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Standard triangulation of [0,1]"

Let o be a permutation on [n] ={1,...,n} (ceSy)

Rg - {XZ(X17-'~>Xn)ERn : xa(l)é-"SXU(n)}
[0,1]7 = RIn[0,1]"

Example : n=2

2! =2 permutations (2 triangles)



Standard triangulation of [0,1]"

Example : n=3

3! =6 permutations (6 simplexes)



Lovasz extension

Note: Each simplex [0,1]] has exactly n+ 1 vertices

Consider a function ¢:{0,1}" — R such that ¢(0) =0

Definition (Lovasz, 1983)

The Lovdsz extension of a function ¢:{0,1}" — R is the function
fo:R" — R whose restriction to each subdomain R is the unique
linear function which coincides with ¢ at the n+ 1 vertices of the
simplex [0,1]2

By definition, fs|(01y0 = ¢



Lovasz extension

Example :

X1 2 Xo = fo(x1,x2) = X1 +2x2

x1 € X2 = fo(x1,x2) = =2x1 + 5xp

On R? :

fo(x1,x2) = x1 + 5x2 — 3min(xq, x2)

= fy is piecewise linear and continuous



Lovasz extension

f¢(X1,X2) =X+ 5X2 - 3min(x1,x2)



Lovasz extension

In general :

fs can always be written in the form

fo(x) = > ag(S) minx; (xeR™)
sc[n] ieS

where the coefficients ag(S) are real numbers

= fg is always piecewise linear and continuous



Lovasz extension

. and on the “extended” simplex R ?

Back to the example :

X1 2 Xo = f¢(X1,X2) = X1 +2x
x1 € X2 = fo(x1,x2) = =2x1 + 5xp

In general :

fo(X) = X (1) @(1) + X (Xo (i) = Xo(i=1)) DL o (i, (m)})
=2




Choquet integral

We say that a function f:R"” - R is a Lovdsz extension if there
exists a function ¢:{0,1}" — R such that f = fy.

Definition

An n-variable Choquet integral is a nondecreasing (in each variable)
Lovasz extension vanishing at the origin




Three properties of the discrete Choquet integral

Two n-tuples x,x” € R" are said to be comonotonic if there exists
o €S, such that x,x" e R

Comonotonic additivity (Dellacherie, 1971)

A function f:R"” — R is said to be comonotonically additive if, for
every comonotonic n-tuples x,x" € R”, we have

f(x+x")=f(x)+f(x)

Proposition. (Schmeidler, 1986)
Every n-variable Choquet integral is comonotonically additive



Three properties of the discrete Choquet integral

Axiomatization (Schmeidler, 1986; De Campos and Bolafios, 1992)

A function f:R" — R is a Choquet integral if and only if it satisfies
the following properties :

(/) f is comonotonically additive
(if) f is nondecreasing
(iii) f is positively homogeneous,
i.e., f(cx) = cf(x) for every x € R" and every ¢ >0

(iv) £(0)=0




Three properties of the discrete Choquet integral

For every x e R” and every c € R, let
x A c=(min(xt, c),...,min(xy, c))

[xlc=x-xAc

Horizontal min-additivity of x :

X=XAC+[x]c




Three properties of the discrete Choquet integral

Horizontal min-additivity (Sipo¥, 1979)

A function f:R" - R is said to be horizontally min-additive if, for
every x € R"” and every c € R, we have

F(x) = F(xn c) + F([x]c)




Three properties of the discrete Choquet integral

Axiomatization (Benvenuti et al., 2002)

A function f:R" - R is a Choquet integral if and only if it satisfies
the following properties :

(i) f is horizontally min-additive
(if) f is nondecreasing
(iii) f(cls)=cf(1ls) for every c >0 and every S c [n]




Three properties of the discrete Choquet integral

Horizontal max-additivity

We say that a function f:R"” — R is horizontally max-additive if, for
every x € R" and every c € R, we have

f(x)=rf(xve)+f([x])

where [x]“=x-xVv ¢

Which is the class of functions that are
1. comonotonically additive ?
2. horizontally min-additive ?

3. horizontally max-additive ?



New results

Equivalence

For a function f:R" — R, the following assertions are equivalent
(i) f is comonotonically additive
(i) f is horizontally min-additive

(iii) f is horizontally max-additive




New results

Comonotonically additive functions

A function f:R" — R js comonotonically additive if and only if there
exists a function g:R" — R satisfying

(i) x+— g(x1) is additive
(if) x~ g(x1s) is additive on R, for every S c [n]

such that

f(x) =g(xm1) + Y g((o(iy = Xo(i-1)) Lio(i),...o(m)}) (xeR7)

n
i=2

In this case we can choose g = f

To be compared with the Lovdsz extension

F(X) = Xo1) F (1) + D Koy = Xo(i-1) F Qo (i), o(n)y)  (XERD)
P



New results
Example : Comonotonically additive function f:R? - R

flace (x1,Xx2) = g(x1,x1) + £(0,x2 — x1)

(Xla X2)
X2 +

(x1,x1)

(07X2 _X1)1

X1

Standard “parallelogram rule” for vector addition



New results

Lovasz extensions
A function f:R" — R is a Lovasz extension if and only if the
following conditions hold :
(i) f is comonotonically additive or horizontally min-additive or
horizontally max-additive
(i) f is positively homogeneous,
ie., f(cx) =cf(x) for every x € R" and every ¢ >0

Remark :

1. Condition (/i) can be relaxed into :
x = f(x1g) is positively homogeneous for every S ¢ [n]

2. Axiomatizations of the Choquet integral :
— just add monotonicity (Schmeidler, Benvenuti...)



New results

Condition (ii) can be further relaxed :

Each of the maps

x> f(x1)on R

x> f(xls) on Ry or R_ (Sc[n])
is continuous at a point or monotonic or Lebesgue measurable or
bounded from one side on a set of positive measure



Symmetric Lovdsz extension

For every x e R”, set

x"=xv0 and x =(-x)*

Definition

The symmetric Lovdsz extension of a function ¢:{0,1}" — R is the
function f,:R" — R defined by

Fo(x) = fp(x) — fp(x7)

Immediate consequences :
° 7‘¢ is piecewise linear and continuous
o fp(—x) = ~F(x)
o fs(cx) = cfy(x) for every x e R” and every c € R



Symmetric Lovdsz extension

Example :

fo(x1,x2) = x1 +5x2 — 3min(xy,x2)



Symmetric Lovdsz extension

Fo(x) = fo(x") = fp ()



Symmetric Lovdsz extension

We say that a function f:R"” — R is a symmetric Lovdsz extension
if there exists a function ¢:{0,1}" - R such that f = fy.

Definition (Sipo¥, 1979)

An n-variable symmetric Choquet integral is a nondecreasing (in
each variable) symmetric Lovdsz extension vanishing at the origin




New results

Horizontal median-additivity

We say that a function f:R" — R is horizontally median-additive if,
for every x € R” and every ¢ > 0, we have

f(x)= f(med(—c,x, c)) + f([[x]]c) 4 f([[x]]_c)

X
[x]c
C ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
med(=c, x, ¢) [x =med(-c¢,x,¢)
0
med(—c, x, ¢)
_C ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-[x1*
X




New results

Horizontal median-additivity

A function f:R"” — R is horizontally median-additive if and only
if the following conditions hold :

(i) flrn and f|rn are comonotonically additive
(ir) f(x)="f(x")+f(—x") for every x e R"




New results

Symmetric Lovdsz extensions

A function f:R" — R /s a symmetric Lovasz extension if and only
if the following conditions hold :

(i) f is horizontally median-additive
(i) f is homogeneous,
ie., f(cx) =cf(x) for every x e R" and every c € R

Remark :

1. Condition (/i) can be relaxed into :
x — f(x1g) is homogeneous for every S ¢ [n]

2. First axiomatizations of the symmetric Choquet integral :
— just add monotonicity



New results

Condition (/i) can be further relaxed :

Each of the maps

x> f(x1ls) on R, and R_ (S ¢ [n])
is continuous at a point or monotonic or Lebesgue measurable or
bounded from one side on a set of positive measure

and f(-1g) = —f(1s) for every S c [n]



Final remark

Our results can be easily extended to functions f: J" — R,
where J is a nontrivial real interval containing the origin 0

Also, the condition 7(0) = 0 can be easily dropped off




Thank you for your attention!
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