AGGREGATION OPERATORS FOR MULTICRITERIA DECISION AID

by

Jean-Luc Marichal University of Liège

1. Aggregation in MCDM

Set of alternatives $A = \{a, b, c, \ldots\}$ Set of criteria $N = \{1, \ldots, n\}.$

For all $i \in N$, ω_i = weight associated to criterion i.

Profile: $a \in A \rightarrow (x_1^a, \dots, x_n^a) \in E^n$, E = real interval. x_i^a = partial score of a w.r.t. criterion i.

Aggregation operator $M : E^n \to F$ Example: WAM_{ω} $(x) = \sum_{i=1}^n \omega_i x_i$ with $\sum_{i=1}^n \omega_i = 1, \ \omega_i \ge 0.$

	criterion 1	•••	criterion n	global score
alternative a	x_1^a	•••	x_n^a	$M(x_1^a,\ldots,x_n^a)$
alternative b	x_1^b	•••	x_n^b	$M(x_1^b,\ldots,x_n^b)$
:	:		:	÷

Phases of multicriteria decision making procedures:

- 1. Modelling phase: How to construct x_i^a and ω_i ?
- 2. Aggregation phase: How to build $M(x_1^a, \ldots, x_n^a)$?
- 3. Exploitation phase: Which are the best alternatives?

Hypotheses:

- The weights ω_i are defined according to a cardinal scale
- All the partial scores x_i^a are commensurable.

2. Some aggregation operators

Continuity (Co) Increasing monotonicity (In):

 $x_i \leq x'_i \ \forall i \ \Rightarrow \ M(x_1, \dots, x_n) \leq M(x'_1, \dots, x'_n)$

Idempotence (Id):

$$M(x,\ldots,x)=x$$

Associativity (A):

$$M(x_1, M(x_2, x_3)) = M(M(x_1, x_2), x_3)$$
$$M(x_1, \dots, x_n, x_{n+1}) = M(M(x_1, \dots, x_n), x_{n+1})$$

An extended aggregation operator is a sequence $M = (M^{(n)})_{n \in \mathbb{N}_0}$ of aggregation operators $M^{(n)} : E^n \to F$. The set of all those sequences is denoted by A(E, F).

Theorem

 $M \in A(E, \mathbb{R})$ fulfils (Co, In, Id, A) if and only if there exist $\alpha, \beta \in E$ such that

$$M^{(n)}(x) = (\alpha \wedge x_1) \vee (\bigvee_{i=2}^{n-1} (\alpha \wedge \beta \wedge x_i)) \vee (\beta \wedge x_n) \vee (\bigwedge_{i=1}^n x_i) \quad \forall n \in \mathbb{N}_0$$

+ Symmetry (Sy)

Theorem

 $M \in A(E, \mathbb{R})$ fulfils (Sy, Co, In, Id, A) if and only if there exists $\alpha \in E$ such that

$$M^{(n)}(x) = \text{median}(\bigwedge_{i=1}^{n} x_i, \bigvee_{i=1}^{n} x_i, \alpha) \quad \forall n \in \mathbb{N}_0.$$

Strict increasing monotonicity (SIn)

Theorem (Kolmogoroff-Nagumo, 1930) $M \in A(E, \mathbb{R})$ fulfils (Sy, Co, SIn, Id, D) if and only if there exists a continuous strictly monotonic function $f : E \to \mathbb{R}$ such that

$$M^{(n)}(x) = f^{-1}\left[\frac{1}{n}\sum_{i=1}^{n} f(x_i)\right], \quad n \in \mathbb{N}_0.$$

Remarks

- 1. The family of $M \in A(E, \mathbb{R})$ that satisfy (Sy, Co, In, Id, D) has a rather intricate structure (see §3.2.2).
- 2. (Sy, Co, SIn, Id, D) \Leftrightarrow (Co, SIn, Id, SD) (see §3.2.1).

The quasi-linear means (Aczél, 1948):

$$M(x) = f^{-1} [\sum_{i=1}^{n} \omega_i f(x_i)], \text{ with } \sum_{i=1}^{n} \omega_i = 1, \ \omega_i \ge 0.$$

The weighted arithmetic means:

WAM_{$$\omega$$}(x) = $\sum_{i=1}^{n} \omega_i x_i$, with $\sum_{i=1}^{n} \omega_i = 1$, $\omega_i \ge 0$.

General bisymmetry (GB): $M^{(1)}(x) = x$ for all $x \in E$, and $M^{(p)}(M^{(n)}(x_{11}, \dots, x_{1n}), \dots, M^{(n)}(x_{p1}, \dots, x_{pn}))$ $= M^{(n)}(M^{(p)}(x_{11}, \dots, x_{p1}), \dots, M^{(p)}(x_{1n}, \dots, x_{pn}))$

for all matrices

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{p1} & \cdots & x_{pn} \end{pmatrix} \in E^{p \times n}.$$

Stability for the admissible positive linear transformations (SPL):

$$M(r x_1 + s, \dots, r x_n + s) = r M(x_1, \dots, x_n) + s$$

for all $x \in E^n$ and all $r > 0, s \in \mathbb{R}$ such that $r x_i + s \in E$ for all $i \in N$.

We can assume w.l.o.g. that E = [0, 1]

Theorem

 $M \in A([0,1],\mathbb{R})$ fulfils (In, SPL, GB) if and only if

- either: $\forall n \in \mathbb{N}_0, \exists S \subseteq \{1, \ldots, n\}$ such that $M^{(n)} = \min_S$,
- or: $\forall n \in \mathbb{N}_0, \exists S \subseteq \{1, \ldots, n\}$ such that $M^{(n)} = \max_S$,
- or: $\forall n \in \mathbb{N}_0, \exists \omega \in [0,1]^n \text{ such that } M^{(n)} = WAM_{\omega}.$

$$\min_{S}(x) := \bigwedge_{i \in S} x_i \qquad \max_{S}(x) := \bigvee_{i \in S} x_i$$

Theorem

 $M \in A([0,1],\mathbb{R})$ fulfils (SIn, SPL, GB) if and only if for all $n \in \mathbb{N}_0$, there exists $\omega \in]0,1[^n$ such that $M^{(n)} = \text{WAM}_{\omega}$.

3. The weighted arithmetic means

$$WAM_{\omega}(x) = \sum_{i \in N} \omega_i x_i, \text{ with } \sum_{i \in N} \omega_i = 1, \ \omega_i \ge 0.$$

Definition

For any $S \subseteq N$, we define $e_S \in \{0, 1\}^n$ as the binary profile whose *i*-th component is 1 iff $i \in S$.

We observe that

$$WAM_{\omega}(e_{\{i\}}) = \omega_i$$

The weight ω_i can be viewed as the global score obtained with the profile e_i

Additivity (Add):

 $M(x_1 + x'_1, \dots, x_n + x'_n) = M(x_1, \dots, x_n) + M(x'_1, \dots, x'_n)$

Theorem

 $M : [0,1]^n \to \mathbb{R}$ fulfils (In, SPL, Add) if and only if there exists $\omega \in [0,1]^n$ such that $M = WAM_{\omega}$.

Remark

Weighted arithmetic means can be used only when criteria are "independent" !!!

Example of correlated criteria:

Statistics	Probability	Algebra
0.3	0.3	0.4

Preferential independence

Let x, x' be two profiles in $[0, 1]^n$.

The profile x is said to be preferred to the profile x' $(x \succeq x')$ if $M(x) \ge M(x')$.

Definition

The subset S of criteria is said to be *preferentially independent* of $N \setminus S$ if, for all $x, x' \in [0, 1]_S$ and all $y, z \in [0, 1]_{N \setminus S}$, we have

$$(x,y) \succeq (x',y) \quad \Leftrightarrow \quad (x,z) \succeq (x',z).$$

Theorem (Scott and Suppes, 1958)

If a weighted arithmetic mean is used as an aggregation operator then every subset S of criteria is preferentially independent of $N \setminus S$.

Example:

	price	consumption	comfort
car 1	10.000 Euro	$10 \ \ell / 100 \ {\rm km}$	very good
car 2	10.000 Euro	$9 \ \ell/100 \ \mathrm{km}$	good
car 3	30.000 Euro	$10 \ \ell / 100 \ {\rm km}$	very good
car 4	30.000 Euro	9 $\ell/100~{\rm km}$	good

No weighted arithmetic mean can model the following preferences:

 $\operatorname{car} 2 \succeq \operatorname{car} 1$ and $\operatorname{car} 3 \succeq \operatorname{car} 4$.

4. The Choquet integral

Definition (Choquet, 1953; Sugeno, 1974)

A (discrete) fuzzy measure on N is a set function $\mu : 2^N \to [0, 1]$ satisfying

- $i) \quad \mu_{\emptyset} = 0, \ \mu_N = 1,$
- *ii*) $S \subseteq T \Rightarrow \mu_S \leq \mu_T$.

 μ_S is regarded as the weight of importance of the combination S of criteria.

A fuzzy measure is additive if $\mu_{S\cup T} = \mu_S + \mu_T$ whenever $S \cap T = \emptyset$.

When the fuzzy measure is not additive then some criteria interact. For example, we should have

$$\mu_{\{\text{St,Pr}\}} < \mu_{\{\text{St}\}} + \mu_{\{\text{Pr}\}}.$$

We search for a suitable aggregation operator $M_{\mu} : [0, 1]^n \to \mathbb{R}$, which generalizes the weighted arithmetic mean.

As for the weighted arithmetic means, we assume that the weight μ_S is defined as the global score of the profile e_S :

$$\mu_S = M_\mu(e_S) \quad (S \subseteq N).$$

We observe that μ can be expressed in a unique way as:

$$\mu_S = \sum_{T \subseteq S} a_T \qquad (S \subseteq N)$$

where $a_T \in \mathbb{R}$.

a viewed as a set function on N is called the Möbius transform of μ , which is given by:

$$a_S = \sum_{T \subseteq S} (-1)^{|T| - |S|} \mu_T \qquad (S \subseteq N).$$

For example,

$$a_{\emptyset} = 0,$$

$$a_{\{i\}} = \mu_{\{i\}},$$

$$a_{\{i,j\}} = \mu_{\{i,j\}} - [\mu_{\{i\}} + \mu_{\{j\}}]$$

$$\leq 0 \quad (\text{overlap effect})$$

$$\geq 0 \quad (\text{positive synergy})$$

$$= 0 \quad (\text{no interaction})$$

If μ is additive then we have $a_S = 0$ for all $S \subseteq N$, $|S| \ge 2$.

$$M_{\mu}(x) = \sum_{i \in N} a_{\{i\}} x_i$$
 (weighted arithmetic mean).

When μ is not additive, we can introduce

$$M_{\mu}(x) = \sum_{i \in N} a_{\{i\}} x_i + \sum_{\{i,j\} \subseteq N} a_{\{i,j\}} [x_i \wedge x_j] + \dots$$
$$= \sum_{T \subseteq N} a_T \bigwedge_{i \in T} x_i.$$

(Choquet integral)

Such a function satisfies (Co), (In), (Id), and (SPL). It violates (Add).

Definition (Choquet, 1953)

Let μ be a fuzzy measure on N. The (discrete) Choquet integral of the profile $x : N \to [0, 1]$ w.r.t. μ is defined by

$$\mathcal{C}_{\mu}(x) = \sum_{i=1}^{n} x_{(i)} \left[\mu_{\{(i),\dots,(n)\}} - \mu_{\{(i+1),\dots,(n)\}} \right]$$

with the convention that $x_{(1)} \leq \cdots \leq x_{(n)}$.

Particular cases:

• When μ is additive, C_{μ} identifies with the weighted arithmetic mean (Lebesgue integral):

$$\mathcal{C}_{\mu}(x) = \sum_{i=1}^{n} x_i \, \mu_{\{i\}} = \sum_{i=1}^{n} \omega_i \, x_i$$

• C_{μ} is symmetric (Sy) iff μ depends only on the cardinality of subsets (Grabisch, 1995). Setting

$$\omega_i := \mu_{\{(i),\dots,(n)\}} - \mu_{\{(i+1),\dots,(n)\}},$$

we see that C_{μ} identifies with an *ordered weighted averaging* operator (OWA):

$$OWA_{\omega}(x) = \sum_{i=1}^{n} \omega_i x_{(i)}$$
 with $\sum_{i=1}^{n} \omega_i = 1, \ \omega_i \ge 0$

(Yager, 1988)

Two profiles $x, x' \in [0, 1]^n$ are said to be *comonotonic* if there exists a permutation π of N such that

$$x_{\pi(1)} \le \dots \le x_{\pi(n)}$$
 and $x'_{\pi(1)} \le \dots \le x'_{\pi(n)}$.

Comonotonic additivity (CoAdd):

$$M(x_1 + x'_1, \dots, x_n + x'_n) = M(x_1, \dots, x_n) + M(x'_1, \dots, x'_n)$$

for any two comonotonic profiles $x, x' \in [0, 1]^n$.

Theorem (Schmeidler, 1986) $M : [0, 1]^n \to \mathbb{R}$ fulfils (In, SPL, CoAdd) if and only if there exists a fuzzy measure μ on N such that $M = C_{\mu}$.

Theorem

The aggregation operator $M_{\mu}: [0,1]^n \to \mathbb{R}$

• is linear w.r.t. the fuzzy measure μ : there exist 2^n functions $f_T : [0,1]^n \to \mathbb{R}, T \subseteq N$, such that

$$M_{\mu} = \sum_{T \subseteq N} a_T f_T \quad \forall \mu,$$

- satisfies (In),
- satisfies (SPL),
- and is such that

$$M_{\mu}(e_S) = \mu_S, \quad (S \subseteq N),$$

if and only if $M_{\mu} = \mathcal{C}_{\mu}$.

5. Behavioral analysis of aggregation

5.1 Shapley power index

Given $i \in N$, it may happen that

•
$$\mu_{\{i\}}=0,$$

• $\mu_{T \cup \{i\}} \gg \mu_T$ for many $T \not\supseteq i$

The overall importance of $i \in N$ should not be solely determined by $\mu_{\{i\}}$, but also by all $\mu_{T \cup \{i\}}$ such that $T \not\supseteq i$.

The marginal contribution of i in combination $T \subseteq N$ is defined by

$$\mu_{T\cup\{i\}} - \mu_T$$

The Shapley power index for i is defined as an average value of the marginal contributions of i alone in all combinations:

$$\begin{split} \phi_{\mu}(i) &:= \frac{1}{n} \sum_{t=0}^{n-1} \frac{1}{\binom{n-1}{t}} \sum_{\substack{T \not\ni i \\ |T|=t}} [\mu_{T \cup \{i\}} - \mu_T] \\ &= \sum_{T \not\ni i} \frac{(n-t-1)! \, t!}{n!} \left[\mu_{T \cup \{i\}} - \mu_T \right] \\ &= \sum_{T \ni i} \frac{1}{t} \, a_T \end{split}$$

This index has been introduced axiomatically by Shapley (1953) in game theory.

5.2 Interaction index

Consider a pair $\{i, j\}$ of criteria. If

 $\underbrace{\mu_{T\cup\{i,j\}} - \mu_{T\cup\{i\}}}_{\text{contribution of } j \text{ in the presence of } i} < \underbrace{\mu_{T\cup\{j\}} - \mu_{T}}_{\text{contribution of } j \text{ in the absence of } i} \quad \forall T \not\supseteq i, j$

then there is an overlap effect between i and j.

Criteria i and j interfere in a positive way in case of > and are independent of each other in case of =.

An *interaction index* for the pair $\{i, j\} \subseteq N$ is given by an average value of the marginal interaction between i and j, conditioned to the presence of elements of the subset $T \not\supseteq i, j$:

$$I_{\mu}(ij) = \sum_{T \not\ni i,j} \frac{(n-t-2)! t!}{(n-1)!} \left[\mu_{T \cup \{i,j\}} - \mu_{T \cup \{i\}} - \mu_{T \cup \{j\}} + \mu_{T} \right]$$
$$= \sum_{T \ni i,j} \frac{1}{t-1} a_{T}$$

This interaction index has been proposed by Murofushi and Soneda (1993).

Notes

- 1. Interaction indices among a combination S of criteria have been introduced and characterized by Grabisch and Roubens (1998).
- 2. Another definition has also been introduced and investigated by Marichal and Roubens (1998) (see §5.4)

5.3 Degree of disjunction (cf. Dujmovic, 1974)

We observe that

 $\min x_i \le \mathcal{C}_{\mu}(x) \le \max x_i \quad \forall x \in [0, 1]^n.$

Define the *average value* of \mathcal{C}_{μ} as

$$m(\mathcal{C}_{\mu}) := \int_{[0,1]^n} \mathcal{C}_{\mu}(x) \, dx$$

We then have

$$\frac{1}{n+1} = m(\min) \le m(\mathcal{C}_{\mu}) \le m(\max) = \frac{n}{n+1}$$

A degree of disjunction of \mathcal{C}_{μ} corresponds to

orness(
$$\mathcal{C}_{\mu}$$
) := $\frac{m(\mathcal{C}_{\mu}) - m(\min)}{m(\max) - m(\min)} \in [0, 1].$

Theorem

For any Choquet integral \mathcal{C}_{μ} , we have

orness(
$$\mathcal{C}_{\mu}$$
) = $\frac{1}{n-1} \sum_{T \subseteq N} \frac{n-t}{t+1} a_T$

Moreover, we have

orness
$$(\mathcal{C}_{\mu}) = 1 \quad \Leftrightarrow \quad \mathcal{C}_{\mu} = \max$$

orness $(\mathcal{C}_{\mu}) = 0 \quad \Leftrightarrow \quad \mathcal{C}_{\mu} = \min$

\mathcal{C}_{μ}	$\operatorname{orness}(\mathcal{C}_{\mu})$
WAM_{ω}	1/2
OWA_{ω}	$\frac{1}{n-1}\sum_{i=1}^{n}(i-1)\omega_i$

5.4 Veto and favor effects

Let $M:[0,1]^n \to [0,1]$ be an aggregation operator. A criterion $i \in N$ is a

• veto for M if

$$M(x_1,\ldots,x_n) \le x_i \quad \forall x \in [0,1]^n$$

• favor for M if

$$M(x_1, \dots, x_n) \ge x_i \quad \forall x \in [0, 1]^n$$

(Dubois and Koning, 1991; Grabisch, 1997)

Given a criterion $i \in N$ and a fuzzy measure μ on N, how can we define a degree of veto of i for \mathcal{C}_{μ} ?

First attempt: Let $x \in [0,1]^n$ be a random variable uniformly distributed. A degree of veto of i is given by

$$\Pr[\mathcal{C}_{\mu}(x) \le x_i].$$

However,

$$\Pr[\text{WAM}_{\omega}(x) \le x_i] = \begin{cases} 1, & \text{if } \omega_i = 1\\ 1/2, & \text{otherwise} \end{cases}$$

is non-continuous w.r.t. the fuzzy measure !!!

Second attempt: Axiomatic characterization.

$$\operatorname{veto}(\mathcal{C}_{\mu}; i) := 1 - \frac{n}{n-1} \sum_{T \not\supseteq i} \frac{1}{t+1} a_T$$

(Similar definition for favor($\mathcal{C}_{\mu}; i$))

Theorem

The real-valued function $\psi(\mathcal{C}_{\mu}; i)$ satisfies the

• *linearity axiom*:

there exist real numbers $p_T^i, T \subseteq N, i \in N$, such that

$$\psi(\mathcal{C}_{\mu}; i) = \sum_{T \subseteq N} \mu_T p_T^i \quad \forall i \,\forall \mu,$$

• symmetry axiom: for any permutation π of N,

$$\psi(\mathcal{C}_{\mu};i) = \psi(\mathcal{C}_{\pi\mu};\pi(i)) \quad \forall i \,\forall \mu,$$

where $\pi\mu$ is defined by $\pi\mu_{\{\pi(i)\}} = \mu_{\{i\}}$ for all *i*.

• boundary axiom: for all $S \subseteq N$ and all $i \in S$,

 $\psi(\min_S; i) = 1,$ (cf. $\min_S(x) \le x_i \ \forall i \in S$)

• normalization axiom:

if and only if $\psi(\mathcal{C}_{\mu}; i) = \operatorname{veto}(\mathcal{C}_{\mu}; i)$.

5.5 Measure of dispersion

Consider a symmetric Choquet integral (OWA):

$$OWA_{\omega}(x) = \sum_{i=1}^{n} \omega_i x_{(i)}.$$

Yager (1988) proposed to use the *entropy* of ω as degree of the use of the partial scores x:

$$\operatorname{disp}(\omega) = -\frac{1}{\ln n} \sum_{i=1}^{n} \omega_i \ln \omega_i \in [0, 1]$$

Examples:

OWA_{ω}	ω	$\operatorname{orness}(\operatorname{OWA}_{\omega})$	$\operatorname{disp}(\omega)$
AM	$(1/n,\ldots,1/n)$	1/2	1
median	$(0,\ldots,1,\ldots,0)$	1/2	0

Measure of dispersion of a fuzzy measure:

$$\operatorname{disp}(\mu) := -\frac{1}{\ln n} \sum_{i=1}^{n} \sum_{T \not\ni i} \frac{(n-t-1)! \, t!}{n!} \left[\mu_{T \cup \{i\}} - \mu_T \right] \ln[\mu_{T \cup \{i\}} - \mu_T]$$

Theorem The following properties hold:

- *i*) $\operatorname{disp}(\mu_{\mathrm{WAM}_{\omega}}) = \operatorname{disp}(\mu_{\mathrm{OWA}_{\omega}}) = -\frac{1}{\ln n} \sum_{i=1}^{n} \omega_i \ln \omega_i$
- ii) $0 \le \operatorname{disp}(\mu) \le 1$

$$iii)$$
 disp $(\mu) = 1 \Leftrightarrow \mu = \mu_{AM}$

$$iv)$$
 disp $(\mu) = 0 \Leftrightarrow \mu_S \in \{0, 1\} \forall S \subseteq N$
 $\Rightarrow C_{\mu}(x) \in \{x_1, \dots, x_n\}.$