
On three properties of
the discrete Choquet integral

Miguel Couceiro and Jean-Luc Marichal

University of Luxembourg



Standard triangulation of [0,1]n
Let σ be a permutation on [n] = {1, . . . ,n} (σ ∈ Sn)

Rn
σ = {x = (x1, . . . , xn) ∈ Rn ∶ xσ(1) ⩽ ⋯ ⩽ xσ(n)}

[0,1]nσ = Rn
σ ∩ [0,1]n

Example : n = 2
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2! = 2 permutations (2 triangles)



Standard triangulation of [0,1]n

Example : n = 3

3! = 6 permutations (6 simplexes)



Lovász extension

Note: Each simplex [0,1]nσ has exactly n + 1 vertices

Consider a function φ∶ {0,1}n → R such that φ(0) = 0

Definition (Lovász, 1983)

The Lovász extension of a function φ∶ {0,1}n → R is the function
fφ∶Rn → R whose restriction to each subdomain Rn

σ is the unique
linear function which coincides with φ at the n + 1 vertices of the
simplex [0,1]nσ

By definition, fφ∣{0,1}n = φ



Lovász extension

Example :
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φ(0,0) = 0 φ(1,0) = 1

φ(0,1) = 5 φ(1,1) = 3
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x1 ⩾ x2 ⇒ fφ(x1, x2) = x1 + 2x2

x1 ⩽ x2 ⇒ fφ(x1, x2) = −2x1 + 5x2

On R2 :
fφ(x1, x2) = x1 + 5x2 − 3 min(x1, x2)

⇒ fφ is piecewise linear and continuous



Lovász extension

fφ(x1, x2) = x1 + 5x2 − 3 min(x1, x2)



Lovász extension

In general :

fφ can always be written in the form

fφ(x) = ∑
S⊆[n]

aφ(S) min
i∈S

xi (x ∈ Rn)

where the coefficients aφ(S) are real numbers

⇒ fφ is always piecewise linear and continuous



Lovász extension

... and on the “extended” simplex Rn
σ ?

Back to the example :

x1 ⩾ x2 ⇒ fφ(x1, x2) = x1 + 2x2

x1 ⩽ x2 ⇒ fφ(x1, x2) = −2x1 + 5x2

In general :

fφ(x) = xσ(1)φ(1) +
n

∑
i=2

(xσ(i) − xσ(i−1))φ(1{σ(i),...,σ(n)}) (x ∈ Rn
σ)



Choquet integral

We say that a function f ∶Rn → R is a Lovász extension if there
exists a function φ∶ {0,1}n → R such that f = fφ.

Definition

An n-variable Choquet integral is a nondecreasing (in each variable)
Lovász extension vanishing at the origin



Three properties of the discrete Choquet integral

Two n-tuples x,x′ ∈ Rn are said to be comonotonic if there exists
σ ∈ Sn such that x,x′ ∈ Rn

σ

Comonotonic additivity (Dellacherie, 1971)

A function f ∶Rn → R is said to be comonotonically additive if, for
every comonotonic n-tuples x,x′ ∈ Rn, we have

f (x + x′) = f (x) + f (x′)

Proposition. (Schmeidler, 1986)
Every n-variable Choquet integral is comonotonically additive



Three properties of the discrete Choquet integral

Axiomatization (Schmeidler, 1986; De Campos and Bolaños, 1992)

A function f ∶Rn → R is a Choquet integral if and only if it satisfies
the following properties :

(i) f is comonotonically additive

(ii) f is nondecreasing

(iii) f is positively homogeneous,
i.e., f (cx) = c f (x) for every x ∈ Rn and every c > 0

(iv) f (0) = 0



Three properties of the discrete Choquet integral

For every x ∈ Rn and every c ∈ R, let

x ∧ c = (min(x1, c), . . . ,min(xn, c))

JxKc = x − x ∧ c

Horizontal min-additivity of x :

x = x ∧ c + JxKc
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Three properties of the discrete Choquet integral

Horizontal min-additivity (Šipoš, 1979)

A function f ∶Rn → R is said to be horizontally min-additive if, for
every x ∈ Rn and every c ∈ R, we have

f (x) = f (x ∧ c) + f (JxKc)



Three properties of the discrete Choquet integral

Axiomatization (Benvenuti et al., 2002)

A function f ∶Rn → R is a Choquet integral if and only if it satisfies
the following properties :

(i) f is horizontally min-additive

(ii) f is nondecreasing

(iii) f (c1S) = c f (1S) for every c ⩾ 0 and every S ⊆ [n]



Three properties of the discrete Choquet integral

Horizontal max-additivity

We say that a function f ∶Rn → R is horizontally max-additive if, for
every x ∈ Rn and every c ∈ R, we have

f (x) = f (x ∨ c) + f (JxKc)

where JxKc = x − x ∨ c

Which is the class of functions that are

1. comonotonically additive ?

2. horizontally min-additive ?

3. horizontally max-additive ?



New results

Equivalence

For a function f ∶Rn → R, the following assertions are equivalent

(i) f is comonotonically additive

(ii) f is horizontally min-additive

(iii) f is horizontally max-additive



New results

Comonotonically additive functions

A function f ∶Rn → R is comonotonically additive if and only if there
exists a function g ∶Rn → R satisfying

(i) x ↦ g(x1) is additive

(ii) x ↦ g(x1S) is additive on R+ for every S ⊆ [n]
such that

f (x) = g(xσ(1)1) +
n

∑
i=2

g((xσ(i) − xσ(i−1))1{σ(i),...,σ(n)}) (x ∈ Rn
σ)

In this case we can choose g = f

To be compared with the Lovász extension

f (x) = xσ(1) f (1)+
n

∑
i=2

(xσ(i) −xσ(i−1)) f (1{σ(i),...,σ(n)}) (x ∈ Rn
σ)



New results

Example : Comonotonically additive function f ∶R2 → R

f ∣x1⩽x2(x1, x2) = g(x1, x1) + g(0, x2 − x1)

6

-

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

s s
s

s
x1

x2
(x1, x2)

(x1, x1)

(0, x2 − x1)
6

�
�
�
�
��

Standard “parallelogram rule” for vector addition



New results

Lovász extensions

A function f ∶Rn → R is a Lovász extension if and only if the
following conditions hold :

(i) f is comonotonically additive or horizontally min-additive or
horizontally max-additive

(ii) f is positively homogeneous,
i.e., f (cx) = c f (x) for every x ∈ Rn and every c > 0

Remark :

1. Condition (ii) can be relaxed into :
x ↦ f (x1S) is positively homogeneous for every S ⊆ [n]

2. Axiomatizations of the Choquet integral :
→ just add monotonicity (Schmeidler, Benvenuti...)



New results

Condition (ii) can be further relaxed :

Each of the maps
x ↦ f (x1) on R
x ↦ f (x1S) on R+ or R− (S ⊆ [n])

is continuous at a point or monotonic or Lebesgue measurable or
bounded from one side on a set of positive measure



Symmetric Lovász extension

For every x ∈ Rn, set

x+ = x ∨ 0 and x− = (−x)+

Definition

The symmetric Lovász extension of a function φ∶ {0,1}n → R is the
function f̌φ∶Rn → R defined by

f̌φ(x) = fφ(x+) − fφ(x−)

Immediate consequences :

● f̌φ is piecewise linear and continuous

● f̌φ(−x) = −f̌φ(x)
● f̌φ(cx) = c f̌φ(x) for every x ∈ Rn and every c ∈ R



Symmetric Lovász extension
Example :
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fφ(x1, x2) = x1 + 5x2 − 3 min(x1, x2)



Symmetric Lovász extension

f̌φ(x) = fφ(x+) − fφ(x−)



Symmetric Lovász extension

We say that a function f ∶Rn → R is a symmetric Lovász extension
if there exists a function φ∶ {0,1}n → R such that f = f̌φ.

Definition (Šipoš, 1979)

An n-variable symmetric Choquet integral is a nondecreasing (in
each variable) symmetric Lovász extension vanishing at the origin



New results

Horizontal median-additivity

We say that a function f ∶Rn → R is horizontally median-additive if,
for every x ∈ Rn and every c ⩾ 0, we have

f (x) = f (med(−c ,x, c)) + f (JxKc) + f (JxK−c)
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med(−c , x , c)

JxKc

x = med(−c , x , c)

med(−c , x , c)

−JxK−c



New results

Horizontal median-additivity

A function f ∶Rn → R is horizontally median-additive if and only
if the following conditions hold :

(i) f ∣Rn
+

and f ∣Rn
−

are comonotonically additive

(ii) f (x) = f (x+) + f (−x−) for every x ∈ Rn



New results

Symmetric Lovász extensions

A function f ∶Rn → R is a symmetric Lovász extension if and only
if the following conditions hold :

(i) f is horizontally median-additive

(ii) f is homogeneous,
i.e., f (cx) = c f (x) for every x ∈ Rn and every c ∈ R

Remark :

1. Condition (ii) can be relaxed into :
x ↦ f (x1S) is homogeneous for every S ⊆ [n]

2. First axiomatizations of the symmetric Choquet integral :
→ just add monotonicity



New results

Condition (ii) can be further relaxed :

Each of the maps
x ↦ f (x1S) on R+ and R− (S ⊆ [n])

is continuous at a point or monotonic or Lebesgue measurable or
bounded from one side on a set of positive measure

and f (−1S) = −f (1S) for every S ⊆ [n]



Final remark

Our results can be easily extended to functions f ∶ Jn → R,
where J is a nontrivial real interval containing the origin 0

Also, the condition f (0) = 0 can be easily dropped off



Thank you for your attention!
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