Cumulative Distribution Functions and Moments of Weighted Lattice Polynomials

Jean-Luc Marichal

University of Luxembourg

Sketch of the Presentation

Part I: Weighted lattice polynomials

- Definitions
- Representation and characterization

Part II: Cumulative distribution functions of aggregation operators

- Weighted lattice polynomials
- Applications

Sketch of the Presentation

Part I : Weighted lattice polynomials

- Definitions
- Representation and characterization

Part II: Cumulative distribution functions of aggregation operators

- Weighted lattice polynomials
- Applications

Sketch of the Presentation

Part I : Weighted lattice polynomials

- Definitions
- Representation and characterization

Part II: Cumulative distribution functions of aggregation operators

- Weighted lattice polynomials
- Applications

Part I: Weighted lattice polynomials

Let L be a lattice with lattice operations \wedge and \vee

We assume that L is

- bounded (with bottom 0 and top 1)
- distributive

Definition (Birkhoff 1967)

An *n*-ary *lattice polynomial* is a well-formed expression involving *n* variables $x_1, \ldots, x_n \in L$ linked by the lattice operations \land and \lor in an arbitrary combination of parentheses

$$p(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3$$

Let L be a lattice with lattice operations \wedge and \vee

We assume that L is

- bounded (with bottom 0 and top 1)
- distributive

Definition (Birkhoff 1967)

An *n*-ary *lattice polynomial* is a well-formed expression involving *n* variables $x_1, \ldots, x_n \in L$ linked by the lattice operations \land and \lor in an arbitrary combination of parentheses

$$p(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3$$

Let L be a lattice with lattice operations \wedge and \vee

We assume that L is

- bounded (with bottom 0 and top 1)
- distributive

Definition (Birkhoff 1967)

An *n*-ary *lattice polynomial* is a well-formed expression involving *n* variables $x_1, \ldots, x_n \in L$ linked by the lattice operations \wedge and \vee in an arbitrary combination of parentheses

$$p(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3$$

Let L be a lattice with lattice operations \wedge and \vee

We assume that L is

- bounded (with bottom 0 and top 1)
- distributive

Definition (Birkhoff 1967)

An *n*-ary *lattice polynomial* is a well-formed expression involving *n* variables $x_1, \ldots, x_n \in L$ linked by the lattice operations \land and \lor in an arbitrary combination of parentheses

$$p(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3$$

Let L be a lattice with lattice operations \wedge and \vee

We assume that L is

- bounded (with bottom 0 and top 1)
- distributive

Definition (Birkhoff 1967)

An *n*-ary *lattice polynomial* is a well-formed expression involving *n* variables $x_1, \ldots, x_n \in L$ linked by the lattice operations \land and \lor in an arbitrary combination of parentheses

$$p(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3$$

Any lattice polynomial naturally defines a *lattice polynomial* function (l.p.f.) $p:L^n\to L$.

Example.

$$p(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee x_3$$

If p and q represent the same function, we say that p and q are equivalent and we write p=q

$$x_1 \vee (x_1 \wedge x_2) = x_1$$

Any lattice polynomial naturally defines a *lattice polynomial* function (l.p.f.) $p:L^n\to L$.

Example.

$$p(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee x_3$$

If p and q represent the same function, we say that p and q are equivalent and we write p=q

$$x_1 \vee (x_1 \wedge x_2) = x_1$$

Any lattice polynomial naturally defines a *lattice polynomial* function (l.p.f.) $p:L^n\to L$.

Example.

$$p(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee x_3$$

If p and q represent the same function, we say that p and q are equivalent and we write p=q

$$x_1 \vee (x_1 \wedge x_2) = x_1$$

Any lattice polynomial naturally defines a *lattice polynomial* function (l.p.f.) $p:L^n\to L$.

Example.

$$p(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee x_3$$

If p and q represent the same function, we say that p and q are equivalent and we write p=q

$$x_1 \lor (x_1 \land x_2) = x_1$$

Notation. $[n] := \{1, ..., n\}.$

Proposition (Birkhoff 1967)

Let $p:L^n\to L$ be any l.p.f

Then there are nonconstant set functions $v, w : 2^{[n]} \to \{0, 1\}$, with $v(\emptyset) = 0$ and $w(\emptyset) = 1$, such that

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ v(S)=1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ w(S)=0}} \bigvee_{i \in S} x_i.$$

$$(x_1 \wedge x_2) \vee x_3 = (x_1 \vee x_3) \wedge (x_2 \vee x_3)$$

 $v(\{3\}) = v(\{1,2\}) = 1$
 $w(\{1,3\}) = w(\{2,3\}) = 0$

Notation. $[n] := \{1, ..., n\}.$

Proposition (Birkhoff 1967)

Let $p: L^n \to L$ be any l.p.f.

Then there are nonconstant set functions $v, w : 2^{[n]} \to \{0, 1\}$, with $v(\emptyset) = 0$ and $w(\emptyset) = 1$, such that

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ v(S)=1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ w(S)=0}} \bigvee_{i \in S} x_i.$$

$$(x_1 \land x_2) \lor x_3 = (x_1 \lor x_3) \land (x_2 \lor x_3)$$

 $v(\{3\}) = v(\{1,2\}) = 1$
 $w(\{1,3\}) = w(\{2,3\}) = 0$

Notation. $[n] := \{1, ..., n\}.$

Proposition (Birkhoff 1967)

Let $p: L^n \to L$ be any l.p.f.

Then there are nonconstant set functions $v, w : 2^{[n]} \to \{0, 1\}$, with $v(\emptyset) = 0$ and $w(\emptyset) = 1$, such that

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ v(S)=1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ w(S)=0}} \bigvee_{i \in S} x_i.$$

$$(x_1 \land x_2) \lor x_3 = (x_1 \lor x_3) \land (x_2 \lor x_3)$$

 $v(\{3\}) = v(\{1,2\}) = 1$
 $w(\{1,3\}) = w(\{2,3\}) = 0$

Notation. $[n] := \{1, ..., n\}.$

Proposition (Birkhoff 1967)

Let $p: L^n \to L$ be any l.p.f.

Then there are nonconstant set functions $v, w : 2^{[n]} \to \{0, 1\}$, with $v(\emptyset) = 0$ and $w(\emptyset) = 1$, such that

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ v(S)=1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ w(S)=0}} \bigvee_{i \in S} x_i.$$

$$(x_1 \land x_2) \lor x_3 = (x_1 \lor x_3) \land (x_2 \lor x_3)$$
$$v(\{3\}) = v(\{1, 2\}) = 1$$
$$w(\{1, 3\}) = w(\{2, 3\}) = 0$$

$$x_1\vee(x_1\wedge x_2)=x_1=x_1\wedge(x_1\vee x_2)$$

Notation. $\mathbf{1}_S := \text{characteristic vector of } S \subseteq [n] \text{ in } \{0,1\}^n.$

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate the l.p.f. p, only one is isotone :

$$v(S)=p(\mathbf{1}_S)$$

$$w(S) = p(\mathbf{1}_{[n]\setminus S})$$

$$x_1\vee(x_1\wedge x_2)=x_1=x_1\wedge(x_1\vee x_2)$$

Notation. $\mathbf{1}_S := \text{characteristic vector of } S \subseteq [n] \text{ in } \{0,1\}^n.$

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate the l.p.f. p, only one is isotone :

$$v(S)=p(\mathbf{1}_S)$$

$$w(S) = p(\mathbf{1}_{\lceil n \rceil \setminus S})$$

$$x_1\vee(x_1\wedge x_2)=x_1=x_1\wedge(x_1\vee x_2)$$

Notation. $\mathbf{1}_S := \text{characteristic vector of } S \subseteq [n] \text{ in } \{0,1\}^n.$

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate the l.p.f. p, only one is isotone :

$$v(S)=p(\mathbf{1}_S)$$

$$w(S) = p(\mathbf{1}_{\lceil n \rceil \setminus S})$$

$$x_1\vee (x_1\wedge x_2)=x_1=x_1\wedge (x_1\vee x_2)$$

Notation. $\mathbf{1}_S := \text{characteristic vector of } S \subseteq [n] \text{ in } \{0,1\}^n.$

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate the l.p.f. p, only one is isotone :

$$v(S)=p(\mathbf{1}_S)$$

$$w(S) = p(\mathbf{1}_{\lceil n \rceil \setminus S})$$

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ p(\mathbf{1}_S) = 1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ p(\mathbf{1}_{[n] \setminus S}) = 0}} \bigvee_{i \in S} x_i$$

$$p(x) = x_3 \lor (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$$

$$p(x) = (x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ p(\mathbf{1}_S) = 1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ p(\mathbf{1}_{[n] \setminus S}) = 0}} \bigvee_{i \in S} x_i$$

Example. $p(x) = (x_1 \land x_2) \lor x_3$

	$p(1_S)$	$p(1_{[n]\setminus S})$
		1
{1}		1
		1
	1	1
{1,2}	1	1
$\{1,3\}$	1	
{2,3}	1	
$\{1, 2, 3\}$	1	

$$p(x) = x_3 \lor (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$$

$$p(x) = (x_1 \lor x_2) \land (x_1 \lor x_2) \land (x_1 \lor x_2 \lor x_3)$$

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ p(\mathbf{1}_S) = 1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ p(\mathbf{1}_{[n] \setminus S}) = 0}} \bigvee_{i \in S} x_i$$

Example. $p(x) = (x_1 \land x_2) \lor x_3$

Lattice polynomials

S	$p(1_S)$	$p(1_{[n]\setminus S})$
Ø	0	1
{1}	0	1
{2}	0	1
{3}	1	1
$\{1, 2\}$	1	1
$\{1, 3\}$	1	0
$\{2, 3\}$	1	0
$\{1, 2, 3\}$	1	0

$$p(x) = x_3 \lor (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$$

$$p(x) = (x_1 \lor x_3) \land (x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ p(\mathbf{1}_S) = 1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ p(\mathbf{1}_{[n] \setminus S}) = 0}} \bigvee_{i \in S} x_i$$

Example. $p(x) = (x_1 \land x_2) \lor x_3$

S	$p(1_S)$	$p(1_{[n]\setminus S})$
Ø	0	1
{1}	0	1
{2}	0	1
{3}	1	1
$\{1, 2\}$	1	1
$\{1, 3\}$	1	0
{2,3}	1	0
$\{1, 2, 3\}$	1	0

$$p(x) = x_3 \lor (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$$

$$p(x) = (x_1 \lor x_3) \land (x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

Denote by $x_{(1)}, \ldots, x_{(n)}$ the *order statistics* resulting from reordering x_1, \ldots, x_n in the nondecreasing order : $x_{(1)} \leqslant \cdots \leqslant x_{(n)}$.

Proposition (Ovchinnikov 1996, Marichal 2002)

p is a symmetric l.p.f. \iff p is an order statistic

Notation. Denote by $os_k : L^n \to L$ the kth order statistic function.

$$os_k(x) := x_{(k)}$$

$$os_k(\mathbf{1}_S) = 1 \iff |S| \geqslant n - k + 1$$

 $os_k(\mathbf{1}_{\lfloor n \rfloor \setminus S}) = 0 \iff |S| \geqslant k$

Denote by $x_{(1)}, \ldots, x_{(n)}$ the *order statistics* resulting from reordering x_1, \ldots, x_n in the nondecreasing order : $x_{(1)} \leq \cdots \leq x_{(n)}$.

Proposition (Ovchinnikov 1996, Marichal 2002

p is a symmetric l.p.f. \iff p is an order statistic

Notation. Denote by $os_k : L^n \to L$ the kth order statistic function.

$$os_k(x) := x_{(k)}$$

$$os_k(\mathbf{1}_S) = 1 \iff |S| \ge n - k + 1$$

 $os_k(\mathbf{1}_{[n]\setminus S}) = 0 \iff |S| \ge k$

Denote by $x_{(1)}, \ldots, x_{(n)}$ the *order statistics* resulting from reordering x_1, \ldots, x_n in the nondecreasing order : $x_{(1)} \leq \cdots \leq x_{(n)}$.

Proposition (Ovchinnikov 1996, Marichal 2002)

p is a symmetric l.p.f. \iff p is an order statistic

Notation. Denote by $os_k : L^n \to L$ the kth order statistic function.

$$os_k(x) := x_{(k)}$$

$$os_k(\mathbf{1}_S) = 1 \iff |S| \geqslant n - k + 1$$

 $os_k(\mathbf{1}_{[n] \setminus S}) = 0 \iff |S| \geqslant k$

Denote by $x_{(1)}, \ldots, x_{(n)}$ the *order statistics* resulting from reordering x_1, \ldots, x_n in the nondecreasing order : $x_{(1)} \leq \cdots \leq x_{(n)}$.

Proposition (Ovchinnikov 1996, Marichal 2002)

p is a symmetric l.p.f. \iff p is an order statistic

Notation. Denote by $os_k : L^n \to L$ the kth order statistic function.

$$os_k(x) := x_{(k)}$$

$$os_k(\mathbf{1}_S) = 1 \iff |S| \ge n - k + 1$$

 $os_k(\mathbf{1}_{[n] \setminus S}) = 0 \iff |S| \ge k$

Denote by $x_{(1)}, \ldots, x_{(n)}$ the *order statistics* resulting from reordering x_1, \ldots, x_n in the nondecreasing order : $x_{(1)} \leqslant \cdots \leqslant x_{(n)}$.

Proposition (Ovchinnikov 1996, Marichal 2002)

p is a symmetric l.p.f. \iff p is an order statistic

Notation. Denote by $os_k : L^n \to L$ the kth order statistic function.

$$os_k(x) := x_{(k)}$$

$$os_k(\mathbf{1}_S) = 1 \iff |S| \geqslant n - k + 1$$

 $os_k(\mathbf{1}_{[n] \setminus S}) = 0 \iff |S| \geqslant k$

We can generalize the concept of l.p.f. by regarding some variables as parameters.

Example. For $c \in L$, we consider

$$p(x_1,x_2)=(c\vee x_1)\wedge x_2$$

Definition

$$p(x_1,...,x_n) = q(x_1,...,x_n,c_1,...,c_m)$$

We can generalize the concept of l.p.f. by regarding some variables as parameters.

Example. For $c \in L$, we consider

$$p(x_1,x_2)=(c\vee x_1)\wedge x_2$$

Definition

$$p(x_1,...,x_n) = q(x_1,...,x_n,c_1,...,c_m)$$

We can generalize the concept of l.p.f. by regarding some variables as parameters.

Example. For $c \in L$, we consider

$$p(x_1,x_2)=(c\vee x_1)\wedge x_2$$

Definition

$$p(x_1,...,x_n) = q(x_1,...,x_n,c_1,...,c_m)$$

We can generalize the concept of l.p.f. by regarding some variables as parameters.

Example. For $c \in L$, we consider

$$p(x_1,x_2)=(c\vee x_1)\wedge x_2$$

Definition

$$p(x_1,\ldots,x_n)=q(x_1,\ldots,x_n,c_1,\ldots,c_m)$$

Proposition (Lausch & Nöbauer 1973)

Let $p: L^n \to L$ be any w.l.p.f.

Then there are set functions $v, w : 2^{[n]} \to L$ such that

$$p(x) = \bigvee_{S \subseteq [n]} \left[v(S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[w(S) \lor \bigvee_{i \in S} x_i \right]$$

Remarks.

Proposition (Lausch & Nöbauer 1973)

Let $p: L^n \to L$ be any w.l.p.f.

Then there are set functions $v, w : 2^{[n]} \to L$ such that

$$p(x) = \bigvee_{S \subseteq [n]} \left[v(S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[w(S) \lor \bigvee_{i \in S} x_i \right].$$

Remarks

• p is a l.p.f. if v and w range in $\{0,1\}$, with $v(\varnothing) = 0$ and $w(\varnothing) = 1$.

Any w.l.p.f. is entirely determined by 2ⁿ parameters, even if the construct it.

Proposition (Lausch & Nöbauer 1973)

Let $p: L^n \to L$ be any w.l.p.f.

Then there are set functions $v, w : 2^{[n]} \to L$ such that

$$p(x) = \bigvee_{S \subseteq [n]} \left[v(S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[w(S) \lor \bigvee_{i \in S} x_i \right].$$

Remarks.

- p is a l.p.f. if v and w range in $\{0,1\}$, with $v(\varnothing) = 0$ and $w(\varnothing) = 1$.
- Any w.l.p.f. is entirely determined by 2ⁿ parameters, even if more parameters have been considered to construct it.

Proposition (Lausch & Nöbauer 1973)

Let $p: L^n \to L$ be any w.l.p.f.

Then there are set functions $v, w : 2^{[n]} \to L$ such that

$$p(x) = \bigvee_{S \subseteq [n]} \left[v(S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[w(S) \lor \bigvee_{i \in S} x_i \right].$$

Remarks.

- p is a l.p.f. if v and w range in $\{0,1\}$, with $v(\varnothing)=0$ and $w(\varnothing)=1$.
- Any w.l.p.f. is entirely determined by 2ⁿ parameters, even if more parameters have been considered to construct it.

Proposition (Lausch & Nöbauer 1973)

Let $p: L^n \to L$ be any w.l.p.f.

Then there are set functions $v, w : 2^{[n]} \to L$ such that

$$p(x) = \bigvee_{S \subseteq [n]} \left[v(S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[w(S) \lor \bigvee_{i \in S} x_i \right].$$

Remarks.

- p is a l.p.f. if v and w range in $\{0,1\}$, with $v(\varnothing)=0$ and $w(\varnothing)=1$.
- Any w.l.p.f. is entirely determined by 2^n parameters, even if more parameters have been considered to construct it.

Proposition (Marichal 2006)

From among all the set functions v that disjunctively generate the w.l.p.f. p, only one is isotone :

$$v(S)=p(\mathbf{1}_S)$$

From among all the set functions w that conjunctively generate the w.l.p.f. p, only one is antitone :

$$w(S) = p(\mathbf{1}_{\lceil n \rceil \setminus S})$$

Proposition (Marichal 2006)

From among all the set functions v that disjunctively generate the w.l.p.f. p, only one is isotone :

$$v(S)=p(\mathbf{1}_S)$$

From among all the set functions w that conjunctively generate the w.l.p.f. p, only one is antitone :

$$w(S) = p(\mathbf{1}_{[n] \setminus S})$$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{1}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{1}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

Example.
$$p(x) = (c \lor x_1) \land x_2$$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{1}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{1}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

Example.
$$p(x) = (c \lor x_1) \land x_2$$

$$p(x) = (0 \land 1) \lor (0 \land x_1) \lor (c \land x_2) \lor (1 \land x_1 \land x_2)$$

$$= (c \land x_2) \lor (x_1 \land x_2)$$

$$p(x) = (1 \lor 0) \land (c \lor x_1) \land (0 \lor x_2) \land (0 \lor x_1 \lor x_2)$$

$$= (c \lor x) \land x_2$$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{1}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{1}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

Example.
$$p(x) = (c \lor x_1) \land x_2$$

S	$p(1_S)$	$p(1_{[n]\setminus S})$
Ø	0	1
{1}	0	С
{1} {2}	С	0
$\{1, 2\}$	1	0

$$\begin{array}{ll} \rho(x) & = & (0 \land 1) \lor (0 \land x_1) \lor (c \land x_2) \lor (1 \land x_1 \land x_2) \\ & = & (c \land x_2) \lor (x_1 \land x_2) \\ \rho(x) & = & (1 \lor 0) \land (c \lor x_1) \land (0 \lor x_2) \land (0 \lor x_1 \lor x_2) \end{array}$$

Consequently, any n-ary w.l.p.f. can always be written as

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{1}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{1}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

Example.
$$p(x) = (c \lor x_1) \land x_2$$

$$\begin{array}{c|cccc} S & \textit{p}(1_{S}) & \textit{p}(1_{[r] \setminus S}) \\ \hline \varnothing & 0 & 1 \\ \{1\} & 0 & c \\ \{2\} & c & 0 \\ \{1,2\} & 1 & 0 \\ \end{array}$$

$$p(x) = (0 \land 1) \lor (0 \land x_1) \lor (c \land x_2) \lor (1 \land x_1 \land x_2)$$
$$= (c \land x_2) \lor (x_1 \land x_2)$$

 $= (1 \lor 0) \land (c \lor x_1) \land (0 \lor x_2) \land (0 \lor x_1 \lor x_2)$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{1}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{1}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

Example.
$$p(x) = (c \lor x_1) \land x_2$$

S	$p(1_S)$	$p(1_{[n]\setminus S})$
Ø	0	1
{1}	0	с
{2}	С	0
{1,2}	1	0

$$p(x) = (0 \land 1) \lor (0 \land x_1) \lor (c \land x_2) \lor (1 \land x_1 \land x_2)$$

$$= (c \land x_2) \lor (x_1 \land x_2)$$

$$p(x) = (1 \lor 0) \land (c \lor x_1) \land (0 \lor x_2) \land (0 \lor x_1 \lor x_2)$$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{1}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{1}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

Example.
$$p(x) = (c \lor x_1) \land x_2$$

5	$p(1_S)$	$p(1_{[n]\setminus S})$
Ø	0	1
{1}	0	С
{2}	С	0
{1,2}	1	0

$$p(x) = (0 \land 1) \lor (0 \land x_1) \lor (c \land x_2) \lor (1 \land x_1 \land x_2)$$

$$= (c \land x_2) \lor (x_1 \land x_2)$$

$$p(x) = (1 \lor 0) \land (c \lor x_1) \land (0 \lor x_2) \land (0 \lor x_1 \lor x_2)$$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{1}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{1}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

Example.
$$p(x) = (c \lor x_1) \land x_2$$

5	$p(1_S)$	$p(1_{[n]\setminus S})$
Ø	0	1
{1}	0	С
{2}	С	0
{1,2}	1	0

$$p(x) = (0 \land 1) \lor (0 \land x_1) \lor (c \land x_2) \lor (1 \land x_1 \land x_2)$$

$$= (c \land x_2) \lor (x_1 \land x_2)$$

$$p(x) = (1 \lor 0) \land (c \lor x_1) \land (0 \lor x_2) \land (0 \lor x_1 \lor x_2)$$

$$= (c \lor x_1) \land x_2$$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{1}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{1}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

Example.
$$p(x) = (c \lor x_1) \land x_2$$

S	$p(1_S)$	$p(1_{[n]\setminus S})$
Ø	0	1
{1}	0	с
{2}	С	0
{1,2}	1	0

$$p(x) = (0 \land 1) \lor (0 \land x_1) \lor (c \land x_2) \lor (1 \land x_1 \land x_2)$$

$$= (c \land x_2) \lor (x_1 \land x_2)$$

$$p(x) = (1 \lor 0) \land (c \lor x_1) \land (0 \lor x_2) \land (0 \lor x_1 \lor x_2)$$

$$= (c \lor x_1) \land x_2$$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{1}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{1}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

Example.
$$p(x) = (c \lor x_1) \land x_2$$

5	$p(1_S)$	$p(1_{[n]\setminus S})$
Ø	0	1
{1}	0	С
{2}	С	0
{1, 2}	1	0

$$p(x) = (0 \land 1) \lor (0 \land x_1) \lor (c \land x_2) \lor (1 \land x_1 \land x_2)$$

$$= (c \land x_2) \lor (x_1 \land x_2)$$

$$p(x) = (1 \lor 0) \land (c \lor x_1) \land (0 \lor x_2) \land (0 \lor x_1 \lor x_2)$$

$$= (c \lor x_1) \land x_2$$

$$S_{\mu}(x) := \bigvee_{S \subseteq [n]} \left[\mu(S) \wedge \bigwedge_{i \in S} x_i \right]$$

Let us generalize the concept of discrete Sugeno integral in the framework of bounded distributive lattices.

Definition (Sugeno 1974)

An L-valued fuzzy measure on [n] is an isotone set function $\mu:2^{[n]}\to L$ such that $\mu(\varnothing)=0$ and $\mu([n])=1$.

The *Sugeno integral* of a function $x:[n] \to L$ with respect to μ is defined by

$$S_{\mu}(x) := \bigvee_{S \subseteq [n]} \left[\mu(S) \land \bigwedge_{i \in S} x_i \right]$$

Let us generalize the concept of discrete Sugeno integral in the framework of bounded distributive lattices.

Definition (Sugeno 1974)

An *L*-valued *fuzzy measure* on [n] is an isotone set function $\mu: 2^{[n]} \to L$ such that $\mu(\varnothing) = 0$ and $\mu([n]) = 1$.

The *Sugeno integral* of a function $x:[n] \to L$ with respect to μ is defined by

$$S_{\mu}(x) := \bigvee_{S \subseteq [n]} \left[\mu(S) \wedge \bigwedge_{i \in S} x_i \right]$$

Let us generalize the concept of discrete Sugeno integral in the framework of bounded distributive lattices.

Definition (Sugeno 1974)

An *L*-valued *fuzzy measure* on [n] is an isotone set function $\mu: 2^{[n]} \to L$ such that $\mu(\varnothing) = 0$ and $\mu([n]) = 1$.

The *Sugeno integral* of a function $x : [n] \to L$ with respect to μ is defined by

$$S_{\mu}(x) := \bigvee_{S \subseteq [n]} \left[\mu(S) \wedge \bigwedge_{i \in S} x_i \right]$$

Let us generalize the concept of discrete Sugeno integral in the framework of bounded distributive lattices.

Definition (Sugeno 1974)

An *L*-valued *fuzzy measure* on [n] is an isotone set function $\mu: 2^{[n]} \to L$ such that $\mu(\varnothing) = 0$ and $\mu([n]) = 1$.

The *Sugeno integral* of a function $x:[n] \to L$ with respect to μ is defined by

$$S_{\mu}(x) := \bigvee_{S \subseteq [n]} \left[\mu(S) \wedge \bigwedge_{i \in S} x_i \right]$$

Let us generalize the concept of discrete Sugeno integral in the framework of bounded distributive lattices.

Definition (Sugeno 1974)

An *L*-valued *fuzzy measure* on [n] is an isotone set function $\mu: 2^{[n]} \to L$ such that $\mu(\varnothing) = 0$ and $\mu([n]) = 1$.

The *Sugeno integral* of a function $x:[n] \to L$ with respect to μ is defined by

$$S_{\mu}(x) := \bigvee_{S \subseteq [n]} \left[\mu(S) \wedge \bigwedge_{i \in S} x_i \right]$$

Notation. The median function is the function $os_2: L^3 \to L$.

$$p(x) = \text{median}[p(\mathbf{1}_{\varnothing}), \mathcal{S}_{\mu}(x), p(\mathbf{1}_{[n]})]$$

Notation. The median function is the function $os_2: L^3 \rightarrow L$.

Proposition (Marichal 2006)

For any w.l.p.f. $p:L^n\to L$, there is a fuzzy measure $\mu:2^{[n]}\to L$ such that

$$p(x) = \text{median}[p(\mathbf{1}_{\varnothing}), \mathcal{S}_{\mu}(x), p(\mathbf{1}_{[n]})]$$

Corollary (Marichal 2006)

Consider a function $f: L^n \to L$.

The following assertions are equivalent

- f is a Sugeno integral
- f is an idempotent w.l.p.f., that is such that f(x, ..., x) = x
- f is a w.l.p.f. fulfilling $f(\mathbf{1}_{\varnothing}) = 0$ and $f(\mathbf{1}_{\lceil n \rceil}) = 1$.

Notation. The median function is the function $os_2: L^3 \to L$.

Proposition (Marichal 2006)

For any w.l.p.f. $p:L^n\to L$, there is a fuzzy measure $\mu:2^{[n]}\to L$ such that

$$p(x) = \text{median}[p(\mathbf{1}_{\varnothing}), \mathcal{S}_{\mu}(x), p(\mathbf{1}_{[n]})]$$

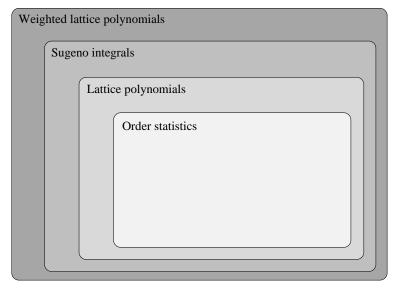
Corollary (Marichal 2006)

Consider a function $f: L^n \to L$.

The following assertions are equivalent:

- f is a Sugeno integral
- f is an idempotent w.l.p.f., that is such that f(x, ..., x) = x
- f is a w.l.p.f. fulfilling $f(\mathbf{1}_{\varnothing}) = 0$ and $f(\mathbf{1}_{[n]}) = 1$.

Inclusion properties



Let $f: L^n \to L$ and $k \in [n]$ and define $f_k^0, f_k^1: L^n \to L$ as

$$f_k^0(x) := f(x_1, \dots, x_{k-1}, 0, x_{k+1}, \dots, x_n)$$

 $f_k^1(x) := f(x_1, \dots, x_{k-1}, 1, x_{k+1}, \dots, x_n)$

$$f(x) = \text{median}[f_k^0(x), x_k, f_k^1(x)] \qquad (k = 1, \dots, n)$$

Let $f: L^n \to L$ and $k \in [n]$ and define $f_k^0, f_k^1: L^n \to L$ as

$$f_k^0(x) := f(x_1, \dots, x_{k-1}, 0, x_{k+1}, \dots, x_n)$$

 $f_k^1(x) := f(x_1, \dots, x_{k-1}, 1, x_{k+1}, \dots, x_n)$

Remark. If f is a w.l.p.f., so are f_k^0 and f_k^1

$$f(x) = \text{median}[f_k^0(x), x_k, f_k^1(x)] \qquad (k = 1, \dots, n)$$

Let $f: L^n \to L$ and $k \in [n]$ and define $f_k^0, f_k^1: L^n \to L$ as

$$f_k^0(x) := f(x_1, \dots, x_{k-1}, 0, x_{k+1}, \dots, x_n)$$

 $f_k^1(x) := f(x_1, \dots, x_{k-1}, 1, x_{k+1}, \dots, x_n)$

Remark. If f is a w.l.p.f., so are f_k^0 and f_k^1

Consider the following system of *n* functional equations, called the *median based decomposition formula*

$$f(x) = \text{median}[f_k^0(x), x_k, f_k^1(x)] \qquad (k = 1, \dots, n)$$

Let $f: L^n \to L$ and $k \in [n]$ and define $f_k^0, f_k^1: L^n \to L$ as

$$f_k^0(x) := f(x_1, \dots, x_{k-1}, 0, x_{k+1}, \dots, x_n)$$

 $f_k^1(x) := f(x_1, \dots, x_{k-1}, 1, x_{k+1}, \dots, x_n)$

Remark. If f is a w.l.p.f., so are f_k^0 and f_k^1

Consider the following system of n functional equations, called the *median based decomposition formula*

$$f(x) = \text{median}[f_k^0(x), x_k, f_k^1(x)]$$
 $(k = 1, \dots, n)$

Any solution of the median based decomposition formula

$$f(x) = \mathsf{median} [f_k^0(x), x_k, f_k^1(x)] \qquad (k = 1, \dots, n)$$

is an *n*-ary w.l.p.f.

$$f(x_1, x_2) = \text{median}[f(x_1, 0), x_2, f(x_1, 1)]$$

$$f(x_1,0) = \text{median}[f(0,0), x_1, f(1,0)]$$
 (w.l.p.f.)
 $f(x_1,1) = \text{median}[f(0,1), x_1, f(1,1)]$ (w.l.p.f.)

Any solution of the median based decomposition formula

$$f(x) = \text{median}[f_k^0(x), x_k, f_k^1(x)]$$
 $(k = 1, \dots, n)$

is an *n*-ary w.l.p.f.

Example. For n = 2 we have

$$f(x_1, x_2) = \text{median}[f(x_1, 0), x_2, f(x_1, 1)]$$

$$f(x_1,0) = \text{median}[f(0,0), x_1, f(1,0)]$$
 (w.l.p.f.)
 $f(x_1,1) = \text{median}[f(0,1), x_1, f(1,1)]$ (w.l.p.f.)

Any solution of the median based decomposition formula

$$f(x) = \mathsf{median} [f_k^0(x), x_k, f_k^1(x)] \qquad (k = 1, \dots, n)$$

is an n-ary w.l.p.f.

Example. For n = 2 we have

$$f(x_1, x_2) = \text{median}[f(x_1, 0), x_2, f(x_1, 1)]$$

with

$$f(x_1,0) = \text{median}[f(0,0), x_1, f(1,0)]$$
 (w.l.p.f.)
 $f(x_1,1) = \text{median}[f(0,1), x_1, f(1,1)]$ (w.l.p.f.)

The median based decomposition formula characterizes the w.l.p.f.'s

Theorem (Marichal 2006)

The solutions of the median based decomposition formula are exactly the *n*-ary w.l.p.f.'s

The median based decomposition formula characterizes the w.l.p.f.'s

Theorem (Marichal 2006)

The solutions of the median based decomposition formula are exactly the *n*-ary w.l.p.f.'s

Part II: Cumulative distribution functions of aggregation operators

Cumulative distribution functions of aggregation operators

Consider

- an aggregation operator $A: \mathbb{R}^n \to \mathbb{R}$
- n independent random variables X_1, \ldots, X_n , with cumulative distribution functions $F_1(x), \ldots, F_n(x)$

$$\begin{cases}
X_1 \\
\vdots \\
X_n
\end{cases} \longrightarrow Y_A = A(X_1, \dots, X_n)$$

Problem. We are searching for the cumulative distribution function (c.d.f.) of Y_A :

$$F_A(y) := \Pr[Y_A \leqslant y]$$

Consider

- an aggregation operator $A: \mathbb{R}^n \to \mathbb{R}$
- n independent random variables X_1, \ldots, X_n , with cumulative distribution functions $F_1(x), \ldots, F_n(x)$

$$\begin{cases}
X_1 \\
\vdots \\
X_n
\end{cases} \longrightarrow Y_A = A(X_1, \dots, X_n)$$

$$F_A(y) := \Pr[Y_A \leqslant y]$$

Consider

- an aggregation operator $A: \mathbb{R}^n \to \mathbb{R}$
- n independent random variables X_1, \ldots, X_n , with cumulative distribution functions $F_1(x), \ldots, F_n(x)$

$$\begin{cases}
X_1 \\
\vdots \\
X_n
\end{cases} \longrightarrow Y_A = A(X_1, \dots, X_n)$$

$$F_A(y) := \Pr[Y_A \leqslant y]$$

Consider

- an aggregation operator $A: \mathbb{R}^n \to \mathbb{R}$
- n independent random variables X_1, \ldots, X_n , with cumulative distribution functions $F_1(x), \ldots, F_n(x)$

$$\begin{cases}
X_1 \\
\vdots \\
X_n
\end{cases} \longrightarrow Y_A = A(X_1, \dots, X_n)$$

$$F_A(y) := \Pr[Y_A \leqslant y]$$

Consider

- an aggregation operator $A: \mathbb{R}^n \to \mathbb{R}$
- n independent random variables X_1, \ldots, X_n , with cumulative distribution functions $F_1(x), \ldots, F_n(x)$

$$\begin{cases}
X_1 \\
\vdots \\
X_n
\end{cases} \longrightarrow Y_A = A(X_1, \dots, X_n)$$

$$F_A(y) := \Pr[Y_A \leqslant y]$$

From the c.d.f. of Y_A , we can calculate the expectation

$$\mathbf{E}\big[g(Y_A)\big] = \int_{-\infty}^{\infty} g(y) \, \mathrm{d}F_A(y)$$

for any measurable function g.

g(x)	$E[g(Y_A)]$
X	expected value of Y_A
x^r	raw moments of Y_A
$[x - \mathbf{E}(Y_A)]^r$	central moments of Y_A
e^{tx}	moment-generating function of Y_A

From the c.d.f. of Y_A , we can calculate the expectation

$$\mathbf{E}\big[g(Y_A)\big] = \int_{-\infty}^{\infty} g(y) \, \mathrm{d}F_A(y)$$

for any measurable function g.

Some useful examples:

g(x)	$\mathbf{E}[g(Y_A)]$
X	expected value of Y_A
x^r	raw moments of Y_A
$\left[x-\mathbf{E}(Y_A)\right]^r$	central moments of Y_A
e ^{tx}	moment-generating function of Y_A

If $F_A(y)$ is absolutely continuous, then Y_A has a probability density function (p.d.f.)

$$f_A(y) := \frac{\mathsf{d}}{\mathsf{d}y} F_A(y)$$

In this case

$$\mathbf{E}[g(Y_A)] = \int_{-\infty}^{\infty} g(y) f_A(y) dy$$

If $F_A(y)$ is absolutely continuous, then Y_A has a probability density function (p.d.f.)

$$f_A(y) := \frac{\mathsf{d}}{\mathsf{d}y} F_A(y)$$

In this case

$$\mathbf{E}\big[g(Y_A)\big] = \int_{-\infty}^{\infty} g(y) \, f_A(y) \, \mathrm{d}y$$

$$AM(x_1,\ldots,x_n)=\frac{1}{n}\sum_{i=1}^n x_i$$

 $F_{AM}(y)$ is given by the convolution product of F_1, \ldots, F_n

$$F_{AM}(y) = (F_1 * \cdots * F_n)(ny)$$

For uniform random variables X_1, \ldots, X_n on [0, 1], we have

$$F_{AM}(y) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (ny - k)_+^n \qquad (y \in [0, 1])$$

Feller, 1971)

$$AM(x_1,\ldots,x_n)=\frac{1}{n}\sum_{i=1}^n x_i$$

$$F_{AM}(y) = (F_1 * \cdots * F_n)(ny)$$

$$F_{AM}(y) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (ny - k)_+^n \qquad (y \in [0, 1])$$

$$AM(x_1,\ldots,x_n)=\frac{1}{n}\sum_{i=1}^n x_i$$

 $F_{AM}(y)$ is given by the convolution product of F_1, \ldots, F_n

$$F_{AM}(y) = (F_1 * \cdots * F_n)(ny)$$

For uniform random variables X_1, \ldots, X_n on [0, 1], we have

$$F_{AM}(y) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (ny - k)_+^n \qquad (y \in [0, 1])$$

(Feller, 1971)

$$AM(x_1,\ldots,x_n)=\frac{1}{n}\sum_{i=1}^n x_i$$

 $F_{AM}(y)$ is given by the convolution product of F_1, \ldots, F_n

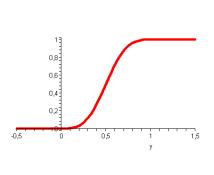
$$F_{AM}(y) = (F_1 * \cdots * F_n)(ny)$$

For uniform random variables X_1, \ldots, X_n on [0, 1], we have

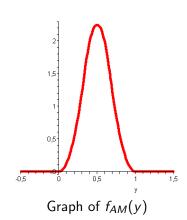
$$F_{AM}(y) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (ny - k)_+^n \qquad (y \in [0, 1])$$

(Feller, 1971)

Case of n = 3 uniform random variables X_1, X_2, X_3 on [0, 1]



Graph of $F_{AM}(y)$



$$T_L(x_1,\ldots,x_n) = \max\left[0,\sum_{i=1}^n x_i - (n-1)\right]$$

$$F_{T_L}(y) = \Pr\left[\max\left[0, \sum_i X_i - (n-1)\right] \leqslant y\right]$$

$$= \Pr\left[0 \leqslant y \text{ and } \sum_i X_i - (n-1) \leqslant y\right]$$

$$= \Pr[0 \leqslant y] \Pr\left[\sum_i X_i \leqslant y + n - 1\right]$$

$$= H_0(y) F_{AM}(\frac{y+n-1}{x})$$

$$H_c(y) = \mathbf{1}_{[c+\infty]}(y)$$

$$T_L(x_1,\ldots,x_n) = \max\left[0,\sum_{i=1}^n x_i - (n-1)\right]$$

$$F_{\mathcal{T}_{L}}(y) = \Pr\left[\max\left[0, \sum_{i} X_{i} - (n-1)\right] \leqslant y\right]$$

$$= \Pr\left[0 \leqslant y \text{ and } \sum_{i} X_{i} - (n-1) \leqslant y\right]$$

$$= \Pr\left[0 \leqslant y\right] \Pr\left[\sum_{i} X_{i} \leqslant y + n - 1\right]$$

$$= H_{0}(y) F_{AM}(\frac{y+n-1}{2})$$

$$H_c(y) = \mathbf{1}_{[c,+\infty[}(y)]$$

$$T_L(x_1,\ldots,x_n) = \max\left[0,\sum_{i=1}^n x_i - (n-1)\right]$$

$$F_{T_{L}}(y) = \Pr\left[\max\left[0, \sum_{i} X_{i} - (n-1)\right] \leqslant y\right]$$

$$= \Pr\left[0 \leqslant y \text{ and } \sum_{i} X_{i} - (n-1) \leqslant y\right]$$

$$= \Pr\left[0 \leqslant y\right] \Pr\left[\sum_{i} X_{i} \leqslant y + n - 1\right]$$

$$= H_{0}(y) F_{AM}(\frac{y+n-1}{n})$$

$$H_c(y) = \mathbf{1}_{[c+\infty)}(y)$$

$$T_L(x_1,\ldots,x_n) = \max\left[0,\sum_{i=1}^n x_i - (n-1)\right]$$

$$F_{T_L}(y) = \Pr\left[\max\left[0, \sum_i X_i - (n-1)\right] \leqslant y\right]$$

$$= \Pr\left[0 \leqslant y \text{ and } \sum_i X_i - (n-1) \leqslant y\right]$$

$$= \Pr[0 \leqslant y] \Pr\left[\sum_i X_i \leqslant y + n - 1\right]$$

$$= H_0(y) F_{AM}(\frac{y+n-1}{n})$$

$$H_c(y) = \mathbf{1}_{[c,+\infty)}(y)$$

$$T_L(x_1,\ldots,x_n) = \max\left[0,\sum_{i=1}^n x_i - (n-1)\right]$$

$$F_{\mathcal{T}_{L}}(y) = \Pr\left[\max\left[0, \sum_{i} X_{i} - (n-1)\right] \leqslant y\right]$$

$$= \Pr\left[0 \leqslant y \text{ and } \sum_{i} X_{i} - (n-1) \leqslant y\right]$$

$$= \Pr\left[0 \leqslant y\right] \Pr\left[\sum_{i} X_{i} \leqslant y + n - 1\right]$$

$$= H_{0}(y) F_{AM}\left(\frac{y+n-1}{n}\right)$$

$$H_c(y) = \mathbf{1}_{[c,+\infty[}(y)]$$

$$T_L(x_1,\ldots,x_n) = \max\left[0,\sum_{i=1}^n x_i - (n-1)\right]$$

$$F_{T_L}(y) = \Pr\left[\max\left[0, \sum_i X_i - (n-1)\right] \leqslant y\right]$$

$$= \Pr\left[0 \leqslant y \text{ and } \sum_i X_i - (n-1) \leqslant y\right]$$

$$= \Pr[0 \leqslant y] \Pr\left[\sum_i X_i \leqslant y + n - 1\right]$$

$$= H_0(y) F_{AM}(\frac{y + n - 1}{n})$$

$$H_c(y) = \mathbf{1}_{[c,+\infty[}(y)]$$

$$T_L(x_1,\ldots,x_n) = \max\left[0,\sum_{i=1}^n x_i - (n-1)\right]$$

$$F_{T_L}(y) = \Pr\left[\max\left[0, \sum_i X_i - (n-1)\right] \leqslant y\right]$$

$$= \Pr\left[0 \leqslant y \text{ and } \sum_i X_i - (n-1) \leqslant y\right]$$

$$= \Pr[0 \leqslant y] \Pr\left[\sum_i X_i \leqslant y + n - 1\right]$$

$$= H_0(y) F_{AM}(\frac{y + n - 1}{n})$$

$$H_c(y) = \mathbf{1}_{[c,+\infty[}(y)$$

$$T_L(x_1,\ldots,x_n) = \max\left[0,\sum_{i=1}^n x_i - (n-1)\right]$$

$$F_{T_L}(y) = \Pr\left[\max\left[0, \sum_i X_i - (n-1)\right] \leqslant y\right]$$

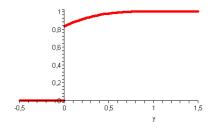
$$= \Pr\left[0 \leqslant y \text{ and } \sum_i X_i - (n-1) \leqslant y\right]$$

$$= \Pr[0 \leqslant y] \Pr\left[\sum_i X_i \leqslant y + n - 1\right]$$

$$= H_0(y) F_{AM}(\frac{y+n-1}{n})$$

$$H_c(y) = \mathbf{1}_{[c,+\infty[}(y)$$

Case of n = 3 uniform random variables X_1, X_2, X_3 on [0, 1]

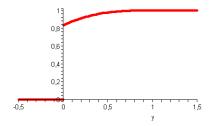


Remark.

 $F_{T_L}(y)$ is discontinuous \Rightarrow The p.d.f. does not exist

Graph of $F_{T_i}(y)$

Case of n = 3 uniform random variables X_1, X_2, X_3 on [0, 1]



Remark.

 $F_{T_L}(y)$ is discontinuous \Rightarrow The p.d.f. does not exist

Graph of $F_{T_L}(y)$

Example : order statistics on $\mathbb R$

$$os_k(x_1,\ldots,x_n)=x_{(k)}$$

$$F_{os_k}(y) = \sum_{\substack{S \subseteq [n] \\ |S| > k}} \prod_{i \in S} F_i(y) \prod_{i \in [n] \setminus S} \left[1 - F_i(y) \right]$$

(see e.g. David & Nagaraja 2003)

Examples.

$$F_{os_1}(y) = 1 - \prod_{i=1}^{n} \left[1 - F_i(y)\right]$$

$$F_{os_n}(y) = \prod_{i=1}^{n} F_i(y)$$

$$os_k(x_1,\ldots,x_n)=x_{(k)}$$

$$F_{os_k}(y) = \sum_{\substack{S \subseteq [n] \\ |S| > k}} \prod_{i \in S} F_i(y) \prod_{i \in [n] \setminus S} [1 - F_i(y)]$$

(see e.g. David & Nagaraja 2003)

Examples

$$F_{os_1}(y) = 1 - \prod_{i=1}^{n} [1 - F_i(y)]$$

$$F_{os_n}(y) = \prod_{i=1}^{n} F_i(y)$$

Example : order statistics on $\mathbb R$

$$os_k(x_1,\ldots,x_n)=x_{(k)}$$

$$F_{os_k}(y) = \sum_{\substack{S \subseteq [n] \\ |S| \geqslant k}} \prod_{i \in S} F_i(y) \prod_{i \in [n] \setminus S} [1 - F_i(y)]$$

(see e.g. David & Nagaraja 2003)

Examples

$$F_{os_1}(y) = 1 - \prod_{i=1}^{n} [1 - F_i(y)]$$
$$F_{os_n}(y) = \prod_{i=1}^{n} F_i(y)$$

$$os_k(x_1,\ldots,x_n)=x_{(k)}$$

$$F_{os_k}(y) = \sum_{\substack{S \subseteq [n] \\ |S| \geqslant k}} \prod_{i \in S} F_i(y) \prod_{i \in [n] \setminus S} [1 - F_i(y)]$$

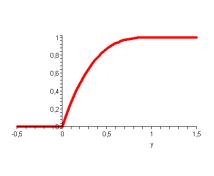
(see e.g. David & Nagaraja 2003)

Examples.

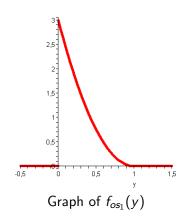
$$F_{os_1}(y) = 1 - \prod_{i=1}^{n} [1 - F_i(y)]$$

$$F_{os_n}(y) = \prod_{i=1}^{n} F_i(y)$$

Case of n = 3 uniform random variables X_1, X_2, X_3 on [0, 1]

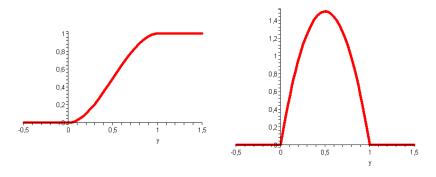


Graph of $F_{os_1}(y)$



Graph of $F_{os_2}(y)$

Case of n = 3 uniform random variables X_1, X_2, X_3 on [0, 1]



Graph of $f_{os}(y)$

New results : lattice polynomial functions on ${\mathbb R}$

Let $p:L^n o L$ be a l.p.f. on L=[0,1]It can be extended to an aggregation function from \mathbb{R}^n to $\mathbb{R}.$

$$p(x_1,\ldots,x_n) = \bigvee_{\substack{S \subseteq [n] \\ p(1_S)=1}} \bigwedge_{\substack{i \in S \\ p(1_{[n] \setminus S})=0}} \bigvee_{\substack{S \subseteq [n] \\ p(1_{[n] \setminus S})=0}} \bigvee_{i \in S} x_i$$

$$F_{\rho}(y) = 1 - \sum_{\substack{S \subseteq [n] \\ \rho(1_{S}) = 1}} \prod_{i \in [n] \setminus S} F_{i}(y) \prod_{i \in S} [1 - F_{i}(y)]$$

$$F_{\rho}(y) = \sum_{\substack{S \subseteq [n] \\ \rho(1_{[n] \setminus S}) = 0}} \prod_{i \in S} F_{i}(y) \prod_{i \in [n] \setminus S} [1 - F_{i}(y)]$$

New results : lattice polynomial functions on $\mathbb R$

Let $p:L^n \to L$ be a l.p.f. on L=[0,1]

It can be extended to an aggregation function from \mathbb{R}^n to \mathbb{R} .

$$p(x_1,\ldots,x_n) = \bigvee_{\substack{S\subseteq[n]\\p(1_S)=1}}\bigwedge_{i\in S}x_i = \bigwedge_{\substack{S\subseteq[n]\\p(1_{[n]\setminus S})=0}}\bigvee_{i\in S}x_i$$

$$F_{p}(y) = 1 - \sum_{\substack{S \subseteq [n] \\ p(1s) = 1}} \prod_{i \in [n] \setminus S} F_{i}(y) \prod_{i \in S} [1 - F_{i}(y)]$$

$$F_{p}(y) = \sum_{\substack{S \subseteq [n] \\ p(1_{i+1},y) = 0}} \prod_{i \in S} F_{i}(y) \prod_{i \in [n] \setminus S} [1 - F_{i}(y)]$$

New results : lattice polynomial functions on ${\mathbb R}$

Let $p: L^n \to L$ be a l.p.f. on L = [0,1]It can be extended to an aggregation function from \mathbb{R}^n to \mathbb{R} .

$$p(x_1,\ldots,x_n) = \bigvee_{\substack{S\subseteq[n]\\p(\mathbf{1}_S)=1}}\bigwedge_{i\in S}x_i = \bigwedge_{\substack{S\subseteq[n]\\p(\mathbf{1}_{[n]\setminus S})=0}}\bigvee_{i\in S}x_i$$

$$F_{p}(y) = 1 - \sum_{\substack{S \subseteq [n] \\ p(1_{S})=1}} \prod_{i \in [n] \setminus S} F_{i}(y) \prod_{i \in S} [1 - F_{i}(y)]$$

$$F_{p}(y) = \sum_{\substack{S \subseteq [n] \\ p(1_{[n] \setminus S})=0}} \prod_{i \in S} F_{i}(y) \prod_{i \in [n] \setminus S} [1 - F_{i}(y)]$$

New results : lattice polynomial functions on $\ensuremath{\mathbb{R}}$

Let $p: L^n \to L$ be a l.p.f. on L = [0,1]It can be extended to an aggregation function from \mathbb{R}^n to \mathbb{R} .

$$p(x_1,\ldots,x_n) = \bigvee_{\substack{S\subseteq[n]\\p(\mathbf{1}_S)=1}} \bigwedge_{i\in S} x_i = \bigwedge_{\substack{S\subseteq[n]\\p(\mathbf{1}_{[n]\setminus S})=0}} \bigvee_{i\in S} x_i$$

$$F_{p}(y) = 1 - \sum_{\substack{S \subseteq [n] \\ p(1_{S}) = 1}} \prod_{i \in [n] \setminus S} F_{i}(y) \prod_{i \in S} [1 - F_{i}(y)]$$

$$F_{p}(y) = \sum_{\substack{S \subseteq [n] \\ p(1_{[n] \setminus S}) = 0}} \prod_{i \in S} F_{i}(y) \prod_{i \in [n] \setminus S} [1 - F_{i}(y)]$$

New results : lattice polynomial functions on ${\mathbb R}$

Let $p: L^n \to L$ be a l.p.f. on L = [0,1]It can be extended to an aggregation function from \mathbb{R}^n to \mathbb{R} .

$$p(x_1,\ldots,x_n) = \bigvee_{\substack{S\subseteq[n]\\p(\mathbf{1}_S)=1}} \bigwedge_{i\in S} x_i = \bigwedge_{\substack{S\subseteq[n]\\p(\mathbf{1}_{[n]\setminus S})=0}} \bigvee_{i\in S} x_i$$

$$F_{p}(y) = 1 - \sum_{\substack{S \subseteq [n] \\ p(1_{S}) = 1}} \prod_{i \in [n] \setminus S} F_{i}(y) \prod_{i \in S} [1 - F_{i}(y)]$$

$$F_{p}(y) = \sum_{\substack{S \subseteq [n] \\ p(1_{[n] \setminus S}) = 0}} \prod_{i \in S} F_{i}(y) \prod_{i \in [n] \setminus S} [1 - F_{i}(y)]$$

New results : lattice polynomial functions on ${\mathbb R}$

Let $p: L^n \to L$ be a l.p.f. on L = [0,1]It can be extended to an aggregation function from \mathbb{R}^n to \mathbb{R} .

$$p(x_1,\ldots,x_n) = \bigvee_{\substack{S\subseteq[n]\\p(\mathbf{1}_S)=1}} \bigwedge_{i\in S} x_i = \bigwedge_{\substack{S\subseteq[n]\\p(\mathbf{1}_{[n]\setminus S})=0}} \bigvee_{i\in S} x_i$$

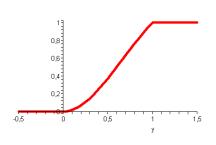
$$F_{\rho}(y) = 1 - \sum_{\substack{S \subseteq [n] \\ \rho(1_S) = 1}} \prod_{i \in [n] \setminus S} F_i(y) \prod_{i \in S} \left[1 - F_i(y) \right]$$

$$F_{\rho}(y) = \sum_{\substack{S \subseteq [n] \\ \rho(\mathbf{1}_{[n] \setminus S}) = 0}} \prod_{i \in S} F_i(y) \prod_{i \in [n] \setminus S} \left[1 - F_i(y) \right]$$

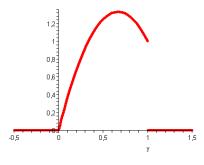
New results : lattice polynomial functions on $\ensuremath{\mathbb{R}}$

Example.
$$p(x) = (x_1 \land x_2) \lor x_3$$

Uniform random variables X_1, X_2, X_3 on [0, 1]



Graph of $F_p(y)$



Graph of $f_p(y)$

New results : lattice polynomial functions on ${\mathbb R}$

Consider

- $v_p: 2^{[n]} \to \mathbb{R}$, defined by $v_p(S) := p(\mathbf{1}_S)$
- $v_p^*: 2^{[n]} \to \mathbb{R}$, defined by $v_p^*(S) = 1 v_p([n] \setminus S)$
- $m_{\nu}: 2^{[n]} \to \mathbb{R}$, the Möbius transform of ν , defined by

$$m_{\nu}(S) := \sum_{T \subset S} (-1)^{|S| - |T|} \nu(T)$$

$$F_{p}(y) = 1 - \sum_{S \subseteq [n]} m_{v_{p}}(S) \prod_{i \in S} [1 - F_{i}(y)]$$

$$F_{p}(y) = \sum_{S \subseteq [n]} m_{v_{p}^{*}}(S) \prod_{i \in S} F_{i}(y)$$

New results : lattice polynomial functions on ${\mathbb R}$

Consider

- $v_p: 2^{[n]} \to \mathbb{R}$, defined by $v_p(S) := p(\mathbf{1}_S)$
- $v_p^*: 2^{[n]} \to \mathbb{R}$, defined by $v_p^*(S) = 1 v_p([n] \setminus S)$
- ullet $m_{\scriptscriptstyle V}:2^{[n]} o\mathbb{R}$, the Möbius transform of ${\scriptscriptstyle V}$, defined by

$$m_{\nu}(S) := \sum_{T \subseteq S} (-1)^{|S| - |T|} \nu(T)$$

Alternate expressions of $F_p(y)$

$$F_{p}(y) = 1 - \sum_{S \subseteq [n]} m_{v_{p}}(S) \prod_{i \in S} [1 - F_{i}(y)]$$

$$F_{p}(y) = \sum_{S \subseteq [n]} m_{v_{p}^{*}}(S) \prod_{i \in S} F_{i}(y)$$

New results: lattice polynomial functions on \mathbb{R}

Consider

- $v_p: 2^{[n]} \to \mathbb{R}$, defined by $v_p(S) := p(\mathbf{1}_S)$
- $v_p^*: 2^{[n]} \to \mathbb{R}$, defined by $v_p^*(S) = 1 v_p([n] \setminus S)$
- $m_v: 2^{[n]} \to \mathbb{R}$, the Möbius transform of v, defined by

$$m_{\nu}(S) := \sum_{T \subset S} (-1)^{|S| - |T|} \nu(T)$$

$$F_{p}(y) = 1 - \sum_{S \subseteq [n]} m_{\nu_{p}}(S) \prod_{i \in S} [1 - F_{i}(y)]$$

$$F_{p}(y) = \sum_{S \subseteq [n]} m_{\nu_{p}^{*}}(S) \prod_{i \in S} F_{i}(y)$$

New results: lattice polynomial functions on \mathbb{R}

Consider

- $v_p: 2^{[n]} \to \mathbb{R}$, defined by $v_p(S) := p(\mathbf{1}_S)$
- $v_p^*: 2^{[n]} \to \mathbb{R}$, defined by $v_p^*(S) = 1 v_p([n] \setminus S)$
- $m_{\nu}: 2^{[n]} \to \mathbb{R}$, the Möbius transform of ν , defined by

$$m_{\nu}(S) := \sum_{T \subseteq S} (-1)^{|S|-|T|} \nu(T)$$

$$F_p(y) = 1 - \sum_{S \subseteq [n]} m_{\nu_p}(S) \prod_{i \in S} [1 - F_i(y)]$$

 $F_p(y) = \sum_{S \subseteq [n]} m_{\nu_p^*}(S) \prod_{i \in S} F_i(y)$

New results : lattice polynomial functions on ${\mathbb R}$

Consider

- $v_p: 2^{[n]} \to \mathbb{R}$, defined by $v_p(S) := p(\mathbf{1}_S)$
- $v_p^*: 2^{[n]} \to \mathbb{R}$, defined by $v_p^*(S) = 1 v_p([n] \setminus S)$
- ullet $m_{
 u}:2^{[n]}
 ightarrow\mathbb{R}$, the Möbius transform of u, defined by

$$m_{\nu}(S) := \sum_{T \subseteq S} (-1)^{|S| - |T|} \nu(T)$$

Alternate expressions of $F_p(y)$

$$F_{p}(y) = 1 - \sum_{S \subseteq [n]} m_{\nu_{p}}(S) \prod_{i \in S} [1 - F_{i}(y)]$$

$$F_p(y) = \sum_{S \subseteq [n]} m_{V_p^*}(S) \prod_{i \in S} F_i(y)$$

Let $p: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}$ be a w.l.p.f. on $\overline{\mathbb{R}} = [-\infty, +\infty]$

Notation. $\mathbf{e}_S := \text{characteristic vector of } S \text{ in } \{-\infty, +\infty\}^n$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{e}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{e}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

$$F_p(y) = 1 - \sum_{S \subseteq [n]} [1 - H_{p(e_S)}(y)] \prod_{i \in [n] \setminus S} F_i(y) \prod_{i \in S} [1 - F_i(y)]$$

$$F_{\rho}(y) = \sum_{S \subseteq [n]} H_{\rho(\mathbf{c}_{[n] \setminus S})}(y) \prod_{i \in S} F_i(y) \prod_{i \in [n] \setminus S} [1 - F_i(y)]$$

+ alternate expressions (cf. Möbius transform)

Let $p: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}$ be a w.l.p.f. on $\overline{\mathbb{R}} = [-\infty, +\infty]$

Notation. $\mathbf{e}_S := \text{characteristic vector of } S \text{ in } \{-\infty, +\infty\}^n$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{e}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{e}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

$$F_p(y) = 1 - \sum_{S \subseteq [n]} [1 - H_{p(e_S)}(y)] \prod_{i \in [n] \setminus S} F_i(y) \prod_{i \in S} [1 - F_i(y)]$$

$$F_{\rho}(y) = \sum_{S \subset [n]} H_{\rho(\mathbf{e}_{[n] \setminus S})}(y) \prod_{i \in S} F_{i}(y) \prod_{i \in [n] \setminus S} [1 - F_{i}(y)]$$

+ alternate expressions (cf. Möbius transform)

New results : weighted lattice polynomial functions on $\mathbb R$

Let $p: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}$ be a w.l.p.f. on $\overline{\mathbb{R}} = [-\infty, +\infty]$

Notation. $\mathbf{e}_S := \text{characteristic vector of } S \text{ in } \{-\infty, +\infty\}^n$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{e}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{e}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

$$F_p(y) = 1 - \sum_{S \subseteq [n]} [1 - H_{p(e_S)}(y)] \prod_{i \in [n] \setminus S} F_i(y) \prod_{i \in S} [1 - F_i(y)]$$

$$F_p(y) = \sum_{S \subset [n]} H_{p(\mathbf{e}_{[n] \setminus S})}(y) \prod_{i \in S} F_i(y) \prod_{i \in [n] \setminus S} [1 - F_i(y)]$$

Let $p: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}$ be a w.l.p.f. on $\overline{\mathbb{R}} = [-\infty, +\infty]$

Notation. $\mathbf{e}_S := \text{characteristic vector of } S \text{ in } \{-\infty, +\infty\}^n$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{e}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{e}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

$$F_p(y) = 1 - \sum_{S \subseteq [n]} [1 - H_{p(e_S)}(y)] \prod_{i \in [n] \setminus S} F_i(y) \prod_{i \in S} [1 - F_i(y)]$$

$$F_p(y) = \sum_{S \subset [n]} H_{p(\mathbf{e}_{[n] \setminus S})}(y) \prod_{i \in S} F_i(y) \prod_{i \in [n] \setminus S} [1 - F_i(y)]$$

Let $p: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}$ be a w.l.p.f. on $\overline{\mathbb{R}} = [-\infty, +\infty]$

Notation. $\mathbf{e}_S := \text{characteristic vector of } S \text{ in } \{-\infty, +\infty\}^n$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{e}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{e}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

$$F_{p}(y) = 1 - \sum_{S \subseteq [n]} \left[1 - H_{p(\mathbf{e}_S)}(y) \right] \prod_{i \in [n] \setminus S} F_i(y) \prod_{i \in S} \left[1 - F_i(y) \right]$$

$$F_p(y) = \sum_{S \subseteq [n]} H_{p(\mathbf{e}_{[n] \setminus S})}(y) \prod_{i \in S} F_i(y) \prod_{i \in [n] \setminus S} [1 - F_i(y)]$$

+ alternate expressions (cf. Möbius transform)

Let $p: \overline{\mathbb{R}}^n \to \overline{\mathbb{R}}$ be a w.l.p.f. on $\overline{\mathbb{R}} = [-\infty, +\infty]$

Notation. $\mathbf{e}_S := \text{characteristic vector of } S \text{ in } \{-\infty, +\infty\}^n$

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{e}_S) \land \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{e}_{[n] \setminus S}) \lor \bigvee_{i \in S} x_i \right]$$

$$F_p(y) = 1 - \sum_{S \subseteq [n]} [1 - H_{p(e_S)}(y)] \prod_{i \in [n] \setminus S} F_i(y) \prod_{i \in S} [1 - F_i(y)]$$

$$F_p(y) = \sum_{S \subseteq [n]} H_{p(\mathbf{e}_{[n] \setminus S})}(y) \prod_{i \in S} F_i(y) \prod_{i \in [n] \setminus S} [1 - F_i(y)]$$

+ alternate expressions (cf. Möbius transform)

Example.
$$p(x) = (c \land x_1) \lor x_2$$

Uniform random variables X_1, X_2 on [0, 1]F(y) = median[0, y, 1]

$$\begin{array}{ccc}
S & p(\mathbf{e}_S) \\
\emptyset & -\infty \\
\{1\} & c \\
\{2\} & +\infty \\
\{1,2\} & +\infty
\end{array}$$

$$F_p(y) = F(y) (F(y) + H_c(y)[1 - F(y)])$$

Example.
$$p(x) = (c \land x_1) \lor x_2$$

Uniform random variables X_1, X_2 on [0, 1]F(y) = median[0, y, 1]

S	$p(\mathbf{e}_S)$
Ø	$-\infty$
$\{1\}$	с
{2}	$+\infty$
$\{1, 2\}$	$+\infty$

$$F_p(y) = F(y) (F(y) + H_c(y)[1 - F(y)])$$

Example.
$$p(x) = (c \land x_1) \lor x_2$$

Uniform random variables X_1, X_2 on [0, 1]F(y) = median[0, y, 1]

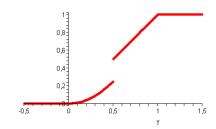
S	$p(\mathbf{e}_S)$
Ø	$-\infty$
$\{1\}$	С
{2}	$+\infty$
$\{1, 2\}$	$+\infty$

$$F_{\rho}(y) = F(y) \Big(F(y) + H_{c}(y) [1 - F(y)] \Big)$$

Example.
$$p(x) = (c \wedge x_1) \vee x_2$$

Uniform random variables X_1, X_2 on [0, 1]F(y) = median[0, y, 1]

S	$p(\mathbf{e}_S)$
Ø	$-\infty$
{1}	С
{2}	$+\infty$
$\{1, 2\}$	$+\infty$

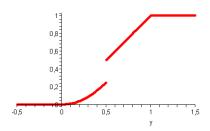


$$F_p(y) = F(y) \Big(F(y) + H_c(y) [1 - F(y)] \Big)$$

Example.
$$p(x) = (c \wedge x_1) \vee x_2$$

Uniform random variables X_1, X_2 on [0, 1]F(y) = median[0, y, 1]

S	$p(\mathbf{e}_S)$
Ø	$-\infty$
{1}	С
{2}	$+\infty$
$\{1, 2\}$	$+\infty$



$$F_p(y) = F(y) \Big(F(y) + H_c(y) [1 - F(y)] \Big)$$

Example. Given a w.l.p.f. $p:[0,1]^n \to [0,1]$ and a measurable function $g:[0,1] \to \overline{\mathbb{R}}$, compute

$$\int_{[0,1]^n} g[p(x)] \, \mathrm{d}x$$

Solution. The integral is given by $\mathbf{E}[g(Y_p)]$, where the variables X_1,\ldots,X_n are uniform on [0,1]

$$\mathbf{E}[g(Y_p)] = g(0) + \sum_{S \subset [n]} \int_0^{p(\mathbf{e}_S)} y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}g(y)$$

Example. Given a w.l.p.f. $p:[0,1]^n \to [0,1]$ and a measurable function $g:[0,1] \to \overline{\mathbb{R}}$, compute

$$\int_{[0,1]^n} g[p(x)] \, \mathrm{d}x$$

Solution. The integral is given by $\mathbf{E}[g(Y_p)]$, where the variables X_1, \ldots, X_n are uniform on [0,1]

$$\mathbf{E}[g(Y_p)] = g(0) + \sum_{S \subset [n]} \int_0^{p(e_S)} y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}g(y)$$

Example. Given a w.l.p.f. $p:[0,1]^n \to [0,1]$ and a measurable function $g:[0,1] \to \overline{\mathbb{R}}$, compute

$$\int_{[0,1]^n} g[p(x)] \, \mathrm{d}x$$

Solution. The integral is given by $\mathbf{E}[g(Y_p)]$, where the variables X_1, \ldots, X_n are uniform on [0,1]

$$\mathbf{E}[g(Y_p)] = g(0) + \sum_{S \subseteq [n]} \int_0^{p(\mathbf{e}_S)} y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}g(y)$$

Example. Given a w.l.p.f. $p:[0,1]^n \to [0,1]$ and a measurable function $g:[0,1] \to \overline{\mathbb{R}}$, compute

$$\int_{[0,1]^n} g[p(x)] \, \mathrm{d}x$$

Solution. The integral is given by $\mathbf{E}[g(Y_p)]$, where the variables X_1, \ldots, X_n are uniform on [0,1]

$$\mathbf{E}[g(Y_p)] = g(0) + \sum_{S \subseteq [n]} \int_0^{p(\mathbf{e}_S)} y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}g(y)$$

Sugeno integral

$$\int_{[0,1]^n} \mathcal{S}_{\mu}(x) \, \mathrm{d}x = \sum_{S \subseteq [n]} \int_0^{\mu(S)} y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}y$$

Example.

$$\int_{[0,1]^2} \left[(c \wedge x_1) \vee x_2 \right] dx = \frac{1}{2} + \frac{1}{2} c^2 - \frac{1}{3} c^3$$

Note. Recall the expected value of the Choquet integral

$$\int_{[0,1]^n} \mathcal{C}_{\mu}(x) \, \mathrm{d}x = \sum_{S \subset [n]} \mu(S) \, \int_0^1 y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}y$$

Applications

Sugeno integral

$$\int_{[0,1]^n} \mathcal{S}_{\mu}(x) \, \mathrm{d} x = \sum_{S \subset [n]} \int_0^{\mu(S)} y^{n-|S|} (1-y)^{|S|} \, \mathrm{d} y$$

Example.

$$\int_{[0,1]^2} \left[(c \wedge x_1) \vee x_2 \right] dx = \frac{1}{2} + \frac{1}{2} c^2 - \frac{1}{3} c^3$$

Note. Recall the expected value of the Choquet integral

$$\int_{[0,1]^n} \mathcal{C}_{\mu}(x) \, \mathrm{d}x = \sum_{S \subseteq [n]} \mu(S) \, \int_0^1 y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}y$$

Sugeno integral

$$\int_{[0,1]^n} \mathcal{S}_{\mu}(x) \, \mathrm{d}x = \sum_{S \subseteq [n]} \int_0^{\mu(S)} y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}y$$

Example.

$$\int_{[0,1]^2} \left[(c \wedge x_1) \vee x_2 \right] dx = \frac{1}{2} + \frac{1}{2} c^2 - \frac{1}{3} c^3$$

Note. Recall the expected value of the Choquet integral

$$\int_{[0,1]^n} \mathcal{C}_{\mu}(x) \, \mathrm{d}x = \sum_{S \subset [n]} \mu(S) \, \int_0^1 y^{n-|S|} (1-y)^{|S|} \, \mathrm{d}y$$

(Marichal 2004)

Consider a system made up of n indep. components C_1, \ldots, C_n

Each component C_i has

$$\circ$$
 a lifetime X_i

a reliability $\eta(t)$ at time t>0

$$r_i(t) := \Pr[X_i > t] = 1 - F_i(t)$$

$$X_1$$
 X_2 X_3 X_2 X_3

Consider a system made up of n indep. components C_1, \ldots, C_n

Each component C_i has

a lifetime X_i

• a reliability $r_i(t)$ at time t > 0

$$r_i(t) := \Pr[X_i > t] = 1 - F_i(t)$$

Consider a system made up of n indep. components C_1, \ldots, C_n

Each component C_i has

- a lifetime X_i
- a *reliability* $r_i(t)$ at time t > 0

$$r_i(t) := \Pr[X_i > t] = 1 - F_i(t)$$

Consider a system made up of n indep. components C_1, \ldots, C_n

Each component C_i has

- a lifetime X_i
- a reliability $r_i(t)$ at time t > 0

$$r_i(t) := \Pr[X_i > t] = 1 - F_i(t)$$

Consider a system made up of n indep. components C_1, \ldots, C_n

Each component C_i has

- a lifetime X_i
- a reliability $r_i(t)$ at time t > 0

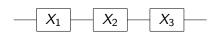
$$r_i(t) := \Pr[X_i > t] = 1 - F_i(t)$$

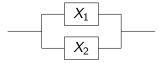
Consider a system made up of n indep. components C_1, \ldots, C_n

Each component C_i has

- a lifetime X_i
- a *reliability* $r_i(t)$ at time t > 0

$$r_i(t) := \Pr[X_i > t] = 1 - F_i(t)$$





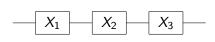
- The lifetime of a series subsystem is the minimum of the component lifetimes
- The lifetime of a parallel subsystem is the maximum of the same and lifetimes.

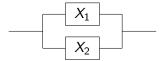
Consider a system made up of n indep. components C_1, \ldots, C_n

Each component C_i has

- a lifetime X_i
- a *reliability* $r_i(t)$ at time t > 0

$$r_i(t) := \Pr[X_i > t] = 1 - F_i(t)$$





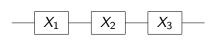
- The lifetime of a series subsystem is the minimum of the component lifetimes
- The lifetime of a parallel subsystem is the maximum of the component lifetimes

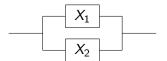
Consider a system made up of n indep. components C_1, \ldots, C_n

Each component C_i has

- a lifetime X_i
- a reliability $r_i(t)$ at time t > 0

$$r_i(t) := \Pr[X_i > t] = 1 - F_i(t)$$





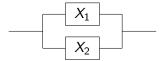
- The lifetime of a series subsystem is the minimum of the component lifetimes
- The lifetime of a parallel subsystem is the maximum of the component lifetimes

Consider a system made up of n indep. components C_1, \ldots, C_n

Each component C_i has

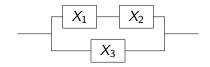
- a lifetime X_i
- a reliability $r_i(t)$ at time t > 0

$$r_i(t) := \Pr[X_i > t] = 1 - F_i(t)$$



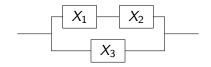
- The lifetime of a series subsystem is the minimum of the component lifetimes
- The lifetime of a parallel subsystem is the maximum of the component lifetimes

Question. What is the lifetime of the following system?



Solution.
$$Y = (X_1 \wedge X_2) \vee X_3$$

Question. What is the lifetime of the following system?



Solution.
$$Y = (X_1 \wedge X_2) \vee X_3$$

For a system mixing series and parallel connections :

System lifetime

$$Y_p = p(X_1, \ldots, X_n)$$

where p is

- an *n*-ary l.p.f.
- an n-ary w.l.p.f. if some X_i 's are constant

We then have explicit formulas for

a the odf of V

the expected value $E[Y_n]$

the moments

For a system mixing series and parallel connections :

System lifetime:

$$Y_p = p(X_1,\ldots,X_n)$$

where p is

- an n-ary l.p.f.
- an n-ary w.l.p.f. if some X_i 's are constant

We then have explicit formulas for

- the c.d.f. of Y_p
- the expected value E(Y,1)
 - the moment

For a system mixing series and parallel connections :

System lifetime:

$$Y_p = p(X_1, \ldots, X_n)$$

where p is

- an n-ary l.p.f.
- an n-ary w.l.p.f. if some X_i 's are constant

- the c.d.f. of Y_p
- the expected value $\mathbf{E}[Y_p]$
- the moments

For a system mixing series and parallel connections :

System lifetime :

$$Y_p = p(X_1,\ldots,X_n)$$

where p is

- an n-ary l.p.f.
- an n-ary w.l.p.f. if some X_i 's are constant

- the c.d.f. of Y_p
- the expected value $\mathbf{E}[Y_p]$
- the moments

For a system mixing series and parallel connections :

System lifetime:

$$Y_p = p(X_1, \ldots, X_n)$$

where p is

- an n-ary l.p.f.
- an n-ary w.l.p.f. if some X_i 's are constant

- the c.d.f. of Y_p
- ullet the expected value $\mathbf{E}[Y_p]$
- the moments

For a system mixing series and parallel connections:

System lifetime:

$$Y_p = p(X_1, \ldots, X_n)$$

where p is

- an *n*-ary l.p.f.
- an n-ary w.l.p.f. if some X_i's are constant

- the c.d.f. of Y_p
- the expected value $\mathbf{E}[Y_p]$
- the moments

System reliability at time t > 0

$$R_p(t) := \Pr[Y_p > t] = 1 - F_p(t)$$

For any measurable function $g:[0,\infty]\to\mathbb{R}$ such that

$$g(\infty)r_i(\infty)=0$$
 $(i=1,\ldots,n]$

we have

$$\mathbf{E}[g(Y_p)] = g(0) + \int_0^\infty R_p(t) \, \mathrm{d}g(t)$$

Mean time to failure

$$\mathbf{E}[Y_p] = \int_0^\infty R_p(t) \, \mathrm{d}t$$

System reliability at time t > 0

$$R_p(t) := \Pr[Y_p > t] = 1 - F_p(t)$$

For any measurable function $g:[0,\infty[\to\mathbb{R}]$ such that

$$g(\infty)r_i(\infty)=0$$
 $(i=1,\ldots,n)$

we have

$$\mathbf{E}\big[g(Y_p)\big] = g(0) + \int_0^\infty R_p(t)\,\mathrm{d}g(t)$$

Mean time to failure

$$\mathbf{E}[Y_p] = \int_0^\infty R_p(t) \, \mathrm{d}t$$

System reliability at time t > 0

$$R_p(t) := \Pr[Y_p > t] = 1 - F_p(t)$$

For any measurable function $g:[0,\infty[\to\mathbb{R}]$ such that

$$g(\infty)r_i(\infty)=0$$
 $(i=1,\ldots,n)$

we have

$$\mathbf{E}\big[g(Y_p)\big] = g(0) + \int_0^\infty R_p(t) \,\mathrm{d}g(t)$$

Mean time to failure :

$$\mathbf{E}[Y_p] = \int_0^\infty R_p(t) \, \mathrm{d}t$$

Example. Assume $r_i(t) = e^{-\lambda_i t}$ (i = 1, ..., n)

$$\mathbf{E}[Y_p] = \sum_{\substack{S \subseteq [n] \\ S \neq \varnothing}} m_{v_p}(S) \frac{1}{\sum_{i \in S} \lambda_i}$$

Series system

$$\mathbf{E}[Y_p] = \frac{1}{\sum_{i \in [n]} \lambda}$$

Parallel system

$$\mathbb{E}[Y_p] = \sum_{S \subseteq [n]} (-1)^{|S|-1} \frac{1}{\sum_{i \in S} \lambda_i}$$

Example. Assume $r_i(t) = e^{-\lambda_i t}$ (i = 1, ..., n)

$$\mathbf{E}[Y_p] = \sum_{\substack{S \subseteq [n] \\ S \neq \varnothing}} m_{\nu_p}(S) \frac{1}{\sum_{i \in S} \lambda_i}$$

Series system

$$\mathbf{E}[Y_p] = \frac{1}{\sum_{i \in [n]} \lambda_i}$$

Parallel system

$$\mathsf{E}\big[Y_p\big] = \sum_{\substack{S \subseteq [n] \\ S \neq \varnothing}} (-1)^{|S|-1} \frac{1}{\sum_{i \in S} \lambda_i}$$

Example. Assume $r_i(t) = e^{-\lambda_i t}$ (i = 1, ..., n)

$$\mathbf{E}[Y_p] = \sum_{\substack{S \subseteq [n] \\ S \neq \varnothing}} m_{\nu_p}(S) \frac{1}{\sum_{i \in S} \lambda_i}$$

Series system

$$\mathsf{E}\big[Y_p\big] = \frac{1}{\sum_{i \in [n]} \lambda_i}$$

Parallel system

$$\mathbf{E}[Y_p] = \sum_{\substack{S \subseteq [n] \\ S \neq \emptyset}} (-1)^{|S|-1} \frac{1}{\sum_{i \in S} \lambda_i}$$

Example. Assume $r_i(t) = e^{-\lambda_i t}$ (i = 1, ..., n)

$$\mathbf{E}[Y_p] = \sum_{\substack{S \subseteq [n] \\ S \neq \varnothing}} m_{\nu_p}(S) \frac{1}{\sum_{i \in S} \lambda_i}$$

Series system

$$\mathsf{E}\big[Y_p\big] = \frac{1}{\sum_{i \in [n]} \lambda_i}$$

Parallel system

$$\mathsf{E}\big[Y_p\big] = \sum_{\substack{S \subseteq [n] \\ S \neq \emptyset}} (-1)^{|S|-1} \frac{1}{\sum_{i \in S} \lambda_i}$$

Example. Assume $r_i(t) = e^{-\lambda_i t}$ (i = 1, ..., n)

$$\mathbf{E}[Y_p] = \sum_{\substack{S \subseteq [n] \\ S \neq \varnothing}} m_{\nu_p}(S) \frac{1}{\sum_{i \in S} \lambda_i}$$

Series system

$$\mathsf{E}\big[Y_p\big] = \frac{1}{\sum_{i \in [n]} \lambda_i}$$

Parallel system

$$\mathsf{E}\big[Y_p\big] = \sum_{\substack{S \subseteq [n] \\ S \neq \emptyset}} (-1)^{|S|-1} \frac{1}{\sum_{i \in S} \lambda_i}$$

Thanks for your attention!