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Suppose we have n states of nature.

How can we define the uncertainty related to
these states 7

Classical view :

probability distribution :
p(i1) >0,i€{l,... ,n} =N

> p(E)=1

1

Fuzzy measure (set function)

v(S),SCN
v(0) =0, v(N) =1

SCT=vS) <vT)



Particular fuzzy measures

e additive (probabilistic)
v(SUT) =v(S)+v(T) when SNT =0
= Jp(¢) such that v(S) = > p(4)

i€S
e cardinality-based
S| =T = v(S) =v(T)
= d:0=c<¢ <---<¢, =1 with
’U(S) = C|S|.

e binary

v(S) € {0,1}
e Dirac

U(S):{ 1iff S €4

0 otherwise



To summarize v(S) in terms of a probabilis-
tic measure, one can define the power indices

called
Shapley values Sh(7)
Sh(i) = Y mou(TUi), t=][t

TCn\1
o;v(T'Ui) =v(T Ui) —v(T) : contribution of
¢ when joining the coalition T
(n —t— 1)!t!

n!

Yt = , Shapley coefficients

The real power of 4, Sh(7) is such that

S Sh(i) =1

iEN
v(S) Sh(z)
additive p(2)
cardinality-based %
Dirac di: Sh(i) =1

Vj #£i: Sh(j) =0



Classical measure of uncertainty : Shannon en-
tropy

probabilistic measure : {p(i) }scn

Shannon entropy : H(p)
Zp ) Inp(4) Z h(p

with h(z) =—zlnzx

( 1
0 iff p is deterministic _ ' _
__ k
H(p) = « L
| Inn iff p is uniform ’nln|n
1 n

0< H(p) <lIlnn

Extension to v : H(v)

Such that if v is probabilistic

H(v) corresponds to the Shannon entropy



First proposal :

H,(v) = H(Sh), Yager (1999)
= —ZSh In Sh(i

= Zh[Sh(i)] (h(x) = —x1nx)

> h

{

TCN\i

0< H,(v) <lnn

We have the Jensen inequality

h <}k: Aktk> > ; Aeh(ts)

if h is strictly concave and >, A\ = 1.
=

DR DD wbv(TU)] > > yh[6u(TUI)]

1 TCN\i t TCN\i
second
T T proposal
H,(v) Hy(v)



Hw)==>) Y ~%&6v(TUi)lnéu(T Ui
i€N TCN\i

0 S Hg(’v) < Inn

Hy(v) < Hy(v)

lower entropy upper entropy(Yager 99)

Hy(v) = Hy(v) iff v is additive (probabilistic)
non-additivity = Hy(u) < H,(v)

What to choose between Hy and H, 7

Depends on limit characterizations.



We remember that

H(p)
H(p) = Inn iff p is uniform.

0 iff p is deterministic

Let us extend these definitions

(v is a binary fuzzy measure
H(v) = 0iff4 i
| v 1S a Dirac fuzzy measure
[ v(S) = %
Y
H(v) = Inniff{ vis cardinality-based
Y
| Sh(i) = L(+

(*) does not characterize the v’s !



v’s such that
1
Sh(i) = —
h) =

have been characterized by Marichal (1998)

ITNS)| '
TS
> < 03| >B|T|—j

j=1 J

!Sl

+ 2

TCN
IT|>2

c(T)

where c¢(T') are reals satisfying constraints

Trs|
T ﬂ S
> < I | >B|T|—j—1

J=0

—+Z

T2
|T|>2

c(T)>0

{By.}en, are the Bernoulli numbers :

By =1

Z(”F)Bk 0, ne N



Cardinality-based fuzzy measure

Hy(v) =1nn & v(S) = '—i—'
(= Hy(v) =1nn)
U
Hy(v) : Shannon <« w: card.based fuzzy
with measure
Wn—i = Ciy1 — C; (v(S5) = ¢5)
and (Hy(v) =Inn) J
H,(v) =1nn & Sh(i) = =



About Choquet integrals

C(Z'l,. . ,CCU>, Z(1) < ZL(2) <--- < L(x)

= > z@((),-..,(n) —v((E+1),...,(n))]
= Zx(i)5iv<(i)a SR (n))

OWA operator is a particular Choquet inte-
gral where

v(S) = ¢ig), cardinality-based fuzzy measure
Let w,_; = ci41 — ¢
OWA(zy1,...,2n) =wi1ze) + - + WnT(n)

{ Hy(w) = Hw) = — sz In w; (Shannon)
H,(w) = Inn Z

10



H, : degree to which the aggregator uses the
arguments.

C(z1,...,2n) € {21,... ,Zn}
& v is binary < Hy(v) =0

Operators H, H, (Yager 99)
Tk 0 0
i Ti Inn Inn } add.
Zi WXy - Zz w; In W; — Zz w; In w; | Mmeasure
L (k) 0 Inn )
min; x; 0 Inn card.
max; x; 0 Inn based
D Wik G) Z w; In w; Inn )

1

"

as proposed
by Yager in 1988
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Properties common to H, and H,

Symmetry

Hy(mv) = He(v) , Hy(mv) = H,(v)
7 is a permutation of N = {1,... ,n}.

Expansibility

For Shannon,

H(p17' . 7pn—170) — H(pla' - 7pn——1)'

Let us consider a null element for v : {i}
v(T'Ui) =vu(T) foral T C N\ {i}
v_; : restriction of v to N\ {i}.
We have

Hy(v) = Hy(v=) ,  Hu(v) = Hu(v-)

12



Ordinal fuzzy measures and entropy
Suppose v is defined on an ordinal scale L
L:{ly,... . 0n}
Hi(w) = a1, R:f{u(S)]Sc N}

H is a measure of diversity of the coefficients
of the fuzzy measure (extension of the ordinal

entropy defined by Yager, 1999).

Properties

Symmetry : Hr(v) = Hp(mv)

Expansibility : Hp(v) = Hp(v-;) if {i} is a
null element of v

0 < Hp(v) <flg;  k=min(2",m)—1

13




Hp(v) =4, (min. index on the L scale)

iff v(S) € {41,4}

Hp(v) =4, (max. index on the L scale)

iff R={v(S),|SCN}=L
(If m > 2", all v’s are distinct).

If one consider the Sugeno integral :

S(z1, .. = [z Av(Aw))]

1=1

14



H(v) is useful in MCDM

Consider the following MC problem :

M ¢ L
a|l8 16 10
10 12 18
14 15 15

e Students good in M and L should be favoured
or ¢ and L

e M and ¢ give the same information about
the profile of a student

e M and ¢ are more important than L

_ { p(M) = p(p) > p(L)
c>a>b

If weighted mean is used :

W(z) = z(M)p(M) + z(p)p(p) + z(L)p(L)
We end with a contradiction

¢ > a and (p(M) = p(p))
= (14 +15)p(M) + 15p(L) > (18 + 16)p(M) + 10p(L)
= p(L) > p(M) !

15



Use of Choquet integral can help

If

{ v(M,p) =.5<v(M)+v(p)=.9 : redondancy
v(M,L) =v(p,L)=.9 > v(M)+v(L) =.75: :synergy
v(M) = v(p) = .45 <
v(L) = .3

M ¢ L Choquet Weighted mean

al|ll8 16 10 13.9 15.25
b|10 12 18 13.6 12.75
cl14 15 15 14.6 14.625
c>a>0b a>c>b
(with p(M) = p(yp) = 3/8,
p(L) = 2/8)
However :

Hy(v) = .82 v rather well distributed over
the total capacity.

H, can be used as a (non-linear) objective to
determine the v’s.
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v’s 7
max Hy(v)

under given constraints

[ v(M, p) > v(M) +v(p)
! v(M,L) <v(M)+v(L)

Re. paper by Marichal and Roubens

“Determination of weights of interacting
criteria from a reference set”

EJOR, 00, to appear. |
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