AGGREGATION OPERATORS FOR MULTICRITERIA DECISION AID

by

Jean-Luc Marichal

University of Liège

1. Aggregation in MCDM

Set of alternatives $A=\{a, b, c, \ldots\}$
Set of criteria $N=\{1, \ldots, n\}$.

For all $i \in N, \omega_{i}=$ weight associated to criterion i.

Profile: $a \in A \rightarrow\left(x_{1}^{a}, \ldots, x_{n}^{a}\right) \in E^{n}, \quad E=$ real interval.
$x_{i}^{a}=$ partial score of a w.r.t. criterion i.

Aggregation operator $M: E^{n} \rightarrow F$
Example: $\operatorname{WAM}_{\omega}(x)=\sum_{i=1}^{n} \omega_{i} x_{i}$ with $\sum_{i=1}^{n} \omega_{i}=1, \omega_{i} \geq 0$.

	criterion 1	\cdots	criterion n	global score
alternative a	x_{1}^{a}	\cdots	x_{n}^{a}	$M\left(x_{1}^{a}, \ldots, x_{n}^{a}\right)$
alternative b	x_{1}^{b}	\cdots	x_{n}^{b}	$M\left(x_{1}^{b}, \ldots, x_{n}^{b}\right)$
\vdots	\vdots		\vdots	\vdots

Phases of multicriteria decision making procedures:

1. Modelling phase: How to construct x_{i}^{a} and ω_{i} ?
2. Aggregation phase: How to build $M\left(x_{1}^{a}, \ldots, x_{n}^{a}\right)$?
3. Exploitation phase: Which are the best alternatives?

Hypotheses:

- The weights ω_{i} are defined according to a cardinal scale
- All the partial scores x_{i}^{a} are commensurable.

2. Some aggregation operators

Continuity (Co)
Increasing monotonicity (In):

$$
x_{i} \leq x_{i}^{\prime} \forall i \Rightarrow M\left(x_{1}, \ldots, x_{n}\right) \leq M\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Idempotence (Id):

$$
M(x, \ldots, x)=x
$$

Associativity (A):

$$
\begin{gathered}
M\left(x_{1}, M\left(x_{2}, x_{3}\right)\right)=M\left(M\left(x_{1}, x_{2}\right), x_{3}\right) \\
M\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=M\left(M\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right)
\end{gathered}
$$

An extended aggregation operator is a sequence $M=\left(M^{(n)}\right)_{n \in \mathbb{N}_{0}}$ of aggregation operators $M^{(n)}: E^{n} \rightarrow F$. The set of all those sequences is denoted by $A(E, F)$.

Theorem

$M \in A(E, \mathbb{R})$ fulfils (Co, In, Id, A) if and only if there exist $\alpha, \beta \in E$ such that
$M^{(n)}(x)=\left(\alpha \wedge x_{1}\right) \vee\left(\bigvee_{i=2}^{n-1}\left(\alpha \wedge \beta \wedge x_{i}\right)\right) \vee\left(\beta \wedge x_{n}\right) \vee\left(\bigwedge_{i=1}^{n} x_{i}\right) \quad \forall n \in \mathbb{N}_{0}$

+ Symmetry (Sy)

Theorem

$M \in A(E, \mathbb{R})$ fulfils (Sy, Co, In, Id, A) if and only if there exists $\alpha \in E$ such that

$$
M^{(n)}(x)=\operatorname{median}\left(\bigwedge_{i=1}^{n} x_{i}, \bigvee_{i=1}^{n} x_{i}, \alpha\right) \quad \forall n \in \mathbb{N}_{0} .
$$

Decomposability (D):

for all $k \leq n$,

$$
\begin{aligned}
M^{(k)}\left(x_{1}, \ldots, x_{k}\right) & =M^{(k)}\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right) \\
& \Downarrow \\
M^{(n)}\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right) & =M^{(n)}\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}, x_{k+1}, \ldots, x_{n}\right)
\end{aligned}
$$

Strict increasing monotonicity (SIn)

Theorem (Kolmogoroff-Nagumo, 1930)
$M \in A(E, \mathbb{R})$ fulfils (Sy, Co, SIn, Id, D) if and only if there exists a continuous strictly monotonic function $f: E \rightarrow \mathbb{R}$ such that

$$
M^{(n)}(x)=f^{-1}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right], \quad n \in \mathbb{N}_{0} .
$$

Remarks

1. The family of $M \in A(E, \mathbb{R})$ that satisfy (Sy, Co, In, Id, D) has a rather intricate structure (see §3.2.2).
2. (Sy, Co, SIn, Id, D) \Leftrightarrow (Co, SIn, Id, SD) (see §3.2.1).

The quasi-linear means (Aczél, 1948):

$$
M(x)=f^{-1}\left[\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)\right], \quad \text { with } \sum_{i=1}^{n} \omega_{i}=1, \quad \omega_{i} \geq 0 .
$$

The weighted arithmetic means:

$$
\operatorname{WAM}_{\omega}(x)=\sum_{i=1}^{n} \omega_{i} x_{i}, \quad \text { with } \sum_{i=1}^{n} \omega_{i}=1, \quad \omega_{i} \geq 0
$$

General bisymmetry (GB):
$M^{(1)}(x)=x$ for all $x \in E$, and

$$
\begin{aligned}
& M^{(p)}\left(M^{(n)}\left(x_{11}, \ldots, x_{1 n}\right), \ldots, M^{(n)}\left(x_{p 1}, \ldots, x_{p n}\right)\right) \\
= & M^{(n)}\left(M^{(p)}\left(x_{11}, \ldots, x_{p 1}\right), \ldots, M^{(p)}\left(x_{1 n}, \ldots, x_{p n}\right)\right)
\end{aligned}
$$

for all matrices

$$
X=\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & & \vdots \\
x_{p 1} & \cdots & x_{p n}
\end{array}\right) \in E^{p \times n}
$$

Stability for the admissible positive linear transformations (SPL):

$$
M\left(r x_{1}+s, \ldots, r x_{n}+s\right)=r M\left(x_{1}, \ldots, x_{n}\right)+s
$$

for all $x \in E^{n}$ and all $r>0, s \in \mathbb{R}$ such that $r x_{i}+s \in E$ for all $i \in N$.

We can assume w.l.o.g. that $E=[0,1]$

Theorem

$M \in A([0,1], \mathbb{R})$ fulfils (In, SPL, GB) if and only if

- either: $\forall n \in \mathbb{N}_{0}, \exists S \subseteq\{1, \ldots, n\}$ such that $M^{(n)}=\min _{S}$,
- or: $\forall n \in \mathbb{N}_{0}, \exists S \subseteq\{1, \ldots, n\}$ such that $M^{(n)}=\max _{S}$,
- or: $\forall n \in \mathbb{N}_{0}, \exists \omega \in[0,1]^{n}$ such that $M^{(n)}=\mathrm{WAM}_{\omega}$.

$$
\min _{S}(x):=\bigwedge_{i \in S} x_{i} \quad \max _{S}(x):=\bigvee_{i \in S} x_{i}
$$

Theorem

$M \in A([0,1], \mathbb{R})$ fulfils (SIn, SPL, GB) if and only if for all $n \in \mathbb{N}_{0}$, there exists $\left.\omega \in\right] 0,1{ }^{n}$ such that $M^{(n)}=\mathrm{WAM}_{\omega}$.

3. The weighted arithmetic means

$$
\operatorname{WAM}_{\omega}(x)=\sum_{i \in N} \omega_{i} x_{i}, \quad \text { with } \sum_{i \in N} \omega_{i}=1, \quad \omega_{i} \geq 0
$$

Definition

For any $S \subseteq N$, we define $e_{S} \in\{0,1\}^{n}$ as the binary profile whose i-th component is $1 \mathrm{iff} i \in S$.

We observe that

$$
\operatorname{WAM}_{\omega}\left(e_{\{i\}}\right)=\omega_{i}
$$

The weight ω_{i} can be viewed as the global score obtained with the profile e_{i}

Additivity (Add):

$$
M\left(x_{1}+x_{1}^{\prime}, \ldots, x_{n}+x_{n}^{\prime}\right)=M\left(x_{1}, \ldots, x_{n}\right)+M\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

Theorem

$M:[0,1]^{n} \rightarrow \mathbb{R}$ fulfils (In, SPL, Add) if and only if there exists $\omega \in[0,1]^{n}$ such that $M=\mathrm{WAM}_{\omega}$.

Remark

Weighted arithmetic means can be used only when criteria are "independent" !!!

Example of correlated criteria:

Statistics	Probability	Algebra
0.3	0.3	0.4

Preferential independence

Let x, x^{\prime} be two profiles in $[0,1]^{n}$.
The profile x is said to be preferred to the profile $x^{\prime}\left(x \succeq x^{\prime}\right)$ if $M(x) \geq M\left(x^{\prime}\right)$.

Definition

The subset S of criteria is said to be preferentially independent of $N \backslash S$ if, for all $x, x^{\prime} \in[0,1]_{S}$ and all $y, z \in[0,1]_{N \backslash S}$, we have

$$
(x, y) \succeq\left(x^{\prime}, y\right) \quad \Leftrightarrow \quad(x, z) \succeq\left(x^{\prime}, z\right) .
$$

Theorem (Scott and Suppes, 1958)
If a weighted arithmetic mean is used as an aggregation operator then every subset S of criteria is preferentially independent of $N \backslash S$.

Example:

	price	consumption	comfort
car 1	10.000 Euro	$10 \ell / 100 \mathrm{~km}$	very good
car 2	10.000 Euro	$9 \ell / 100 \mathrm{~km}$	good
car 3	30.000 Euro	$10 \ell / 100 \mathrm{~km}$	very good
car 4 4	30.000 Euro	$9 \ell / 100 \mathrm{~km}$	good

No weighted arithmetic mean can model the following preferences:

$$
\operatorname{car} 2 \succeq \operatorname{car} 1 \text { and car } 3 \succeq \text { car } 4 .
$$

4. The Choquet integral

Definition (Choquet, 1953; Sugeno, 1974)
A (discrete) fuzzy measure on N is a set function $\mu: 2^{N} \rightarrow[0,1]$ satisfying
i) $\mu_{\emptyset}=0, \mu_{N}=1$,
ii) $S \subseteq T \Rightarrow \mu_{S} \leq \mu_{T}$.
μ_{S} is regarded as the weight of importance of the combination S of criteria.

A fuzzy measure is additive if $\mu_{S \cup T}=\mu_{S}+\mu_{T}$ whenever $S \cap T=\emptyset$.

When the fuzzy measure is not additive then some criteria interact. For example, we should have

$$
\mu_{\{\mathrm{St}, \mathrm{Pr}\}}<\mu_{\{\mathrm{St}\}}+\mu_{\{\operatorname{Pr}\}} .
$$

We search for a suitable aggregation operator $M_{\mu}:[0,1]^{n} \rightarrow \mathbb{R}$, which generalizes the weighted arithmetic mean.

As for the weighted arithmetic means, we assume that the weight μ_{S} is defined as the global score of the profile e_{S} :

$$
\mu_{S}=M_{\mu}\left(e_{S}\right) \quad(S \subseteq N) .
$$

We observe that μ can be expressed in a unique way as:

$$
\mu_{S}=\sum_{T \subseteq S} a_{T} \quad(S \subseteq N)
$$

where $a_{T} \in \mathbb{R}$.
a viewed as a set function on N is called the Möbius transform of μ, which is given by:

$$
a_{S}=\sum_{T \subseteq S}(-1)^{|T|-|S|} \mu_{T} \quad(S \subseteq N)
$$

For example,

$$
\begin{aligned}
a_{\emptyset} & =0 \\
a_{\{i\}} & =\mu_{\{i\}}, \\
a_{\{i, j\}} & =\mu_{\{i, j\}}-\left[\mu_{\{i\}}+\mu_{\{j\}}\right] \\
& \leq 0 \quad \text { (overlap effect) } \\
& \geq 0 \quad \text { (positive synergy) } \\
& =0 \quad \text { (no interaction) }
\end{aligned}
$$

If μ is additive then we have $a_{S}=0$ for all $S \subseteq N,|S| \geq 2$.

$$
M_{\mu}(x)=\sum_{i \in N} a_{\{i\}} x_{i} \quad \text { (weighted arithmetic mean). }
$$

When μ is not additive, we can introduce

$$
\begin{aligned}
M_{\mu}(x) & =\sum_{i \in N} a_{\{i\}} x_{i}+\sum_{\{i, j\} \subseteq N} a_{\{i, j\}}\left[x_{i} \wedge x_{j}\right]+\ldots \\
& =\sum_{T \subseteq N} a_{T} \bigwedge_{i \in T} x_{i}
\end{aligned}
$$

(Choquet integral)

Such a function satisfies (Co), (In), (Id), and (SPL). It violates (Add).

Definition (Choquet, 1953)

Let μ be a fuzzy measure on N. The (discrete) Choquet integral of the profile $x: N \rightarrow[0,1]$ w.r.t. μ is defined by

$$
\mathcal{C}_{\mu}(x)=\sum_{i=1}^{n} x_{(i)}\left[\mu_{\{(i), \ldots,(n)\}}-\mu_{\{(i+1), \ldots,(n)\}}\right]
$$

with the convention that $x_{(1)} \leq \cdots \leq x_{(n)}$.

Particular cases:

- When μ is additive, \mathcal{C}_{μ} identifies with the weighted arithmetic mean (Lebesgue integral):

$$
\mathcal{C}_{\mu}(x)=\sum_{i=1}^{n} x_{i} \mu_{\{i\}}=\sum_{i=1}^{n} \omega_{i} x_{i}
$$

- \mathcal{C}_{μ} is symmetric (Sy) iff μ depends only on the cardinality of subsets (Grabisch, 1995). Setting

$$
\omega_{i}:=\mu_{\{(i), \ldots,(n)\}}-\mu_{\{(i+1), \ldots,(n)\}},
$$

we see that \mathcal{C}_{μ} identifies with an ordered weighted averaging operator (OWA):

$$
\operatorname{OWA}_{\omega}(x)=\sum_{i=1}^{n} \omega_{i} x_{(i)} \quad \text { with } \sum_{i=1}^{n} \omega_{i}=1, \quad \omega_{i} \geq 0
$$

(Yager, 1988)

Two profiles $x, x^{\prime} \in[0,1]^{n}$ are said to be comonotonic if there exists a permutation π of N such that

$$
x_{\pi(1)} \leq \cdots \leq x_{\pi(n)} \quad \text { and } \quad x_{\pi(1)}^{\prime} \leq \cdots \leq x_{\pi(n)}^{\prime}
$$

Comonotonic additivity (CoAdd):

$$
M\left(x_{1}+x_{1}^{\prime}, \ldots, x_{n}+x_{n}^{\prime}\right)=M\left(x_{1}, \ldots, x_{n}\right)+M\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
$$

for any two comonotonic profiles $x, x^{\prime} \in[0,1]^{n}$.

Theorem (Schmeidler, 1986)
$M:[0,1]^{n} \rightarrow \mathbb{R}$ fulfils (In, SPL, CoAdd) if and only if there exists a fuzzy measure μ on N such that $M=\mathcal{C}_{\mu}$.

Theorem

The aggregation operator $M_{\mu}:[0,1]^{n} \rightarrow \mathbb{R}$

- is linear w.r.t. the fuzzy measure μ :
there exist 2^{n} functions $f_{T}:[0,1]^{n} \rightarrow \mathbb{R}, T \subseteq N$, such that

$$
M_{\mu}=\sum_{T \subseteq N} a_{T} f_{T} \quad \forall \mu,
$$

- satisfies (In),
- satisfies (SPL),
- and is such that

$$
M_{\mu}\left(e_{S}\right)=\mu_{S}, \quad(S \subseteq N)
$$

if and only if $M_{\mu}=\mathcal{C}_{\mu}$.

5. Behavioral analysis of aggregation

5.1 Shapley power index

Given $i \in N$, it may happen that

- $\mu_{\{i\}}=0$,
- $\mu_{T \cup\{i\}} \gg \mu_{T}$ for many $T \nexists i$

The overall importance of $i \in N$ should not be solely determined by $\mu_{\{i\}}$, but also by all $\mu_{T \cup\{i\}}$ such that $T \not \supset i$.

The marginal contribution of i in combination $T \subseteq N$ is defined by

$$
\mu_{T \cup\{i\}}-\mu_{T}
$$

The Shapley power index for i is defined as an average value of the marginal contributions of i alone in all combinations:

$$
\begin{aligned}
\phi_{\mu}(i) & :=\frac{1}{n} \sum_{t=0}^{n-1} \frac{1}{\binom{n-1}{t}} \sum_{\substack{T \ngtr i \\
T T \mid=t}}\left[\mu_{T \cup\{i\}}-\mu_{T}\right] \\
& =\sum_{T \ngtr i} \frac{(n-t-1)!t!}{n!}\left[\mu_{T \cup\{i\}}-\mu_{T}\right] \\
& =\sum_{T \ni i} \frac{1}{t} a_{T}
\end{aligned}
$$

This index has been introduced axiomatically by Shapley (1953) in game theory.

5.2 Interaction index

Consider a pair $\{i, j\}$ of criteria. If

$$
\underbrace{\mu_{T \cup\{i, j\}}-\mu_{T \cup\{i\}}}_{\begin{array}{c}
\text { contribution of } j \text { in } \\
\text { the presence of } i
\end{array}}<\underbrace{\mu_{T \cup\{j\}}-\mu_{T}}_{\begin{array}{c}
\text { contribution of } j \text { in } \\
\text { the absence of } i
\end{array}} \quad \forall T \not \supset i, j
$$

then there is an overlap effect between i and j.
Criteria i and j interfere in a positive way in case of $>$ and are independent of each other in case of $=$.

An interaction index for the pair $\{i, j\} \subseteq N$ is given by an average value of the marginal interaction between i and j, conditioned to the presence of elements of the subset $T \nexists i, j$:

$$
\begin{aligned}
I_{\mu}(i j) & =\sum_{T \ngtr i, j} \frac{(n-t-2)!t!}{(n-1)!}\left[\mu_{T \cup\{i, j\}}-\mu_{T \cup\{i\}}-\mu_{T \cup\{j\}}+\mu_{T}\right] \\
& =\sum_{T \ni i, j} \frac{1}{t-1} a_{T}
\end{aligned}
$$

This interaction index has been proposed by Murofushi and Soneda (1993).

Notes

1. Interaction indices among a combination S of criteria have been introduced and characterized by Grabisch and Roubens (1998).
2. Another definition has also been introduced and investigated by Marichal and Roubens (1998) (see §5.4)

5.3 Degree of disjunction (cf. Dujmovic, 1974)

We observe that

$$
\min x_{i} \leq \mathcal{C}_{\mu}(x) \leq \max x_{i} \quad \forall x \in[0,1]^{n} .
$$

Define the average value of \mathcal{C}_{μ} as

$$
m\left(\mathcal{C}_{\mu}\right):=\int_{[0,1]^{n}} \mathcal{C}_{\mu}(x) d x
$$

We then have

$$
\frac{1}{n+1}=m(\min) \leq m\left(\mathcal{C}_{\mu}\right) \leq m(\max)=\frac{n}{n+1}
$$

A degree of disjunction of \mathcal{C}_{μ} corresponds to

$$
\operatorname{orness}\left(\mathcal{C}_{\mu}\right):=\frac{m\left(\mathcal{C}_{\mu}\right)-m(\min)}{m(\max)-m(\min)} \in[0,1] .
$$

Theorem

For any Choquet integral \mathcal{C}_{μ}, we have

$$
\operatorname{orness}\left(\mathcal{C}_{\mu}\right)=\frac{1}{n-1} \sum_{T \subseteq N} \frac{n-t}{t+1} a_{T}
$$

Moreover, we have

$$
\begin{aligned}
& \operatorname{orness}\left(\mathcal{C}_{\mu}\right)=1 \quad \Leftrightarrow \quad \mathcal{C}_{\mu}=\max \\
& \operatorname{orness}\left(\mathcal{C}_{\mu}\right)=0 \quad \Leftrightarrow \quad \mathcal{C}_{\mu}=\min
\end{aligned}
$$

\mathcal{C}_{μ}	$\operatorname{orness}\left(\mathcal{C}_{\mu}\right)$
WAM $_{\omega}$	$1 / 2$
OWA $_{\omega}$	$\frac{1}{n-1} \sum_{i=1}^{n}(i-1) \omega_{i}$

5.4 Veto and favor effects

Let $M:[0,1]^{n} \rightarrow[0,1]$ be an aggregation operator. A criterion $i \in N$ is a

- veto for M if

$$
M\left(x_{1}, \ldots, x_{n}\right) \leq x_{i} \quad \forall x \in[0,1]^{n}
$$

- favor for M if

$$
M\left(x_{1}, \ldots, x_{n}\right) \geq x_{i} \quad \forall x \in[0,1]^{n}
$$

(Dubois and Koning, 1991; Grabisch, 1997)

Given a criterion $i \in N$ and a fuzzy measure μ on N, how can we define a degree of veto of i for \mathcal{C}_{μ} ?

First attempt: Let $x \in[0,1]^{n}$ be a random variable uniformly distributed. A degree of veto of i is given by

$$
\operatorname{Pr}\left[\mathcal{C}_{\mu}(x) \leq x_{i}\right] .
$$

However,

$$
\operatorname{Pr}\left[\operatorname{WAM}_{\omega}(x) \leq x_{i}\right]= \begin{cases}1, & \text { if } \omega_{i}=1 \\ 1 / 2, & \text { otherwise }\end{cases}
$$

is non-continuous w.r.t. the fuzzy measure !!!

Second attempt: Axiomatic characterization.

$$
\operatorname{veto}\left(\mathcal{C}_{\mu} ; i\right):=1-\frac{n}{n-1} \sum_{T \nexists i} \frac{1}{t+1} a_{T}
$$

(Similar definition for $\operatorname{favor}\left(\mathcal{C}_{\mu} ; i\right)$)

Theorem

The real-valued function $\psi\left(\mathcal{C}_{\mu} ; i\right)$ satisfies the

- linearity axiom:
there exist real numbers $p_{T}^{i}, T \subseteq N, i \in N$, such that

$$
\psi\left(\mathcal{C}_{\mu} ; i\right)=\sum_{T \subseteq N} \mu_{T} p_{T}^{i} \quad \forall i \forall \mu,
$$

- symmetry axiom:
for any permutation π of N,

$$
\psi\left(\mathcal{C}_{\mu} ; i\right)=\psi\left(\mathcal{C}_{\pi \mu} ; \pi(i)\right) \quad \forall i \forall \mu,
$$

where $\pi \mu$ is defined by $\pi \mu_{\{\pi(i)\}}=\mu_{\{i\}}$ for all i.

- boundary axiom:
for all $S \subseteq N$ and all $i \in S$,

$$
\psi\left(\min _{S} ; i\right)=1, \quad\left(\operatorname{cf.} \min _{S}(x) \leq x_{i} \forall i \in S\right)
$$

- normalization axiom:

$$
\begin{gathered}
\psi\left(\mathcal{C}_{\mu} ; i\right)=\psi\left(\mathcal{C}_{\mu} ; j\right) \quad \forall i, j \in N \\
\Downarrow \\
\psi\left(\mathcal{C}_{\mu} ; i\right)=\operatorname{andness}\left(\mathcal{C}_{\mu}\right) \quad \forall i \in N .
\end{gathered}
$$

if and only if $\psi\left(\mathcal{C}_{\mu} ; i\right)=\operatorname{veto}\left(\mathcal{C}_{\mu} ; i\right)$.

5.5 Measure of dispersion

Consider a symmetric Choquet integral (OWA):

$$
\operatorname{OWA}_{\omega}(x)=\sum_{i=1}^{n} \omega_{i} x_{(i)} .
$$

Yager (1988) proposed to use the entropy of ω as degree of the use of the partial scores x :

$$
\operatorname{disp}(\omega)=-\frac{1}{\ln n} \sum_{i=1}^{n} \omega_{i} \ln \omega_{i} \in[0,1]
$$

Examples:

OWA_{ω}	ω	orness $\left(\mathrm{OWA}_{\omega}\right)$	$\operatorname{disp}(\omega)$
AM	$(1 / n, \ldots, 1 / n)$	$1 / 2$	1
median	$(0, \ldots, 1, \ldots, 0)$	$1 / 2$	0

Measure of dispersion of a fuzzy measure:
$\operatorname{disp}(\mu):=-\frac{1}{\ln n} \sum_{i=1}^{n} \sum_{T \not \supset i} \frac{(n-t-1)!t!}{n!}\left[\mu_{T \cup\{i\}}-\mu_{T}\right] \ln \left[\mu_{T \cup\{i\}}-\mu_{T}\right]$

Theorem The following properties hold:

$$
\begin{aligned}
\text { i) } & \operatorname{disp}\left(\mu_{\mathrm{WAM}_{\omega}}\right)=\operatorname{disp}\left(\mu_{\mathrm{OWA}_{\omega}}\right)=-\frac{1}{\ln n} \sum_{i=1}^{n} \omega_{i} \ln \omega_{i} \\
\text { ii) } & 0 \leq \operatorname{disp}(\mu) \leq 1 \\
\text { iii) } & \operatorname{disp}(\mu)=1 \\
\text { iv) } \quad \operatorname{disp}(\mu)=0 & \Leftrightarrow \mu_{S} \in \mu_{\mathrm{AM}} \\
& \Rightarrow \mathcal{C}_{\mu}(x) \in\left\{x_{1}, \ldots, 1\right\} \forall S \subseteq N \\
&
\end{aligned}
$$

