Behavioral analysis of aggregation in multicriteria decision aid

Jean-Luc Marichal University of Liège, Belgium

TRENTO' 2000

SKETCH OF THE PRESENTATION

Assumptions : cardinal setting, commensurable evaluations

aggregation of decision criteria

Weighted arithmetic mean Additive measure Problem: interaction phenomena ?

> Choquet integral Fuzzy measure Problem: how to interpret it ?

Behavioral indices :

- global importance of criteria
- influence of criteria
- interaction among criteria
- tolerance of the decision maker
- dispersion of the importance of criteria

Aggregation in multicriteria decision making

- Alternatives $A = \{a, b, c, \dots, \}$
- Criteria $N = \{1, 2, ..., n\}$
- Profile $a \in A \longrightarrow (x_1^a, \dots, x_n^a) \in \mathbb{R}^n$

commensurable partial scores (defined on the same interval scale)

• Aggregation operator $M : \mathbb{R}^n \to \mathbb{R}$ $M : [0, 1]^n \to [0, 1]$

Alternative	crit. 1	•••	crit. n	global score
a	x_1^a	•••	x_n^a	$M(x_1^a,\ldots,x_n^a)$
b	x_1^b	•••	x_n^b	$\left M(x_1^{\overline{b}},\ldots,x_n^{b}) \right $
:	÷		:	:

Example : Evaluation of students w.r.t. three subjects: statistics, probability, algebra.

Student	St	Pr	AI		St	Pr	AI
a	19	15	18			0.75	
b	19	18	15	$ \longrightarrow$	0.95	0.90	0.75
c	11	15	18		0.55	0.75	0.90
d	11	18	15		0.55	0.90	0.75

(marks are expressed on a scale from 0 to 20)

An often used operator: the weighted arithmetic mean

$$\mathsf{WAM}_{\omega}(x) := \sum_{i=1}^{n} \omega_i x_i$$

with $\sum_i \omega_i = 1$ and $\omega_i \ge 0$ for all $i \in N$

	Student	global evaluation
$\omega_{St} = 35\%$	a	0.750
$\omega_{\rm Pr} = 35\% \Rightarrow$	b	0.872
$\omega_{AI} = 30\%$	c	0.725
<i>,</i>	d	0.732

 $b\succ a\succ d\succ c$

$$WAM_{\omega}(1,0,0) = \omega_{St} = 0.35$$
$$WAM_{\omega}(0,1,0) = \omega_{Pr} = 0.35$$
$$WAM_{\omega}(1,1,0) = 0.70 !!!$$

What is the importance of $\{St, Pr\}$?

Definition (Choquet, 1953; Sugeno, 1974) A fuzzy measure on N is a set function $v : 2^N \rightarrow [0, 1]$ such that

i)
$$v(\emptyset) = 0, v(N) = 1$$

$$ii) \quad S \subseteq T \Rightarrow v(S) \le v(T)$$

v(S) = weight of S

= degree of importance of S

= power of S to make the decision alone (without the remaining criteria)

A fuzzy measure is additive if

$$v(S \cup T) = v(S) + v(T)$$
 if $S \cap T = \emptyset$

 \rightarrow independent criteria

$$v(St, Pr) = v(St) + v(Pr) (= 0.70)$$

The discrete Choquet integral

Definition

Let $v \in \mathcal{F}_N$. The (discrete) Choquet integral of $x \in \mathbb{R}^n$ w.r.t. v is defined by

$$\mathcal{C}_{v}(x) := \sum_{i=1}^{n} x_{(i)} [v(A_{(i)}) - v(A_{(i+1)})]$$

with the convention that $x_{(1)} \leq \cdots \leq x_{(n)}$. Also, $A_{(i)} = \{(i), \dots, (n)\}.$

Example: If $x_3 \leq x_1 \leq x_2$, we have

$$C_v(x_1, x_2, x_3) = x_3 [v(3, 1, 2) - v(1, 2)] + x_1 [v(1, 2) - v(2)] + x_2 v(2)$$

Particular case:

 $v \text{ additive } \Rightarrow \mathcal{C}_v = \mathsf{WAM}_\omega$

Indeed,

$$\mathcal{C}_{v}(x) = \sum_{i=1}^{n} x_{(i)} v((i)) = \sum_{i=1}^{n} x_{i} \underbrace{v(i)}_{\omega_{i}}$$

Properties of the Choquet integral

Linearity w.r.t. the fuzzy measure :

There exist 2^n functions $f_T : \mathbb{R}^n \to \mathbb{R}$ $(T \subseteq N)$ such that

$$\mathcal{C}_v = \sum_{T \subseteq N} v(T) f_T \qquad (v \in \mathcal{F}_N)$$

Indeed, on can show that

$$\mathcal{C}_{v}(x) = \sum_{T \subseteq N} v(T) \underbrace{\sum_{K \supseteq T} (-1)^{|K| - |T|} \min_{i \in K} x_i}_{f_T(x)}$$

Stability w.r.t. positive linear transformations : For any $x \in \mathbb{R}^n, r > 0, s \in \mathbb{R}$,

$$\mathcal{C}_v(r\,x_1+s,\ldots,r\,x_n+s)=r\,\mathcal{C}_v(x_1,\ldots,x_n)+s$$

Example : marks obtained by students - on a [0, 20] scale : 16, 11, 7, 14 - on a [0, 1] scale : 0.80, 0.55, 0.35, 0.70 - on a [-1, 1] scale : 0.60, 0.10, -0.30, 0.40

Remark : The partial scores may be embedded in [0, 1]

Monotonicity

For any $x, x' \in \mathbb{R}^n$, one has

 $x_i \leq x'_i \quad \forall i \in N \quad \Rightarrow \quad \mathcal{C}_v(x) \leq \mathcal{C}_v(x')$

\mathcal{C}_v is properly weighted by v

$$\mathcal{C}_v(e_S) = v(S) \qquad (S \subseteq N)$$

 e_S = characteristic vector of S in $\{0,1\}^n$ Example : $e_{\{1,3\}} = (1,0,1,0,\ldots)$

Independent criteriaDependent criteria $WAM_{\omega}(e_{\{i\}}) = \omega_i$ $\mathcal{C}_v(e_{\{i\}}) = v(i)$ $WAM_{\omega}(e_{\{i,j\}}) = \omega_i + \omega_j$ $\mathcal{C}_v(e_{\{i,j\}}) = v(i,j)$

Example :

$$egin{array}{rcl} v({
m St},{
m Pr}) &< v({
m St}) &+ v({
m Pr}) \ &\parallel &\parallel &\parallel \ \mathcal{C}_v(1,1,0) & \mathcal{C}_v(1,0,0) & \mathcal{C}_v(0,1,0) \end{array}$$

Axiomatic characterization of the class of Choquet integrals with *n* arguments

Theorem

The operators $M_v : \mathbb{R}^n \to \mathbb{R}$ $(v \in \mathcal{F}_N)$ are

linear w.r.t. the underlying fuzzy measure v
:

 M_v is of the form

$$M_v = \sum_{T \subseteq N} v(T) f_T \qquad (v \in \mathcal{F}_N)$$

where f_T 's are independent of v

stable for the positive linear transformations
 :

$$M_v(r x_1 + s, \dots, r x_n + s) = r M_v(x_1, \dots, x_n) + s$$

for all $x \in \mathbb{R}^n, r > 0, s \in \mathbb{R}$

 non-decreasing in each argument (monotonic)

\bullet properly weighted by \boldsymbol{v} :

$$M_v(e_S) = v(S) \qquad (S \subseteq N, v \in \mathcal{F}_N)$$

if and only if $M_v = \mathcal{C}_v$ for all $v \in \mathcal{F}_N$.

Back to the example of evaluation of students

Student			
a	19	15	18
b	19	15 18	15
c	11	15	18
d	11	18	15

Assumptions :

- St and Pr are more important than Al
- St and Pr are somewhat substitutive

Behavior of the decision maker :

When a student is good at statistics (19), it is preferable that he/she is better at algebra than probability, so

$a \succ b$

When a student is not good at statistics (11), it is preferable that he/she is better at probability than algebra, so

$$d \succ c$$

Additive model : WAM_{ω}

$$\begin{array}{l} a \succ b \iff \omega_{\mathsf{AI}} > \omega_{\mathsf{Pr}} \\ d \succ c \iff \omega_{\mathsf{AI}} < \omega_{\mathsf{Pr}} \end{array} \right\} \quad \text{No solution } !$$

Non-additive model : C_v

$$v(St) = 0.35$$

 $v(Pr) = 0.35$
 $v(AI) = 0.30$

- v(St, Pr) = 0.50
- v(St, AI) = 0.80

(redundancy) (complementarity) v(Pr, Al) = 0.80 (complementarity)

$$v(\emptyset) = 0$$

 $v(St, Pr, Al) = 1$

Student	St	Pr	AI	Global evaluation
a	19	15	18	17.75
b	19	18	15	16.85
c	11	15	18	15.10
d	11	18	15	15.25

$$a\succ b\succ d\succ c$$

Particular cases of Choquet integrals

1) Weighted arithmetic mean

$$WAM_{\omega}(x) = \sum_{i=1}^{n} \omega_i x_i, \quad \sum_{i=1}^{n} \omega_i = 1, \quad \omega_i \ge 0$$

Proposition

Let $v \in \mathcal{F}_N$. The following assertions are equivalents :

- i) v is additive
- *ii*) \exists a weight vector ω such that $C_v = WAM_{\omega}$
- *iii*) C_v is additive, i.e. $C_v(x + x') = C_v(x) + C_v(x')$

$$v(S) = \sum_{i \in S} \omega_i \qquad (S \subseteq N)$$
$$\omega_i = v(i) \qquad (i \in N)$$

• arithmetic mean $(\omega = (1/n, \dots, 1/n))$

$$\mathsf{AM}(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• k-th projection $(\omega = e_{\{k\}})$ $\mathsf{P}_k(x) = x_k$

2) Ordered weighted averaging (Yager, 1988)

$$OWA_{\omega}(x) = \sum_{i=1}^{n} \omega_i x_{(i)}, \quad \sum_{i=1}^{n} \omega_i = 1, \quad \omega_i \ge 0$$

with the convention that $x_{(1)} \leq \cdots \leq x_{(n)}$.

Proposition (Grabisch, 1995)

Let $v \in \mathcal{F}_N$. The following assertions are equivalents :

- i) v is cardinality-based : $|S| = |S'| \Rightarrow v(S) = v(S')$
- *ii*) \exists a weight vector ω such that $C_v = OWA_\omega$
- *iii*) C_v is a symmetric function.

$$v(S) = \sum_{\substack{i=n-s+1 \\ w_{n-s}}}^{n} \omega_i \quad (S \subseteq N, S \neq \emptyset)$$

$$\omega_{n-s} = v(S \cup i) - v(S) \quad (i \in N, S \subseteq N \setminus i)$$

- arithmetic mean $(\omega = (1/n, \dots, 1/n))$
- k-th order statistic $(\omega = e_{\{k\}})$

$$\mathsf{OS}_k(x) = x_{(k)}$$

Note. If n = 2k - 1 then $OS_k = median$

3) Partial minima and maxima

Let $T \subseteq N$, with $T \neq \emptyset$.

$$\min_{T}(x) = \min_{i \in T} x_{i}$$
$$v(S) = \begin{cases} 1 & \text{if } S \supseteq T \\ 0 & \text{else} \end{cases}$$

$$\max_{T}(x) = \max_{i \in T} x_{i}$$
$$v(S) = \begin{cases} 1 & \text{if } S \cap T \neq \emptyset \\ 0 & \text{else} \end{cases}$$

• minimum (T = N)

$$v(S) = \begin{cases} 1 & \text{if } S = N \\ 0 & \text{else} \end{cases}$$

• maximum (T = N)

$$v(S) = \begin{cases} 1 & \text{if } S \neq \emptyset \\ 0 & \text{else} \end{cases}$$

Behavioral analysis of aggregation

Given a fuzzy measure $v \in \mathcal{F}_N$,

how can we interpret it ?

 \downarrow

Behavioral indices

global importance of criteria influence of criteria interaction among criteria tolerance / intolerance of the decision maker dispersion of the importance of criteria

Global importance of criteria

Given $i \in N$, it may happen that

- v(i) = 0
- $v(T \cup i) \gg v(T)$ for many $T \subseteq N \setminus i$

The overall importance of $i \in N$ should not be solely determined by v(i), but by all $v(T \cup i)$ such that $T \subseteq N \setminus i$.

Marginal contribution of i in combination $T\subseteq N\setminus i$:

$$v(T \cup i) - v(T)$$

Shapley power index (Shapley, 1953)

= Average value of the marginal contribution of i alone in all combinations :

$$\phi(v,i) := \frac{1}{n} \sum_{t=0}^{n-1} \frac{1}{\binom{n-1}{t}} \sum_{\substack{T \subseteq N \setminus i \\ |T| = t}} [v(T \cup i) - v(T)]$$
average over all the subsets of the same size t

$$\phi(v,i) = \sum_{T \subseteq N \setminus i} \frac{(n-t-1)! t!}{n!} [v(T \cup i) - v(T)]$$

(proposed in MCDM by Murofushi in 1992)

Properties of the Shapley power index

- i) $\phi(v,i) \in [0,1]$ for all $i \in N$
- *ii*) $\sum_i \phi(v,i) = 1$

iii)
$$v$$
 additive $\Rightarrow \phi(v,i) = v(i)$ for all $i \in N$

Axiomatic characterization

Theorem (Shapley, 1953) The numbers $\psi(v,i)$ $(i \in N, v \in \mathcal{F}_N)$

• are linear w.r.t. the fuzzy measure v : $\psi(v,i)$ is of the form

$$\psi(v,i) = \sum_{T \subseteq N} v(T) p_T^i \qquad (i \in N, v \in \mathcal{F}_N)$$

where p_T^i 's are independent of v

• are symmetric, i.e., independent of the labels :

 $\psi(v,i) = \psi(\pi v, \pi(i))$ $(i \in N, v \in \mathcal{F}_N)$

for any permutation π on N

• fulfill the "null criterion" axiom :

 $v(T \cup i) = v(T) \quad \forall T \subseteq N \setminus i \quad \Rightarrow \quad \psi(v, i) = 0$

• fulfill the "efficiency" axiom :

$$\sum_{i=1}^n \psi(v,i) = 1$$
 $(v \in \mathcal{F}_N)$

if and only if $\psi = \phi$ (Shapley power index).

v	$\phi(v,i)$
v_{WAM_ω}	ω_i
v_{OWA_ω}	1/n

Probabilistic interpretation

Define

$$\Delta_i \mathcal{C}_v(x) := \mathcal{C}_v(x \mid x_i = 1) - \mathcal{C}_v(x \mid x_i = 0)$$

(marginal contribution of criterion i on the aggregation at x)

We have

$$\phi(v,i) = \int_{[0,1]^n} \Delta_i \, \mathcal{C}_v(x) \, dx$$

that is,

$$\phi(v,i) = E[\Delta_i \, \mathcal{C}_v(x)]$$

where the expectation is defined from the uniform distribution over $[0, 1]^n$.

 $\phi(v,i) =$ expected value of the amplitude of the range of C_v that criterion i may control when assigning partial evaluations to the other criteria at random

Influence of criteria on the aggregation

Marginal contribution of $S \subseteq N$ in combination $T \subseteq N \setminus S$:

$$v(T \cup S) - v(T)$$

The influence of S on the aggregation operator C_v is defined as the average value of the marginal contribution of S in all outer combinations :

$$I(\mathcal{C}_{v},i) := \frac{1}{n-s+1} \sum_{t=0}^{n-s} \frac{1}{\binom{n-s}{t}} \sum_{\substack{T \subseteq N \setminus S \\ |T|=t}} [v(T \cup S) - v(T)]$$

average over all the subsets of the same size t

Properties of the influence function

- i) $I(\mathcal{C}_v, S) \in [0, 1]$ for all $S \subseteq N$
- *ii*) $I(\mathcal{C}_v, i) = \phi(v, i)$ for all $i \in N$
- *iii*) v additive $\Rightarrow I(\mathcal{C}_v, S) = v(S)$ for all $S \subseteq N$

$$\begin{array}{|c|c|c|c|}\hline \mathcal{C}_v & I(\mathcal{C}_v,S) \\ \hline \mathsf{WAM}_\omega & & \sum_{i\in S} \omega_i \\ \mathsf{OWA}_\omega & \frac{1}{n-s+1} \sum_{i=1}^n \omega_i \min(i,s,n-i+1,n-s+1) \end{array}$$

Probabilistic interpretation

We have

$$I(\mathcal{C}_v,S) = \int_{[0,1]^n} [\mathcal{C}_v(x \mid x_S = 1) - \mathcal{C}_v(x \mid x_S = 0)] dx$$
 that is,

$$I(\mathcal{C}_v, S) = E[\mathcal{C}_v(x \mid x_S = 1) - \mathcal{C}_v(x \mid x_S = 0)]$$

 $I(C_v, S) =$ expected value of the amplitude of the range of C_v that criteria S may control when assigning partial evaluations to the other criteria at random

Interaction among criteria

Consider a pair $\{i, j\}$ of criteria. If

$\underbrace{v(T \cup ij) - v(T \cup i)}$	$< \underbrace{v(T \cup j) - v(T)}_{v(T \cup j)}$	$(T \subseteq N ackslash ij)$
contribution of j in the presence of i	contribution of j in the absence of i	

then there is an overlap effect between i and j.

Marginal interaction between i and j, conditioned to the presence of $T \subseteq N \setminus ij$:

$$v(T \cup ij) - v(T \cup i) - v(T \cup j) + v(T)$$

 $\begin{cases} < 0 & \rightarrow i \text{ and } j \text{ are competitive} \\ > 0 & \rightarrow i \text{ and } j \text{ are complementary} \\ = 0 & \rightarrow i \text{ and } j \text{ do not interact} \end{cases}$

Interaction index (Owen, 1972)

= Average value of the marginal interaction between i and j :

$$I(v, ij) := \frac{1}{n-1} \sum_{t=0}^{n-2} \frac{1}{\binom{n-2}{t}} \sum_{\substack{T \subseteq N \setminus ij \\ |T|=t}} [v(T \cup ij) - \ldots]$$

average over all the subsets of the same size t

(proposed in MCDM by Murofushi and Soneda in 1993)

Probabilistic interpretation

Define

$$\Delta_{ij} C_v(x) = \Delta_i \Delta_j C_v(x) = C_v(x \mid x_i = x_j = 1) - C_v(x \mid x_i = 1, x_j = 0) -C_v(x \mid x_i = 0, x_j = 1) + C_v(x \mid x_i = x_j = 0)$$

(marginal interaction between i and j at x)

We have

$$I(v, ij) = \int_{[0,1]^n} \Delta_{ij} C_v(x) dx$$
$$= E[\Delta_{ij} C_v(x)]$$

Generalization to any combination S (Grabisch and Roubens, 1998)

$$I(v,S) := E[\Delta_S C_v(x)]$$

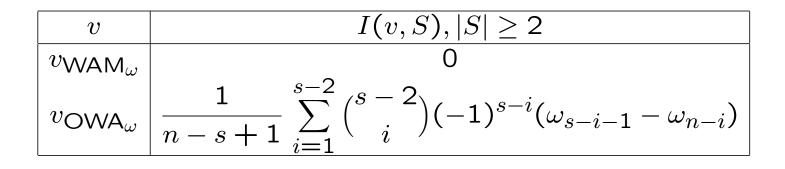
$$I(v,S) = \sum_{T \subseteq N \setminus S} \frac{(n-t-s)! t!}{(n-s+1)!} \sum_{K \subseteq S} (-1)^{s-k} v(K \cup T)$$

Properties of the interaction

i)
$$I(v, ij) \in [-1, 1]$$
 for all $ij \in N$

ii)
$$I(v,i) = \phi(v,i)$$
 for all $i \in N$

iii)
$$v$$
 additive $\Rightarrow I(v, S) = 0$ for all $S \subseteq N, |S| \ge 2$



Conjunction and disjunction degrees

Average value of \mathcal{C}_v over $[0,1]^n$:

$$E[\mathcal{C}_v(x)] = \int_{[0,1]^n} \mathcal{C}_v(x) \, dx$$

 \rightarrow gives the average position of \mathcal{C}_v within the interval [0, 1].

Since

$$\min x_i \leq \mathcal{C}_v(x) \leq \max x_i$$

we have

$$E(\min) \leq E(\mathcal{C}_v) \leq E(\max)$$

Conjunction degree :

and
$$\operatorname{ness}(\mathcal{C}_v) := \frac{E(\max) - E(\mathcal{C}_v)}{E(\max) - E(\min)}$$

Disjunction degree :

orness(
$$C_v$$
) := $\frac{E(C_v) - E(\min)}{E(\max) - E(\min)}$

(Dujmović, 1974)

Properties

i) and
$$\operatorname{ness}(\mathcal{C}_v)$$
, $\operatorname{orness}(\mathcal{C}_v) \in [0, 1]$

ii) and $ness(C_v) + orness(C_v) = 1$

$$iii)$$
 orness $(\mathcal{C}_v) = 0$ (resp. 1) $\Leftrightarrow \mathcal{C}_v = \min$ (resp. max)

We have

$$\operatorname{orness}(\mathcal{C}_{v}) = \frac{1}{n-1} \sum_{t=1}^{n-1} \frac{1}{\binom{n}{t}} \sum_{\substack{T \subseteq N \\ |T| = t}} v(T)$$

average over all the subsets of the same size t

\mathcal{C}_v	$orness(\mathcal{C}_v)$	
WAM_{ω}	1/2	
OWA_{ω}	$\underbrace{\frac{1}{n-1}\sum_{i=1}^n(i-1)\omega_i}$	
	as proposed by Yager in 1988	

Veto and favor effects

A criterion $i \in N$ is

• a veto for C_v if

 $\mathcal{C}_v(x) \le x_i$ $(x \in [0,1]^n)$

• a *favor* for C_v if

 $\mathcal{C}_v(x) \ge x_i \qquad (x \in [0,1]^n)$

(Dubois and Koning, 1991; Grabisch, 1997)

Proposition

1) *i* is a veto for C_v iff $\exists \lambda \in [0, 1[$ s.t.

 $x_i \leq \lambda \quad \Rightarrow \quad \mathcal{C}_v(x) \leq \lambda$

2) *i* is a favor for C_v iff $\exists \lambda \in]0, 1]$ s.t.

$$x_i \ge \lambda \quad \Rightarrow \quad \mathcal{C}_v(x) \ge \lambda$$

Problem :

Given $i \in N$ and $v \in \mathcal{F}_N$, how can we define a degree of veto (resp. favor) of i for \mathcal{C}_v ?

First attempt :

Consider $[0,1]^n$ as a probability space with uniform distribution

$$\operatorname{veto}(\mathcal{C}_v, i) := \Pr[\mathcal{C}_v(x) \le x_i]$$

However,

$$\Pr[\mathsf{WAM}_{\omega}(x) \le x_i] = \begin{cases} 1 & \text{if } \omega_i = 1\\ 1/2 & \text{else} \end{cases}$$

is non-continuous w.r.t. the fuzzy measure !!!

Second attempt : axiomatic characterization

$$\operatorname{veto}(\mathcal{C}_{v},i) := 1 - \frac{1}{n-1} \sum_{T \subseteq N \setminus i} \frac{(n-t-1)! \, t!}{(n-1)!} \, v(T)$$
$$\operatorname{favor}(\mathcal{C}_{v},i) := \frac{1}{n-1} \sum_{T \subseteq N \setminus i} \frac{(n-t-1)! \, t!}{(n-1)!} \, v(T \cup i) - \frac{1}{n-1}$$

Theorem

The numbers $\psi(\mathcal{C}_v, i)$ $(i \in N, v \in \mathcal{F}_N)$

are linear w.r.t. the fuzzy measure v :
 ψ(C_v, i) is of the form

$$\psi(\mathcal{C}_v, i) = \sum_{T \subseteq N} v(T) p_T^i \qquad (i \in N, v \in \mathcal{F}_N)$$

where p_T^i 's are independent of v

 are symmetric, i.e., independent of the labels :

$$\psi(\mathcal{C}_v, i) = \psi(\mathcal{C}_{\pi v}, \pi(i)) \qquad (i \in N, v \in \mathcal{F}_N)$$

for any permutation π on N

• fulfill the "boundary" axiom : $\forall T \subseteq N, \forall i \in T$

 $\psi(\min_T, i) = 1$

(cf. $\min_T(x) \leq x_i$ whenever $i \in T$)

• fulfill the "normalization" axiom :

if and only if $\psi = \text{veto}$.

Properties

$$i$$
) veto (C_v, i) , favor $(C_v, i) \in [0, 1]$

ii)
$$\frac{1}{n} \sum_{i=1}^{n} \operatorname{veto}(\mathcal{C}_{v}, i) = \operatorname{andness}(\mathcal{C}_{v})$$

iii)
$$\frac{1}{n} \sum_{i=1}^{n} \text{favor}(\mathcal{C}_v, i) = \text{orness}(\mathcal{C}_v)$$

\mathcal{C}_v	$veto(\mathcal{C}_v,i)$	favor (\mathcal{C}_v, i)
WAM_{ω}	$\frac{1}{2} + \frac{n(\omega_i - 1/n)}{2(n-1)}$	$rac{1}{2} + rac{n(\omega_i - 1/n)}{2(n-1)}$
OWA_{ω}	$\frac{1}{n-1}\sum_{j=1}^n(n-j)\omega_j$	$\left \frac{1}{n-1}\sum_{j=1}^n(j-1)\omega_j\right $

Measure of dispersion

$$H(v) := \sum_{i=1}^{n} \sum_{T \subseteq N \setminus i} \frac{(n-t-1)! t!}{n!} h[v(T \cup i) - v(T)]$$

where

$$h(x) = \begin{cases} -x \log_n x & \text{if } x > 0\\ 0 & \text{if } x = 0 \end{cases}$$

H(v) measures the degree to which the aggregation function C_v uses its arguments

Properties

i) $H(v) \in [0, 1]$

ii)
$$H(v_{\mathsf{WAM}_{\omega}}) = H(v_{\mathsf{OWA}_{\omega}}) = -\sum_{i=1}^{n} \omega_i \log_n \omega_i$$

iii) $H(v) = 1 \quad \Leftrightarrow \quad v = v_{AM}$

iv)
$$H(v) = 0 \quad \Leftrightarrow \quad v(S) \in \{0, 1\}$$

 $\Leftrightarrow \quad \mathcal{C}_v(x) \in \{x_1, \dots, x_n\}$

Back to the example :

Global importance of criteria

 $\phi(v, St) = 0.292$ $\phi(v, \Pr) = 0.292$ $\phi(v, AI) = 0.417$

Influence of criteria

 $I(\mathcal{C}_v, \mathsf{St} \cup \mathsf{Pr}) = 0.600$ $I(\mathcal{C}_v, \mathsf{St} \cup \mathsf{AI}) = 0.725$ $I(\mathcal{C}_v, \Pr \cup \mathsf{AI}) = 0.725$

Interaction among criteria

 $I(v, \mathsf{St} \cup \mathsf{Pr}) = -0.25$ $I(v, \mathsf{St} \cup \mathsf{AI}) = 0.10$ $I(v, \Pr \cup AI) = 0.10$

Conjunction degree

 $\operatorname{orness}(\mathcal{C}_v) = 0.517$

Veto and favor degrees

Dispersion of the importance of criteria H(v) = 0.820

 $veto(\mathcal{C}_v, St) = 0.437$ favor $(\mathcal{C}_v, St) = 0.500$ $veto(\mathcal{C}_v, \Pr) = 0.437$ favor $(\mathcal{C}_v, \Pr) = 0.500$ $\operatorname{veto}(\mathcal{C}_v, \operatorname{AI}) = 0.575$ favor $(\mathcal{C}_v, \operatorname{AI}) = 0.550$

Inverse problem :

How to assess v from the behavior of the decision maker ?

 \downarrow

maximize H(v)

subject to

 $\begin{aligned} a \succ b & (i.e. \ \mathcal{C}_v(19, 15, 18) > \mathcal{C}_v(19, 18, 15)) \\ d \succ c \\ v(St) \\ v(Pr) \\ \end{aligned} > v(Al) & (local importances) \\ I(v, St \cup Pr) < 0 & (substitutiveness) \\ 0.45 < orness(\mathcal{C}_v) < 0.55 & (tolerance) \\ v(\emptyset) &= 0, v(N) = 1 \\ \\ Monotonicity of v \\ etc. \end{aligned}$

Objective function : strictly concave Constraints : linear w.r.t. v