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1. Aggregation in MCDM

Set of alternatives A = {a, b, c, . . .}
Set of criteria N = {1, . . . , n}.

For all i ∈ N , ωi = weight associated to criterion i.

Profile: a ∈ A → (xa
1, . . . , x

a
n) ∈ En, E = real interval.

xa
i = partial score of a w.r.t. criterion i.

Aggregation operator M : En → F

Example: WAMω(x) =
n∑

i=1
ωi xi with

n∑

i=1
ωi = 1, ωi ≥ 0.

criterion 1 · · · criterion n global score

alternative a xa
1 · · · xa

n M(xa
1, . . . , x

a
n)

alternative b xb
1 · · · xb

n M(xb
1, . . . , x

b
n)

... ... ... ...

Phases of multicriteria decision making procedures:

1. Modelling phase: How to construct xa
i and ωi?

2. Aggregation phase: How to build M(xa
1, . . . , x

a
n)?

3. Exploitation phase: Which are the best alternatives?

Hypotheses:

• The weights ωi are defined according to a cardinal scale

• All the partial scores xa
i are commensurable.
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2. Some aggregation operators

Continuity (Co)

Increasing monotonicity (In):

xi ≤ x′i ∀i ⇒ M(x1, . . . , xn) ≤ M(x′1, . . . , x
′
n)

Idempotence (Id):

M(x, . . . , x) = x

Associativity (A):

M(x1,M(x2, x3)) = M(M(x1, x2), x3)

M(x1, . . . , xn, xn+1) = M(M(x1, . . . , xn), xn+1)

An extended aggregation operator is a sequence M = (M (n))n∈IN0

of aggregation operators M (n) : En → F . The set of all those se-

quences is denoted by A(E, F ).

Theorem

M ∈ A(E, IR) fulfils (Co, In, Id, A) if and only if there exist

α, β ∈ E such that

M (n)(x) = (α∧x1)∨(
n−1∨

i=2
(α∧β∧xi))∨(β∧xn)∨(

n∧

i=1
xi) ∀n ∈ IN0

+ Symmetry (Sy)

Theorem

M ∈ A(E, IR) fulfils (Sy, Co, In, Id, A) if and only if there

exists α ∈ E such that

M (n)(x) = median(
n∧

i=1
xi,

n∨

i=1
xi, α) ∀n ∈ IN0.
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Decomposability (D):

for all k ≤ n,

M (k)(x1, . . . , xk) = M (k)(x′1, . . . , x
′
k)

⇓
M (n)(x1, . . . , xk, xk+1, . . . , xn) = M (n)(x′1, . . . , x

′
k, xk+1, . . . , xn)

Strict increasing monotonicity (SIn)

Theorem (Kolmogoroff-Nagumo, 1930)

M ∈ A(E, IR) fulfils (Sy, Co, SIn, Id, D) if and only if there

exists a continuous strictly monotonic function f : E → IR

such that

M (n)(x) = f−1[
1

n

n∑

i=1
f (xi)], n ∈ IN0.

Remarks

1. The family of M ∈ A(E, IR) that satisfy (Sy, Co, In, Id, D)

has a rather intricate structure (see §3.2.2).

2. (Sy, Co, SIn, Id, D) ⇔ (Co, SIn, Id, SD) (see §3.2.1).

The quasi-linear means (Aczél, 1948):

M(x) = f−1[
n∑

i=1
ωi f (xi)], with

n∑

i=1
ωi = 1, ωi ≥ 0.

The weighted arithmetic means:

WAMω(x) =
n∑

i=1
ωi xi, with

n∑

i=1
ωi = 1, ωi ≥ 0.
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General bisymmetry (GB):

M (1)(x) = x for all x ∈ E, and

M (p)(M (n)(x11, . . . , x1n), . . . , M (n)(xp1, . . . , xpn))

= M (n)(M (p)(x11, . . . , xp1), . . . , M
(p)(x1n, . . . , xpn))

for all matrices

X =




x11 · · · x1n
... ...

xp1 · · · xpn


 ∈ Ep×n.

Stability for the admissible positive linear transformations (SPL):

M(r x1 + s, . . . , r xn + s) = r M(x1, . . . , xn) + s

for all x ∈ En and all r > 0, s ∈ IR such that r xi + s ∈ E for all

i ∈ N .

We can assume w.l.o.g. that E = [0, 1]

Theorem

M ∈ A([0, 1], IR) fulfils (In, SPL, GB) if and only if

• either: ∀n ∈ IN0, ∃S ⊆ {1, . . . , n} such that M (n) = minS,

• or: ∀n ∈ IN0, ∃S ⊆ {1, . . . , n} such that M (n) = maxS,

• or: ∀n ∈ IN0, ∃ω ∈ [0, 1]n such that M (n) = WAMω.

minS(x) :=
∧

i∈S
xi maxS(x) :=

∨

i∈S
xi

Theorem

M ∈ A([0, 1], IR) fulfils (SIn, SPL, GB) if and only if for all

n ∈ IN0, there exists ω ∈ ]0, 1[n such that M (n) = WAMω.
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3. The weighted arithmetic means

WAMω(x) =
∑

i∈N
ωi xi, with

∑

i∈N
ωi = 1, ωi ≥ 0.

Definition

For any S ⊆ N , we define eS ∈ {0, 1}n as the binary profile whose

i-th component is 1 iff i ∈ S.

We observe that

WAMω(e{i}) = ωi

The weight ωi can be viewed as the global score obtained with the

profile ei

Additivity (Add):

M(x1 + x′1, . . . , xn + x′n) = M(x1, . . . , xn) + M(x′1, . . . , x
′
n)

Theorem

M : [0, 1]n → IR fulfils (In, SPL, Add) if and only if there

exists ω ∈ [0, 1]n such that M = WAMω.

Remark

Weighted arithmetic means can be used only when criteria are

“independent” !!!

Example of correlated criteria:

Statistics Probability Algebra

0.3 0.3 0.4
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Preferential independence

Let x, x′ be two profiles in [0, 1]n.

The profile x is said to be preferred to the profile x′ (x º x′) if

M(x) ≥ M(x′).

Definition

The subset S of criteria is said to be preferentially independent

of N \ S if, for all x, x′ ∈ [0, 1]S and all y, z ∈ [0, 1]N\S, we have

(x, y) º (x′, y) ⇔ (x, z) º (x′, z).

Theorem (Scott and Suppes, 1958)

If a weighted arithmetic mean is used as an aggregation opera-

tor then every subset S of criteria is preferentially independent

of N \ S.

Example:

price consumption comfort

car 1 10.000 Euro 10 `/100 km very good

car 2 10.000 Euro 9 `/100 km good

car 3 30.000 Euro 10 `/100 km very good

car 4 30.000 Euro 9 `/100 km good

No weighted arithmetic mean can model the following preferences:

car 2 º car 1 and car 3 º car 4.
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4. The Choquet integral

Definition (Choquet, 1953; Sugeno, 1974)

A (discrete) fuzzy measure on N is a set function µ : 2N → [0, 1]

satisfying
i) µ∅ = 0, µN = 1,

ii) S ⊆ T ⇒ µS ≤ µT .

µS is regarded as the weight of importance of the combination S

of criteria.

A fuzzy measure is additive if µS∪T = µS+µT whenever S∩T = ∅.

When the fuzzy measure is not additive then some criteria in-

teract. For example, we should have

µ{St,Pr} < µ{St} + µ{Pr}.

We search for a suitable aggregation operator Mµ : [0, 1]n → IR,

which generalizes the weighted arithmetic mean.

As for the weighted arithmetic means, we assume that the weight

µS is defined as the global score of the profile eS:

µS = Mµ(eS) (S ⊆ N).
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We observe that µ can be expressed in a unique way as:

µS =
∑

T⊆S
aT (S ⊆ N)

where aT ∈ IR.

a viewed as a set function on N is called the Möbius transform of

µ, which is given by:

aS =
∑

T⊆S
(−1)|T |−|S|µT (S ⊆ N).

For example,

a∅ = 0,

a{i} = µ{i},
a{i,j} = µ{i,j} − [µ{i} + µ{j}]

≤ 0 (overlap effect)

≥ 0 (positive synergy)

= 0 (no interaction)

If µ is additive then we have aS = 0 for all S ⊆ N, |S| ≥ 2.

Mµ(x) =
∑

i∈N
a{i} xi (weighted arithmetic mean).

When µ is not additive, we can introduce

Mµ(x) =
∑

i∈N
a{i} xi +

∑

{i,j}⊆N
a{i,j} [xi ∧ xj] + . . .

=
∑

T⊆N
aT

∧

i∈T
xi.

(Choquet integral)

Such a function satisfies (Co), (In), (Id), and (SPL).

It violates (Add).
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Definition (Choquet, 1953)

Let µ be a fuzzy measure on N . The (discrete) Choquet integral

of the profile x : N → [0, 1] w.r.t. µ is defined by

Cµ(x) =
n∑

i=1
x(i) [µ{(i),...,(n)} − µ{(i+1),...,(n)}]

with the convention that x(1) ≤ · · · ≤ x(n).

Particular cases:

• When µ is additive, Cµ identifies with the weighted arithmetic

mean (Lebesgue integral):

Cµ(x) =
n∑

i=1
xi µ{i} =

n∑

i=1
ωi xi

• Cµ is symmetric (Sy) iff µ depends only on the cardinality of

subsets (Grabisch, 1995). Setting

ωi := µ{(i),...,(n)} − µ{(i+1),...,(n)},

we see that Cµ identifies with an ordered weighted averaging

operator (OWA):

OWAω(x) =
n∑

i=1
ωi x(i) with

n∑

i=1
ωi = 1, ωi ≥ 0

(Yager, 1988)
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Two profiles x, x′ ∈ [0, 1]n are said to be comonotonic if there

exists a permutation π of N such that

xπ(1) ≤ · · · ≤ xπ(n) and x′π(1) ≤ · · · ≤ x′π(n).

Comonotonic additivity (CoAdd):

M(x1 + x′1, . . . , xn + x′n) = M(x1, . . . , xn) + M(x′1, . . . , x
′
n)

for any two comonotonic profiles x, x′ ∈ [0, 1]n.

Theorem (Schmeidler, 1986)

M : [0, 1]n → IR fulfils (In, SPL, CoAdd) if and only if there

exists a fuzzy measure µ on N such that M = Cµ.

Theorem

The aggregation operator Mµ : [0, 1]n → IR

• is linear w.r.t. the fuzzy measure µ:

there exist 2n functions fT : [0, 1]n → IR, T ⊆ N , such that

Mµ =
∑

T⊆N
aT fT ∀µ,

• satisfies (In),

• satisfies (SPL),

• and is such that

Mµ(eS) = µS, (S ⊆ N),

if and only if Mµ = Cµ.
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5. Behavioral analysis of aggregation

5.1 Shapley power index

Given i ∈ N , it may happen that

• µ{i} = 0,

• µT∪{i} À µT for many T 63 i

The overall importance of i ∈ N should not be solely determined

by µ{i}, but also by all µT∪{i} such that T 63 i.

The marginal contribution of i in combination T ⊆ N is defined

by

µT∪{i} − µT

The Shapley power index for i is defined as an average value of

the marginal contributions of i alone in all combinations:

φµ(i) :=
1

n

n−1∑

t=0

1
(n−1

t

)
∑

T 63i
|T |=t

[µT∪{i} − µT ]

=
∑

T 63i

(n− t− 1)! t!

n!
[µT∪{i} − µT ]

=
∑

T3i

1

t
aT

This index has been introduced axiomatically by Shapley (1953)

in game theory.
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5.2 Interaction index

Consider a pair {i, j} of criteria. If

µT∪{i,j} − µT∪{i}︸ ︷︷ ︸
contribution of j in
the presence of i

< µT∪{j} − µT︸ ︷︷ ︸
contribution of j in

the absence of i

∀T 63 i, j

then there is an overlap effect between i and j.

Criteria i and j interfere in a positive way in case of > and are

independent of each other in case of =.

An interaction index for the pair {i, j} ⊆ N is given by an aver-

age value of the marginal interaction between i and j, conditioned

to the presence of elements of the subset T 63 i, j:

Iµ(ij) =
∑

T 63i,j

(n− t− 2)! t!

(n− 1)!
[µT∪{i,j} − µT∪{i} − µT∪{j} + µT ]

=
∑

T3i,j

1

t− 1
aT

This interaction index has been proposed by Murofushi and Soneda

(1993).

Notes

1. Interaction indices among a combination S of criteria have

been introduced and characterized by Grabisch and Roubens

(1998).

2. Another definition has also been introduced and investigated

by Marichal and Roubens (1998) (see §5.4)
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5.3 Degree of disjunction (cf. Dujmovic, 1974)

We observe that

min xi ≤ Cµ(x) ≤ max xi ∀x ∈ [0, 1]n.

Define the average value of Cµ as

m(Cµ) :=
∫

[0,1]n
Cµ(x) dx

We then have
1

n + 1
= m(min) ≤ m(Cµ) ≤ m(max) =

n

n + 1

A degree of disjunction of Cµ corresponds to

orness(Cµ) :=
m(Cµ)−m(min)

m(max)−m(min)
∈ [0, 1].

Theorem

For any Choquet integral Cµ, we have

orness(Cµ) =
1

n− 1

∑

T⊆N

n− t

t + 1
aT

Moreover, we have

orness(Cµ) = 1 ⇔ Cµ = max

orness(Cµ) = 0 ⇔ Cµ = min

Cµ orness(Cµ)

WAMω 1/2

OWAω
1

n− 1

n∑

i=1
(i− 1) ωi
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5.4 Veto and favor effects

Let M : [0, 1]n → [0, 1] be an aggregation operator. A criterion

i ∈ N is a

• veto for M if

M(x1, . . . , xn) ≤ xi ∀x ∈ [0, 1]n

• favor for M if

M(x1, . . . , xn) ≥ xi ∀x ∈ [0, 1]n

(Dubois and Koning, 1991; Grabisch, 1997)

Given a criterion i ∈ N and a fuzzy measure µ on N , how can we

define a degree of veto of i for Cµ ?

First attempt: Let x ∈ [0, 1]n be a random variable uniformly

distributed. A degree of veto of i is given by

Pr[Cµ(x) ≤ xi].

However,

Pr[WAMω(x) ≤ xi] =





1, if ωi = 1

1/2, otherwise

is non-continuous w.r.t. the fuzzy measure !!!

Second attempt: Axiomatic characterization.

veto(Cµ; i) := 1− n

n− 1

∑

T 63i

1

t + 1
aT

(Similar definition for favor(Cµ; i))
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Theorem

The real-valued function ψ(Cµ; i) satisfies the

• linearity axiom:

there exist real numbers pi
T , T ⊆ N , i ∈ N , such that

ψ(Cµ; i) =
∑

T⊆N
µT pi

T ∀i ∀µ,

• symmetry axiom:

for any permutation π of N ,

ψ(Cµ; i) = ψ(Cπµ; π(i)) ∀i ∀µ,

where πµ is defined by πµ{π(i)} = µ{i} for all i.

• boundary axiom:

for all S ⊆ N and all i ∈ S,

ψ(minS; i) = 1, (cf. minS(x) ≤ xi ∀i ∈ S)

• normalization axiom:

ψ(Cµ; i) = ψ(Cµ; j) ∀i, j ∈ N

⇓
ψ(Cµ; i) = andness(Cµ) ∀i ∈ N.

if and only if ψ(Cµ; i) = veto(Cµ; i).
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5.5 Measure of dispersion

Consider a symmetric Choquet integral (OWA):

OWAω(x) =
n∑

i=1
ωi x(i).

Yager (1988) proposed to use the entropy of ω as degree of the

use of the partial scores x:

disp(ω) = − 1

ln n

n∑

i=1
ωi ln ωi ∈ [0, 1]

Examples:

OWAω ω orness(OWAω) disp(ω)

AM (1/n, . . . , 1/n) 1/2 1

median (0, . . . , 1, . . . , 0) 1/2 0

Measure of dispersion of a fuzzy measure:

disp(µ) := − 1

ln n

n∑

i=1

∑

T 63i

(n− t− 1)! t!

n!
[µT∪{i}−µT ] ln[µT∪{i}−µT ]

Theorem The following properties hold:

i) disp(µWAMω) = disp(µOWAω) = − 1

ln n

n∑

i=1
ωi ln ωi

ii) 0 ≤ disp(µ) ≤ 1

iii) disp(µ) = 1 ⇔ µ = µAM

iv) disp(µ) = 0 ⇔ µS ∈ {0, 1} ∀S ⊆ N

⇒ Cµ(x) ∈ {x1, . . . , xn}.
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