# Comparison meaningful aggregation functions 

A state of the art

Jean-Luc Marichal

University of Luxembourg

Let $F$ be an aggregation function from $\mathbb{R}^{n}$ to $\mathbb{R}$ :

$$
x_{n+1}=F\left(x_{1}, \ldots, x_{n}\right)
$$

where $x_{1}, \ldots, x_{n}$ are the independent variables and $x_{n+1}$ is the dependent variable.

The general form of $F$ is restricted if we know the scale type of the variables $x_{1}, \ldots, x_{n}$ and $x_{n+1}$ (Luce 1959).

A scale type is defined by the class of admissible transformations, transformations which change the scale into an alternative acceptable scale.
$x_{i}$ defines an ordinal scale if the class of admissible transformations consists of the increasing bijections (automorphisms) of $\mathbb{R}$ onto $\mathbb{R}$.

## Example :

Suppose $x$ defines an ordinal scale and consider some of its values :


Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be any increasing bijection.
Then $\phi(x)$ defines an alternative acceptable scale.


Suppose $x_{1}, \ldots, x_{n}$ define the same ordinal scale.
What are the possible aggregation functions $F\left(x_{1}, \ldots, x_{n}\right)$ ?

## Examples:

- The arithmetic mean is meaningless :

$$
\frac{3+5}{2}<\frac{1+8}{2}
$$

Choose $\phi$ such that $\phi(1)=1, \phi(3)=4, \phi(5)=7, \phi(8)=8$.

$$
\frac{\phi(3)+\phi(5)}{2}>\frac{\phi(1)+\phi(8)}{2}
$$

- The min and max functions are meaningful :

$$
\begin{aligned}
\min (3,5) & >\min (1,8) \\
\min (\phi(3), \phi(5)) & >\min (\phi(1), \phi(8))
\end{aligned}
$$

## Principle of theory construction (Luce 1959)

Admissible transformations of the independent variables should lead to an admissible transformation of the dependent variable.

Suppose that

$$
x_{n+1}=F\left(x_{1}, \ldots, x_{n}\right)
$$

where $x_{n+1}$ is an ordinal scale and $x_{1}, \ldots, x_{n}$ are independent ordinal scales.

Let $A(\mathbb{R})$ be the automorphism group of $\mathbb{R}$.

For any $\phi_{1}, \ldots, \phi_{n} \in A(\mathbb{R})$, there is $\Phi_{\phi_{1}, \ldots, \phi_{n}} \in A(\mathbb{R})$ such that

$$
F\left[\phi_{1}\left(x_{1}\right), \ldots, \phi_{n}\left(x_{n}\right)\right]=\Phi_{\phi_{1}, \ldots, \phi_{n}}\left[F\left(x_{1}, \ldots, x_{n}\right)\right]
$$

Assume $x_{1}, \ldots, x_{n}$ define the same ordinal scale.
Then the functional equation simplifies into

$$
F\left[\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right]=\Phi_{\phi}\left[F\left(x_{1}, \ldots, x_{n}\right)\right]
$$

Equivalently, F fulfills the condition (Orlov 1981)

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{n}\right) & \leqslant F\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \\
& \Uparrow \\
F\left[\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right] & \leqslant F\left[\phi\left(x_{1}^{\prime}\right), \ldots, \phi\left(x_{n}^{\prime}\right)\right]
\end{aligned}
$$

$F$ is said to be comparison meaningful (Ovchinnikov 1996)

Assume $x_{1}, \ldots, x_{n}$ are independent ordinal scales.
Recall that the functional equation is

$$
F\left[\phi_{1}\left(x_{1}\right), \ldots, \phi_{n}\left(x_{n}\right)\right]=\Phi_{\phi_{1}, \ldots, \phi_{n}}\left[F\left(x_{1}, \ldots, x_{n}\right)\right]
$$

Equivalently, $F$ fulfills the condition

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{n}\right) & \leqslant F\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \\
& \Uparrow \\
F\left[\phi_{1}\left(x_{1}\right), \ldots, \phi_{n}\left(x_{n}\right)\right] & \leqslant F\left[\phi_{1}\left(x_{1}^{\prime}\right), \ldots, \phi_{n}\left(x_{n}^{\prime}\right)\right]
\end{aligned}
$$

We say that $F$ is strongly comparison meaningful

## Purpose of the presentation

## To provide a complete description of comparison meaningful functions

To provide a complete description of strongly comparison meaningful functions

## Str. comp. meaningful functions : the continuous case

First result (Osborne 1970, Kim 1990)
$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and strongly comparison meaningful

$$
\Leftrightarrow\left\{\begin{array}{l}
\exists k \in\{1, \ldots, n\} \\
\exists g: \mathbb{R} \rightarrow \mathbb{R} \quad \text { - continuous } \\
\text { such that } \quad \text { - strictly monotonic or constant } \\
\quad F\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{k}\right)
\end{array}\right.
$$

+ idempotent, i.e., $F(x, \ldots, x)=x$

$$
\Leftrightarrow\left\{\begin{array}{c}
\exists k \in\{1, \ldots, n\} \text { such that } \\
F\left(x_{1}, \ldots, x_{n}\right)=x_{k}
\end{array}\right.
$$

## The nondecreasing case

## Second result (Marichal \& Mesiar \& Rückschlossová 2004)

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is nondecreasing and strongly comparison meaningful

$$
\Leftrightarrow\left\{\begin{array}{l}
\exists k \in\{1, \ldots, n\} \\
\exists g: \mathbb{R} \rightarrow \mathbb{R} \text { strictly increasing or constant } \\
\text { such that } \\
\quad F\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{k}\right)
\end{array}\right.
$$

+ idempotent

$$
\Leftrightarrow\left\{\begin{array}{c}
\exists k \in\{1, \ldots, n\} \text { such that } \\
F\left(x_{1}, \ldots, x_{n}\right)=x_{k}
\end{array}\right.
$$

## The general case

Third result (Marichal \& Mesiar \& Rückschlossová 2004)
$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strongly comparison meaningful

$$
\Leftrightarrow\left\{\begin{array}{l}
\exists k \in\{1, \ldots, n\} \\
\exists g: \mathbb{R} \rightarrow \mathbb{R} \text { strictly monotonic or constant } \\
\text { such that } \\
\quad F\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{k}\right)
\end{array}\right.
$$

+ idempotent

$$
\Leftrightarrow\left\{\begin{array}{c}
\exists k \in\{1, \ldots, n\} \text { such that } \\
F\left(x_{1}, \ldots, x_{n}\right)=x_{k}
\end{array}\right.
$$

## Comparison meaningful functions

First result (Orlov 1981)

```
\(F: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is - symmetric
- continuous
- internal, i.e., \(\min _{i} x_{i} \leqslant F\left(x_{1}, \ldots, x_{n}\right) \leqslant \max _{i} x_{i}\)
- comparison meaningful
```

$$
\Leftrightarrow\left\{\begin{array}{c}
\exists k \in\{1, \ldots, n\} \text { such that } \\
F\left(x_{1}, \ldots, x_{n}\right)=x_{(k)}
\end{array}\right.
$$

where $x_{(1)}, \ldots, x_{(n)}$ denote the order statistics resulting from reordering $x_{1}, \ldots, x_{n}$ in the nondecreasing order.

Next step : suppress symmetry and relax internality into idempotency

## Lattice polynomials

## Definition (Birkhoff 1967)

An $n$-variable lattice polynomial is any expression involving $n$ variables $x_{1}, \ldots, x_{n}$ linked by the lattice operations

$$
\wedge=\min \quad \text { and } \quad \vee=\max
$$

in an arbitrary combination of parentheses.

For example,

$$
L\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \vee x_{3}\right) \wedge x_{2}
$$

is a 3 -variable lattice polynomial.

## Lattice polynomials

## Proposition (Ovchinnikov 1998, Marichal 2002)

A lattice polynomial on $\mathbb{R}^{n}$ is symmetric iff it is an order statistic.

We have

$$
x_{(k)}=\bigvee_{\substack{T \subseteq\{1, \ldots, n\} \\|T|=n-k+1}} \bigwedge_{i \in T} x_{i}=\bigwedge_{\substack{T \subseteq\{1, \ldots, n\} \\|T|=k}} \bigvee_{i \in T} x_{i}
$$

Define the kth order statistic function

$$
\mathrm{OS}_{k}: x \mapsto x_{(k)}
$$

## The nonsymmetric case

## Second result (Yanovskaya 1989)

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is - continuous

- idempotent
- comparison meaningful
$\Leftrightarrow \quad \exists$ a lattice polynomial $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $F=L$.
+ symmetric
$\Leftrightarrow \exists k \in\{1, \ldots, n\}$ such that $F=\mathrm{OS}_{k}$ ( $k$ th order statistic).

Next step : suppress idempotency

## The nonidempotent case

Third result (Marichal 2002)
$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is - continuous

- comparison meaningful
$\Leftrightarrow\left\{\begin{array}{l}\exists L: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { lattice polynomial } \\ \exists g: \mathbb{R} \rightarrow \mathbb{R} \text { - continuous } \\ \text { such that } \quad \text { - strictly monotonic or constant } \\ F=g \circ L\end{array}\right.$
+ symmetric

$$
F=g \circ \mathrm{OS}_{k}
$$

## Towards the noncontinuous case

## Fourth result (Marichal 2002)

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is - nondecreasing

- idempotent
- comparison meaningful
$\Leftrightarrow \quad \exists$ a lattice polynomial $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $F=L$.


## Note : These functions are continuous!

+ symmetric

$$
F=\mathrm{OS}_{k}
$$

Next step : suppress idempotency

## The nondecreasing case

Fifth result (Marichal \& Mesiar \& Rückschlossová 2004)
$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is - nondecreasing

- comparison meaningful

$$
\Leftrightarrow\left\{\begin{array}{l}
\exists L: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { lattice polynomial } \\
\exists g: \mathbb{R} \rightarrow \mathbb{R} \text { strictly increasing or constant } \\
\text { such that } \\
\quad F=g \circ L
\end{array}\right.
$$

These functions are continuous up to possible discontinuities of function $g$

Final step : suppress nondecreasing monotonicity (a hard task!)

## The general case

... is much more complicated to describe

- We loose the concept of lattice polynomial
- The description of $F$ is done through a partition of the domain $\mathbb{R}^{n}$ into particular subsets, called invariant subsets


## Invariant subsets

Let us consider the subsets of $\mathbb{R}^{n}$ of the form

$$
I=\left\{x \in \mathbb{R}^{n} \mid x_{\pi(1)} \triangleleft_{1} \cdots \triangleleft_{n-1} x_{\pi(n)}\right\}
$$

where $\pi$ is any permutation on $\{1, \ldots, n\}$ and $\triangleleft_{i} \in\{<,=\}$.
Denote this class of subsets by $\mathcal{I}\left(\mathbb{R}^{n}\right)$.

## Example: $\mathbb{R}^{2}$

Description of $\mathcal{I}\left(\mathbb{R}^{2}\right)$ :
$I_{1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=x_{2}\right\}$
$I_{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<x_{2}\right\}$
$I_{3}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>x_{2}\right\}$


## Invariant subsets

## Proposition (Bartłomiejczyk \& Drewniak 2004)

The class $\mathcal{I}\left(\mathbb{R}^{n}\right)$ consists of the minimal invariant subsets of $\mathbb{R}^{n}$.
That is,

- Each subset $I \in \mathcal{I}\left(\mathbb{R}^{n}\right)$ is invariant in the sense that

$$
\left(x_{1}, \ldots, x_{n}\right) \in I \quad \Rightarrow \quad\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right) \in I \quad \forall \phi \in A(\mathbb{R})
$$

- Each subset $I \in \mathcal{I}\left(\mathbb{R}^{n}\right)$ is minimal in the sense that it has no proper invariant subset


## The general case

## Sixth result (Marichal \& Mesiar \& Rückschlossová 2004)

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is comparison meaningful
$\Leftrightarrow \forall I \in \mathcal{I}\left(\mathbb{R}^{n}\right),\left\{\begin{array}{l}\exists k_{I} \in\{1, \ldots, n\} \\ \exists g_{I}: \mathbb{R} \rightarrow \mathbb{R} \text { strictly monotonic or constant } \\ \text { such that } \\ \\ \left.F\right|_{I}\left(x_{1}, \ldots, x_{n}\right)=g_{I}\left(x_{k_{l}}\right) \\ \text { where } \forall I, I^{\prime} \in \mathcal{I}\left(\mathbb{R}^{n}\right), \\ \bullet \text { either } g_{I}=g_{I^{\prime}} \\ \text { • or } \operatorname{ran}\left(g_{I}\right)=\operatorname{ran}\left(g_{I^{\prime}}\right) \text { is a singleton } \\ \text { • or } \operatorname{ran}\left(g_{I}\right)<\operatorname{ran}\left(g_{I^{\prime}}\right) \\ \bullet \text { or } \operatorname{ran}\left(g_{I}\right)>\operatorname{ran}\left(g_{I^{\prime}}\right)\end{array}\right.$

## Invariant functions

Now, assume that

$$
x_{n+1}=F\left(x_{1}, \ldots, x_{n}\right)
$$

where $x_{1}, \ldots, x_{n}$ and $x_{n+1}$ define the same ordinal scale.

Then the functional equation simplifies into

$$
F\left[\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right]=\phi\left[F\left(x_{1}, \ldots, x_{n}\right)\right]
$$

(introduced in Marichal \& Roubens 1993)
$F$ is said to be invariant (Bartłomiejczyk \& Drewniak 2004)

## The symmetric case

## First result (Marichal \& Roubens 1993)

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is - symmetric

- continuous
- nondecreasing
- invariant
$\Leftrightarrow \exists k \in\{1, \ldots, n\}$ such that $F=\mathrm{OS}_{k}$

Next step : suppress symmetry and nondecreasing monotonicity

## The nonsymmetric case

## Second result (Ovchinnikov 1998)

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is - continuous

- invariant
$\Leftrightarrow \quad \exists$ a lattice polynomial $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $F=L$
Note : These functions are nondecreasing !
+ symmetric

$$
F=\mathrm{OS}_{k}
$$

Next step : suppress continuity

## The nondecreasing case

## Third result (Marichal 2002)

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is - nondecreasing

- invariant
$\Leftrightarrow \quad \exists$ a lattice polynomial $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $F=L$
Note: These functions are continuous!
+ symmetric

$$
F=\mathrm{OS}_{k}
$$

Final step : suppress nondecreasing monotonicity

## The general case

The general case was first described by Ovchinnikov (1998)
A simpler description in terms of invariant sets is due to Bartłomiejczyk \& Drewniak (2004)

## Fourth result (Ovchinnikov 1998)

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is invariant

$$
\Leftrightarrow \forall I \in \mathcal{I}\left(\mathbb{R}^{n}\right),\left\{\begin{array}{l}
\exists k_{I} \in\{1, \ldots, n\} \\
\text { such that } \\
\left.F\right|_{/}\left(x_{1}, \ldots, x_{n}\right)=x_{k_{1}}
\end{array}\right.
$$

## Conclusion

We have described all the possible merging functions

$$
F: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

which map $n$ ordinal scales into an ordinal scale.

These results hold true when $F$ is defined on $E^{n}$, where $E$ is any open real interval.

The cases where $E$ is a non-open real interval all have been described and can be found in
> J.-L. Marichal, R. Mesiar, and T. Rückschlossová, A Complete Description of Comparison Meaningful Functions, Aequationes Mathematicae 69 (2005) 309-320.

Thank you for your attention

