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SKETCH OF THE PRESENTATION

Assumptions : cardinal setting, commensurable evaluations

aggregation of decision criteria

Weighted arithmetic mean
Additive measure
Problem: interaction phenomena 7

Choquet integral
Fuzzy measure
Problem: how to interpret it 7

Behavioral indices :

- global importance of criteria

influence of criteria

interaction among criteria

tolerance of the decision maker
dispersion of the importance of criteria
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Adggregation in multicriteria decision making

e Alternatives A = {a,b,c,...,}

e Criteria N={1,2,...,n}

e Profile ae A — (z¢,...,25%) € R"?
commensurable partial scores

(defined on the same interval scale)

e Aggregation operator M :R" —- R
M :[0,1]" — [0,1]

Alternative | crit. 1 --- crit. n| global score
a :czll :CZL M(azg,...,x%)
b 9 o | M(xy,...,x)




Example : Evaluation of students w.r.t. three
subjects: statistics, probability, algebra.
Student | St Pr Al St Pr Al
a 19 15 18 0.95 0.75 0.90
b 19 18 15|—0.95 0.90 0.75
c 11 15 18 0.55 0.75 0.90
d 11 18 15 0.55 0.90 0.75

(marks are expressed on a scale from 0 to 20)

An often used operator:

mean

the weighted arithmetic

n
WAMy (z) = ) wiz;

1=1

with > ,w; =1 and w; > 0 for all t € N

wst — 35%
wa| — 30%

Student

global evaluation

a

b
c
d

0.750
0.872
0.725
0.732

b>a>d>c




WAM,(1,0,0) = wgt = 0.35
WAM,,(0,1,0) = wp, = 0.35
WAM,(1,1,0) = 0.70 1!l

What is the importance of {St,Pr} 7

Definition (Choquet, 1953; Sugeno, 1974)
A fuzzy measure on N is a set function v : 28V —
[0, 1] such that
i) v(0)=0,v(N)=1
i) SCT=v(S)<v(T)

v(S) weight of S
degree of importance of S
power of S to make the decision alone

(without the remaining criteria)

A fuzzy measure is additive if

v(SUT) =v(S)+v(T) ifSNT =0

— Iindependent criteria

v(St, Pr) = v(St) + v(Pr) (= 0.70)



The discrete Choquet integral

Definition
Let v € Fny. The (discrete) Choquet integral of
x € R™ w.r.t. v is defined by

n

Co(x) = ) xpv(Ag)) —v(Ag41))]

i=1
with the convention that z 1y < --- < z(,).
Also, A(z) = {(Z), ceey (n)}

Example: If z3 <z < x5, We have

C’U(xlam27x3) — I3 [’0(3, 172) T U(172)]
+ z1 [v(1,2) —v(2)]
+ x2 v(2)

Particular case:

v additive = (C, = WAM,

Indeed,

Co(x) = D w(yo((D) = > =v(i)
1=1

1=1 ' w;



Properties of the Choquet integral

Linearity w.r.t. the fuzzy measure :
There exist 2™ functions fr: R" - IR (T'C N) such

that
Cv= > o(T) fr (v € Fn)
TCN
Indeed, on can show that

Co(z) = Y o(T) Y (—1)EI-Tming;

TCN KOT ek

7

fr(z)

Stability w.r.t. positive linear transformations
For any x e R",r > 0,s € IR,

Co(rxzi+s,....,rxn+5s) =rCy(xq,...,2n) + s

Example : marks obtained by students

- on a [0,20] scale : 16, 11, 7, 14

- on a [0, 1] scale : 0.80, 0.55, 0.35, 0.70
-on a [—1,1] scale : 0.60, 0.10, —0.30, 0.40

Remark : The partial scores may be embedded in
[0, 1]



Monotonicity
For any z, 2’ € R", one has

r; <z, VieN = Cy(z)<Cy(a))

Cy 1S properly weighted by v
Cov(eg) = v(S) (SCN)

e = characteristic vector of S in {0,1}"
Example :egq 3y = (1,0,1,0,...)

Independent criteria Dependent criteria

V\/AMw(e{,L}) — Wy CU(G{Z}) — U(Z)

VVAMW(B{,L-J-}) — Wy + Wy C’U(e{z,]}) — U(’I:,j)
Example :

v(St,Pr) < v(St) + v(Pr)

I I I
Cy(1,1,0) Cy(1,0,0) C,(0,1,0)



AXxiomatic characterization of the class of
Choquet integrals with n arguments

Theorem
The operators M, : IR" - R (v € Fy) are

e linear w.r.t. the underlying fuzzy measure v

M, is of the form

My= > o(T) fr (v € Fn)
TCN

where fr's are independent of v
e stable for the positive linear transformations

My(rxqi+s,...,7rxn+5s) =rMy(xq,...,2n) + s
forallz e R, r>0,seR

e nNnon-decreasing in each argument (mono-
tonic)



e properly weighted by v :

My(es) = v(S5) (S C N,veFn)

if and only if M, = Cy for all v € Fy.



Back to the example of evaluation of students

Student | St Pr Al

a 19 15 18
b 19 18 15
C 11 15 18
d 11 18 15

Assumptions
- St and Pr are more important than Al
- St and Pr are somewhat substitutive

Behavior of the decision maker :

When a student is good at statistics (19), it is
preferable that he/she is better at algebra than
probability, so

a>b

When a student is not good at statistics (11), it is
preferable that he/she is better at probability than
algebra, so

d > c

Additive model : WAM,,

a>b & wpl > wpr

No solution !
d>c & wal < wpy



Non-additive model : C,

v(St) = 0.35
v(Pr) = 0.35
v(AD = 0.30

v(St, Pr) = 0.50
v(St, Al) = 0.80
v(Pr,Al) = 0.80

v(0) =0
v(St, Pr,Al) = 1

(redundancy)

(complementarity)

(complementarity)

Student | St Pr Al | Global evaluation
a 19 15 18 17.75
b 19 18 15 16.85
C 11 15 18 15.10
d 11 18 15 15.25

a>=b-d>c
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Particular cases of Choquet integrals
1) Weighted arithmetic mean

n n
WAM(z) = Z Wix; Z w; =1, w; >0

Proposition
Let v € F. The following assertions are equiva-
lents :

i) v is additive

i¢) 3 a weight vector w such that C, = WAMy,
111) Cyp is additive, i.e. Cy(z + 2') = Cy(z) + Co ()

v(S) = ) w (S CN)
eS8
w; = v(1) (1t € N)
e arithmetic mean (w=(1/n,...,1/n))

AM(x) =

S|

mn
>
=1

e k-th projection  (w = e)
Pr(z) = zy
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2) Ordered weighted averaging (Yager, 1988)

n n
OWAw(x) — Z wz'ilj(z-), Z W; =— 1, Wy 2 0
i=1 i=1

with the convention that T(1) <. < T(p)-

Proposition (Grabisch, 1995)
Let v € F. The following assertions are equiva-

lents :
i) v is cardinality-based : |S| = |59'| = v(S) = v(S')
i1) 3 a weight vector w such that C, = OWA,

111) Cyp is a symmetric function.

n

WS = Y w (SCNS#ED
1—=n—s+1
wn—s = v(SU) —v(S) (1€ N,SCN\i)

e arithmetic mean (w=(1/n,...,1/n))

o k-th order statistic  (w = egy)

OSg(z) = z(p)
Note. If n = 2k — 1 then OS; = median
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3) Partial minima and maxima

Let T C N, with T # 0.

miny(xz) = min x;

ieT
U(S):{l it SOT
0O else

maxp(x) = maxz;
i€T

1 ifSNT #0(
0O else

v(S) = {

e minimum (T'= N)

fv(S):{l if S=N

O else

e maximum (T = N)

U(S):{l if S 0

0O else
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Behavioral analysis of aggregation
Given a fuzzy measure v € Fy,

how can we interpret it 7

Behavioral indices

global importance of criteria
influence of criteria
interaction among criteria
tolerance / intolerance of the decision maker
dispersion of the importance of criteria
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Global importance of criteria

Given 7 € N, it may happen that
e v(1)=0
e v(TUi)>v(T) formany T C N\i

The overall importance of ¢+ € N should not be solely
determined by wv(i), but by all v(T Ui) such that
T C N\ ..

Marginal contribution of ¢ in combination T"C N \ ¢

v(T'U1) —o(T)

Shapley power index (Shapley, 1953)
— Average value of the marginal contribution of 2
alone in all combinations :

1= 1
> [o(TUd) - o(T)]
TCN\i

¢(v,1) 1= —
Z (ntl) o

N g

average over all the subsets
of the same size t

15



(n—t— 1)t
n!

¢(v,3) = )

TCN\i
(proposed in MCDM by Murofushi in 1992)

[v(T'U i) —o(T)]



Properties of the Shapley power index
i) o¢(v,7) € [0,1] for all i€ N

i) 2 P(v,i) =1
ii1) v additive = ¢(v,7) = v(i) forall i € N

Axiomatic characterization

Theorem (Shapley, 1953)
The numbers ¥ (v,i) (1 € N,v € Fy)

e are linear w.r.t. the fuzzy measure v
Y(v,1) is of the form

Yp(v,i) = > o(T)py (i € N,v e Fy)
TCN

where piT’s are independent of v

e are symmetric, i.e., independent of the labels :

Y(v,1) = P(mv, m(7)) (i € N,v € Fn)
for any permutation # on N

e fulfill the ‘“null criterion” axiom :

v(T'Ui) =v(T) VI'CN\i = Y(v,i)=0

e fulfill the “efficiency” axiom :

> Yvi)=1 (v € Fn)
=1

if and only if v = ¢ (Shapley power index).
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v $(v, 1)
VWAM,, | Wi
VOWA,, | 1/n

Probabilistic interpretation

Define
A; Cy(x) =Cy(x|z; =1) — Cy(x | x; = 0)

(marginal contribution of criterion 7 on the aggregation at x)

We have
b= [ | BiCa) da
that is,

¢(v,1) = E[A; Cy(x)]

where the expectation is defined from the uniform
distribution over [0, 1]".

o(v,1) = expected value of the amplitude of the
range of C, that criterion ¢ may control when as-
signing partial evaluations to the other criteria at

random
17



Influence of criteria on the aggregation

Marginal contribution of S C N in combination T C
N\ S :
v(T'US) —o(T)

The influence of S on the aggregation operator C,
is defined as the average value of the marginal con-
tribution of S in all outer combinations :

1 n—s 1
(T US) —v(T)]
n—s+1 tgo (nzs> Tc%\s

| T|=t

I(Cyp,1) :=

\ 7

average over all the subsets
of the same size t

Properties of the influence function
i) I(Cy,S) € [0,1] forall SCN
i1) I(Cy,1) = p(v,i) for all i € N
i) v additive = I(Cy,S) =v(S) forall SC N
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Cy I1(Cy, S)
WAM,, D wi
€S
1 n
OWA n—s—l—l,i;wi min(i,s,n —1+1,n—s+ 1)

Probabilistic interpretation

We have

I(Cy,S) = /[O 1]n[CU(:c |l zg=1) —Cy(xz | zg = 0)] dx

that is,

I(Cy,S) = ElCy(z |25 =1) = Cy(x | zg = 0)]

I(Cy,S) = expected value of the amplitude of the
range of C, that criteria S may control when as-
signing partial evaluations to the other criteria at
random
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Interaction among criteria

Consider a pair {i,j} of criteria. If

v(TUij) —v(TUi) < v(TUj)—ou(T) (T C N\ij)
contribution of 5 in contribution of 5 in
the presence of 1 the absence of 1

then there is an overlap effect between ¢ and j.

Marginal interaction between ¢ and j, conditioned
to the presence of T C N\ ij :

v(TUj) —v(TUi) —v(TUj) 4+ o(T)

<0 — 1 and j are competitive
>0 — ¢ and j are complementary
=0 — 7 and 3 do not interact

Interaction index (Owen, 1972)

— Average value of the marginal interaction be-
tween ¢ and j :

I(’U,Z]) — m Z

n—2 Z [U(TUij)—...]
t=0( t >T§N:\Zj

7

average over all the subsets
of the same size t
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(proposed in MCDM by Murofushi and Soneda in
1993)



Probabilistic interpretation

Define

=Cy(z|z;=2;,=1) = Cy(z |2, = 1,2; = 0)
—Cy(z|2; =0,2; = 1) + Cy(x | ; = x; = 0)

(marginal interaction between ¢ and j at z)

We have

I(v,if) = /[O o B Co@) da

E[AG; Cy(x)]

Generalization to any combination S
(Grabisch and Roubens, 1998)

I(v,8) := E[AgCo(z)]

Iw,5) = 3 W tm M S gk )

TCN\S (n—s+ 1! £
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Properties of the interaction
i) I(v,i5) € [-1,1] for all ij € N
i) I(v,1) = ¢(v,7) for all 1 € N
iii) v additive = I(v,S) =0 for all S C N,|S| > 2

v I(v,5),|S| > 2

UWAM,, 0
1 8_2 g — 2

n—s—+1 7,;_ ( i )(_1)3_i(w8—i—1 — Wn—i)

UOWA,,

22




Conjunction and disjunction degrees

Average value of C, over [0, 1]" :

ElCy(z)] = /[O .

— gives the average position of Cy within the inter-
val [0, 1].

) Cy(x) dx

Since
minz; < Cy(z) < maxuwz;

we have

E(min) < E(Cy) < E(max)

Conjunction degree :

E(max) — E(Cy)
E(max) — E(min)

andness(Cy) =

Disjunction degree :

E(Cy) — E(min)
E(max) — E(min)

orness(Cy) =

(Dujmovic, 1974)
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Properties
i) andness(Cy),orness(Cy) € [0, 1]
ii1) andness(Cy) 4+ orness(Cy) =1
111) orness(Cy) = 0 (resp. 1) < Cy = min (resp. max)

We have

1 o
Ol’neSS(Cv) = m Z ﬁ Z ’U(T)
t—

1 TCN
T =t

average over all

the subsets of
the same size t

Co orness(Cy)
WAM,, 1/2

1 n
OWA, | —— 3 (i — 1)w;
n—1,=

S

as pr(;posed
by Yager in 1988
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VVeto and favor effects
A criterion 7 € N is

e a veto for Cy if

Co(z) < z; (z €[0,1]")
° a favor for C, if

Co(z) > z; (z € [0,1]")
(Dubois and Koning, 1991; Grabisch, 1997)
Proposition
1) i is a veto for Cy iff 3 XA € [0, 1] s.t.

;<A = Culx) <A

2) ¢ is a favor for C, iff 3 A € ]0,1] s.t.

Problem :
Given ¢ € N and v € Fp, how can we define a degree
of veto (resp. favor) of ¢ for C, ?
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First attempt :
Consider [0, 1]™ as a probability space with uniform
distribution

veto(Cy, i) := Pr[Cy(z) < ;]
However,

1 it w; — 1
1/2 else

IS non-continuous w.r.t. the fuzzy measure !

PriWAMy(z) < z;] = {

Second attempt : axiomatic characterization

N 1 (n—t—l)'t'
veto(Cy,1) 1= 1 n— 1 ng]:\f\z (n—1)! o(1)
N 1 (n—t—l)!t! N
favor(Cv,4) 1= —— ng]:\/'\i PN v(TUi)——
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Theorem
The numbers ¥ (Cy,i) (i € N,v € Fy)

e are linear w.r.t. the fuzzy measure v .
Y (Cy,1) is of the form

W(Coyi) = > o(T)ph (i € N,v € Fy)
TCN

where piT'S are independent of v

e are symmetric, i.e., independent of the la-
bels :

Y(Cv,1) = Y(Crov,m(7)) (i € N,v e Fn)
for any permutation m on N

e fulfill the “boundary” axiom : VI'C N,Vi €T

¢(minT7 7’) =1

(cf. miny(x) < x; whenever i € T)

e fulfill the “normalization” axiom :

w(cvﬂ/) — w(c’vaj) VZ)J S N
J
YW(Cy,1) = andness(Cy) Vie N
27



if and only if ¢» = veto.



Properties

1) veto(Cy,1),favor(Cy,1) € [0, 1]

1 n
i) — > veto(Cy,i) = andness(Cy)
n

1=1

1 n
wi) — Y favor(Cy,i) = orness(Cy)
n

i=1
Co veto(Cy, 1) favor(Cy, 1)
1 n(w;—1/n) 1 n(w;—1/n)
WAM — —
@l 5 2(n — 1) > T 2(n — 1)
1 n 1 n
OWA, | —— > (n—jw; | —— >, (G — Duw;
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Measure of dispersion

Ho) =3 3 (n_tn_!1)!t!h[fu(TUi)—v(T)]

i=1 TCN\i

where

h(z) = {—xlogna: !fx>0
O if x =20

H(v) measures the degree to which the aggregation
function Cp uses its arguments

Properties

i) H(w) € [0,1]

mn
i) H(vwam,) = Hvowa,) = — > w;logdy w;
i=1
i) Hw)=1 <& v=uvam

w) Hw)=0 <« v(S)e{0,1}
s Cy(x) € {x1,...,zn}
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Back to the example :

Global importance of criteria
o(v,St) = 0.292
o(v,Pr) = 0.292
o(v, Al) = 0.417

Influence of criteria
I(Cy,StUPr) =0.600
I(Cy,StUAI) =0.725
I(Cy,PruUAl) =0.725

Interaction among criteria
I(v,StUPr)=-0.25
I(v,StUAl) =0.10
I(v,PrUAl) =0.10

Conjunction degree
orness(Cy) = 0.517

Veto and favor degrees

veto(Cy, St) = 0.437 favor(Cy, St) = 0.500
veto(Cy, Pr) = 0.437 favor(Cy, Pr) = 0.500
veto(Cy, Al) = 0.575 favor(Cy, Al) = 0.550

Dispersion of the importance of criteria

H(v) = 0.820
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Inverse problem :

How to assess v from the behavior of
the decision maker 7

maximize H(v)

subject to

a>b (i.e. Cy(19,15,18) > Cyp(19,18,15))

d>c

v(St) .

w(Pr) } > v(Al) (local importances)
I(v,STUPr)<oO (substitutiveness)
0.45 < orness(Cy) < 0.55 (tolerance)

v(0) =0,v(N) =1
Monotonicity of v
etc.

Objective function : strictly concave
Constraints : linear w.r.t. v
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