des sous-
séries de trois jours; les abscisses des points correspondent au temps milieu des sous-séries. On
peut constater le bon accord entre les deux méthodes.

Le fait le plus remarquable est la forte variation de I’amplitude dont les valeurs sont
comprises entre 20 cm et 200 cm. La phase varie entre 70 et 270 degrés. De plus, on observe
bien ’effet “papillon” [Engelis, 1987, par exemple] qui est caractérisé par I’amplification de
I’amplitude de la modulation aux deux extrémités de I’arc d’intégration de I’ orbite. Cet effet est
attribué a des forces perturbatrices a longues périodes qui présentent une composante a 1 cy/rev
dont I’amplitude croit linéairement en fonction du temps. Dans la procédure du calcul d’orbite,
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Figures I11.4 : Résultats de la démodulation du 1 cylrev du premier cycle des données
altimétriques de Geosat (orbites GEM-T1) : (a) amplitude et (b) phase. Les pointillés sont les
valeurs instantanées et les lignes continues sont les mémes résultats aprés lissage par un
filtre passe-bas avec une fréquence de coupure en 2 cycles par jour. Les gros points sont les
amplitudes et phases des spectres calculés sur une fenétre glissante de trois jours.
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Figures 1115 : Illustration de I’ effet papillon : (a) représente une erreur d longue
période qui se manifeste sous la forme d une sinusoide d’ une fréquence de 1 cylrev et
dont I'amplitude croit lentement (et donc, au premier ordre, linéairement) en fonction
du temps, (b) est la série obtenue en ajustant par moindres carrés a la série (a) une
sinusoide de méme fréquence, mais d’ amplitude constante; (c) est le résidu (a)-(b)
exhibant ' effet papillon, c’est-d-dire une amplitude maximum aux extrémités et
minimum au milieu de la série.



ces perturbations sont réduites en ajustant par moindres carrés une sinusoide d’une fréquence
de 1 cy/rev d’amplitude et de phase constantes. Comme I’amplitude ajustée de cette sinusoide
correspond plus au moins & ’amplitude moyenne du signal, les erreurs résiduelles apres
correction seront minimales au milieu de 1’arc d’intégration et maximales aux extrémités (voir
I’illustration dans les Figures IIL.5).

Les résultats de 1la démodulation complexe d’un an de DA de Geosat sont présentés dans les
Figures IIL6. Les séries sont lissées afin de montrer des figures lisibles. Mentionnons que les
22 cycles ont été concaténés et démodulés ensemble. Par conséquent, les fortes discontinuités
qui peuvent exister aux raccords entre deux arcs d’intégration sont lissées. Il eut ét€ plus correct
de démoduler les cycles les uns apres les autres, mais de toute fagon, le signal eut €t€ perdu aux
extrémités des cycles a cause de la largueur du filtre passe-bas.

Le caractére périodique des modulations est trés clairement établi par le spectre de Fourier de
la série brute des modulations (Figure II.11a) qui n’est pas symétrique puisque la série
démodulée est une fonction complexe. La répartition des différents pics spectraux sera discutée
et commentée dans le paragraphe suivant. Précisons, toutefois, que les spectres des
modulations calculés cycle par cycle présentent tous cette méme répartition mais les amplitudes
et phases varient dans de larges proportions. En effet, les orbites de chaque cycle ont été
déterminées séparément de sorte que les éléments initiaux moyens sont complétement différents
modifiant les amplitudes et les phases mais pas les fréquences de I’erreur d’orbite.

2 et 3 cycles par révolution

Le signal 2 1 cy/rev ainsi que ses modulations peuvent étre retranchés des DA 2 partir des
résultats de la démodulation. Les Figures II11.7 montrent les spectres des DA avant et aprés
soustraction. On peut constater I’extréme efficacité de la méthode. La nouvelle série a ensuite
été démodulée en 2 cy/rev et ces modulations ont été retranchées avant démodulation en 3
cylrev.

Les résultats de la démodulation des DA en 2 et 3 cy/rev (Figures 1I1.8 - 9) montrent une
forte variation des amplitudes tandis que les phases sont relativement plus stables sauf apres le
280itme jour (juillet 1987). Ces perturbations de la phase sont vraisemblablement dues a
Pintense activité solaire et géomagnétique durant cette période (voir Figures IIL.10). Les
spectres des modulations en 2 et 3 cy/rev (Figures III.11) sont aussi riches que le spectre des
modulations du 1 cy/rev avec toutefois des amplitudes plus faibles.

II1.4 - Caractéristiques spectrales de I’erreur d’orbite

La théorie analytique de Kaula [1966] relie linéairement les perturbations de la composante
radiale de la position du satellite sur son orbite aux erreurs du modele du potentiel gravitationnel
terrestre. Plusieurs auteurs [Wagner, 1985; Engelis, 1987] ont montré que cette théorie est
suffisamment précise au premier ordre pour décrire les erreurs d’orbite des satellites décrivant
des orbites quasi-circulaires, comme les satellites altimétriques. Dans cette théorie, seules les
erreurs du modele du potentiel terrestre sont considérées. Nous ne dérivons pas ici les
équations de Kaula qui sont aujourd’hui des plus classiques en orbitographie [Kaula, 1966;
Colombo, 1984; Wagner, 1985; Engelis, 1987]. Nous ne rappellons que les formules
théoriques qui servent 2 interpréter les résultats de la démodulation.

Dans le cas des orbites képlériennes, la distance radiale entre le centre de masse de la Terre et
le satellite est
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Figures 111.6 : Résultats de la démodulation du I cy/rev d’un an de données Geosat (orbites

GEM-T1). Les résultats bruts ont été lissés par un filtre passe-bas avec une fréquence de
coupure en 2 cycles par jours : (a) amplitude et (b) phase.
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Figures I11.8 : Résultats de la démodulation du 2 cylrev d’ un an de données altimétriques
Geosat (orbites GEM-T1). Les résultats bruts ont été lissés par un filtre passe-bas avec une
fréquence de coupure en 2 cycles par jours : (a) amplitude et (b) phase.
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Figures 119 : Résultats de la démodulation du 3 cylrev d’un an de données altimétriques
Geosat (orbites GEM-T1). Les résultats bruts ont été lissés par un filtre passe-bas avec une
fréquence de coupure en 2 cycles par jours : (a) amplitude et (b) phase.
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Figure 11112 : Eléments képlériens moyens de Geosat.
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r=a(l-ecosE) (3.6)

oil a est le demi grand axe de I’ orbite elliptique, e I’excentricité et E I’anomalie excentrique. En
développant E en fonction de I’anomalie moyenne M [Kaula, 1966], on obtient :

r=a[l - e cosM - (€2/2) (cos2M - 1) + O(e3)] (3.7)
Au premier ordre, pour un e tr&s petit, la perturbation suivant la composante radiale est :
Ar = Aa - (aAe + eAa) cosM + aeAM sinM (3.8)

Dans ce résultat extrémement simple, il apparait déja que quelle que soit I’expression exacte des
différents termes du second membre de 1’équation (3.8), le signal de 1’erreur radiale d’orbite est
fondamentalement une oscillation d’une fréquence de 1 cy/rev modulée en amplitude et phase.
La théorie de Kaula permet d’exprimer ’erreur radiale d’orbite le long de la trace du satellite en
fonction des coefficients ACnm et ASym du développement en harmoniques sphériques des
erreurs du potentiel gravitationnel terrestre [suivant Rosborough and Marshall, 1990] :

[ ACnm ]n-m pair
.Cos
oo) n 'ASnm n-m impair Vaompq
Ar=) ) (3.9)
+
n=1 m=0 p=0 g=-oc0
Asnm] n-m pair .
S1n
|:Acnm n-m impair WVnmpq

ot les coefficients Apmpq sont fonctions des éléments orbitaux moyens et inversement
proportionnels & I’argument Wnmpq qui définit les fréquences spectrales de I"erreur d’orbite :

Wnmpq = (N-2p+q) (@+M) - qO + m(Q-0) (3.10)

ot @ est I’argument du périgée, Q la longitude du noeud ascendant et ¥ le temps sidéral de
Greenwich (Figure II1.12). Le spectre de ’erreur d’orbite contient donc théoriquement un
nombre infini de fréquences. Différentes combinaisons de nmpq peuvent engendrer les mémes
fréquences qui sont combinaisons linéaires de w+M, la fréquence orbitale (ou 1 cy/rev), m la
fréquence apsidale correspondant A une révolution compléte du périgée, et Q- la fréquence
nodale correspondant A une rotation compléte de la Terre par rapport au plan de précession de
’orbite. L’équation (3.9) est une somme de fonctions sinusoidales dont les amplitudes et
phases sont constantes. Cette équation est, en général, valide pour de courtes périodes de
temps, car la détérioration progressive de 1 orbite du satellite sous I’action des forces de surface
modifie les caractéristiques de 1’orbite. Dans le cas des orbites quasi-circulaires, la sommation
sur I'indice g, puissance de 1’excentricité, peut étre limitée 4 P'intervalle [-1, +1].

Parmi le nombre infini de fréquences caractéristiques de 1’erreur radiale d’orbite (éq. 3.10),
certaines se distinguent car elles présentent des amplitudes plus fortes que les autres, dénotant
un phénomene de résonance. Celle-ci survient quand la perturbation a une fréquence identique
ou proche d’une des fréquences propres des équations différentielles du mouvement. Plus
concrétement, une résonance apparait quand le satellite est soumis de fagon répétitive au méme
champ de force provoquant des oscillations  longue période voire des variations séculaires de
la trajectoire du satellite. On appelle résonance parfaite les variations séculaires tandis que les
oscillations 2 longue période sont dites résonance faible ou forte. Numériquement, une
résonance se manifeste par un dénominateur égal a zéro ou trés petit dans I’expression des
solutions analytiques des équations linéaires. L’existence d’un dénominateur trés petit
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Table II1. 1 : Types de perturbations dues au potentiel terrestre.

Indices Coefficients Type de Commentaires
perturbation
n-2p+q=0, m=0, q=0 harmoniques zonaux pairs | séculaires

harmoniques zonaux pairs

harmoniques zonaux
impairs

harmoniques tesseraux

longues périodes

longues périodes

moyennes périodes

périodes sous multiples pairs de
la période du périgée

périodes sous multiples impairs
de la période du périgée

périodes sous multiples du jour

n-2p+q#0, m=0

M #0, Yompg# 0

\I"mnpq""o

harmoniques zonaux

harmoniques tesseraux

harmoniques tesseraux

courtes périodes

courtes périodes

courtes périodes

périodes sous multiples de la
période orbitale du satellite

quasi-résonance




n’implique pas que les amplitudes des perturbations sont infinies, mais reflete simplement que
les solutions analytiques ne sont plus valides. C’est ce qui arrive lorsque 1’argument =0,
puisqu’il apparait au dénominateur des Apmpqg.

Lorsque n-2p+g =0etm =0, et si ¢ = 0, il y a annulation complete de (3.10) et les
harmoniques zonaux pairs (car n = 2p) provoquent des variations séculaires de 1’erreur
d’orbite, c’est-3-dire une résonance parfaite et, par contre, si q = 1, il y a dans ce cas une
quasi-résonance forte et les harmoniques zonaux impairs (car n = 2p+1) provoquent des
perturbations 2 longue période. Les périodes de ces perturbations sont supérieures a 200 jours
et sont donc trés longues par rapport 2 la durée des arcs d’intégration (de 1’ordre de la dizaine de
jours). Leurs amplitudes sont considérables et la théorie linéaire de Kaula n’est plus valable.
L’ajustement des conditions initiales lors du calcul d’orbite permet d’en réduire les effets. Une
partie des contributions est aussi absorbée dans I’ajustement des parametres des forces de
frottement. Les erreurs résiduelles sont responsables de I’effet papillon que nous avons déja
évoqué précédemment.

Un autre cas de résonance est rencontré quand les différents termes impliqués dans (3.10)
s’annihilent. Ainsi, par exemple, lorsque la fréquence orbitale (0+M) est égale 2 un nombre
entier de fois le flequence nodale (Q-), le satellite passe toujours au-dessus de la méme région
géogr aphlque ol il est soumis aux mémes effets gravitationnels. Il en résulte une accumulation
progressive des pe:turbauons corrcs;aondmtes de fréquence q. Si q ou  sont égaux a zéro, il
y a résonance parfaite, sinon, ¢’est un cas de quasi-résonance. En réalité, O ne peut jamais étre
identiquement nul 2 cause de la dérive de I’orbite (2 moins de la corriger a I’aide de moteurs
auxiliaires). De méme, ®+M ne peut &tre rigoureusement multiple de Q-9§, A cause des
interactions entre les perturbations périodiques et les effets des forces de surface. Ainsi, les
deux cas de résonance parfaite et forte discutés ci-avant adoptent la forme de résonances dites
faibles. Par exemple, dans le cas de Geosat dont la fréquence orbitale est 14.3 cycles par jour,
une premilre résonance faible apparait pour m=14 et donc Wampq = 0.3 cy/rev, une seconde
lorsque m=28-29, .

Lorsque n-2;2+g Oetm 0, les fréquences dominantes se réduisent  m (Q-9) - qo; elles
ne s’annulent jamais puisque q<2 mais sont petites pour les petites valeurs de m. Ce type de
résonance est dite résonance “pluri-journaliere “, car c’est le facteur m® qui est dominant dans
I’expression de la fréquence.

Lorsque n-2p+q # 0, les fréquences principales sont des multiples entiers de la fréquence
orbitale, modulées par les termes pluri-journaliers et la fréquence apsidale. Il y a quasi-
résonance, lorsque les fréquences induites par les perturbations pluri-journali¢res sont proches
d’un multiple entier de la fréquence orbitale. La fréquence orbitale de Geosat étant de £14.3
cy/jour, il y aura des effets de résonance attribuables aux coefficients du développement en
harmoniques sphériques du potentiel gravitationnel terrestre d’ordre 14 et 15, 28 et 29, ainsi
que 42 et 43, qui sont responsables respectivement des résonances faibles premilres,
secondaires et tertiaires. Ces résonances provoquent des modulations de +0.3, 0.7, £1.3,
+1,7 ,...cy/jour des fréquences multiples entieres du 1 cy/rev .

La démodulation complexe des DA en 1 cy/rev montre et permet d’estimer I’effet papillon
qui est une erreur résiduelle attribuable 3 une quasi-résonance forte. On peut observer dans les
spectres des modulations (Figures I11.11) pratiquement toutes les fréquences prédites par la
théorie analytique de Kaula. En particulier, on distingue trés clairement les termes pluri-
journaliers modulés par la fréquence apsidale, mais aussi les effets des résonances faibles qui
produisent des modulations en 0.3 cy/rev,... Cependant, les spectres sont bien plus riches que
ne le laisse supposer la théorie linéaire de 1’erreur d’orbite.
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Figures 1II.11 : Périodogrammes des modulations respectivement en 1, 2 et 3 cy/rev des données altimétriques de Geosat (a-c), de la surface
moyenne de Marsh par rapport au géoide GEM-T1 (d-f), et des marées océaniques (g-i) échantillonnées sous la trace du satellite.



IIL.5 - Autres contributions aux modulations apparentes

Dans cette section, nous cherchons quels sont les autres signaux qui contribuent aux
modulations observées et nous tentons aussi de les quantifier. L’enjeu est clair, il faut éviter
d’éliminer du signal océanographique en méme temps que 1’on réduit les erreurs d’orbite.

I11.5.1 - Théorie

Dans un premier temps, il faut insister une fois de plus sur les limites de validité de la théorie
linéaire de I’erreur d’orbite. Les résultats théoriques sont issus d’une linéarisation des équations
non linéaires du mouvement prenant en compte uniquement les erreurs du modele de potentiel
gravitationnel terrestre tout en négligeant les erreurs des modeles des forces de surface
(frottement atmosphérique, pression de radiation solaire) et les effets de 1’ajustement des
observations de poursuite pour obtenir les conditions initiales des éléments orbitaux du satellite.
Malgré ces restrictions importantes, on peut raisonnablement supposer que si les erreurs du
modele du champ de gravité sont la source principale des erreurs d’orbite, alors les
caractéristiques spectrales prédites par la théorie linéaire restent valables en premieére
approximation.

II1.5.2 - La surface moyenne océanique

Le signal océanographique permanent le plus important en amplitude est la Surface Moyenne
Océanique (SMO) qui est définie par rapport a ’ellipsoide de référence comme la somme du
géoide et de la Topographie Dynamique de 1’Océan (TDO) induite par la circulation générale
permanente. Afin d’estimer les caractéristiques spectrales de la SMO, nous avons utilis€ un
modele indépendant des données altimétriques de Geosat qui a été calculé par Marsh et al.
[1986] 2 partir des données altimétriques de Seasat. Bien que ce modele fut obtenu a partir de
données trés bruitées, il devrait nous indiquer s’il est opportun ou non d’éliminer les
modulations des fréquences en 1, 2, et 3 cy/rev. Le spectre (Figure II1.13a) de la SMO de
Marsh, 2 laquelle le modele de géoide GEM-T1 a été soustrait et qui été ensuite échantillonnée
sous la trace de Geosat, présente 3 fréquences principales en 1, 2 et 3 cy/rev qui ont
respectivement des amplitudes de 26 cm, 33 cm et 39 cm. Comme le géoide GEM-T1 a été
soustrait, ce spectre est en fait le spectre de la TDO et de ses erreurs associ€es dont les erreurs
du géoide. Ces derniéres peuvent étre estimées a partir des erreurs formelles du modele de
géoide qui peuvent étre cartographiées et ensuite échantillonnées le long de la trace du satellite.
Le spectre des erreurs formelles du géoide (Figure II1.14) a des amplitudes qui ne dépassent
pas les 10 cm.

Le spectre des DA moins la SMO de Marsh est moins énergétique que le spectre des DA
originelles A toutes les fréquences en dehors des fréquences autour du 1 cy/rev ou
paradoxalement 1’énergie augmente. A premilre vue, une partie du signal océanographique a été
enlevé A toutes les fréquences sauf autour du 1 cy/rev ot du bruit a été rajouté. L’origine de ce
bruit peut étre associé i la perte de I’orientation absolue, par rapport au géoide, de la SMO qui
est calculée par minimisation des écarts aux points de croisement [Schrama, 1992]. Le bruit
correspond 2 la projection dans la SMO de la partie invariante des résidus de ’erreur d’orbite de
Seasat. En effet, Colombo [1984] et Schrama [1989] ont montré que les erreurs communes aux
arcs ascendants et descendants, que I’on ne peut estimer par les méthodes de différences aux
points de croisement, ont des signatures spectrales dont la fréquence principale est précisément
1 cy/rev.

Les spectres des démodulations des pics principaux de la SMO de Marsh moins le géoide
GEM-T1 ( = TDO) sont dessinés dans les Figures II1.11. On ne peut rien dire en ce qui
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Figures 111.13 : (a) Périodogramme de la surface moyenne de Marsh au-dessus du géoide
GEM-T1 échantillonnée sous la trace du premier cycle de Geosat. (b) Périodogramme des
données altimétriques de Geosat moins la surface moyenne de Geosat pour ce méme cycle.



concerne les modulations du 1 cy/rev, car comme nous 1’avons vu, elles sont extrémement
bruitées. Dans les modulations des 2 et 3 cy/rev, on observe les termes pluri-journaliers ainsi
que les résonances faibles dont les amplitudes sont en bon accord avec celles observées dans les
DA. Il semblerait donc que la SMO contribue de maniére significative aux modulations des 2 et
3 cy/rev. La concordance est bien meilleure pour les modulations du 3 cy/rev car I’erreur
d’orbite a certainement une petite contribution a 2 cy/rev. La contribution de 1a TDO a 1 cy/rev
peut étre estimée 2 partir du spectre de la TDO déduite de I’atlas hydrographique de Levitus
(Figure II1.15) calculé par Houry et al. [1993]. On voit que I’énergie spectrale de 1a TDO autour
du lcy/rev peut étre négligée par rapport a celle de ’erreur d’orbite.

II1.5.3 - Les marées océaniques

Les marées océaniques sont aprés la SMO le signal & grande échelle le plus é€nergétique. Le
signal de la marée océanique totale, calculé le long de la trace du satellite 4 I’aide du modele de
Schwiderski [1980a-b], a été démodulé en 1, 2 et 3 cy/rev. Les Figures II1.11 montrent les
spectres des résultats de ces différentes démodulations. On peut constater que les fréquences
des modulations dues 2 1a marée sont dans 1’ensemble bien séparées de celle de 1a TDO et de
celles prédites par la théorie linéaire de ’erreur d’orbite. En outre, elles apparaissent avec des
amplitudes comparables a celles observées dans les DA de Geosat. Les marées océ€aniques
présentent donc une signature spectrale bien distincte de la TDO et de I’erreur d’orbite.

I11.5.4 - Autres contributions

Par autres contributions, nous entendons les erreurs résiduelles aprés application des
principales corrections de propagation. I s’agit des corrections de troposphére séche et humide
ainsi que des corrections ionosphériques. Les spectres de ces diverses corrections sont
reproduits dans les Figures II1.16. Leurs énergies sont réparties sur les fréquences multiples
entieres du 1 cy/rev avec des amplitudes d’une dizaine de centimétres. Les spectres des erreurs
résiduelles aprés corrections doivent vraisemblablement avoir la méme structure avec des
amplitudes certainement inférieures au centimétre. On peut donc affirmer que la contribution des
erreurs résiduelles des corrections de propagation aux modulations observées dans les DA sont
négligeables.

Par ailleurs, notons que la modulation d’un jour du 1 cy/rev pourrait étre expliquée, selon
Chelton and Schlax [1993], comme un effet résultant de la procédure qui consiste, dans le
calcul d’orbite 2 ajuster tous les 1 ou 2 jours un coefficient de trainée pour réduire les effets de
force de frottement agissant sur le satellite.

I11.5.5 - Conclusion

En résumé, les modulations du 1, 2 et 3 cy/rev observées dans les DA de Geosat
proviennent principalement du signal de I’erreur d’orbite, de la Topographie Dynamique de
I’Océan et des marées océaniques. La contribution de 1’erreur radiale d’orbite est concentrée
autour du 1 cy/rev alors que les modulations du 2 cy/rev sont principalement dues a la TDO
avec une faible contribution de I’erreur radiale d’orbite. Par contre, les modulations du 3 cy/rev
sont induites par la TDO et les marées océaniques.
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Figure I11.14 : Périodogramme des erreurs formelles du modéle de géoide GRIM4-S1
échantillonnées sous la trace de Geosat pour une période de 6 jours [tiré de Houry et al.
1993].
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Figures II1.15 : Périodogramme de la Topographie Dynamique de I’ Océan déduite de I Atlas
Climatologique de Levitus (niveau de référence 2000 décibar) échantillonnée sous la trace du
satellite [tiré de Houry et al., 1993].
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modulations ainsi que la Surface Moyenne Océanique de Marsh.
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Table IIL.2 : Ecarts types (ou rms) calculés sur des séries d’ une durée d’un an (de novembre
1986 @ novembre 1987) couvrant tout le globe.

Signal rms
(cm)
DA 164.8
DA - modulations 1 cy/rev 150.7

DA - modulations 1 & 2 cy/rev 146.4
DA - modulations 1, 2 & 3 cy/rev 144.7

modulations 1 cy/rev 69.0

DA = hauteur de la mer par rapport au géoide GEM-T1 corrigée des marées océaniques.

Table II1.3 : Ecarts types (ou rms) de la variabilité océanique par rapport au niveau moyen de
la mer de novembre 1986 @ novembre 1987 et moyennés dans une boite située dans la partie
Ouest de I' Atlantique équatoriale entre 20 °Ouest et 10 °Ouest et 20 °Sud et 10 ° Sud.

Signal rms Variance %
(cm) (cm)?
DA 66.4 4409 100
DA - modulations 1 cy/rev 18.8 353 8.0
DA - modulations 1 & 2 cy/rev 19.5 380 8.6
DA - modulations 1, 2 & 3 cy/rev 20.6 424 9.6

DA = hauteur de la mer par rapport au géoide GEM-T1 corrigée des marées océaniques.



I11.6 - La démodulation et réduction de I’erreur d’orbite

L’efficacité avec laquelle la démodulation complexe permet de réduire 1’erreur d’orbite a été
testée globalement et localement.

Tout d’abord, il a été vérifié que la variance globale des DA diminue au fur et & mesure que
I’on retranche les modulations des 3 pics principaux (Table III.2). La Figure II1.17 montre les
valeurs des écarts types cycle par cycle avant et apres élimination des modulations du 1 cy/rev.
La série des écarts types a priori est représentative de 1’évolution temporelle de la qualité de
’orbite. On peut remarquer, comme nous 1’avons déja noté, la dégradation progressive des
éphémérides 2 partir du mois de juillet 1987 (cycle 17 et 18) a cause de 1’activité solaire et
géomagnétique. La variance a posteriori est pratiquement uniforme, comme on doit s’y attendre
si I’erreur d’orbite est bien éliminée. La faible variabilité des écarts types a posteriori est
expliquée en grande partie par la différence de I’échantillonnage d’un cycle a I’autre. Pour le
démontrer, nous avons calculé les écarts types cycle par cycle de la SMO, qui par définition est
une surface stationnaire. Les fluctuations observées des écarts types de la SMO sont trés
corrélées avec les fluctuations de 1a variance des DA et ne peuvent provenir que de la différence
d’échantillonnage.

Passons maintenant au test 4 une échelle plus locale. L’erreur résiduelle aprés correction de
I'erreur d’orbite est estimée en calculant la variabilité des DA dans une région de 1’océan ot le
signal océanographique est extrémement faible. La variabilité, définie comme le r.m.s. des DA
par rapport au niveau moyen de la surface océanique, dans une boite carrée de 10° de cOté est
reporté dans la Table IIL.3. La variance attendue est de I’ordre de 4 cm r.m.s. [Zlotnicki et al.,
1989]. Apres élimination des modulations du 1 cy/rev, la variabilité chute de 66 cm a 18.8 cm
et la variance aprés correction ne représente plus que 8 % de la variance a priori. Ce résultat
suggere que les modulations du 1 cy/rev représente 90 % de P’erreur radiale d’orbite non
stationnaire. Lorsque les modulations des 2 et 3 cy/rev sont retranchées, la variabilit€ ne
diminue plus et a tendance & augmenter légérement. On peut donc conclure qu’il n’y a
pratiquement pas de signal non stationnaire de 1’erreur d’orbite 4 ces deux fréquences.

II1.7 - Les orbites GEM-T2

Les orbites calculées 2 partir du modele du potentiel gravitationnel GEM-T2 [Haines et al.,
1992] ont permis de tester la méthode de démodulation sur des éphémérides plus précises. La
Figures II1.18 montrent les amplitudes et phases des modulations du 1 cy/rev pour les trois
premiers arcs d’intégration, chacun d’une durée de 6 jours. L’amplitude moyenne de la
modulation passe de 88 cm 2 68 cm lorsque GEM-T?2 est utilisé  la place de GEM-T1 pour la
méme période. Cette diminution est due & deux facteurs : le champ GEM-T2 est meilleur que le
champ GEM-T1 [Haines et al., 1989] et I’effet papillon est considérablement réduit au point de
ne plus apparaitre, car la durée de 1’arc d’intégration est réduite d’un tiers. Par contre,
I’amplitude des fluctuations de la modulation est du méme ordre de grandeur pour GEM-T1 (40
cm r.m.s.) et pour GEM-T2 (36 cm r.m.s.).

La comparaison des spectres des modulations (Figures II1.19) montre que : (1)
I'interprétation des résultats présentés dans la section précédente reste appropriée puisque 1’on
retrouve bien dans les orbites GEM-T2 les termes pluri-journaliers ainsi que les résonances
faibles; (2) 1a réduction de I’effet papillon transparait au niveau des spectres puisque pour les
orbites GEM-T?2, il y a peu d’énergie autour de la fréquence zéro par rapport au spectre des
orbites GEM-T1; (3) la fréquence dominante dans les orbites GEM-T2 n’est pas le 1 cy/rev pur
mais sa modulation en 1 cy/jour, ce qui explique la dérive de la phase dans la Figure II1.18b.
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Figures II1.18 : Résultats de la démodulation du 1 cylrev du premier cycle des données
altimétriques de Geosat (orbites GEM-T2) : (a) amplitude et (b) phase. Les pointillés sont les
valeurs instantanées et les lignes continues sont les mémes résultats aprés lissage par un

filtre passe-bas avec une fréquence de coupure en 2 cycles par jour.
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II1.8 - Conclusions

Nous avons montré que la démodulation complexe est un outil mathématique
particuliérement bien adapté pour estimer les amplitudes et phases des principales raies
spectrales de I’erreur d’orbite prédites par la théorie linéaire de Kaula. Ces résultats s’avérent
trés utiles pour éliminer ou du moins réduire I’erreur d’orbite dans les données altimétriques.
Cependant, la surface moyenne océanique présente des caractéristiques spectrales semblables a
celles de I’erreur d’orbite. Nous avons conclu 2 un effet dominant de ’erreur d’orbite 3 1 cy/rev
et une prédominance du signal de la surface océanique moyenne a 2 et 3 cy/rev, a partir du
modele de la SMO de Marsh.

Nous avons enlevé le 1 cy/rev et ses modulations aux mesures altimétriques de Geosat qui
seront utilisées dans les inversions décrites dans les chapitre IV et V. Afin de minimiser les
effets de cette correction d’erreur d’orbite sur le signal de marée que nous cherchons a restituer,
I’énergie des marées, en 1 cy/rev ainsi que ses modulations calculées & partir du modele de
Schwiderski, a été rajoutée.

Nous avons montré qu’en enlevant les modulations en 1 cy/rev des mesures altimétriques,
on enléve prés de 90 % de la composante non stationnaire de 1’erreur d’orbite et que cette
composante n’a pratiquement pas d’énergie & 2 et 3 cy/rev. Les 10% d’erreur résiduelle sont
dus en partie aux imperfections des filtres numériques appliqués aux DA mais aussi aux
composantes de 1’erreur d’orbite qui ne se projettent pas autour du 1 cy/rev et que nous n’avons
pas jugées utile d’estimer (par exemple en 0.3, 0.7, 2, ...cy/jour). En conclusion, le r.m.s. de
la correction d’erreur d’orbite, déduit par la démodulation d’un an de DA pour les orbites GEM-
T1, est de 69 cm.

L’ensemble des résultats montrent que la démodulation reste un outil utile pour réduire
I’erreur d’orbite méme pour des éphémérides plus précises que celles calculées avec GEM-T1.
La méthode a été appliquée aux premilres mesures altimétriques de Topex-Poseidon dans
lesquelles nous avons trouvé des modulations pluri-journalieres du 1 cy/rev avec des
amplitudes de plusieurs centimtres (Figures II1.20). En comparant ces résultats a ceux obtenus
pour Geosat (Figures II1.19), on peut constater une diminution d’un facteur 10 de Uerreur
d’orbite. Enfin, signalons aussi que la démodulation a été utilisée récemment pour analyser les
différences entre des orbites de Topex-Poseidon calculées par des équipes différentes : elle a
permis de mettre en évidence une modulation journaliére du 1 cy/rev probablement due a des
variantes dans les techniques d’ajustement des parametres des modeles des forces de surface
[S. Houry, communication personnelle, 1993].
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CHAPITRE IV: METHODES INVERSES ET RESTITUTION DES
MAREES OCEANIQUES

IV.1 - Introduction

Dans le chapitre II, nous avons insisté sur la trés grande complémentarit€é des mesures
marégraphiques, gravimétriques et altimétriques pour restituer les marées océaniques. Le
probléme, que nous abordons dans ce chapitre, est la conception d’une méthode d’analyse
afin d’exploiter I’ensemble de ces mesures. La théorie des problemes inverses (norme L)
fournit le cadre mathématique rigoureux qui permet de généraliser et d’étendre la théorie
classique de I’analyse du signal. Les avantages de la théorie inverse sont de pouvoir traiter
conjointement des lots de données hétérogenes, de tenir compte de I’ensemble des erreurs qui
affectent les données et de produire des solutions avec une estimation interne (ou formelle) de
leurs erreurs.

Selon la théorie classique des moindres carrés, la solution inverse tire parti explicitement
de toutes les informations a priori disponibles sur le signal des marées et sur les diverses
erreurs affectant les mesures. Un ensemble de fonctions d’auto et d’intercovariance quantifie
de maniére statistique les propriétés spatiales et spectrales des marées océaniques. Les
propriétés statistiques des autres composantes des données, qui sont considérées comme des
erreurs, sont aussi spécifiées en termes de fonctions de covariance. La solution des marées
s’obtient alors par une inversion de I’ensemble des données; les caractéristiques des erreurs
sur les solutions sont décrites par les fonctions de covariance a posteriori.

Notre objectif n’est pas d’apporter une contribution a la théorie des problémes inverses,
mais plut6t d’en tirer parti pour restituer les marées océaniques. Nous n’en donnons donc pas
une présentation mathématique rigoureuse que 1’on peut trouver, par exemple, chez Tarantola
[1987], mais nous privilégions plutdt une approche intuitive. Dans le premier paragraphe,
nous déduisons la formule classique d’interpolation par moindres carrés afin d’illustrer, au
travers d’un exemple trés simple, les méthodes inverses. Cet exemple fait apparaitre
naturellement les fonctions de covariance; la structure de la formule d’interpolation qui en
résulte est fondamentalement identique pour tous les problémes inverses que nous avons
traités. Ensuite, nous donnons les formules d’inversions seules et conjointes de mesures
marégraphiques, gravimétriques et altimétriques. Puis, nous justifions le choix des différentes
fonctions de covariance que ce soit du signal des marées ou des erreurs sur les mesures.
Enfin, nous abordons le probléme de I’aliasing dans le contexte de 1’altimétrie par satellite et
nous terminons sur 1’aspect numérique de la méthode inverse.

Le probléme de la restitution des marées océaniques & partir des observations, formulé
dans le cadre de la théorie des problémes inverses et tel que nous le présentons ici, a bénéficié
des travaux précurseurs menés par Houry et Mazzega [Houry, 1989], qui concernent la
restitution de la surface moyenne océanique par inversion de mesures altimétriques, et des
travaux de Mazzega et Jourdin [Jourdin et al., 1991] sur la restitution de la marée le long des
frontiéres ouvertes de modeles hydrodynamiques de marées.
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IV.2 - Interpolation par moindres carrés

Une des méthodes d’interpolation la plus couramment utilisée en géophysique est une
méthode statistique basée sur le théoréme de Gauss-Markov [Rao, 1973] que I’on appelle
“krigeage” en géologie [Krige, 1951], “analyse objective” en météorologie et en
océanographie [Bertherton et al., 1976], ou encore “collocation” en géodésie [Moritz, 1978].
Le théoréme de Gauss-Markov donne I’expression de 1’estimateur non biaisé€ des valeurs
interpolées qui minimise I’erreur quadratique moyenne sur I’ensemble des données. Ce type
de méthode nécessite, comme nous allons le voir, une connaissance a priori de
caractéristiques statistiques sur le signal que 1’on cherche 2 restituer ainsi que sur les données.

Prenons I’exemple d’une fonction continue h que I’on veut estimer aux points x & partir
des valeurs connues de cette fonction en un nombre fini de points h(x;) = d;, L’estimateur
linéaire le plus général sans biais s’écrit sous la forme [McIntosh, 1990]:

h(x) = h(x) + wi(x) (d - d) @4.1)
ol ’accent circonflexe représente une valeur estimée, la barre 1’espérance mathématique ou
la moyenne; d est le vecteur des données; wT est un vecteur transposé de fonctions inconnues

que nous allons déterminer dans la suite sous des conditions qui seront précisées. L’erreur e
commise en utilisant cet interpolateur satisfait  :

e2(x) = [h(x) - hix) [ 4.2)

En utilisant (4.1) et aprés quelques manipulations, on obtient:

e2=(h-h)*- Cl Ci Cra+ (W-Cai' Cna)' Cua (W-Cai' Cna) 4.3)

oll Cy est la matrice de covariance des données,

Cu= (d-d)(d- a_)r (4.4)

et Crq est 1a matrice de covariance croisée (ou intercovariance) entre les données et le signal &
restituer :

Cra= (h-h)(d-d) 4.5)
Ces deux matrices sont symétriques et définies positives. L’estimateur est dit optimal lorsque
la variance de ’erreur est minimum, ¢’est-3-dire quand w est choisi de telle maniére que le
dernier terme non négatif du second membre de 1’équation (4.3) disparaisse :

w=Caq' Cha 4.6)

Ainsi, I’estimation de h(x) qui, en moyenne, a I’erreur quadratique la plus petite est
I’estimation de Gauss-Markov :

h(x) =h(x) + C Ca (d - d) 4.7

En outre, I’erreur quadratique (éq. 4.3) associée a I’estimation se simplifie et s’écrit :

el = (h - H)z - Cig Cit Ca (4.8)



Ou encore,
€2=Cp - Cry Cai Cra 4.9)

On en déduit que les éléments indispensables pour utiliser les résultats (4.7) et (4.9) du
théor¢me de Gauss-Markov sont une connaissance a priori de la moyenne du signal a restituer
(h), de la moyenne des données, ainsi que de la covariance des données et de
Iintercovariance entre le signal et les données.

Nous avons développé in extenso les formules de I’interpolation par moindres carrés, car
la recherche de la solution de ce probléme inverse est simple et fait apparaitre tout
naturellement les fonctions de covariance. Notre objectif est de démystifier le rdle et I’emploi
des fonctions de covariance : elles ne sont pas un artifice mathématique que I’on introduit
pour obtenir des solutions désirées aux problémes inverses, mais elles sont intrins€éques aux
méthodes de résolution par moindres carrés.

1V.3 - Solution générale des problémes inverses linéaires par moindres carrés

La théorie inverse nous fournit les outils mathématiques les mieux adaptés pour estimer
les marées océaniques 2 partir d’un ensemble de données hétérogénes . Nous avons suivi le
formalisme développé par Tarantola et Valette [1982] en raison de ses deux grands avantages
qui sont simplicité et généralité. A partir de considérations simples sur la théorie des
probabilités et de I’information, Tarantola et Valette ont écrit la solution générale des
problémes inverses linéaires et non linéaires. Nous ne reproduisons ici que la solution des
problémes inverses linéaires par moindres carrés. Ce sont les problémes dont les informations
de nature statistique sont décrites par des fonctions de densité de probabilité gaussiennes.

IV.3.1 - Solution générale

Le probléme inverse que nous traitons est celui de la restitution d’une fonction continue
p(r) & partir d’un ensemble fini de données discreétes di. Ce probléme est un probléme sous-
déterminé, car le nombre de paramétres (pour décrire la fonction continue p(r)) est
théoriquement infini alors qu’on ne dispose que d’un nombre fini de données. L’équation
d’observation, qui relie entre eux les paramétres et les données, s’écrit en toute généralité
sous la forme :

d=g(p) 4.10)

ot g est une fonctionnelle. En particulier, au point des données repéré par ri, on peut écrire :

di = g(p(r) = g'(p()) (4.11)

Comme nous considérons un probléme linéaire, on peut écrire (4.11) sous la forme explicite
suivante :

di =j Gi(r) . p(r) dr 4.12)

ol Gi(r) est un noyau “d’observation”. L’ensemble des informations a priori sont les données
do, la fonction de covariance de leurs erreurs Cggqp, une solution a priori po(r) et sa fonction
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de covariance Cpopo. Considérant le cas le plus courant, ou les incertitudes sur les données ne
sont pas corrélées avec les paramétres A restituer, la solution ainsi que la covariance a
posteriori sont données par les expressions suivantes [Tarantola, 1987] :

N N

PO =po(r)+ | dr' D Y. Comlr.r' )G (') (S)- {dﬁ - f ar"G (r" )po (=" )} 4.13)

i=1 j=1

N N
Cap(r,t’) = Cogo (') - | dr” D, ), f dr'"Cpopo (5" }G' (" ) (S™)
i=1 j=1 (4.14)
GJ (rm )'Cpopo (l"",l" )
avee
¥ = ( Cansf + f dr [ & G} Crnlr' 1) G
(4.15)

La matrice S est une matrice pleine dimensionnée par le nombre de données N. Comme
elle ne dépend que de la position relative des données, elle peut €tre construite et inversée une
fois pour toutes. Il n’y a aucune contrainte sur I’échantillonnage des données. La qualité de la
solution, qui peut étre évaluée au travers de la fonction de covariance a posteriori Cpp, ne
dépend que de la répartition des données et de 1’ensemble des covariances a priori.

La seule hypothese qui a été faite consiste a considérer les variables comme des variables
aléatoires dont les densités de probabilités sont gaussiennes. Cette hypoth&se n’est que trés
rarement vérifiée dans la nature, mais elle est généralement satisfaite en premiére
approximation. Travailler avec des densités de probabilité gaussiennes et une norme L,
(moindres carrés) conduit 2 des algorithmes numériques simples & mettre en oeuvre. Cet atout
est contrebalancé par une sensibilité des solutions aux valeurs aberrantes. Travailler avec une
norme d’ordre inférieur, par exemple la norme L;, conduit & des algorithmes plus robustes,
mais bien plus compliqués & mettre en oeuvre d’un point de vue numérique.

IV.3.2 - Les fonctions de covariance

Avant d’appliquer la théorie inverse, il est opportun d’énoncer quelques propriétés
mathématiques des fonctions de covariance ainsi que de décrire le rdle qu’elles jouent dans la
résolution des problémes inverses.

On peut démontrer qu’une fonction de covariance est symétrique :

C(r,r’) =C(r’r) 4.16)

et définie positive :

f j o) . C(r,r") . (") dr dr' =0, pour tout ¢(r) 4.17)



De plus, il existe une relation d’équivalence entre la fonction d’autocorrélation et le
spectre de puissance. En effet, prenons le cas particulier d’une fonction f(t) dont on calcule la
fonction d’autocorrélation C(t) définie par :

Ct) =j f(t-t) . f(t) dt (4.18)

s

On démontre aisément que la fonction d’autocorrélation est égale 2 la transformée inverse
du spectre de puissance de 1(t) :

C(t) =2n f F(0) . F*() . ei®® do (4.19)

ol F est le spectre de Fourier de f et F* son spectre conjugué. Cette derniere propriété permet
d’interpréter I’information que I’on introduit au travers des covariances comme étant
€quivalente a une information sur les spectres de puissance.

Les covariances a priori spécifient le spectre de puissance du signal que 1’on recherche
ainsi que le spectre de puissance des erreurs des données. Elles jouent un réle déterminant
dans la régularisation des probleémes inverses sous-déterminés qui admettent une infinité de
solutions. Les fonctions de covariance permettent d’extraire, dans la famille des solutions
compatibles avec les données, celle qui correspond le mieux au probleme en fusionnant dans
un critere unique une mesure de la fidélité de la solution par rapport aux données et une
mesure de sa fid€lit€ a 1’a priori. Cependant, comme dans toute technique de régularisation , il
faut trouver un compromis entre deux facteurs antagonistes que sont la précision et la
stabilité. Concrétement, cela signifie que 1’on est parfois amené 2 surestimer les erreurs et
donc a dégrader la solution afin d’obtenir une solution numériquement stable.

Les covariances a posteriori qui ne dépendent, comme nous 1’avons déja fait remarquer,
que de la répartition des données et des covariances a priori, sont aussi les transformées
inverses des spectres de puissance des erreurs de la solution. Les variances donnent une
estimation des erreurs sur les solutions, tandis que les covariances expriment le taux de
corrélation des incertitudes sur les valeurs des parametres. Si la covariance a priori est égale a
la covariance a posteriori, cela signifie que les données n’ont apporté aucune information
supplémentaire sur les parametres. Par contre, plus la covariance a posteriori differe de la
covariance a priori, meilleure est la résolution; en d’autres termes la quantité d’information
acquise sur les parameétres est importante.
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IV.4 - Formule d’inversion des mesures marégraphiques

Les mesures marégraphiques dont nous disposons sont les constantes harmoniques de la
marée en des sites répartis de fagon inhomogene sur tout le globe. Notre objectif est de
cartographier ces constantes harmoniques sur une grille réguliére couvrant ’ensemble des
océans.

Dans la suite, les quantités physiques restituées ne sont pas les amplitudes (A) et les
phases (¢) des constituants de la marée, mais les composantes en phase (A cos®) et en
quadrature (A sing). L’équation d’observation (4.12) s’€écrit :

Ug(ri) = f Ui(r) 8(ri-r) dr + g,"(x1) k=1,2 (4.20)

avec
U () = A(r) coso(r) 4.21)
U, (r) = A(r) sin(r)

ot ri(pi, A1) est la position géographique des marégraphes; Uy (k=1,2) les parametres inconnus
qui sont des fonctions continues de la position géographique r(¢,A) (¢ étant la longitude et A
la latitude), et € lerreur sur les mesures marégraphiques qui inclut les erreurs
instrumentales, de lecture, de réduction et d’analyse des observations. Le noyau d’observation
&(ri-r) est la fonction de Dirac. Les solutions a priori des composantes en phase et en
quadrature de la marée sont supposées étre les moyennes théoriques du champ des marées sur
tout le globe: elles sont donc identiquement nulles en raison du principe de conservation de la
masse; les marées océaniques sont des déplacements de masse d’eau, qui ne s’accompagnent

d’aucune création ou destruction de masse.

Dans cette premiére expérience, seules les composantes en phase et en quadrature de
1’onde principale M; ont ét€ inversées indépendamment 1’une de I’autre. Concrétement, cela
signifie que les fonctions de covariance du signal de marée ne prennent en compte que les
autocorrélations spatiales de I’onde et de la composante considérée; les intercorrélations entre
les composantes en phase et en quadrature sont pour I’instant ignorées ainsi que celles avec
les autres ondes. Dans ces conditions et étant donné 1I’équation d’observation, les équations
4.13 2 4.15 deviennent :

N N

0 =Y. D Cuulri) (SH)" Uklw) (4.22)
i=1 j=1
ﬁkak(r’l" ) = CUkUk(r’r' ) h 21 2 CUkUk(r’ri) (Sl.l )- CUkUk(rJ’r' ) (423)
i=l =1
avece
Sii = Cyu,(ri,ei ) + Cepep{ri ) (4.24)

Comme nous ne disposons pas d’information rigoureuse et précise sur une hypothétique
corrélation entre les erreurs des mesures des différents marégraphes, nous avons supposé que
les erreurs sur les données sont non corrélées entre elles. Dans ce cas, la fonction de
covariance est la distribution de Dirac. Son expression discrétisée est :

Cemen(ri,ii ) = 62 8(ri-1i) (4.25)



ol 62 est 1a variance des erreurs sur les constantes harmoniques de 1’onde M3 que nous avons
raisonnablement fixée a (2 cm)2. Les fonctions de covariance du signal de marée homogenes
et isotropes ont été déduites A I’aide d’une méthode classique en géodésie [Moritz, 1980] a
partir du mode¢le de Schwiderski [1980a,b]. Les fonctions d’autocovariances sont données par
I’expression :

360
CuuWij) =2, o5(n) Py(cosyy) (4.26)

n=1

ol j est la distance .mgulaue entre les points ti et tJ; les Py, sont les polyndmes de Legendre
et les o¥(n) sont les variances de degré n du développement en harmoniques sphériques des
cartes cotidales de ’onde M, d’apreés le modele de Schwiderski, respectivement de la
composante en phase (k=1) et en quadrature (k=2). Le développement a été calculé jusqu’au
degré 180 et prolongé par une loi empirique jusqu’au degré 360, afin de mieux représenter les
courtes longueurs d’onde du signal des marées dans les mers littorales ol est localisée la
plupart des mesures marégraphiques.

IV.5 - Formule d’inversion des mesures gravimétriques

L’analyse harmonique des mesures gravimétriques (par moindres carrés et filtrage par la
méthode de Venedikov) fournit les constantes harmoniques des marées terrestres que 1’on
peut représenter sous la forme de vecteurs, Les vecteurs observés peuvent Etre décomposés en
une somme de trois vecteurs: un vecteur R représentant la marée solide théorique, un vecteur
L de ’effet de surcharge océanique et un vecteur désaccord X (Figure IV.1). Ce vecteur
désaccord contient: (1) les erreurs du modele théorique qui ne peuvent en affecter que la
partie en cosinus, (2) les erreurs du calcul des effets de surcharge et, (3) les effets locaux et
d’origine météorologique non corrigés. Les données que nous avons inversées sont les
vecteurs résidus B qui contiennent les effets dus aux marées océaniques mais aussi les
vecteurs désaccords. L’équation d’observation est :

By(rf) = f Uk(r) G(Iri-rl) dr + elf(ri) k=1,2 4.27)

avec
B (r) = B(r) cosP(r) (4.28)
B, (r) = B(x) sinf(r)

le noyau G(lr*-rl) est 1a fonction de Green que nous avons déja rencontrée au §1.3 (éq. 1.19) et
eﬁ (k=1,2) sont les erreurs sur les mesures gravimétriques comprenant les signaux
géophysiques non modélisés. Comme dans le cas des inversions des mesures marégraphiques,
seules les composantes en phase et en quadrature de I’onde M, ont €té restituées de manilre
indépendante. La solution ainsi que la covariance a posteriori sont :

N N

Ou® = 3, D, Cugp,fr.xi)(S8)" Bylni) (4.29)

i=l j=1

N N

Cﬁkﬁk(r’l" ) = CUkUk(r’r' ) - 2 Z CUkBk(r’ri) (Sl.l )-1 CUkBk(rj’r' ) (4.30)

i=l j=1
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Asina

Acosa

vecteur marée observé

vecteur calculé avec le modéle Molodensky /
vecteur résidu

vecteur calculé a partir de la carte cotidale

vecteur ‘“‘désaccord”
erreur instrumentale
Pour I’'onde semi-diurne M, I’échelle correcte de la figure devrait
étre
R ~ A ~ 40 (Europe) a 90 (Equateur) ugals,
‘o~ 0° to 2 5°
L ~ B ~ 2 (Eurepe) a 10 (Pacifique Sud) ugals,
X ~ 0.5 to 5 ugal
€ 0.5 pgal (Europe) a 1 ;igal (zone équatoriale)
- 5 = — =

B=A-R, B-L=X

R R I )

Figure IV.1 : Représentation vectorielle du contenu de la mesure gravimétrique de marée
terrestre [tiré de Melchior, 1981].



avec
SY = Cp,p, (1,11 + Cepeglri, i ) 4.31)

Une fois de plus, en raison de la méconnaissance des erreurs sur les mesures gravimétriques,
nous avons choisi une fonction de Dirac comme fonction de covariance avec une variance de
(0.5 microgal)2. Les Cy,u, sont les mémes fonctions d’autocovariance que celles déduites
pour les inversions de mesures marégraphiques. Les Cy,p,, Cp,p,sont respectivement les
intercovariances entre le signal de la marée océanique et des effets de surcharge et les
autocovariances des effets de surcharge océanique. Les expressions de ces deux covariances
ont été déduites, comme précédemment, en développant en harmoniques sphériques les cartes
cotidales du modele de Schwiderski et les cartes globales des effets gravimétriques de

surchar ~§e que nous avons calculées [Francis et Mazzega, 1990]. Ainsi, si (RE_, SK.) et
(an, Snm représentent les coefficients du développement de la marée océanique et des effets
de surcharge de I’onde M; composante en phase (k=1) et en quadrature (k=2), les
autocovariances et intercovariances homogenes et isotropes sont :

180
CaVij) =D, 0 (n) Py(cosys) (4.32)
n=1
180
CuaWij) =D, o(n) Py(cosy;) (4.33)
n=1
avece
n
Fm = @n+1) Y (RE, R, + 55, S5 4.34)
m=0
o*n) = @2n+1) Y, (R, RE, + 5K, sk,) 4.35)
m=0

Les spectres de puissance du développement en harmoniques sphériques des marées
océaniques et des effets de surcharge océanique pour ’onde M, ainsi que les fonctions
d’autocorrélation associées sont reproduites pour comparaison dans les Figures IV.2. On peut
remarquer que le spectre des effets de surcharge présente une décroissance rapide en fonction
du degré n du développement. Par contre, le spectre de la marée océanique est & décroissance
plus lente et est pratiquement plat pour les degrés élevés. Les effets de surcharge sont reliés
aux marées océaniques par un opérateur intégral et par conséquent les effets des courtes
longueurs d’onde (degrés élevés du développement) des marées océaniques sont atténués par
rapport aux grandes longueurs d’onde (bas degrés du développement). L’opérateur agit
comme un filtre passe-bas et implique que les effets de surcharge sont corrélés sur de plus
grandes distances que le signal des marées océaniques (voir Figure IV.2.A).
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_'gu_muL_Z (A) Spectres de puissance de la composante en phase de I’ onde M3 des marées
océaniques (a) et des effets gravimétriques de surcharge (b) normalisés par les variances du
degré 4, qui sont les plus énergeuques Les variances totales sont (22 cm)2 pour les marées
océaniques et (3.3 microgal)2 pour les effets de surcharge. L’ axe des abscisses représente le
degré n du développement en harmoniques sphériques, et celui des ordonnés est une échelle
logarithmique sans dimension; (B) Fonctions d’autocorrélation de la composante en phase
de I'onde M, des marées océaniques (a) et des effets gravimétriques de surcharge océanique

déduites des spectres de puissance reproduits en (A) (en abscisse : distance angulaire en

degrés).
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IV.6 - Formule d’inversion conjointe des mesures marégraphiques et gravimétriques

Un grand avantage des méthodes inverses est qu’elles permettent d’inverser conjointement
des lots de données de nature différente. Les mesures marégraphiques et gravimétriques
offrent 1’ opportunité d’éprouver I'inversion conjointe dans un cas encore relativement simple.
En effet, bien qu’étant de natures différentes, les données marégraphiques et gravimétriques
sont des constantes harmoniques et appartiennent de ce fait au méme espace spectral que les
paramétres recherchés qui sont les constantes harmoniques de la marée océanique. La
formulation mathématique du probleéme inverse en est grandement simplifiée. En utilisant les
notations introduites précédemment et en adoptant une notation matricielle, la solution et la
covariance a posteriori de 1’inversion conjointe de mesures marégraphiques et gravimétriques
pour une onde et une composante données sont :

Gk = [CUkUk CUkBk] S-l [ g:: ] (436)
C
0. = Cutie - [Cuu Cu,] S cﬁkg] (4.37)
avee
Cemen 0 Cuu C
S =| “&& ] [ UiUx UkBk] 438
[ 0 CEEEE K CBkUk CBkBk ( )

On a supposé que les erreurs sur les mesures marégraphiques et gravimétriques sont non
corrélées. De toute fagon, il n’y a pas d’arguments physiques justifiant une telle corrélation.

IV.7 - Formule d’inversion des mesures altimétriques

Les mesures altimétriques ne sont pas, comme dans le cas des mesures marégraphiques et
gravimétriques, des constantes harmoniques: ce sont des séries spatio-temporelles. L’équation
d’observation est de ce fait plus compliquée, car les données et les parametres sont définis
dans deux espaces différents, 1’un est spatio-temporel et I’autre est spectral. Une mesure
altimétrique h au temps ti et au point ri(pbAl) peut s’écrire sous la forme d’une somme de
deux termes :

1
hr,d) = 2 Ap(l'i) cos (mpti +Xpt Pp (ri)) + i) (4.39)
p=1

le premier comporte les 11 ondes principales de la marée océanique (M2, Sz, Ko, No, 01, Py,
Ki, Q1, My, My, Ssa) et le second est 'erreur comprenant 1’ensemble des autres signaux
océanographiques :

h(ri, ) = f"‘d[ j . i Ar) cos @p(r) cos ((’:)Pt'*'Xp) §(r-i) 5(t-ti)\

+edid)  (4.40)
p=1 | A(r) sin @(r) sin (wpt +%p) 8(r-ri) 8(t-t!)

expression que I’on peut écrire de maniere plus compacte :

—

2 . .
hrit) = Y Y [Gle(rt) Up)] + i) (4.41)

p=1 k=1
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en définissant les opérateurs Gli,k

bi(n,t) = f dt f dr () cos (gt + xp) S(r-1i) &(t-t) (4.42)
-0 sphire
()= - f dt f dr () sin (apt + p) 8r-11) &t-t]) (4.43)
et
Up1(r) = Ap(r) cos @p(r) (4.44)

Up2(r) = Ap(r) sin (Pp(l')

La solution inverse s’écrit en adoptant la convention d’Einstein pour les sommations sur
les indices (s,p,k’’,k’”’):

N N
O =Y, Y, Gl ('t) Ci¥' (6r') (SU)" h(i, ) (4.45)
i=1 j=1
avee
S = D(ri,t503,6) + G (1,0) Ci (r.0') G;*(r',1) (4.46)

ou D est la covariance des erreurs sur les données, C“fc les covariances des marées qui seront
explicitées ci-aprés et G ’opérateur adjoint de Gie qui sont égaux d’apres les équations
(4.42) et (4.43). Les covariances a posteriori sont :

N N

gk’ ! i "won sk" " 11\- ! ORI sK' 7m0 o

Carar) =CFar) - 3, Y, Gl () Cu¥ er) (81 Cu () G; @™ (447)
i=1 j=t

De ce tenseur complet, on peut en extraire I’estimation de 1’écart type a posteriori au point
r:

~ P 1—
%) = [C2(e.r)P (4.48)
ainsi que le pourcentage de la variance expliquée de la solution de marée (p.k) définie par

~pk,
Cpk(l,l)

V%@ =100(1- .
Ci—,k(rsl')

(4.49)

qui est une mesure relative de I’amélioration de la connaissance de la composante (p,k) des
marées. Dans le cas d’un probléme parfaitement résolu, la variance a posteriori Cgk(r,r) est
nulle et donc la variance expliquée vaut 100%. Dans le_cps contraire, si les données
n’apportent aucune information sur le signal recherché alors Cgk(r,r) = C‘;i(r,r) et la variance
expliquée est identiquement nulle.

On définit aussi la résolution spatiale de U (r) comme la Liistagci,we correspondant a une
[ . R : v oow i
diminution d’un facteur exp(-1) de la covariance a posteriori C[’,k (r,r"). Cette valeur est



représentative de la distance sur laquelle les erreurs sur la solution inverse sont
statistiquement corrélées. Apres inversion, on peut estimer le pourcentage de corrélation entre
les solutions des composantes d’indices (p,k) et (q,k’) (p=1 correspond & M, q=2 4 S, efc...)
par:

Ak
Cpx (r,r)

~apk, Ak, T
(6% Crn P

Cor™¥ (e,r) = 100 (4.50)
P

Si les marées (p,k) et (g,k’) sont completement décorrélées aprés 1’inversion des données,
alors Cpy est nulle, de méme que le pourcentage de corrélation. Si les données sont
inopérantes pour séparer les signaux de marée, alors le pourcentage de corrélation vaut 100%.
Remarquons que le pourcentage de corrélation ne dépend que des covariances a posteriori,
alors que la variance expliquée dépend 2 la fois des covariances a priori et a posteriori.

Signalons pour terminer, que les constantes harmoniques, estimées au travers de I’équation
(4.39) a partir des mesures altimétriques, sont les constantes harmoniques de la marée dite
géocentrique. La marée géocentrique est la somme de la marée océanique, de la marée de la
Terre solide et de la marée des effets de surcharge océanique. En pratique, les mesures
altimétriques sont corrigées de la marée de la Terre solide au niveau du prétraitement. La
marée de surcharge est calculée A partir de la solution inverse en faisant I’hypothése qu’elle
est simplement proportionnelle A la marée océanique; le coefficient de proportionnalité vaut
-0.0667. Dans I’avenir, cette approximation assez grossiére, que nous avons déja critiquée au
§1.4.3, sera remplacée par ’algorithme plus rigoureux détaillé dans Francis et Mazzega
[1990] qui préserve la nature linéaire du probléme.

1V.7.1 -Le tenseur des covariances a priori des marées

Compte tenu de la nature méme de la mesure altimétrique, les covariances ne sont plus
simplement les covariances d’une onde de marée dont les composantes en phase et en
quadrature sont considérées comme indépendantes, mais bien I’ensemble des autocovariances
et intercovariances entre les 11 ondes principales. Les cartes des composantes en phase (k=1)
et en quadrature (k=2) pour chaque onde p des solutions globales de Schwiderski [1980a,b]
ont été décomposées en harmoniques sphériques :

180 n
Up®= Y, Y {REE cos(md) + SEX sin(mh)) P cos(@) (4.51)
n=0 m=0

ou P, sont les fonctipns de Legendre associées normalisées. Les coefficients du
développement Rﬁﬁl, sg}gj) sont calculés jusqu’au degré 180, ce qui correspond i la longueur
d’onde minimale que ’on peut estimer, étant donné que le maillage des solutions de
Schwiderski est de 1°x1°. A partir de ces coefficients, on en déduit les autocovariances (p=q)
et les intercovariances (p#q) sous la forme d’un développement en polyndmes de Legendre :

180

Chw =2 Ggf(n) Pycos(y) 4.52)
n=1
avece
n
o) = @n+1) Y, (RES REK + Pk si) (4.53)

m=0
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Table IV.1 : Tenseur des covariances a priori entre les différents constituants des marées
pour les composantes en phase (c) et en quadrature (s). Dans les triangles supérieurs des
matrices sont reproduites les variances (cm?) tandis que les triangles inférieurs contiennent
les corrélations calculées selon la formule (4.50). Les cases vides correspondent aux
intercovariances qui ont été omises.

M S2 Ny Ko
c i s c S c S
M, C 110 110 30
S 210 100 58
S, C 63 18 17
S 81% 112 34 30
N> c || 93% 43% 28 5
S 90% 70% 21 9
K, c 60% 98% 42% 5
S 81% 99% 70% 9
Ky O, P, Q;
c | s c | s c S c S
Ki C 74 50 24 10
S 69 39 22 7
Oy C 89% 43 16 9 -
S 85% 31 13 6
Py c |l 99% 90% 8 3
S 99% 86% 7 2
Qi c 81% 96% 82% 2 i
S 72% 94% 74% 1
M Mg Ssa
c s c S C S
Mp c 0.5 0.56 0.4
S 0.25 0.04 0.27
M;¢ c 82% 0.94 0.55
S 17% 0.21 0.17
Sca c 57% 57% 1
S 47% 32% 134"




ol  est la distance angulaire entre la paire de points pour laquelle la covariance est estimée.
Les intercovariances entre les différentes espéces se sont révélées extrémement faibles et
seront donc négligées dans la suite des calculs ainsi que toutes les intercovariances entre les
parties en phase et en quadrature. Tenant compte des symétries, il reste 52 fonctions de
covariance que ’on peut disposer dans un tenseur qui comporte 22 autocovariances sur la
diagonale. Afin de réduire le cofit informatique, les fonctions de covariances ont €té
remplacées par des fonctions analytiques simples du type cosinus amorti:

CHy) = v exp(-y/R%) cos(Bric v) (4.54)

Ces fonctions analytiques ressemblent aux fonctions de covariance originelles (4.52), elles
ont des spectres positifs et vérifient les propriétés des fonctions de covariance [Julian et
Thiebaux, 1975]. Les trois paramétres, qui sont la variance (v), la longueur de corrélation (R)
et la période du cosinus (), ont été déterminés pour chacune des covariances par Jourdin
[1989]. Les valeurs calculées des variances de chaque constituant des marées ont été utilisées
alors que les valeurs moyennes (voir Table IV.2) des deux autres paramétres pour chaque
espéce ont été adoptées afin d’alléger les calculs.

Les variances du tenseur qu(\v=0) ainsi que les corrélations entre les différents
constituants des marées sont reproduites dans la Table IV.1. Les variances sont une mesure
statistique de 1’énergie de chaque constituant. Les corrélations quantifient statistiquement les
“similitudes” des cartes cotidales des différents constituants. Par exemple, les parties en phase
de N, et K, sont semblables 2 98% et 99% et donc, si I’on parvient i restituer I’'un de ces
deux constituants, I’autre est connu i 98-99%. La corrélation entre les ondes semi-diurnes est
en moyenne de 74% alors que la moyenne des corrélations entre les ondes diurnes est de
87%. Le moins bon taux de corrélation entre les ondes semi-diurnes est peut-€tre dii a
I’existence de fréquences de résonance dans la bande des fréquences semi-diurnes qui
provoquent des distorsions de 1’admittance.

La Figure IV.3 montre des exemples de spectres et de covariances MaxMj, M3 xS et
S,2xS,. On peut constater que le tenseur des marées présente une forte corrélation spatiale sur
une grande distance angulaire de I’ordre de 10 4 20 degrés. Cette corrélation A grande distance
est une mesure statistique de la longueur spatiale des ondes de marées telles qu’elles se
propagent en plein océan. Comme les fonctions de covariance ont été déduites d’un modele
global, elles sont représentatives plutdt des phénomenes pélagiques, car les mers littorales, vu
leurs faibles étendues, sont sous-représentées.

L’information contenue dans le tenseur des covariances a priori peut se résumer en trois
points:
(1) Le tenseur spécifie que le signal de marée recherché a un spectre constitué d’un ensemble
de raies dont on connait les fréquences; les covariances entre deux fréquences qui ne font pas
partie du spectre des marées sont nulles.
(2) L’énergie moyenne de chaque onde de marée est spécifiée au travers de la variance a
priori; estimation des variances 2 partir d’un modele hydrodynamique indique que celles-ci
sont tres proches des valeurs de la marée d’équilibre.
(3) Les longueurs caractéristiques des corrélations entre les différents constituants sont
spécifiées par les covariances normalisées (c’est-2-dire par les fonctions de corrélation).

La méthode des moindres carrés généralisés permet, par ’intermédiaire des fonctions de
covariance, d’exploiter ’ensemble des propriétés remarquables des marées océaniques.
Comme les méthodes des concordances et de convolution, la fonctionnelle qui relie les
constantes harmoniques aux données est supposée linéaire et les fréquences des marées sont
considérées comme connues exactement. Les covariances a priori des marées quantifient la
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Figures 1V.3 : Exemples de spectres de puissance normalisés (points) et de fonctions de
corrélations a priori (lignes continues) entre les parties en phase de (M2, M), (52, $2), (M2,
S2). Les abscisses indiquent le degré du développement en harmoniques sphériques des

spectres et les distances angulaires (en degrés) des fonctions de corrélation [tiré de Mazzega
et Jourdin, 1991].



cohérence spatiale & grande distance de la marée; cette caractéristique avait déja été exploitée
dans les méthodes d’analyse par concordance. Par ailleurs, les intercovariances entre les
différentes ondes permettent de tenir compte de la nature lisse de 1’admittance ou plus
simplement de la similitude de la réponse du syst®me océan sollicité par des forces
périodiques dont les fréquences sont proches; ce credo du caractére lisse de 1’admittance est i
la base de la méthode de réponse. La méthode inverse est en quelque sorte une généralisation
des méthodes existantes. Cette approche n’est devenue possible que grice aux puissants
moyens informatiques dont nous disposons aujourd’hui et aux modeles hydrodynamiques
globaux qui permettent d’estimer les statistiques indispensables 4 la mise en oecuvre des
méthodes inverses.

IV.7.2 - Covariances a priori des erreurs sur les données

Nous avons décrit dans le §11.2.4 I’ensemble des corrections qui ont été appliquées aux
mesures altimétriques. Les erreurs résiduelles ont des amplitudes de plusieurs centimétres et
leurs spectres couvrent de larges bandes de fréquences temporelles et de longueurs d’onde
spatiales. Les informations sur les spectres de ces erreurs, qui pourraient permettre d’estimer
les covariances associées, ne sont généralement pas fournies. En I’absence de ces
informations, on en est réduit & déduire les fonctions de covariance 2 partir de données
indépendantes (par exemple, des sorties de modeles numériques, ...) ou d’aprés des
considérations théoriques.

Usuellement, les mesures altimétriques sont des moyennes calculées sur 1 seconde, dont
les erreurs instrumentales ne sont pas corrélées d’une mesure A 1’autre. L’erreur de 1’altimdtre
est donc un bruit blanc dont la covariance a priori est représentée par

D (tl) = 62, 8(1l) (4.55)

ol 79 est I'intervalle de temps entre la i®me et Ia jime mesure, 6%, est la variance de I’erreur.
Dans notre application, les données que nous utilisons ont été moyennées sur 15 secondes
(=105 km) éliminant ainsi une partie des erreurs A courtes longueurs d’onde. La variance est
estimée & (10 cm)? : elle représente non seulement les erreurs de 1’altimétre mais aussi une
partie des erreurs résiduelles des corrections.

Les mesures altimétriques sont référencées par rapport au géoide GEM-T1 développé
jusqu’a Iordre 36. Ce géoide est pris comme modéle a priori de la surface moyenne. La
covariance homogene et isotrope du signal résiduel est déduite du spectre de puissance des
erreurs de GEM-T1 complété par le modele de géoide de Rapp[1986] jusqu’a I’ordre 360. La
fonction de covariance analytique ajustée est de la forme:

i |2
exp[- v H (4.56)

1-e'b‘ll'IO
ot 62mo (= 210 cm)? est la variance, Zsmo (=2000 km) est la période du cosinus et Ry (=
300 km) le rayon de corrélation de I’erreur du modele de la surface moyenne océanique.

. ij
Dy(yi) = 624 cos(zn Y=
ZSl'l'lCI

La variabilité océanique mésoéchelle est également considérée comme une source d'erreur.
Le signal a la mésoéchelle est corrélé typiquement sur une distance d’une centaine de
kilometres et les tourbillons disparaissent au bout de quelques semaines [voir par exemple,
DeMey et Robinson, 1987]. Ces caractéristiques inspirent le choix d’une covariance isotrope
du type :
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Figure 1V.4 : Fonction de corrélation de I erreur radiale d’ orbite dont la fréquence
caractéristique est 1 cycle par révolution (101 minutes) et le temps de décorrélation est de 5
périodes de révolution (505 minutes) [tiré de Mazzega et Houry, 1989].



DAyl ) = 5.2 [ (‘l’ij ﬂ p[ i 2} 4.57
3(Y¥, 1Y) = Ovar exp| - Roa) |0 ATW) (4.57)
ol 62, (= 10 cm)? est la variance de la variabilité, Ry, (= 130 km) le rayon de corrélation de
la variabilité et ATy, = 25 jours le temps de décorrélation. Les valeurs des paramétres ont été
choisies afin de représenter au mieux statistiquement les caractéristiques de la variabilit€ sur
I'ensemble des océans. Dans l'avenir, les estimations des spectres de puissance de la
variabilité, région par région [LeTraon et al., 1990], devraient permettre de raffiner la
covariance de la variabilité mésoéchelle.

La fonction de covariance décrivant les erreurs résiduelles aprés application des
corrections de propagation a été estimée par Benveniste [1989] a partir de ’analyse de
données et de résultats de modeles. La fonction analytique qu’il a déduite est de la forme :

ij ij i \2
D,(wi i) =62 cosl2n v )ex { id ]exp[- (L)
4(\|I ) géo S( dgéo p Rgéo Tgéo

oll Gééo (= 10 cm)? est la variance, dgeo (= 3200 km) est la période du cosinus, Rgeo (= 1700
km) et Tggo (= 5 jours) sont les échelles spatiales et temporelles caractéristiques.

(4.58)

Le choix de la covariance de l'erreur d'orbite est plus délicat. L'erreur radiale d'orbite est la
principale source d'erreur des mesures altimétriques de Geosat. Nous avons décrit dans le
chapitre IIT les caractéristiques spectrales de l'erreur d'orbite qui est due essentiellement a
l'incertitude du modele du champ de gravité utilisé pour calculer les éphémérides. La plus
grande partie de 1'énergie spectrale de l'erreur d'orbite est concentrée autour de la période
orbitale du satellite, ce qui a conduit Wunsch et Zlotnicki [1984] & proposer une fonction de
covariance de la forme :

. ii 15)2
Ds(tl) = 02, cos(2m ~£> )exp[- ko } (4.59)

Tul'h

ou o%,.b (= 100 cm)? est la variance de l'erreur d'orbite et AT (= 5 Torp) est le temps de
décorrélation (Figure IV.4). Le spectre a priori de l'erreur d'orbite tel qu'il est décrit par cette
covariance est une fonction gaussienne centrée sur la période orbitale. Or, nous avons vu que
le spectre de l'erreur d'orbite est composé d'un ensemble théoriquement infini de fréquences
discretes. De plus, ce spectre n'est pas stationnaire; il varie d'un arc d'intégration i I'autre et
les forces de frottement modifient progressivement l'orbite et ses caractéristiques spectrales.
Les premiers résultats d'inversion de mesures altimétriques ont montré trés clairement que
c'est l'erreur d'orbite et donc la maniére dont ses propriétés sont spécifiées au travers des
fonctions de covariance qui détermine la qualité des solutions inverses. Les résultats
précédemment obtenus n’étant pas pleinement satisfaisants au regard de la précision que nous
voulons atteindre, nous avons été amené A concevoir la méthode décrite au chapitre III pour
réduire I’erreur radiale d’orbite dans les mesures altimétriques. Afin d’estimer la fonction de
covariance de I’erreur d’orbite résiduelle aprés application de la correction d’erreur d’orbite
par la méthode de démodulation, les erreurs du champ de gravité GEM-T2 jusqu’au degré et
ordre (10,10) ont été introduites dans le programme SELECT (du Bureau Gravimétrique
International, Mme Vales) qui est basé sur le formalisme de Kaula. Ce programme permet de
calculer le spectre des perturbations orbitales du satellite suivant la composante radiale. P.
Mazzega a sélectionné les fréquences dont I’amplitude est supérieure & 1 cm excluant les
fréquences autour de un cycle par révolution, qui ont été éliminées par la démodulation
complexe. Il a ensuite calculé la transformée de Fourier inverse du spectre de puissance
obtenant ainsi la fonction de covariance des erreurs d’orbite résiduelles. Cette fonction a la
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Table 1V.2 : Résumé des principales caractéristiques des paraméires pour les fonctions

4’ autocorrélation des erreurs sur les données et des constituants des marées.

Type d’erreur Fonction de Ecart | Longueur de corrélation (L),
covariance analytique | type (cm) [ Temps de corrélation (T) ou
| 3 _ Période (P)
Bruit instrumental | Dirac B 10
Erreur radiale Produit d’un cosinus 100 P =1 cycle par révolution
d’orbite et d’une fonction T = 5 révolutions
gaussienne 150 P=1 jour
T =2 jours
Variabilité Produit de fonctions 10 L =130km
mésoéchelle gaussiennes T =25 jours
Erreurs résiduelles | Produit d’un cosinus 10 L = 1700 km
sur les corrections | amorti et d’une T = 5 jours
de propagation fonction gaussienne P = 3200 km
Erreur sur la Produit d’un cosinus 210 L =310 km
surface moyenne et d’une fonction P =2040 km
océanique gaussienne
Mj Cosinus amorti 23.4
S, Cosinus amorti 9.3 L =14° (1550 km)
Ny Cosinus amorti 49 P =108° (1200 km)
K, Cosinus amorti 2.6
K; Cosinus amorti 8.5
01 Cosinus amorti 6.1 L =15 (1660 km)
Py Cosinus amorti 2.7 P =142° (15850 km)
Q1 Cosinus amorti 1.3
Mp Cosinus amorti 0.6 L =122° (14000 km)
Mg Cosinus amorti 0.7 P =220° (24425 km)
Cosinus amorti 1.1




méme forme analytique que Ds mais avec des parametres différents : cf,l.b = (150 cm)?, AT =
2 jours et Top = 1 jour. Cette période de 1 jour correspond a une période de résonance “pluri-
journaliere” (cfr. §II1.4) particuli¢rement forte dans le cas de Geosat.

La fonction de covariance a priori des erreurs qui affectent les mesures altimétriques, en
fonction de la distance angulaire et de I’intervalle de temps qui séparent deux données, est :

D(yl,h) = Dy (el) + Da(yl) + Da(y,th) + Da(yl,h) + Ds(t) (4.60)

Les principaux paramétres des fonctions d'autocovariance du signal de marée et des erreurs
sont rassemblés dans la Table IV.2. Si on ne tient compte que des autocovariances de la
marée, la variance totale (lorsque yii=0) de la marée est (28 cm)? alors que la variance totale
des erreurs (yii=0, 1ii=0) est (260 cm)2. La solution inverse est la solution optimale, €tant
donné toutes les informations a priori que nous venons de décrire.

Malgré le rapport signal sur bruit défavorable (de l'ordre de 0.01), une solution d’une
précision meilleure que la dizaine de centimétres peut étre obtenue, car les caractéristiques
spectrales en fréquence et en longueur d’onde du signal de marée sont distinctes des
caractéristiques spectrales des erreurs.

1V.7.3 - Le probléme de I’aliasing

Plusieurs jours séparent les passages répétitifs du satellite Geosat au dessus d’un méme
point géographique, de sorte que les marées diurnes et semi-diurnes sont “vues” par le
satellite comme des oscillations A basse fréquence de la surface de la mer (principe de
’aliasing ou repliement du spectre). Le signal de marée, dont 1’amplitude est bien plus
importante que celle de la plupart des signaux de variabilité océanique, doit Etre retranché des
mesures altimétriques brutes afin de déterminer trés précisément les autres signaux. Le
repliement du spectre des marées vers les basses fréquences (ou aliasing) complique la
séparation du signal des marées de celui des signaux de variabilité 4 longue période. En
particulier, dans le cas de 1’orbite héliosynchrone du satellite ERS1, les constituants luni-
solaires Ks et K; sont aliasés aux fréquences de 2 et 1 cycles par an et les constituants solaires
P; et Sy apparaissent en 1 cycle par an et & la fréquence nulle (Table IV.3). Cet exemple
montre que non seulement les constituants des marées se confondent avec les variabilités
océaniques annuelles et interannuelles, mais qu’il est trés difficile de les distinguer entre eux,
méme dans le cadre de missions altimétriques s’étalant sur plusicurs années.

Le probléme de I’aliasing, tel qu’il vient d’€tre présenté, repose sur une vision de I’analyse
unidimensionnelle classique des séries temporelles. Jusqu’'a présent, elle a guidé les
recommandations sur les choix les plus judicieux des orbites des satellites altimétriques,
dédiés a I’étude de la circulation océanique et des marées [Parke et al., 1987]. Cependant, il
faut modifier cette vision unidimensionnelle dans le cas des analyses spatio-temporelles par
méthodes inverses. La distribution géographique de 1’échantillonnage spatio-temporel
particulier du signal des marées appelle a reconsidérer le probléme de I’aliasing. Les cartes
globales des marées océaniques montrent que les amplitudes et phases des différents
constituants de la marée sont des fonctions spatialement lisses. Bien plus, les cartes cotidales
d’ondes de fréquences proches sont similaires (voir Table IV.1). Ces propriétés spatiales et en
fréquence sont quantifiées statistiquement par les fonctions d’auto et d’intercovariances qui
sont introduites comme informations a priori dans les inversions. Plus simplement, cela
signifie que les mesures proches d’un point ol I’on désire prédire la marée fournissent des
informations statistiques sur la marée en ce point (apporté par les autocovariances) mais aussi
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Table IV.3 : Périodes apparentes des principaux constituants de la marée en fonction de la

période de répétitivité des satellites altimétriques [tiré de Jourdin, 1992].

Ondes Périodes apparentes (jours)
Constituants Période GEOSAT ERS1 Topex/Poseidon
(heures) Prep = 17.0505 Prep =35 jOllI'S Prep =9.9156

jours jours
K> 11.967 88 181 87
S, 12.000 170 oo 62
M, 12.421 317 94 59
N, 12.653 52 90 50
K, 23.934 176 363 173
Py 24.066 4450 365 89
0]] 25.819 113 75 46
Q1 26.868 74 133 69




que la restitution précise d’un constituant dominant de la marée aide a la restitution d’une
constituant plus faible ou aliasé (grice aux intercovariances).

Mazzega [1989] a montré A ’aide de simulations que les précisions des solutions de
marées par inversion de mesures altimétriques sont insensibles au type d’orbite. En d'autres
termes, la précision des solutions est indépendante des fréquences auxquelles les marées sont
aliasées. On peut méme dans le cas d’une orbite héliosynchrone parvenir 2 restituer 1’onde
solaire S, aliasée 2 la fréquence nulle. Le paramétre le plus important, qui contrdle la qualité
des solutions inverses, est le rapport signal sur bruit (fonction essentiellement de I’erreur
d’orbite) et moins la longueur des séries temporelles analysées. En conclusion, 'inversion des
mesures altimétriques est une méthode d’analyse indifférente au phénomeéne de 1’aliasing.

IV.8 - Formule d’inversion conjointe des mesures marégraphiques et altimétriques

Jusqu’a présent, dans les inversions des mesures marégraphiques, nous n’avons pris en
compte que les autocovariances du signal de marée. Nous désirons estimer en une étape les
constantes harmoniques des 11 constituants principaux des marées océaniques a partir de la
combinaison des mesures marégraphiques et altimétriques. Pour ce faire, nous introduisons
une nouvelle équation d’observation pour les mesures marégraphiques, plus compléte et
compatible avec I’équation d’observation des mesures altimétriques :

11 2
Uglti) = f dr D Y Upe(r) 8(r-1) §p-q) §(k-n) + efhri) (4.61)

p=1 k=1

que I’on peut réécrire sous une forme plus compacte :

11

Ugnlri) = 2, 2 [B5i () (1) Upk()] + efr?) (4.62)
p=1 k=1
avece
gl (r) = f dr () &r-r) §(p-q) §(k-n) (4.63)
sphire

La solution de ’inversion conjointe des mesures marégraphiques et altimétriques, compte
tenu des notations précédemment introduite ainsi que les opérateurs qui ont €€ défini, s’écrit
sous forme matricielle :

O=C.[gr g ].s-l.[['}] (4.64)
E=c.[ gt gr].s-l.[g].c 4.65)
avee
Sz[caasa 0 ]+ GCGT GCgT] 4.65)
0 Cenen gCGT gCgt

On a supposé que les erreurs sur les mesures marégraphiques et altimétriques sont non
corrélées. Les fonctions de covariances des erreurs sont comme précédemment des fonctions
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de Dirac. Les variances des erreurs altimétriques et marégraphiques ont été fixées a la méme
valeurs de (10 cm)2. Cette valeur qui peut paraitre excessive pour les mesures marégraphiques
s’est imposée dans la pratique, car des valeurs plus faibles rendent la matrice S singuliére
pour des lots d’environ 15000 & 18000 données.

IV.9 - Résolution numérique

Les paragraphes précédents ont traité essentiellement des formules d’inversion ainsi que
de la description des termes qui les composent. Il est un sujet que nous n’avons pas encore
abordé et qui concerne la partie numérique et plus particulierement I’inversion de la matrice
S. Cette matrice est pleine, dimensionnée par le nombre de données a inverser et, de plus,
comme elle est construite & partir de fonctions de covariance, elle est symétrique définie
positive.

La solution des problémes inverses comporte une multiplication matricielle de ’inverse de
la matrice S par le vecteur des données D. Calculer explicitement ’inverse de S revient &
résoudre N (nombre de données) systémes linéaires. Il est donc bien plus économique de
résoudre le systéme linéaire S X = D, dont la solution est X = S-1 D. La résolution de ce
systéme linéaire se fait par la méthode classique de Cholesky congue pour résoudre les
systémes linéaires dont la matrice est symétrique définie positive. Cette méthode consiste &
calculer la factorisation S = BT B de Cholesky ott B est une matrice triangulaire inférieure et
puis A résoudre successivement les deux systémes linéaires 4 matrices triangulaires : B w =D
et BT X = w. Au total, la méthode de Cholesky nécessite de 1’ordre de N3/6 additions, N3/6
multiplications, N2/2 divisions et N extractions de racines, alors que la méthode générale de
résolution de systéme linéaire de Gauss requiert N3/3 additions, N3/3 multiplications, N2/2
divisions [Ciarlet, 1988].

La sous-programme de résolution par la méthode de Cholesky que nous utilisons provient
de 1a librairie LINPACK. Un test mené sur la résolution d’un syst¢me (18 000 x 18 000) a
montré que les solutions inverses sont encore stables sur de tres gros systémes. En définitive,
la dimension des matrices qui ont été inversées est conditionnée par la puissance des moyens
de calcul dont nous disposons, c¢’est-a-dire par la place en mémoire centrale de I’ordinateur et
le temps de calcul des inversions. Pour calculer les solutions de 1’atlas OMP1/2 qui est décrit
dans le chapitre suivant, la dimension des matrices inversées est de I’ordre de 11500x11500.
Cette dimension est un un bon compromis entre le temps calcul dont nous disposions et le
nombre de lots de données (et par conséquent le nombre total de données) qui peuvent Etre
inversées. Enfin, signalons que le conditionnement des matrices est de 1’ordre de 104.

Nous avons vu que pour obtenir les solutions, il ne faut résoudre qu’un systéme linéaire.
Par contre, le calcul des covariances a posteriori C(r,r) nécessite la résolution d’un syst¢me
linéaire par point r ol on la calcule. En effet, I’inverse de la matrice S multiplie la fonction de
covariance a priori qui différe d’un point & I’autre. On comprendra donc pourquoi les cartes
de covariances a posteriori que nous présenterons ont des résolutions beaucoup plus
grossi¢res que celles des solutions.
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1V.10 - Conclusions

Dans ce chapitre technique, nous avons explicité les formules d’inversions des mesures
marégraphiques, gravimétriques et altimétriques avec lesquelles les modeles globaux de
marées océaniques présentés dans le chapitre V ont été calculés. La théorie des problémes
inverses fournit un outil d’analyse qui permet de traiter simultanément des mesures de nature
différente. De plus, elle permet de prendre en compte des caractéristiques spatio-temporelles
du signal des marées et des erreurs affectant les données au travers des fonctions de
covariance et de généraliser les méthodes plus anciennes comme les méthodes des
concordances ou de convolution.

Une grande part du travail consiste A choisir les différentes fonctions de covariance. Nous
avons vu la grande utilit¢ des modeles hydrodynamiques de marées océaniques grice
auxquels les fonctions de covariance du signal des marées peuvent étre quantifiées. Les
méthodes inverses permettent aussi de calculer des estimations des erreurs formelles; nous
verrons dans le chapitre suivant leur grande utilité¢ dans I’interprétation des résultats. Par
ailleurs, le probléme du repliement du spectre des marées, que 1’on rencontre dans les
méthodes classiques d’analyse des mesures altimétriques, est fortement réduit dans le cas
d’analyse par méthodes inverses.

Enfin, le prix de cette généralisation des méthodes de détermination des constantes
harmoniques des marées océaniques 2 partir de mesures hétérogenes est un coit de temps de
calcul bien plus élevé que pour les méthodes existantes.
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CHAPITRE V: MODELES INVERSES DES MAREES OCEANIQUES

V.1 - Introduction

Ce chapitre est consacré 2 la présentation des modeles de marées océaniques qui ont été
obtenus par inversion des mesures marégraphiques, gravimétriques de marée terrestre et
altimétriques. Ces modeles ont la particularité d’étre des modeles globaux et basés sur
I’analyse des mesures uniquement, sans aucune contrainte hydrodynamique, c’est-a-dire
qu’ils sont a classer parmi les modeles du type “purement empirique”. Les résultats sont
présentés suivant 1’ordre chronologique dans lequel ils ont été obtenus. Cet ordre correspond
a une complexité croissante des schémas d’inversion en fonction du type et du nombre de
plus en plus important de données inversées. Il a permis aussi d’affiner au fur et & mesure les
fonctions de covariance et de déterminer la combinaison optimale de mesures pour restituer
les marées océaniques.

Avant ce travail, aucune carte globale des amplitudes et phases des marées océaniques n’a
€t¢ dressée de manilre empirique a partir de I’analyse des mesures marégraphiques ou
gravimétriques de marée terrestre. Par contre, il existe un nombre considérable de
publications sur des cartes empiriques des marées océaniques tracées a partir de mesures
marégraphiques sur de petites zones. En ce qui concerne, [’obtention de cartes de marées
occaniques par inversion de mesures de marée gravimétrique, il n’y a eu jusqu’a présent
qu’une seule tentative conduite par Kuo et Jachens [1977] qui ont dressé des cartes cotidales
dans I’Atlantique nord et le Pacifique nord-est. Ce n’est que récemment que certains
mod¢lisateurs en marée océanique ont porté & nouveau un certain intérét pour les mesures de
marée gravimétrique suite 2 la publication de nos premiers résultats d'inversions [Jourdin et
al., 1992]. C’est le cas, par exemple, de Zahel [1992] qui a développé un schéma
d’assimilation des mesures gravimétriques dans son modéle hydrodynamique.

Les mesures altimétriques ont suscité¢ de nombreux travaux qui ont relancé une approche
purement empirique de modélisation des marées océaniques. Parmi tous ces travaux, le plus
accompli est celui de Cartwright et Ray [1990, 1991] qui ont analysé deux ans de mesures
altimétriques de Geosat par la méthode de convolution. A partir des fonctions d’admittance,
ils ont dressé les cartes cotidales des ondes principales de la marée. La comparaison pour
"onde M, avec le modele de Schwiderski révele des divergences qui peuvent atteindre 5 & 10
cm sur de vastes régions. Les comparaisons de ces deux modeles sur un jeu de mesures
marégraphiques montrent qu’ils sont de précision équivalente. Parallélement 2 leur travail,
Wagner a publié une solution pour 1’onde M, A partir des mesures de Geosat [1990] qui
d’apres ses tests [Wagner, 1991] est d’une précision voisine de celle de Cartwright et Ray.
Comme ces auteurs, nous avons obtenu des solutions de marées 2 partir des mesures
altimétriques. Un pas supplémentaire a été franchi en utilisant conjointement des mesures
marégraphiques et altimétriques.

Nos résultats démontrent la grande complémentarité des mesures marégraphiques et
altimétriques. Ces deux types de mesures forment la combinaison optimale pour restituer les
marées océaniques. L’utilisation des mesures de marée gravimétrique se heurte a un probléme
de méconnaissance du contenu exact de la mesure. Nous montrons qu’elles apportent des
informations sur les marées en grande partie redondantes avec celles contenues dans les
mesures marégraphiques. Les solutions des marées par inversion conjointe des mesures
marégraphiques et altimétriques sont quantitativement bonnes. Elles ne sont pas encore
€quivalentes aux meilleures solutions actuelles. Les raisons en sont essentiellement la plus
faible précision des mesures altimétriques que nous avons utilisées et le manque de données
inversé€es localement. Dans 1’avenir, une seconde itération sera effectuée. Cette nouvelle
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Figures V.1 : Cartes cotidales de I'onde M, obtenues par inversion des mesures
marégraphiques (indiquées par les points) dans I’océan Atlantique. Amplitudes en cm (a),
phases en degrés (b), écarts types en cm des composantes en phase (c) et en quadrature (d).



solution servira de solution a priori pour les inversions des mesures altimétriques de
Topex/Poseidon.

V.2 - Résultats des inversions marégraphiques et gravimétriques

L’objectif de ces premiers essais d’inversions des mesures marégraphiques et
gravimétriques de marée terrestre est de mettre en oeuvre la méthode inverse dans des
configurations simples et peu cofiteuses d’un point de vue informatique. C’est une étape
préalable a un schéma d’inversion plus complexe comprenant des mesures d’altimétrie par
satellite. Seules les constantes harmoniques de 1’onde principale My ont été inversées. Les
composantes en phase et en quadrature de la marée ont été calculées indépendamment et
ensuite combinées pour obtenir des cartes en amplitude et phase.

V.21 - Inversions des mesures marégraphiques

Les solutions inverses de 1’onde de marée M, 2 partir des mesures marégraphiques seules
ont €té calculées séparément dans les océans Atlantique, Pacifique et Indien. Cette séparation
naturelle permet de tenir compte de manigre artificielle des continents, en ne considérant pas
les corrélations des données situées dans des océans différents. Dans ces premi@res tentatives
d'inversion, nous n’avons pas imposé la continuité des solutions aux frontieres entre les
différents océans. Celle-ci sera assurée ultérieurement en effectuant des inversions globales.

La plupart des mesures marégraphiques sont cétieres; il y a quelques mesures pélagiques
en grande majorité dans I’ Atlantique nord. Afin de réduire le nombre de données 2 analyser et
surtout d’éviter une redondance dans les mesures, nous avons choisi de facon aléatoire au
maximum une donnée par degré carré. Environ 500 données ont été sélectionnées dans
I’océan Atlantique ainsi que dans 1’océan Pacifique et 200 dans 1’océan Indien.

Les solutions pour les trois océans et les cartes des écarts types a posteriori sont présentées
dans les Figures V.1-3. Les solutions sont qualitativement bonnes en comparaison avec le
modele hydrodynamique de Schwiderski [voir Figures 1.6, p. 24] méme en plein océan ot les
données sont éparses. Les principaux points amphidromiques sont bien localisés et les forts
gradients des amplitudes, par exemple, le long des cdtes du Pacifique en face de I’ Amérique
centrale et du Canada sont bien reproduits.

En toute logique, les écarts types des solutions ont des amplitudes trés faibles prés des
données (inférieures a 5 cm) et ont des valeurs maximales (de 1’ordre de 20 cm), proches des
€carts types a priori, dans les régions ol il n’y a pas de données. Ce qui signifie tout
naturellement que, 1a oi1 il n’y a pas de données, il n’y a pas eu d’amélioration notable en ce
qui concerne la connaissance de la marée. Dans le cas particulier de l'inversion des mesures
marégraphiques, la solution trouvée est une pure interpolation entre les données avec une
contrainte de norme minimale sur les écarts aux données. Aux emplacements des données, la
solution inverse adopte plus ou moins les valeurs des données suivant le degré de confiance
sur leurs valeurs spécifié par la fonction de covariance des erreurs sur les données. Ailleurs,
l'information sur le signal des marées est propagée des données vers le point oi la marée est
interpolée par la fonction de covariance a priori sur le signal de marée. Lorsque la distance
entre le point d'interpolation et la donnée la plus proche augmente, la quantité¢ d'information
propagée diminue; la solution inverse tend vers la solution a priori. Cette transition vers la
solution a priori est d'autant plus lisse que la longueur de corrélation de Ia fonction de
covariance du signal est grande.

Les covariances a posteriori de la composante en phase ont été calculées dans deux boites
de 10° x 10° situées dans I’ Atlantique (voir leurs localisations dans la Figure V.6). La valeur
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Figures V.2 : Cartes cotidales de I'onde M, obtenues par inversion des mesures
marégraphiques (indiquées par les points) dans I'océan Indien. Amplitudes en cm (a), phases
en degrés (b), écarts types en cm des composantes en phase (c) et en quadrature (d).
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Figures V.3 : Cartes cotidales de I'onde M obtenues par inversion des mesures
marégraphiques (indiquées par les points) dans I'océan Pacifique. Amplitudes en cm (a),
phases en degrés (b), écarts types en cm des composantes en phase (c) et en quadrature (d).
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Figures V.4 : (a) et (b) Fonctions de covariance a posteriori (cm?) calculées a partir de
Uinversion des mesures marégraphiques dans deux boites Bl et B2 situées dans I’océan
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Figures V.5 : Histogrammes des écarts (en cm) entre la solution inverse de I’onde M, obtenue
par inversion des mesures marégraphiques dans I'océan Atlantique et les mesures
marégraphiques insulaires et pélagiques (a) et les mesures de marégraphie cotiéres (b) non
utilisées dans I’ inversion.



au centre des boites (Figures V.4.a-b) est la variance a posteriori en ce point, tandis que les
valeurs non centrales sont les covariances entre I’erreur en ces points et I’erreur au point
central. La premilre boite, dans 1’ Atlantique sud, est la covariance typique d’une région ou il
y a peu de données : la variance au centre (20.5 cm)?2 est proche de la variance a priori (24.3
cm)?; la covariance est lisse et I’erreur est corrélée sur de grandes distances; et la solution
n’est que faiblement contrainte par les données. Par contre, dans la seconde boite située dans
I’ Atlantique nord et qui contient trois données (dont les emplacements sont indiqués par des
gros points dans la Figure V.4b), la variance n’est que de (4.9 cm)?, la covariance a posteriori
est non isotrope et la longueur de corrélation est inférieure & 1 degré. La solution est bien
contrainte dans cette région. Dans chacune des boites, les covariances ont été échantillonnées
suivant des profils rectilignes dessinés dans les Figures V.4a-b. Le spectre de Fourier du
profil de la premiére boite (Figure V.4c) est dominé par les grandes longueurs d’onde
reflétant le caractére lisse et la grande longueur de corrélation de la fonction de covariance
des erreurs sur la solution. A I'inverse, le spectre de Fourier du profil de la seconde boite
(Figure V.4d) est plutdt plat et peu énergétique; c’est celui d’un bruit aléatoire. Dans ce cas,
la longueur de corrélation de la fonction de covariance des erreurs sur la solution est quasi
nulle, caractéristique d’un probl¢me bien résolu.

La solution inverse est en bon accord avec le modele hydrodynamique de Schwiderski
dans les régions ot il y a des données. Ce résultat n’est pas surprenant, puisque le modele
semi-empirique de Schwiderski est également contraint par des mesures marégraphiques. Les
différences les plus importantes apparaissent dans ’hémispheére sud en raison du peu de
données. La solution inverse est donc moins fiable comme I'indiquent les écarts types a
posteriori qui sont égaux 2 1’écart type a priori. Par ailleurs, on peut s’attendre & ce que la
solution inverse soit localement plus précise que le modele hydrodynamique dans certaines
régions. Ainsi, par exemple, au milieu de 1’ Atlantique nord, la solution inverse prédit une iso-
amplitude de 20 cm sur la base de mesures pélagiques récentes, alors que le modele de
Schwiderski, qui n’a pas été contraint par ces données, donne une iso-amplitude de 30 cm.
Sur ce point précis, la solution inverse est en accord avec le modele aux éléments finis pour
I’ Atlantique nord de LeProvost et Vincent [1991].

La solution inverse a aussi été comparée aux données non incluses dans I’inversion.
L’histogramme (Figure V.5a) des écarts entre la solution inverse et les mesures insulaires et
pélagiques montre que les désaccords sont en moyenne inférieurs a 5 cm. Par contre,
I’histogramme (Figure V.5b) des écarts entre la solution inverse et les mesures de
marégraphie cotiére sont bien plus importants. En effet, si on néglige les résidus supérieurs a
30 cm, on obtient une distribution quasi gaussienne d’une moyenne de 0.1 cm et de variance
(10.9 ¢cm)?2 pour la composante en phase (les résultats pour la composante en quadrature sont
similaires). Les raisons de ce moins bon accord entre la solution inverse et les mesures
cotieres sont triples. Primo, la fonction de covariance a priori du signal de marée, qui est
déduite 2 partir d’une moyenne statistique, a tendance a lisser les forts gradients des
amplitudes de la marée que 1’on rencontre dans les mers littorales. Dans ces mers, le signal de
marée est plus énergétique et corrélé & moins grande distance qu’en moyenne sur tous les
océans, comme on peut s’en assurer en calculant la fonction de covariance du signal de marée
A partir des mesures de marégraphie coti¢re [Jourdin, communication personnelle]. Secundo,
les données de marégraphie cdtiere sont, & 'inverse des données pélagiques, nombreuses et
de qualité inégale. La sélection d’une mauvaise donnée contamine localement la solution,
mais inversement la comparaison avec une mauvaise donnée donne une fausse idée de la
qualité de la solution inverse. La troisi®me cause est le risque de contamination des constantes
harmoniques le long des cdtes par des phénoménes dynamiques locaux (atolls, port,...) qui ne
sont pas pris en compte dans la solution inverse.

135



136

90 - — —_— = =
e | ety = W " i e IE_F
=T O B L . P o F

== rx"?:it
R

latitude

T I
0 50 100 150 200 250 300 350
longitude

Figure V.6 : Carte cotidale de Ionde My obtenue par inversion des mesures gravimétriques
de marée terrestre (représentées par des points). Les amplitudes sont en centimétres et les
phases en degrés.
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Figure V.7 : Ecarts types (en cm) de la solution de inversion des mesures gravimétriques de
marée terrestre pour la composante en phase de I’onde M.



Les tests de comparaison avec les mesures marégraphiques que nous venons de discuter
doivent &tre considérés avec prudence. Les estimations sont certainement trop optimistes
puisque, comme nous avons sélectionné au moins une donnée par degré carré, il y a toujours
une donnée qui contraint la solution dans le voisinage immédiat (2 une distance angulaire
inférieure & 1 degré) de la donnée test. De plus, celui-ci n’est pas global puisque la couverture
des mesures ne 1’est pas.

L’inversion des mesures marégraphiques scules est riche en enseignement. Tout d’abord,
elle a permis de valider la méthode inverse et a montré que I’emploi de covariances
homogenes et isotropes est bien adapté A une restitution 4 ’échelle globale des marées
océaniques. Les résultats montrent que les mesures de marégraphie cdtiére contiennent de
I’information sur la marée en plein océan qui peut étre exploitée au travers d’une méthode
inverse. Le calcul des covariances a posteriori réveéle que les mesures marégraphiques sont de
bonnes contraintes pour évaluer les marées océaniques, mais ne sont pas suffisantes en raison
du manque de mesures dans certaines régions. Enfin, il faut tempérer notre optimisme face a
ces résultats en raison de la méconnaissance de la qualité des données qui détermine in fine la
précision des solutions inverses.

V.2.2 - Inversion des mesures gravimétriques

La Banque de données ICET contient les constantes harmoniques de la marée terrestre de
plus de 300 stations. Parmi celles-ci, nous en avons sélectionné 233. Nous avons élimin€ les
stations les plus anciennes, certaines stations cOtieres et celles dont les résultats sont douteux
en raison de pannes instrumentales.

Les solutions de I’inversion des mesures de marée gravimétrique (Figure V.6) reproduisent
les principaux traits caractéristiques de I’onde de marée M,. Elles sont cependant moins
réalistes que celles obtenues par I’inversion des mesures marégraphiques. La plupart des
points amphidromiques connus sont bien localisés et leurs sens de rotation sont corrects. Par
contre, les amplitudes sont trop faibles. Les meilleurs résultats sont probablement obtenus
dans I’ Atlantique nord-est grice aux nombreuses stations gravimétriques européennes. On
peut constater que la solution en amplitude est bien plus lisse que la solution de I’inversion
des mesures marégraphiques. Les mesures gravimétriques contiennent une information
globale sur les marées océaniques; de ce fait, I’information sur les courtes longueurs d’onde
est réduite, comme le confirme la fonction de covariance du signal des effets de surcharge
océanique dont la longueur de corrélation est plus grande que celle de la fonction de
covariance des marées océaniques (cfr. Figures IV.2). L’écart type a posteriori (Figure V.7)
montre que les mesures gravimétriques ne contraignent la solution de la marée océanique
pratiquement que le long des cotes et autour des fles oli des mesures ont été effectuées. En
dehors de ces régions, la solution tend vers la solution a priori (zéro), ce qui explique les
amplitudes trop faibles.

La cause principale de ces résultats relativement modestes est la distribution géographique
des mesures de marée gravimétrique. Il n’y a pratiquement pas de mesures de qualit€ sur le
continent nord américain et, par conséquent, la restitution de la marée océanique dans le
Pacifique nord-est et dans 1’ Atlantique nord-ouest n’est pas satisfaisante, comme le montrent
les écarts types a posteriori. Dans I’hémisphére sud, il n’y pas de lacune en ce qui concerne la
répartition géographique des stations, mais c’est la forme des continents qui empéche une
bonne distribution spatiale des stations. Les écarts types a posteriori nous enseignent que les
mesures gravimétriques peuvent contraindre les marées océaniques dans un rayon d’une
dizaine de degrés autour de la station (voir les écarts types autour des iles) et donc les
mesures gravimétriques sur les continents seuls ne peuvent pas contraindre la marée en haute
mer. La seconde cause de ces résultats mitigés est que les vecteurs résidus inversés
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Figure V.8 : Carte cotidale de I'onde M obtenue par inversion des vecteurs des effets de
surcharge océanique calculés par la méthode de convolution de Farrell a partir du modéle de
marée océanique de Schwiderski. Les amplitudes sont en centimétres et les phases en degrés.
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Figure V.9 : Amplitude (en cm) de la différence entre les cartes cotidales de I'onde M
obtenues par inversions des mesures gravimétriques de marée terrestre et des effets
gravimétriques de surcharge océanique (Figure V.8).



contiennent non seulement les effets de surcharge océanique mais aussi une contribution
(probablement de 1’ordre de 10% du signal total) provenant de phénomeénes d’origine
géophysique non modélisés car mal connus comme ceux dus aux hétérogénéit€s locales ou
d’origine tectonique [Yanshin et al., 1986; Melchior et Ducarme, 1991; Rydelek et al., 1991;
Robinson, 1991]. Ces effets que nous considérons dans 1’inversion comme des erreurs sont
représentés en terme de covariance par une fonction de Dirac, car nous ne disposons d’aucune
information précise sur leurs spectres de puissance. Il en résulte que les solutions inverses
sont les constantes harmoniques de la marée plus une partie des erreurs projetées sur ces
constantes. Enfin, le dernier facteur qui influe sur la précision des solutions est la maniére
dont les erreurs instrumentales (influences thermiques, sensibilité, effets barométriques, ...)
sont modélisées. Nous avons fait ’hypothése que les erreurs instrumentales sont non
corrélées entre les différentes stations. Cette hypothé&se est certainement contestable, car la
plupart des instruments a été calibrée 2 la station fondamentale de Bruxelles [Ducarme, 1976]
et des travaux récents [Baker et al.,, 1991] ont montré qu’une erreur systématique
d’étalonnage en amplitude est fortement probable.

Afin de quantifier les effets des autres signaux géophysiques inclus dans les mesures de
marée gravimétrique et des erreurs instrumentales sur la solution inverse, nous avons inversé
les vecteurs des effets gravimétriques de surcharge océanique estimés par la méthode de
convolution de Farrell & partir du modele de Schwiderski aux emplacements géographiques
des 233 stations de marée gravimétrique. La solution inverse (Figure V.8) restitue mieux la
marée prés des continents et n’est pas satisfaisante en plein océan. Ce résultat est cohérent
avec les prédictions des écarts types a posteriori. Nous avons ensuite fait la différence entre
cette solution et la solution de I’inversion des mesures gravimétriques (Figure V.9). Le signal
résiduel représente la projection des erreurs instrumentales, des erreurs du modele de
Schwiderski et du signal autre que de marée océanique contenu dans les mesures
gravimétriques sous forme d’amplitude de la marée océanique. A la lumicre de cette
expérience, il apparait clairement qu’il y a une quantité d’information non négligeable et non
attribuable aux marées océaniques dans les mesures gravimétriques. Le probléme de la
séparation de ces différentes contributions reste ouvert.

Améliorer les modeles des marées océaniques par inversion des mesures gravimétriques
semble voué A I’échec tant que le contenu géophysique des mesures gravimétriques ne sera
pas completement élucidé. Toutefois, I’inversion des mesures gravimétriques pourrait
contribuer 2 la résolution de ce probléme & condition de ne pas restituer uniquement les
constantes harmoniques de marée mais de restituer conjointement d’autres parameétres
comme, par exemple, des coefficients de perturbation des fonctions de Green. Une telle
approche rend le probléme non linéaire et extrémement coiiteux d’un point de vue
informatique. Cependant, si on arrive a séparer les effets de surcharge océanique des autres
effets géophysiques, on devrait pouvoir mettre en évidence des anomalies locales ou
régionales des marées terrestres et infirmer ou confirmer les anomalies régionales que I’on
observe déja dans les résidus de la Banque de données ICET [Melchior, communication
personelle 1993]. Nous n’avons pas poussé plus avant les investigations sur ce sujet, car elles
nous éloignaient de notre objectif originel qui est I’amélioration des modeles de marées
océaniques.
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Figure V.10 : Carte cotidale de I'onde M, obtenue par inversion conjointe des mesures
marégraphiques et gravimétriques de marée terrestre. Les amplitudes sont en centimétres et

les phases en degrés.
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Figure V.11 : Ecarts types (en cm) de la solution de I'inversion conjointe des mesures
marégraphiques et gravimétriques de marée terrestre pour la composante en phase de I’ onde

M.



V.2.3 - Inversion conjointe des mesures marégraphiques et gravimétriques

Inverser conjointement les mesures marégraphiques et gravimétriques procéde d'une
double intention : tester la complémentarité des deux types de données et leur cohérence. Les
résultats (Figure V.10) de I’'inversion conjointe sont décevants. En effet, on pouvait espérer
une certaine complémentarité entre les mesures marégraphiques qui apportent une
information ponctuelle et les mesures gravimétriques qui apportent une information globale
sur la marée. Cette complémentarité n’a en pratique pas tenu ses promesses, car les mesures
marégraphiques et gravimétriques contraignent les mémes régions, c’est-a-dire les zones
cotiéres (voir les écarts types a posteriori des solutions de l’inversion des mesures
marégraphiques et gravimétriques seules). Or, les mesures marégraphiques seules
contraignent déja fortement la solution inverse et I’information de type intégral que les
mesures gravimétriques pourraient apporter est redondante eu égard a la répartition des
mesures marégraphiques dans les zones cotieres. La non complémentarité des mesures
marégraphiques et gravimétriques est quantifiée par le calcul des écarts types a posteriori.
Ceux-ci (Figures V.11) sont globalement un peu plus faibles que les écarts types de
I’inversion des mesures marégraphiques seules : les écarts types diminuent puisque
I’information a priori a augmenté, mais ils ne diminuent que trés peu puisque I’information
supplémentaire est en partie redondante.

Cette conclusion repose sur l'interprétation des écarts types a posterlon qui dependent
umquement dela 1épa1“ut10n géographique des différentes mesures ainsi que des covariances a
priori du signal des marées et des erreurs (ce terme comprend tout ce qui n'est pas signal des
marées) sur les différentes mesures. De ce fait, elle pourrait étre remise en question si nous
disposions d'une description statistique plus réaliste de ces erreurs. On peut s'attendre A ce que
les erreurs sur les mesures marégraphiques soient engendrées par des phénomenes de
dynamique locale ou régionale et que les erreurs sur les mesures de marée gravimétrique
d'origine géophysique aient des signatures & grandes longueurs d'onde. Ainsi, bien que la
répartition géographique des mesures marégraphiques et gravimétriques de marée terrestre
soit redondante, la combinaison de ces deux types de mesures devrait quand méme apporter
une contrainte intéressante pour restituer les marées océaniques en raison de la
complémentarité des spectres des erreurs qui les affectent.

L’analyse sommaire du tracé de la solution conjointe montre que I’exactitude des résultats
par rapport i ’inversion des mesures marégraphiques seules est dégradée. L’incohérence
entre les deux lots de données est a 1’origine de cette dégradation. C’est la méconnaissance du
contenu géophysique des mesures gravimétriques, qui ne permet pas une description
cohérente en terme de fonctions de covariance et qui conduit a des solutions peu probantes.

En conclusion, dans le cadre de ce thése, nous avons décidé de ne plus utiliser les mesures
de marée gravimétrique dans les inversions. En effet, un effort trés important concernant la
modélisation du signal géophysique que contiennent les mesures de marée gravimétrique est
nécessaire afin d'apporter une contribution utile au probléme des marées océaniques.
Cependant, elles restent d’une grande utilité pour tester de maniere externe et globale les
modeles de marées océaniques.
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V.3 - Résultats des inversions des mesures altimétriques et marégraphiques

Les résultats présentés dans ce paragraphe sont le fruit d’un travail de recherche mené par
une équipe (Mazzega, Bergé et Francis) dont I’objectif est d’obtenir le meilleur modele
empirique des marées océaniques 2 partir de mesures marégraphiques et altimétriques de
Topex/Poseidon.

Le premier paragraphe concerne les premiers essais d’inversion des mesures altimétriques
de Geosat pour restituer de maniere globale les principaux constituants des marées. Ils ont
permis de mettre au point la stratégie d’inversion conjointe de mesures marégraphiques et
altimétriques qui a servi a dresser les cartes des marées océaniques d’un premier atlas, appelé
OMP1/2.

V.3.1 - Inversion des mesures altimétriques

L'inversion des mesures altimétriques seules est & considérer comme une premiere
expérience grandeur nature avant l'inversion conjointe des mesures marégraphiques et
altimétriques. C'est un passage obligé afin de tester et de mettre au point le code d'inversion.
En outre, au travers de cette expérience, l'apport de la mesure altimétrique a la modélisation
des marées océaniques peut tre apprécié.

Un an de mesures altimétriques de Geosat & partir du mois de novembre 1986 a été
sélectionné. Aprés un moyennage de ces mesures sur 15 secondes et aprés élimination des
données aberrantes, il en subsiste 106. Inverser simultanément 1'ensemble de ces données
n’est actuellement pas envisageable. C'est pourquoi, 22 lots de mesures altimétriques de
12.000 données choisies de maniere aléatoire (c'est-a-dire au total 264.000 données) ont €té
inversés séparément, obtenant ainsi 22 atlas de solutions des 8 ondes principales de marée
(Mj, Na, Sy, K3, Py, 01, Ky, Q) d’une résolution de 1°x1°. L'atlas final, baptis¢ OMPO, est
calculé en moyennant les solutions des 22 atlas. Le coiit en temps de calcul est de 50 heures
CPU sur CRAY?2.

Les solutions de 1’atlas OMPO sont dans l'ensemble satisfaisantes sauf le long des cotes, ol
la couverture des mesures altimétriques est généralement trés mauvaise. Par exemple, la
restitution de 1'onde principale de marée M, (Figure V.12) est & premire vue qualitativement
bonne. Dans le détail, par contre, elle révele un certain nombre d’insuffisances : (1) les
gradients des amplitudes le long des cotes sont trop faibles et méme parfois pas du tout
restitués comme au large de la cOte ibérique; (2) les points anti-amphidromiques (c’est-a-dire
points de maximum d’amplitude) en plein océan ont, par rapport au modele de Schwiderski,
des amplitudes beaucoup trop fortes; et (3) les solutions sont bruitées, ce qui se traduit par des
lignes d’iso-amplitude et d’iso-phase sinueuses. Malgré tout, il faut noter la relativement
bonne restitution méme pour 'onde Q, (Figure V.13) qui a une amplitude centimétrique en
plein océan alors que l'erreur radiale d'orbite est de 1'ordre du metre.

Les solutions des 22 atlas sont individuellement trés bruitées. Ce bruit n'étant pas corrélé
d'un atlas 2 l'autre est fortement réduit par le processus de moyennage mais reste perceptible
(voir point (3) du paragraphe précédent). De nombreux tests ont montré que les solutions
partielles sont surtout sensibles au choix de la fonction de covariance de l'erreur radiale
d'orbite. I1 a donc été décidé de corriger préalablement aux inversions les mesures
altimétriques de 1’erreur radiale d’orbite par la méthode de démodulation complexe décrite au
chapitre III. Les Figures V.14 permettent de visualiser, sur les solutions partielles, les
améliorations qui ont ét€ introduites progressivement. La Figure V.14a montre le résultat de
I’inversion de 3.000 mesures altimétriques avec la configuration et le choix des fonctions de
covariance avec lesquelles les solutions OMPO ont été calculées. On remarque les amplitudes
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Figures V.14 : (a) Amplitude (en cm) de I’onde M, obtenue par inversion de 3000 mesures
altimétriques sans correction préalable de I'erreur radiale d orbite par la méthode de

démodulation complexe, (b) avec cette correction appliquée et (c) avec cette correction et 400
mesures marégraphiques.
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Figure V.15 : Localisation des stations marégraphiques dont les constantes harmoniques ont
été utilisées soit dans les inversions soit pour valider les solutions inverses.



trop élevées au milicu des océans ainsi que la mauvaise restitution des gradients d’amplitude
le long des cotes. La Figure V.14b montre le résultat de I’inversion de ces mémes 3.000
mesures altimétriques mais cette fois corrigées de 1’erreur radiale d’orbite par la méthode de
démodulation et en introduisant une nouvelle fonction de covariance pour prendre en compte
les erreurs d’orbite résiduelles aprés correction. L’amélioration de la solution est nette; non
seulement les maxima d’amplitude qui étaient précédemment trop élevés sont atténués vers
des valeurs plus réalistes, mais de plus les gradients des amplitudes le long des cdtes sont plus
énergétiques et donc mieux restitués. Enfin, une troisitme étape a consisté a inverser
conjointement aux 3.000 mesures altimétriques 400 mesures marégraphiques. On peut
observer une nouvelle amélioration des résultats de I’inversion (Figure V.14c) montrant
I’intérét d’inverser simultanément des mesures altimétriques et marégraphiques.

V.3.2 - Inversion conjointe des mesures marégraphiques et altimétriques

Compte tenu de ’ensemble des résultats d’inversions qui ont été présentés précédemment,
un certain nombre d’enseignements pour améliorer les solutions inverses des marées
océaniques a pu &tre tiré. Tout d’abord, I’inversion conjointe de mesures marégraphiques et
altimétriques donne les meilleurs résultats en raison de la grande complémentarité de ces
deux types de mesures. Les mesures altimétriques seules ne permettent pas d’obtenir de
solutions correctes le long des cotes ol précisément la plupart des stations marégraphiques
sont situées. L’ensemble des tests effectués sur de petits lots de mesures altimétriques pour
améliorer les solutions de marée ont montré qu’une bonne évaluation de 1’erreur radiale
d’orbite est indispensable. Toutes les mesures altimétriques inversées ont été corrigées de
I’estimation de I’erreur d’orbite par la méthode de démodulation complexe. Enfin, comme le
nombre de données inversées conditionne la précision ultime des solutions des marées, le plus
grand nombre possible de mesures altimétriques (fonction du temps CPU disponible) sera
utilisé dans les inversions.

V.3.2.1 - Atlas OMP1/2

L’atlas des solutions de marées océaniques OMP1/2 est le résultat de I’inversion de 88 lots
de données constitués chacun de 6.000 mesures altimétriques (soit 520.000 données au total)
et de 310 ou 311 stations de mesures marégraphlques (équivalentes a environ 5.500 données).
Les 44 premiers lots contiennent le méme jeu de mesures marégraphiques qui comprend les
constantes harmoniques des 8 ondes principales de la marée de 311 stations marégraphiques
ainsi que les 3 ondes principales a longues périodes pour 122 de ces stations. Les 44 lots
suivants ont aussi en commun un jeu de 310 mesures marégraphiques constitué des constantes
harmoniques des 8 ondes pour toutes les stations et parmi celles-ci les constantes
harmoniques des 3 ondes 2 longues périodes de 125 stations sont incluses. Ces deux jeux de
mesures marégraphiques ne contiennent que des mesures de marégraphie cotiére ou insulaire
(Figure V.15) et les mesures pélagiques ont été conservées afin de valider les solutions
finales. La sélection des mesures marégraphiques est une opération laborieuse qui a été
effectuée “d la main”. Une premiére sélection a consisté a écarter toutes les stations
marégraphiques pour lesquelles on ne dispose pas des constantes harmoniques pour les 8
ondes principales. Ensuite, les constantes harmoniques de chaque station ont été comparées
avec celles des stations les plus proches ainsi qu’avec le modele de Schwiderski. Cette
opération permet de repérer et d’éliminer les mesures aberrantes ou peu représentatives de la
marée dans une zone confinée. Une fois ce criblage des données terminé, les deux jeux de
mesures marégraphiques ont été constitués en veillant a ce que la répartition géographique et
le nombre de stations comprenant les constantes harmoniques des ondes a longues périodes
soient équilibrés dans les deux jeux.
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L’atlas final est obtenu a partir de la moyenne pondérée des deux atlas issus de la moyenne
des solutions inverses calculées a partir des 44 premiers et 44 derniers lots de données. Les
poids de la moyenne pondérée sont fonctions de la distance au marégraphe le plus proche
dont les mesures sont considérées comme trés précises. L atlas comprend les cartes cotidales
des 11 ondes principales de marées (Mj, Na, Sy, Ks, Py, O1, K1, Q1, M, Mf, Sga), 1a surface
moyenne océanique ainsi qu’une estimation de 1’erreur radiale d’orbite résiduelle. La
résolution des cartes est de 0.5°x0.5° et les solutions couvrent les océans compris entre 67
degré de latitude nord et 67° degré de latitude sud & I’exclusion des mers fermées. Environ 4
106 parametres ont été estimés pour un cofit total de 325 heures CPU sur CRAY?2.

Les cartes cotidales des 11 ondes principales des marées ainsi que de la surface moyenne
océanique sont reproduites dans les Figures IV.16 a IV.27. L’amélioration des solutions par
rapport A I’atlas OMPO est visible; en particulier, les solutions sont bien moins bruitées ce qui
se traduit par des cartes beaucoup plus lisses.

La comparaison visuelle des solutions de 1’atlas OMP1/2 avec celles du modele de
Schwiderski montre un accord satisfaisant. En particulier, pratiquement tous les gradients des
amplitudes le long des cdtes ainsi que la majorité des points amphidromiques sont bien
restitués. Par contre, les amplitudes sont globalement et pour toutes les ondes plus faibles
dans les solutions OMP1/2.

En ce qui concerne les ondes semi-diurnes, les solutions OMP1/2 présentent quelques
désaccords par rapport au modele de Schwiderski. Tout d’abord, les solutions OMP1/2
montrent un amphidrome prés de I’embouchure de 1’ Amazone et un gradient des amplitudes a
la pointe de I’Afrique du Sud, qui n’apparaissent pas dans les solutions de Schwiderski.
L’existence d’un pseudo-amphidrome dans I’estuaire de 1’Amazone est corroboré par les
mesures marégraphiques in situ ainsi que par un article récent sur les variations du niveau de
I’eau dans I’estuaire de I’ Amazone [Minster et al., 1993]. Il semblerait donc que sur ce point
particulier la solution de Schwiderski soit mise en défaut. Par contre, la structure observée b
la pointe de 1’ Afrique du sud du cdté de I’océan Indien a été engendrée par des valeurs
erronées (dues A un probléme d’unité) des mesures marégraphiques qui ont été utilisées dans
les inversions. Un autre désaccord important concerne 1’amplitude de 1’anti-amphidrome situé
au milieu de 1’océan le Pacifique cOté est; les valeurs des amplitudes des solutions OMP1/2
sont de ’ordre de 50 4 60% de celles de Schwiderski. Nous n’avons pas d’explication sur ce
point. Enfin, la structure complexe de la marée sur le plateau des Falkland n’est, a premicre
vue, pas restituée de manire tout 2 fait satisfaisante dans les solutions de OMP1/2. Ainsi, par
exemple, des amphidromes qui auraient di prendre place du cdté de ’océan Atlantique
apparaissent de 1’autre c6té de I’ Amérique latine dans 1’océan Pacifique. Les causes de cette
migration d’amphidrome et plus globalement de la moins bonne restitution des marées dans
les régions de la ceinture circum polaire antarctique par inversion sont 1’absence totale de
mesures altimétriques au-deld de 67° de latitude sud et le nombre insuffisant de stations
marégraphiques.

Les solutions pour les ondes diurnes de 1’atlas OMP1/2 sont globalement en bon accord
avec les cartes de Schwiderski. Il y a cependant quelques petites différences en ce qui
concerne les emplacements ou les structures des amphidromes. Les petites variations
observées sont essentiellement dues aux faibles valeurs des amplitudes des marées diurnes sur
de larges étendues et, de ce fait, une petite variation des amplitudes peut entrainer des
déplacements importants des points amphidromiques. D’autre part, les ondes diurnes selon les
modeles de Schwiderski présentent un gradient des amplitudes aux abords du continent
Antarctique. Ces gradients ne sont pas restitués dans les solutions OMP1/2 en raison du
manque de mesures dans ces régions, probléme que nous avons déja abordé au sujet de ondes
semi-diurnes.
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Figures V.16 : Modéle OMP1/2 : cartes cotidales pour I’ onde M.
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Figures V.17 : Modéle OMP1/2 : cartes cotidales pour [I'onde S;.
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Figures V.19 : Modéle OMP1/2 : cartes cotidales pour I'onde K.
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Figures V.23 : Modele OMP1/2 : cartes cotidales pour ['onde Q;.
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Figures V.24 : Modéle OMP1/2 : cartes cotidales pour I onde M.
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Les solutions pour les longues périodes présentent la répartition zonale caractéristique de
ce type d'onde. Les amplitudes sont beaucoup trop faibles par rapport & Schwiderski ainsi que
par rapport 3 la marée d’équilibre. On retrouve bien des concentrations de phase aux latitudes
moyennes comme dans les solutions de Schwiderski, mais pas exactement aux mémes
endroits. Ces résultats peuvent étre considérés comme inespérés vu que les ondes a longues
périodes ont des amplitudes de ’ordre du centimétre et que I’on cherche a les estimer a partir
de mesures dont les erreurs sont de 1’ordre du métre. Nous insistons sur le caractere tres
préliminaire de ces solutions pour les ondes a longues périodes qui ont ét€ obtenues en
spécifiant un écart type de 10 cm pour les erreurs sur les mesures marégraphiques afin de
régulariser le probléme inverse. Dans le futur, lorsque nous disposerons de trés bonnes
solutions pour les ondes semi-diurnes et diurnes, la restitution des ondes a longues périodes se
fera dans une seconde étape en analysant le signal résiduel aprés soustraction des ondes
dominantes, augmentant ainsi le rapport signal sur bruit.

V.3.2.2 - Analyse des erreurs internes de I’atlas OMP1/2

En raison du cofit informatique exorbitant que requiert le calcul des covariances a
posteriori, seules les cartes des écarts types des solutions avec une résolution de 5°x5° et les
fonctions de covariance a posteriori en six emplacements caractéristiques ont été calculées.

Les écarts types de la solution d'une des 88 solutions inverses partielles sont reproduits
dans la Figure V.28. Il ne s'agit que de la composante en phase de 'onde Mjy; les cartes des
écarts types des autres ondes et des autres composantes ne sont pas reproduites, car elles sont
semblables 4 un facteur d'échelle prés. En premiére analyse, on remarque que les €carts types
sont minima aux emplacements des mesures marégraphiques, ce qui prouve leur poids
prédominant pour contraindre les solutions de marées. Les minima des écarts types sont quant
4 eux situés en plein océan et loin des mesures marégraphiques inversées. Leurs amplitudes
sont de l'ordre de 17-18 cm et sont & comparer 2 la valeur de 1'écart type a priori qui est 23.4
cm. A partir de ces chiffres, on en déduit que la variance expliquée dans les zones ou la marée
est la moins bien restituée est de 1'ordre de 40%. Ce résultat confirme la nécessité d'inverser le
plus grand nombre possible données, que ce soit en une étape ou en plusieurs lots. Les écarts
types de la solution obtenue en moyennant les 88 solutions partielles devraient théoriquement
présenter les mémes contours mais avec des amplitudes divisées par la racine carrée de 88 (=
9.4), a condition que les solutions partielles soient indépendantes les unes des autres. Les
écarts types de la solution OMP1/2 seraient donc inférieurs 3 2 cm partout. Cependant, ce
n'est certainement pas le cas puisque les 44 premiers et 44 derniers lots de données qui ont €té
inversés ont en commun un jeu de données marégraphiques. De plus, toutes les mesures
altimétriques contiennent des erreurs corrélées et des erreurs systématiques. En pratique, on
peut obtenir une assez bonne estimation de 1’exactitude des solutions en calibrant les écarts
types a posteriori & partir de mesures marégraphiques qui n’ont pas €i€ utilisées dans les
inversions.

Les fonctions de covariance a posteriori ont été calculées dans six boites carrées de 20° de
coté. Nous présentons le résultat pour une boite située dans le Pacifique sud-ouest et proche
de mesures marégraphiques qui ont été inversées comme 1’indiquent les distorsions des
fonctions de covariance (Figures V.29ac) des ondes diurnes et semi-diurnes. Il n’y a pas de
distorsion de la covariance de ’onde Mg (Figure V.29e) car, nous ne disposions pas de
constantes harmoniques correspondantes en cet endroit. Les moyennes des covariances a
posteriori dans les six boites et pour les mémes ondes sont présentées dans les Figures
V.29.bdf. L’étude de ces covariances nous réveéle que les covariances a posteriori sont grosso
modo homogenes et isotropes et qu’elles présentent des longueurs de corrélations de I’ordre
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Table V.1 : Comparaison des solutions de marées océaniques des modéles OMP1/2, de
Schwiderski [1980a-b] et de Cartwright et Ray [1991] avec les observations en 80 stations
marégraphiques qui nous ont été communiquées par Ray [1992]. Les premiéres valeurs sont
les moyennes des différences entre les modéles et les observations; les secondes valeurs sont
les écarts types (10).

Mod¢le Composante Composante
en phase (cm) en quadrature (cm)
M,
Schwiderski -0.98 * 3.65 +0.39 + 3.78
OMP1/2 +1.74 + 8.04 +0.55 + 6.88
Cartwright et Ray -0.02 £ 3.64 +0.40 £ 4.03
S
Schwiderski -0.01 £ 1.82 -0.21+1.56
OMP1/2 +0.44 + 3.51 +0.93 + 4.47
Cartwright et Ray +0.25 + 2.51 -0.13 £2.81
O,
Schwiderski -0.06 £ 1.18 +0.19 + 1.62
OMP1/2 -0.80 £ 2.52 -0.38 £3.15
Cartwright et Ray -0.30 + 1.36 -0.08 +1.32
Ky
Schwiderski -0.31+ 1.55 +0.12 £ 1.51
OMP1/2 -0.41 £4.29 +0.04 + 3.20
Cartwright et Ray -0.68 £ 1.99 -0.26+ 1.84




de 80% des longueurs de corrélation du signal a priori des marées. On en déduit que les
moyennes et courtes longueurs d’onde du signal des marées n’ont pas €t restituées.

V.3.2.3- Comparaison externe de ’atlas OMP1/2

La précision des solutions de marée du modele OMP1/2 des ondes principales a €té testée
sur deux jeux de mesures marégraphiques qui n'ont pas été utilisées dans les inversions. Les
mémes comparaisons ont été effectuées sur les modeles de Schwiderski [1980a-b] et de
Cartwright et Ray [1991] afin de situer le niveau de précision de 1'atlas OMP1/2 par rapport &
ces deux modeles qui sont 4 I’heure actuelle les deux meilleurs modeles globaux.

Les comparaisons entre les observations et les modeles doivent étre interprétées avec
prudence. Les tests ne sont pas significatifs a I’échelle globale et peuvent étre statistiquement
biaisés, car il y a des lacunes dans la couverture géographique des mesures marégraphiques.
De plus, les erreurs sur les mesures et sur les interpolations des modeles aux points des
observations sont en partie responsables des écarts entre les constantes harmoniques des
stations marégraphiques et celles des modeles.

Le premier jeu de stations marégraphiques est celui avec lequel Cartwright et Ray [1991]
ont validé leurs modeles. Ces auteurs ont rassemblé les mesures de différentes compilations
IAPSO ainsi que des mesures récentes non publiées qu’ils ont retenues pour la trés grande
précision des instruments avec lesquels elles ont été enregistrées. Les stations sont en
majorité pélagiques avec quelques stations insulaires choisies dans des régions ou le signal
des marées ne risque pas d'étre contaminé par des effets locaux. Pour ces premiéres
comparaisons, on s’est contenté de calculer les moyennes et les écarts types des différences
entre les observations et les trois modeles (OMP1/2, Schwiderski et Cartwright et Ray) pour
les composantes en phase et en quadrature (Table V.1). On voit que globalement ce sont les
solutions de Schwiderski qui sont en meilleur accord avec la nature. Ce résultat est logique
puisque plus ou moins 80% des mesures de ce jeu de comparaison ont servi a contraindre le
modele de Schwiderski [Cartwright et Ray, 1991]. Les solutions de Cartwright et Ray
présentent des accords avec les observations qui sont trés proches des accords des solutions
de Schwiderski. Par contre, les solutions OMP1/2 sont globalement moins bonnes avec des
valeurs des écarts types doubles de celles des deux autres modeles.

Les solutions des trois modeles globaux ont été comparées avec un second jeu de mesures
marégraphiques constitué uniquement des mesures pélagiques de la compilation IAPSO III
[Smithson, 1993]. Seules les stations dont les durées d’enregistrement sont supérieures a 27
jours ont été conservées. Lorsque plusieurs stations sont localisées dans le méme degré carré,
elles sont remplacées par une mesure synthétique formée 2 partir des moyennes des
constantes harmoniques de ces stations. Cette opération permet d’obtenir des constantes
harmoniques compatibles avec la résolutions des modeles. Il en résulte un jeu de 173 stations
pélagiques dont les emplacements sont repérés dans la Figure V.15. Les résultats des
comparaisons sont présentés dans les Figures V.30-31 ol les valeurs des constantes
harmoniques composantes en phase et en quadrature confondues (car elles sont
statistiquement équivalentes) sont portées en fonction des constantes harmoniques déduites
des observations. La Table V.2 complete les graphiques en donnant les paramétres des droites
de régression entre les valeurs observées et celles des modeles. Les écarts types des résidus
aprés ajustement “biais plus pente” quantifient les dispersions autour des droites et indiquent
que les solutions OMP1/2 “collent” moins bien aux observations que les deux autres modeles
dont les performances sur ce point sont équivalentes. Les pentes des droites de régression
renseignent sur le rapport moyen des amplitudes des composantes en phase et en quadrature
entre les modeles et les observations. On peut constater que les pentes sont inférieures a 1
pour les 4 ondes principales des trois modeles et que donc tous les modeles sont moins
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Figures V.30 : Comparaisons entre les composantes en phase et en quadrature confondues

des constantes harmoniques de 173 stations pélagiques (axes horizontaux) et les modéles de
Schwiderski (NSWC), OMP1/2 et Cartwright et Ray (axes verticaux) pour les ondes semi-
diurnes M; et S>.
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Table V.2 : Comparaison des solutions des marées océaniques des modeles NSWC, OMP1/2,
et Cart&Ray avec 173 mesures pélagiques provenant de la compilation IAPSO III [Simthson,
1993] : écart type (G), corrélation (r) et pente de la droit de régression (a).

Modele o, cm r a
M;
NSWC 11.77 0.964 0.977 £0.015
OMP1/2 18.39 0911 0.933 £0.023
Cart&Ray 11.40 0.963 0.937+0.014
S,
NSWC 4.05 0.963 0.963 £ 0.014
OMP1/2 5.40 0.921 0.849 + 0.020
Cart&Ray 4.06 0.959 0.906 +£0.015
0,
NSWC 1.46 0.983 0.928 = 0.009
OMP1/2 2.23 0.939 0.725 £ 0.014
Cart&Ray 1.56 0.981 0.934 £ 0.010
Ky
NSWC 2.17 0.983 0.953+0.010
OMP1/2 2.62 0.963 0.769 £ 0.012
Cart&Ray 2.08 0.983 0.929 = 0.009

NSWC = Naval Surface Weapons Center [ Schwiderski, 1980a-b].
Cart&Ray = Modele de Cartwright et Ray [1991].

Table V.3 : Variances expliquées (en %) par le modele OMP1/2 aux emplacements des
mesures marégraphiques inversées, respectivement pour les composantes en phase (c) et en
quadrature (s).




énergétiques que les observations. En particulier, les pentes de régression relatives au modele
OMP1/2 sont les plus faibles, confirmant chiffre & I’appui un déficit en énergie dans les
solutions que nous avions déja évoqué lors de la comparaison visuelle de nos solutions avec
le modele de Schwiderski.

Il apparait trés nettement que les solutions du modele OMP1/2 ont des amplitudes trop
faibles. Deux autres tests ont permis de confirmer ce point. Le premier test a consisté
calculer les variances expliquées (= 100 [1-[variance(apres)/variance(avant)]]) des
composantes en phase et en quadrature des constantes harmoniques aux emplacements des
mesures marégraphiques qui ont été inversées. Les valeurs des variances expliquées (Table
V.3) pour les 8 ondes principales sont comprises entre 70 et 80%, a I’exception de la
composante en quadrature de I’onde Q; probablement & cause d’un rapport signal sur bruit
trés défavorable. On en déduit donc que 20 A 30% du signal des marées aux stations
marégraphiques qui ont contraint les modeles OMP1/2 n’a pas été restitué. Dans le second
test, la marée totale a été calculée sous la trace du satellite Geosat sur une période d’un an &
partir du modele de Schwiderski et du modele OMP1/2. Les variances de la marée totale
prédite par ces deux modeles sont respectivement (30.25 cm)2 pour Schwiderski et (24.54
cm)2? pour OMP1/2. Le rapport des variances est de 0.66 et donc globalement le modele
OMP1/2 présente un déficit en terme d’énergie de 1’ordre de 35% par rapport & Schwiderski.
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Table V.4 : R.m.s des divers signaux, composant la mesure altimétrique, calculés sur une
série de un an de mesures de Geosat.

Signal Moyenne r.m.s.
(cm) (cm)

DA 9.92 142.96
Surface moyenne océanique 8.54 112.98
de I’atlas OMP1/2
Prédiction de la marée avec -0.40 24.54
I’atlas OMP1/2
DA - Surface moyenne 1.37 59.90

océanique de 1’atlas OMP1/2

DA - Surface moyenne

océanique de 1’atlas OMP1/2 1.77 55.31
- Prédiction de la marée avec

I’atlas OMP1/2

DA = hauteur de la mer par rapport au géoide GEM-T1 corrigée
de I’erreur d’orbite par la méthode de démodulation et de I’erreur
d’orbite résiduelle estimée (OMP1/2)



V.4 - Conclusions

Le modele OMP1/2, qui comprend les solutions globales des marées océaniques obtenues
par inversion conjointe de mesures marégraphiques et altimétriques, n’a pas atteint le niveau
de précision des meilleurs modeles actuels. L’analyse des erreurs formelles et les
comparaisons avec d’autres modeles et des mesures marégraphiques indépendantes révelent
que les moyennes et courtes longueurs d’onde du signal des marées sont trop lissées dans les
solutions OMP1/2, ce qui se traduit par des solutions pas assez énergétiques. Il y a deux
causes 2 ce lissage excessif. Primo, la distribution géographique des données inversées est
trop lache A I’échelle régionale, ce qui ne permet pas de restituer les courtes longueurs
d’ondes du signal des marées. Secundo, le rapport signal sur bruit dans les mesures
altimétriques est trés faible. Les larges barres d’erreur sur les données et leur petit nombre
font que la solution inverse est contrdlée par la fonction de covariance du signal. Si la
longueur de corrélation est trés grande, comme dans le cas des marées (de ’ordre du millier
de kilométres), I’information contenue dans les données se propage & grande distance lissant
fortement les solutions inverses au détriment des moyennes et courtes longueurs d’onde du
signal des marées. Si, par contre la longueur de corrélation est trés petite, la solution inverse
tend rapidement vers la solution & priori, lorsque la distance a la donnée la plus proche
augmente.

Dans ’avenir, les solutions de marées océaniques et la surface moyenne océanique de
OMP1/2 ainsi que la solution inverse de 1’erreur radiale d’orbite seront soustraites aux
mesures altimétriques pour augmenter leur rapport signal sur bruit. La Table V.4 donne les
r.m.s. apres soustraction des différentes composantes de la mesure altimétrique. Les résidus
qui ont un r.m.s. de 55.31 cm seront analysés pour extraire les moyennes et courtes longueurs
d’onde du signal des marées et de la surface moyenne océanique encore présentes. La
méthode d’analyse sera la méthode inverse qui ne sera plus appliquée a un grand nombre de
lots de données réparties sur le globe entier, mais & un grand nombre de données confinées
autour de chaque point de la grille des solutions. Cette densification des mesures a 1’échelle
régionale devrait permettre de restituer les longueurs d’ondes manquantes. Les fonctions de
covariance de cette seconde itération, qui portera sur I’analyse des résidus, seront les
fonctions de covariance a posteriori des solutions OMP1/2. Celles-ci sont, comme nous
I’avons montré, de la méme forme que les fonctions de covariance du signal des marées mais
avec des longueurs de corrélation plus courtes. Cette approche itérative a été éprouvée pour
restituer les courtes longueurs d’onde de la surface moyenne océanique et s’est révélée tres
efficace [Blanc et al., 1991]. Elle permettra aussi de spécifier des fonctions de covariance en
fonction de la dynamlque locale; on pourra, par exemple, augmenter la variance et diminuer
la corrélation de la fonction de covariance du 81gna1 dans les mers littorales ol I’on sait que le
signal des marées est bien plus énergétique qu’en haute mer et se décorrele bien plus vite.

Les solutions de cette seconde itération seront ajoutées aux solutions de I’atlas OMP1/2
pour former un nouvel atlas, OMP1. Celui-ci comprendra les solutions des marées et de la
surface moyenne océanique améliorées avec ’ensemble des cartes d’erreurs. Ces derniéres
sont indispensables pour toute exploitation ultérieure des ces solutions comme, par exemple,
leur assimilation dans un modele hydrodynamique.

Le développement de la seconde itération devrait non seulement permettre une
amélioration rapide et sensible des solutions OMP1/2, mais il fournira I’outil qui permettra
d’introduire au fur et & mesure les mesures altimétriques des missions en cours (ERS1 et
Topex/Poseidon).
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CONCLUSION

L’objectif de cette thése était d’appliquer les méthodes inverses, trés répandues en
sismologie, au probléme de la modélisation des marées océaniques  partir d’un ensemble de
mesures hétérogenes. Les résultats obtenus contribuent 3 démontrer la grande potentialité des
techniques inverses étendues 3 un domaine de recherche dans lequel les approches statistiques
sont trés peu développées. Les méthodes inverses permettent d’estimer non seulement la
solution optimale eu égard & I’ensemble des données mais fournit aussi une description
détaillée de ’erreur sur la solution. Cet élément nouveau en recherche sur les marées donne
une estimation quantitative des amplitudes et surtout du spectre des erreurs sur les solutions.
Ces informations sont indispensables pour exploiter les résultats. Elles permettent aussi de
décider des sites ot il serait judicieux de faire des observations ou de déterminer quel type de
mesures est le plus susceptible d’améliorer les solutions, c’est-a-dire des mesures dont le
spectre des erreurs est distinct de celui des erreurs sur les solutions.

L’inversion conjointe des mesures marégraphiques et altimétriques a fourni les meilleures
solutions de marées océaniques. Cette combinaison de mesures est actuellement la
combinaison optimale tant que le contenu des mesures gravimétriques de marée terrestre ne
sera pas complétement clarifié. Les solutions de marées océaniques que nous avons obtenues
par inversion de mesures marégraphiques et altimétriques ne sont pas assez énergétiques.
Nous avons estimé qu’environ 70% du signal de marde a été restitu€ et que le manque
d’énergie est dii A un lissage excessif des courtes et moyennes longueurs d’onde du signal des
marées. Il en résulte que la précision subdécimétrique n’a pu étre atteinte. Nous avons discuté
les deux causes principales qui sont le faible rapport signal sur bruit (environ 0.1) et un
échantillonnage trop lache des données inversées. La voie i suivre pour améliorer & court
terme les premidres solutions a été esquissée. Elle repose sur une seconde itération
comportant I’analyse des résidus aprés soustraction de la surface moyenne océanique, de
Ierreur radiale d’orbite et des marées océaniques et une densification de I’échantillonnage
des données inversées pour récupérer le signal de marée 2 courtes et moyennes longueurs
d’onde. Ultérieurement, une nouvelle itération sera opérée avec les données de
Topex/Poseidon afin de bénéficier de leur meilleur rapport signal sur bruit.

Le schéma d’inversion que nous avons adopté prélude & de nombreuses sophistications.
Dans un premier temps, les fonctions de covariance, que nous avons choisies homogenes et
isotropes, peuvent &tre remplacées par des fonctions de covariance dépendant de la position
géographique afin de mieux tenir compte des particularités dynamiques de la marée
océanique en haute mer et dans les mers littorales. On peut aussi songer a assimiler les
solutions inverses dans un modgle hydrodynamique, les erreurs formelles des solutions
inverses fournissant des renseignements précieux et nécessaires au schéma d’assimilation. Un
schéma encore plus complet consisterait & opérer en une seule étape une modélisation
hydrodynamique et une assimilation des différents types de mesure, dans lequel non
seulement 1’équation de continuité serait perturbée mais aussi les valeurs de la bathymétrie et
les coefficients de frottement sur le fond. En fait, ’ensemble des possibilit€s qui nous sont
offertes ne connait qu’une limite, celle de notre imagination; et leur réalisation ne dépend que
de 1a puissance de calcul dont nous disposons.
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ANNEXE : DECONVOLUTION DE SPECTRES DE FOURIER
Généralités

La transformée de Fourier (ou spectre de Fourier) d’une fonction f(t) quelconque (assez
réguliere pour que sa transformée de Fourier existe) est définie par la fonction complexe :

F@»:j fi(t) e-iot d (A.1)

oll ® est 1a pulsation et e19t= cos mt + i sin wt. Comme les séries traitées numériquement sont
toujours finies, les bornes de I’intégrale le sont aussi. Supposons, sans perte de généralité, que
la fonction f(t) est discrétisée avec un pas régulier sur ’intervalle de temps compris entre -T et
+T, alors (A.1) devient :
+T

Fo)=] (@) eiotdt (A.2)
J

ou encore

4o

J.

ol pr(t) est la fonction “ fenétre “ rectangulaire définie par :

Fo)=] {f©.pr®)eiotdt (A.3)

_{0si |t[>T
T‘{1g|q<T (A4)
Le théoréme de convolution permet de réécrire (A.3) sous une autre forme :
ﬁ((o) = %J Pr(w -0") F(0') do'
- (A.5)

~ Ln Pr(®) * F(w)

avec Prla transformée de Fourier de pr et * qui représente le produit de convolution. Cette
nouvelle écriture montre clairement que les spectres calculés numériquement (dénotés par un
accent circonflexe) ne sont pas les spectres “ vrais “, mais bien les spectres vrais convolués par
le spectre de la fonction fenétre ou fonction d’échantillonnage qui vaut 1 sur I'intervalle de
mesure et O ailleurs. Dans le cas simple d’une série définie sur un intervalle de temps [-T,+T] et
sans interruption, le spectre de la fonction d’échantillonnage est :

Pr(o) = 2810.0T (A.6)

qui est la fonction sinus cardinal. Ainsi, en raison de la nature finie des séries, les pics des
spectres calculés numériquement sont diffractés : ¢’est ce que 1’on appelle le “leakage” dans la
littérature anglo-saxonne. Si, comme c’est le cas dans la plupart des applications, la série
temporelle des données ne contient pas d’interruptions, le leakage ne présente qu’un
inconvénient mineur, car les effets sont confinés autour des raies spectrales du signal réel et on
peut les atténuer en multipliant le série temporelle par une fonction d’apodisation approprice.
Par contre, si, comme dans le cas des séries altimétriques, les séries temporelles présentent un
nombre important d’interruptions qui ne peuvent étre comblées par une interpolation, alors la
fonction du spectre d’échantillonnage est la somme des spectres d’une suite de fonctions
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altimétriques de Geosat dont le spectre est étalé : les fréquences dominantes en 1,2 et 3 cylrev
reflétent la géométrie de I échantillonnage et donc essentiellement la distribution géographique

des continents.



rectangulaires qui est bien plus riche qu’une simple fonction sinus cardinal et peut présenter un
étalement assez considérable (voir Figures A.1). La conséquence est un enrichissement artificiel
des spectres calculés qui présentent des raies spectrales non existantes dans le signal réel
engendrées dans le voisinage immédiat des pics réels mais aussi loin de ceux-ci.

Les spectres des mesures altimétriques ne sont donc pas représentatifs du contenu spectral
réel. Le probléme qui se pose A nous est de trouver une méthode pour “nettoyer” ces spectres et
obtenir les spectres vrais.

La déconvolution

Soient F(w) le spectre de f, G(w) le spectre de la fonction d’échantillonnage (que 1’on peut
calculer, puisque 1’on connait 1’échantillonnage des données) et H(w) le spectre calculé; ils sont
liés entre-eux par le théoréme de convolution (faisant abstraction des constantes) :

F(w) * G(w) = H(w) (A7)

Le probléme 2 résoudre est le suivant : connaissant H et G, déduire F. Résoudre ce probléme
revient & déconvoluer I’équation (A.7) que I’on peut réécrire sous la forme complexe :

(FR(w) + i F()) * GR(w) +iG(w) = BRw) +i H (o) (A.8)

ol les exposants R et I désignent respectivement les parties réelle et imaginaire des différents
spectres. Développant (A.8), on obtient :

FR(0)*GR(0)-Fi(0)*G(0)+H{FR (0)*Gl(0)+Fi(0)*GR (@) }=HN 0)+iH(©)  (A.9)
équivalent au systéme :

(FR(w) * GR(w) - F{(w) * Gl (o) = HX (o) (A.10)
[F*(w) * Gl(w) + Fi(w) * GR(w) = H(w)

explicitement,
[+
{FR(0").GR(0-") - Fi(®").Glw-0")} do'= H}(w) (A.11)
J oo
+o00
{FR(0".Gl(0-n") + Fi(®").GR(0-w")} do'= B{(®)
J==,

Soient FX(), Fl(i), GR(), G'd@), HR(1), H'G) pour i € [N, N] les spectres discrets de f(t), g(t)
et h(t), le systéme précédent devient, pour tout i:

j=+N
2, FR(.GRG) - FI§).GLG-)} = HRG)

].":f; (A.12)
2, FRG.GG-) + F().GRG-)) = HG)
2
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Figure A .2 : lllustration de la discrétisation de I'intégrale de convolution.



Puisque les fonctions f(t), g(t) et h(t) sont réelles, les relations suivantes sont vérifies

permettant d'écrire le systeme sous forme matricielle en fonction des indices de sommations i

FR) =F'G) GR) =GRa)
F)=-Fd) G'¢)=-G%)

HR() = HY (@)
H'i) = -H'()

positifs (équivalents aux fréquences positives) uniquement :

HR(0)
HR(1)
HRQY) =
Hko)
Hl(1)
H{(N)
ol
GR(o)
GRq)
GR; =
GR@N)
cko)
Gl)
dl, =
G
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Comme FI(O)=GI(O)=HI(O)=O (car ce sont les spectres de fonctions réelles), la n+2 iéme
ligne de F, de G et de H ainsi que la n+2 #me colonne de G sont superflues. Le systéme final 2
résoudre se réduit A un systtme de 2N+1 équations & 2N+1 inconnues.

Convoluer deux spectres F et G revient a calculer une moyenne glissante de F en utilisant G
comme fonction de poids. Cela signifie que la convolution H de F et G, pour une fréquence
donnée, est le produit de F par G centré sur cette méme fréquence. Ce produit est 1'opération
qui est effectuée quand une ligne de la matrice G est multipliée par le vecteur colonne F donnant
un scalaire qui est égal 4 un des éléments du vecteur colonne H. Ainsi, lorsque le spectre G est
déplacé sur l'axe des fréquences pour calculer les moyennes successives de F (ou €léments
successifs de H), on peut définir trois régions comme illustrées dans la Figure A.2 : une région
comprise entre [0,wy] oll ®y est la fréquence de Nyquist, une seconde région entre J-0,0], et
une troisiéme région entre [wy,+oo[. A chacune de ces régions et a chaque moyenne
correspondent des valeurs du spectre de G formant trois matrices d'indices différents. Les
matrices GR; et G!; sont respectivement symétriques et antisymétriques, car la fonction g(t),
dont les spectres sont issus, est réelle. Les matrices GR; et GI, sont triangulaires supérieures,
car les spectres (parties réelle et imaginaire) sont finis; lorsque le spectre G est déplacé vers les
fréquences positives durant la convolution, il y a de moins en moins d'é1éments dans la région
2 et donc sur les lignes des matrices d'indices 2. Inversement, il y a de plus en plus d'éléments
dans la région 3 et sur les lignes des matrices d'indice 3 qui sont dés lors triangulaires
inférieures. Ces matrices, GR3 et GI3, ont été rajoutées pour tenir compte du repliement du
spectre (ou aliasing) au-dela de la fréquence de Nyquist, & condition que cette fréquence soit la
derni¢re fréquence du spectre calculé.

Résolution numérique

Le probleéme de la déconvolution se réduit 4 la résolution d’un systeme linéaire qui se résume
a:
GF=H (A.13)

ot F(2n+1) est le vecteur des inconnues, G(2n+1,2n+1) est la matrice "fenétre" (ou
d’échantillonnage) et H(2n+1) est le spectre brut & déconvoluer. On recherche la solution de
norme Ly minimum par méthode des moindres carrés qui s’obtient en résolvant 1’équation
normale:

(GTG)F=GTH (A.14)
F = (GTG)!1 GTH (A.15)

La déconvolution est un probléme mathématiquement mal posé [Tikhonov, 1976], ce qui se
traduit par des instabilités numériques, c’est-a-dire que de faibles perturbations sur les données
provoquent de grandes variations sur la solution. Les méthodes de régularisation permettent
d’obtenir des solutions numériques stables. Parmi celles-ci, une des méthodes les plus
couramment utilisées consiste 3 résoudre le probléme des moindres carrés par une
décomposition en valeurs singuliéres. Ce choix est doublement motivé. Primo, il est fortement
conseillé, pour des raisons de stabilité numérique, d'éviter la formation explicite de I'équation
normale. Secundo, on peut éliminer les petites valeurs singuli¢res ce qui permet, en diminuant
le rang de la matrice, d'angmenter la précision de la solution.

Nous rappelons bri¢vement ce qu’est une décomposition en valeurs singuli€res : pour toute
matrice A(m,n), il existe une matrice orthogonale U(n,m), une matrice orthogonale V(m,n) et
une matrice diagonale Z(m,n) d'éléments diagonaux 6,26,2...20, telles que

A=Uz V' (A.16)
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Ce produit matriciel est appelé la décomposition en valeurs singulieres de A. Les colonnes de
U (ou de V) sont appelées les vecteurs singuliers gauches (ou droits) de A ;;J les o. v_z%lcurs
singuli¢res de A. Les colonnes de U (ou de V) sont les vecteurs  propres de AA" (oude A"A)et

les valeurs propres correspondantes sont, dans les deux cas, o;".

L'interprétation géométrique de la décomposition en valeurs singuliéres est que pour toute
transformation linéaire, des bases orthogonales existent a la fois dans l'espace source et
I'espace image (données par les vecteurs singuliers gauches et droits). Sur ces bases
orthogonales, la transformation linéaire est représentée par une matrice diagonale. En outre,
rang(A)=p si et seulement si 6120, ...,6,20 et Gp41= ...=6,=0. Si Op,y, ...,0y sont tres petits
par rapport i Gy, ..., Op alors A est numériquement équivalente A une matrice de rang p et nous
dirons que A est effectivement de rang p.

Supposons maintenant que la matrice A soit de rang p, alors la solution de norme L,
minimum (ou par moindres carrés) du syst¢tme Ax=b est obtenue en formant 1'équation
normale:

(ATA)X = ATb (A.17)
et aprés décomposition en valeurs singulires,
X=VZ+UTb (A.18)

olt X+ est la matrice diagonale (n,m) d'éléments diagonaux 1/c7, ..., 1/0p, 0, ..., 0. La matrice
VZ+UT est appelée pseudo-inverse de A, généralement notée A™*.

La régularisation par élimination des plus petites valeurs propres est justifiée bri¢vement ci-
apres :
Soit le systéme a résoudre Ax=b; si € est l'erreur de mesure sur b, le systéme s’écrit alors:

A(x+Ax) = b+e (A.19)

on supposera que les éléments du vecteur € sont de moyenne nulle non corrélés et ont une
méme variance 62, c'est-2-§dire var(e) = 62 I. Sous ces hypotheses et considérant que le rang
de A est complet, il est possible de calculer la matrice de variance E[Ax.AxT], E désignant la
moyenne probabiliste :

E[(ATA)1 AT eeT A(ATA)1] = 62 (ATA)! (A.20)

et donc
E(lAxI) =62 Y,
j

1 A2l
= (A.21)
D'ou : l'erreur de la solution estimée par moindres carrés peut €tre considérable, s'il y a des

valeurs singuliéres trés petites; 1'€limination de ces derni¢res diminue sensiblement la variance
de cette erreur.
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Figures Al .4 : (a) Spectre d’ une fonction test formée de 5 sinusoides de mémes amplitudes
échantillonnées aux dates des mesures d’un cycle de 17 Jours de Geosat; (b) Résultat de la
déconvolution du spectre (a) en utilisant le spectre (c) de la Sfonction d’échantillonnage; (d)
Valeurs singuliéres de la matrice G qui est la méme dans les deux cas présentés ici (les
valeurs singuliéres inférieures a 0.4 ont été éliminées); (e) Spectre du cycle de 17 jours de
mesures altimétriques de Geosat, (f) Résultat de la déconvolution du spectre (e).



Enfin, il est important de rappeler, dans le contexte présent, les résultats du théoréme de
Gauss-Markov : si A est de rang n alors la solution x par moindres carrés est la meilleure
estimation linéaire, non biaisée et de variance minimum : de plus, si A est de rang inférieur,
alors la solution x par moindres carrés de norme L, minimum est la meilleure estimation linéaire
et non biaisée orthogonale 4 I'espace noyau de A.

Exemple

Une fonction f(t) formée de la somme de 5 fonctions sinusoidales dont les fréquences sont
choisies 2 intervalle régulier est multipliée par une fonction d’échantillonnage g(t). Celle-ci
comporte 5 pics irrégulierement espacés et 40% des valeurs prises au hasard ont été mises
zéro afin de générer du bruit. Les spectres des fonctions F et G ainsi que celui de leur produit
sont reproduits dans les Figures (A.3). Le résultat de la déconvolution du spectre H connaissant
le spectre G par la méthode décrite ci-dessus est montré dans la Figure (A.3d). Si la
déconvolution était parfaite les Figures (A.3a) et (A.3d) seraient iden tiques. Ce n’est pas le cas,
parce que la déconvolution est un probléme extrémement mal pos€ et que faute d’information a
priori pour contraindre la solution, on doit éliminer un nombre important (1 sur 5) de valeurs
propres pour stabiliser le résultat. Il en résulte une atténuation des amplitudes du signal restitué
de plus de 10%. Toutefois, les raies spectrales sont bien séparées du bruit résiduel attestant un
succes partiel de la méthode.

Déconvolution de séries altimétrigues.

Les tests de déconvolution des spectres de séries altimétriques ont porté sur le premier cycle
de 17 jours de Geosat. Ce cycle comporte environ 13.000 données moyennées sur une minute.
Tous les spectres ont été tronqués 2 la fréquence de 140 cycles par jour bien en-dessous de la
fréquence de Nyquist (720 cycles par jour); les spectres contiennent 2800 fréquences, ce qui est
un bon compromis entre la résolution des spectres et le nombre de données que I’on peut traiter.

Le spectre de la fonction d’échantillonnage peut étre obtenu en calculant le périodogramme
de la fonction d’échantillonnage. Cependant, les fortes discontinuités de cette fonction
engendrent le phénomene bien connu de Gibbs. Cest pourquoi, nous avons préféré déduire de
mani¢re empirique le spectre de la fonction d’échantillonnage A partir du périodogramme d’une
série temporelle sinusoidale de fréquence 140 cycles/jour échantillonnée aux dates des mesures.
Ce dernier est le spectre de la fonction d’échantillonnage décalé de la fréquence 140 cycles/jour
car le spectre calcul€ est 1a convolution entre le spectre de la fonction d’échantillonnage et la
fonction de Dirac en 140 cycles/jour. Aprds “recalage” du spectre, on obtient le spectre de la
fonction d’échantillonnage (Figure Adc).

Le résultat de la déconvolution du spectre d’une série formée de Ia somme de 5 sinusoides
échantillonnées aux dates des données est reproduit dans les Figures (A.4 a-b). 1l y a une
atténuation progressive des amplitudes vers les basses fréquences accompagnée d’une
diminution du rapport signal sur bruit. La dégradation progressive des résultats est due
vraisemblablement & un probléme concernant la maniére d’introduire le spectre de la fonction
d’échantillonnage dans le code ( probléme qui a ét€ détecté plus tard).

Une fois le syst®me normal d’équations décomposé en valeurs singuliéres, la déconvolution
du spectre de n’importe quel signal échantillonné sur la méme grille se fait par simple
multiplication matricielle (voir équ. A.18), car le noyau (= matrice G) est le méme. Dans les
Figures A.4, on trouve les résultats de la déconvolution du spectre du premier cycle des
données altimétriques de Geosat. Ces résultats sont A considérer avec beaucoup de précautions
car les amplitudes des basses fréquences sont fortement atténuées comme dans le cas test.
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Les investigations n’ont pas été poussées plus avant pour plusieur raisons :

(1) le coit informatique de ce type de méthode de déconvolution est bien trop élevé : une
décomposition en valeurs singuli¢res d’une matrice 5.600 x 5.600 requiert prés de 2 heures
CPU sur Cray 2.

(2) la démodulation complexe a mis en évidence la non stationnarité des caractéristiques
spectrales des séries altimétriques. La transformée de Fourier n’est plus I’outil adéquat pour
étudier les séries altimétriques et donc, dans ce contexte, le probleme de la déconvolution
devient obsolete.
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