Miguel Couceiro and Jean-Luc Marichal

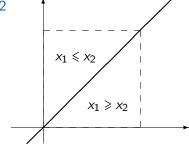
University of Luxembourg

Standard triangulation of $[0,1]^n$

Let σ be a permutation on $[n] = \{1, ..., n\}$ $(\sigma \in S_n)$

$$\mathbb{R}_{\sigma}^{n} = \left\{ \mathbf{x} = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} : x_{\sigma(1)} \leq \dots \leq x_{\sigma(n)} \right\}$$
$$[0, 1]_{\sigma}^{n} = \mathbb{R}_{\sigma}^{n} \cap [0, 1]^{n}$$

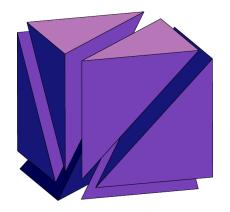
Example : n = 2



2! = 2 permutations (2 triangles)

Standard triangulation of $[0,1]^n$

Example: n = 3



3! = 6 permutations (6 simplexes)

Note: Each simplex $[0,1]^n_\sigma$ has exactly n+1 vertices

Consider a function ϕ : $\{0,1\}^n \to \mathbb{R}$ such that $\phi(\mathbf{0}) = 0$

Definition (Lovász, 1983)

The *Lovász extension* of a function $\phi \colon \{0,1\}^n \to \mathbb{R}$ is the function $f_{\phi} \colon \mathbb{R}^n \to \mathbb{R}$ whose restriction to each subdomain \mathbb{R}^n_{σ} is the unique linear function which coincides with ϕ at the n+1 vertices of the simplex $[0,1]^n_{\sigma}$

By definition, $f_{\phi}|_{\{0,1\}^n} = \phi$

Example:

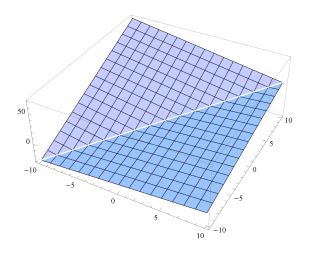
$$\phi(0,1) = 5$$
 $\phi(1,1) = 3$
 $\phi(0,0) = 0$
 $\phi(1,0) = 1$

$$x_1 \geqslant x_2$$
 \Rightarrow $f_{\phi}(x_1, x_2) = x_1 + 2x_2$
 $x_1 \leqslant x_2$ \Rightarrow $f_{\phi}(x_1, x_2) = -2x_1 + 5x_2$

On \mathbb{R}^2 :

$$f_{\phi}(x_1, x_2) = x_1 + 5x_2 - 3\min(x_1, x_2)$$

 \Rightarrow f_{ϕ} is piecewise linear and continuous



$$f_{\phi}(x_1, x_2) = x_1 + 5x_2 - 3\min(x_1, x_2)$$

In general:

 $f_{oldsymbol{\phi}}$ can always be written in the form

$$f_{\phi}(\mathbf{x}) = \sum_{S \subseteq [n]} a_{\phi}(S) \min_{i \in S} x_i \qquad (\mathbf{x} \in \mathbb{R}^n)$$

where the coefficients $a_{\phi}(S)$ are real numbers

 \Rightarrow f_{ϕ} is always piecewise linear and continuous

... and on the "extended" simplex \mathbb{R}^n_σ ?

Back to the example:

$$x_1 \geqslant x_2$$
 \Rightarrow $f_{\phi}(x_1, x_2) = x_1 + 2x_2$
 $x_1 \leqslant x_2$ \Rightarrow $f_{\phi}(x_1, x_2) = -2x_1 + 5x_2$

In general:

$$f_{\phi}(\mathbf{x}) = x_{\sigma(1)} \phi(\mathbf{1}) + \sum_{i=2}^{n} (x_{\sigma(i)} - x_{\sigma(i-1)}) \phi(\mathbf{1}_{\{\sigma(i),\dots,\sigma(n)\}}) \qquad (\mathbf{x} \in \mathbb{R}_{\sigma}^{n})$$

Choquet integral

We say that a function $f: \mathbb{R}^n \to \mathbb{R}$ is a *Lovász extension* if there exists a function $\phi: \{0,1\}^n \to \mathbb{R}$ such that $f = f_{\phi}$.

Definition

An *n*-variable *Choquet integral* is a nondecreasing (in each variable) Lovász extension vanishing at the origin

Two *n*-tuples $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^n$ are said to be *comonotonic* if there exists $\sigma \in S_n$ such that $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^n_{\sigma}$

Comonotonic additivity (Dellacherie, 1971)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be *comonotonically additive* if, for every comonotonic n-tuples $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^n$, we have

$$f(\mathbf{x} + \mathbf{x}') = f(\mathbf{x}) + f(\mathbf{x}')$$

Proposition. (Schmeidler, 1986)

Every n-variable Choquet integral is comonotonically additive

Axiomatization (Schmeidler, 1986; De Campos and Bolaños, 1992)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is a **Choquet integral** if and only if it satisfies the following properties :

- (i) f is comonotonically additive
- (ii) f is nondecreasing
- (iii) f is positively homogeneous, i.e., $f(c\mathbf{x}) = c f(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^n$ and every c > 0
- $(iv) f(\mathbf{0}) = 0$

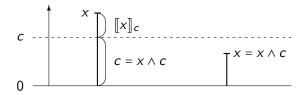
For every $\mathbf{x} \in \mathbb{R}^n$ and every $c \in \mathbb{R}$, let

$$\mathbf{x} \wedge c = (\min(x_1, c), \dots, \min(x_n, c))$$

$$[\![\mathbf{x}]\!]_c = \mathbf{x} - \mathbf{x} \wedge c$$

Horizontal min-additivity of x:

$$\mathbf{x} = \mathbf{x} \wedge c + [\![\mathbf{x}]\!]_c$$



Horizontal min-additivity (Šipoš, 1979)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be *horizontally min-additive* if, for every $\mathbf{x} \in \mathbb{R}^n$ and every $\mathbf{c} \in \mathbb{R}$, we have

$$f(\mathbf{x}) = f(\mathbf{x} \wedge c) + f([\![\mathbf{x}]\!]_c)$$

Axiomatization (Benvenuti et al., 2002)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is a **Choquet integral** if and only if it satisfies the following properties :

- (i) f is horizontally min-additive
- (ii) f is nondecreasing
- (iii) $f(c\mathbf{1}_S) = c f(\mathbf{1}_S)$ for every $c \ge 0$ and every $S \subseteq [n]$

Horizontal max-additivity

We say that a function $f: \mathbb{R}^n \to \mathbb{R}$ is *horizontally max-additive* if, for every $\mathbf{x} \in \mathbb{R}^n$ and every $\mathbf{c} \in \mathbb{R}$, we have

$$f(\mathbf{x}) = f(\mathbf{x} \vee c) + f([\![\mathbf{x}]\!]^c)$$

where $[\![\mathbf{x}]\!]^c = \mathbf{x} - \mathbf{x} \vee c$

Which is the class of functions that are

- 1. comonotonically additive?
- 2. horizontally min-additive?
- 3. horizontally max-additive?

Equivalence

For a function $f: \mathbb{R}^n \to \mathbb{R}$, the following assertions are equivalent

- (i) f is comonotonically additive
- (ii) f is horizontally min-additive
- (iii) f is horizontally max-additive

Comonotonically additive functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **comonotonically additive** if and only if there exists a function $g: \mathbb{R}^n \to \mathbb{R}$ satisfying

- (i) $x \mapsto g(x\mathbf{1})$ is additive
- (ii) $x \mapsto g(x\mathbf{1}_S)$ is additive on \mathbb{R}_+ for every $S \subseteq [n]$

such that

$$f(\mathbf{x}) = g(x_{\sigma(1)}\mathbf{1}) + \sum_{i=2}^{n} g((x_{\sigma(i)} - x_{\sigma(i-1)})\mathbf{1}_{\{\sigma(i),\dots,\sigma(n)\}}) \qquad (\mathbf{x} \in \mathbb{R}_{\sigma}^{n})$$

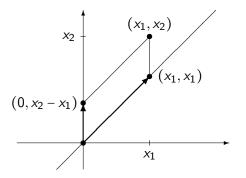
In this case we can choose g = f

To be compared with the Lovász extension

$$f(\mathbf{x}) = x_{\sigma(1)} f(\mathbf{1}) + \sum_{i=2}^{n} (x_{\sigma(i)} - x_{\sigma(i-1)}) f(\mathbf{1}_{\{\sigma(i),\dots,\sigma(n)\}}) \qquad (\mathbf{x} \in \mathbb{R}_{\sigma}^{n})$$

Example : Comonotonically additive function $f: \mathbb{R}^2 \to \mathbb{R}$

$$f|_{x_1 \leq x_2}(x_1, x_2) = g(x_1, x_1) + g(0, x_2 - x_1)$$



Standard "parallelogram rule" for vector addition

Lovász extensions

A function $f:\mathbb{R}^n \to \mathbb{R}$ is a **Lovász extension** if and only if the following conditions hold:

- (i) f is comonotonically additive or horizontally min-additive or horizontally max-additive
- (ii) f is positively homogeneous, i.e., $f(c\mathbf{x}) = c f(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^n$ and every c > 0

Remark:

- 1. Condition (ii) can be relaxed into: $x \mapsto f(x\mathbf{1}_S)$ is positively homogeneous for every $S \subseteq [n]$
- 2. Axiomatizations of the Choquet integral:
 - → just add monotonicity (Schmeidler, Benvenuti...)

Condition (ii) can be further relaxed:

Each of the maps

$$x\mapsto f(x\mathbf{1})$$
 on $\mathbb R$

$$x \mapsto f(x\mathbf{1}_S)$$
 on \mathbb{R}_+ or $\mathbb{R}_ (S \subseteq [n])$

is continuous at a point or monotonic or Lebesgue measurable or bounded from one side on a set of positive measure

For every $\mathbf{x} \in \mathbb{R}^n$, set

$$\mathbf{x}^+ = \mathbf{x} \vee \mathbf{0}$$
 and $\mathbf{x}^- = (-\mathbf{x})^+$

Definition

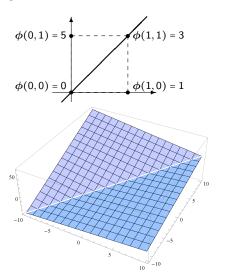
The symmetric Lovász extension of a function $\phi: \{0,1\}^n \to \mathbb{R}$ is the function $\check{f}_{\phi}: \mathbb{R}^n \to \mathbb{R}$ defined by

$$\check{f}_{\phi}(\mathbf{x}) = f_{\phi}(\mathbf{x}^{+}) - f_{\phi}(\mathbf{x}^{-})$$

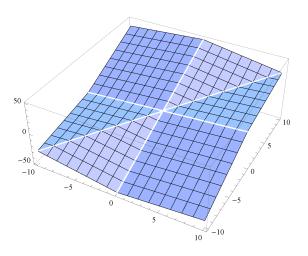
Immediate consequences:

- ullet \check{f}_ϕ is piecewise linear and continuous
- $\check{f}_{\phi}(-\mathbf{x}) = -\check{f}_{\phi}(\mathbf{x})$
- $\check{f}_{\phi}(c\mathbf{x}) = c \, \check{f}_{\phi}(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^n$ and every $c \in \mathbb{R}$

Example:



$$f_{\phi}(x_1, x_2) = x_1 + 5x_2 - 3\min(x_1, x_2)$$



$$\check{f}_{\phi}(\mathbf{x}) = f_{\phi}(\mathbf{x}^{+}) - f_{\phi}(\mathbf{x}^{-})$$

We say that a function $f: \mathbb{R}^n \to \mathbb{R}$ is a symmetric Lovász extension if there exists a function $\phi: \{0,1\}^n \to \mathbb{R}$ such that $f = \check{f}_{\phi}$.

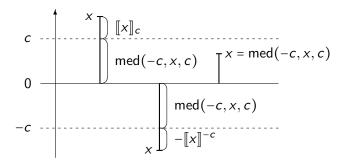
Definition (Šipoš, 1979)

An *n*-variable *symmetric Choquet integral* is a nondecreasing (in each variable) symmetric Lovász extension vanishing at the origin

Horizontal median-additivity

We say that a function $f: \mathbb{R}^n \to \mathbb{R}$ is *horizontally median-additive* if, for every $\mathbf{x} \in \mathbb{R}^n$ and every $c \geqslant 0$, we have

$$f(\mathbf{x}) = f(\text{med}(-c, \mathbf{x}, c)) + f([\mathbf{x}]_c) + f([\mathbf{x}]^{-c})$$



Horizontal median-additivity

A function $f: \mathbb{R}^n \to \mathbb{R}$ is horizontally median-additive if and only if the following conditions hold :

- (i) $f|_{\mathbb{R}^n_+}$ and $f|_{\mathbb{R}^n_-}$ are comonotonically additive
- (ii) $f(\mathbf{x}) = f(\mathbf{x}^+) + f(-\mathbf{x}^-)$ for every $\mathbf{x} \in \mathbb{R}^n$

Symmetric Lovász extensions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is a symmetric Lovász extension if and only if the following conditions hold :

- (i) f is horizontally median-additive
- (ii) f is homogeneous, i.e., $f(c\mathbf{x}) = c f(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^n$ and every $c \in \mathbb{R}$

Remark:

- 1. Condition (ii) can be relaxed into : $x \mapsto f(x\mathbf{1}_S)$ is homogeneous for every $S \subseteq [n]$
- 2. First axiomatizations of the symmetric Choquet integral :
 - → just add monotonicity

Condition (ii) can be further relaxed:

Each of the maps

$$x \mapsto f(x\mathbf{1}_S)$$
 on \mathbb{R}_+ and $\mathbb{R}_ (S \subseteq [n])$

is continuous at a point or monotonic or Lebesgue measurable or bounded from one side on a set of positive measure

and
$$f(-\mathbf{1}_S) = -f(\mathbf{1}_S)$$
 for every $S \subseteq [n]$

Final remark

Our results can be easily extended to functions $f: J^n \to \mathbb{R}$, where J is a nontrivial real interval containing the origin 0

Also, the condition $f(\mathbf{0}) = 0$ can be easily dropped off

Thank you for your attention!

arXiv: 1007.0714