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Let F be an aggregation function from R" to R :
Xnt1 = F(x1,. .., %n)

where x1, ..., Xy, are the independent variables and x,41 is the
dependent variable.

The general form of F is restricted if we know the scale type of the
variables xi, ..., x, and x,+1 (Luce 1959). J

A scale type is defined by the class of admissible transformations,
transformations which change the scale into an alternative
acceptable scale.

x; defines an ordinal scale if the class of admissible transformations
consists of the increasing bijections (automorphisms) of R onto R.
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Example :
Suppose x defines an ordinal scale and consider some of its values :

» * - - - - R
4 5 7
Let ¢ : R — R be any increasing bijection.

Then ¢(x) defines an alternative acceptable scale.

- - R
-3 15 142 58 263
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Suppose x1, ..., x, define the same ordinal scale.
What are the possible aggregation functions F(xi,...,x,)?
Examples :

@ The arithmetic mean is meaningless :
3+5 < 148
2 2
Choose ¢ such that ¢(1) =1, ¢(3) =4, ¢(5) =7, #(8) = 8.

¢(3) +(5) _ #(1) +¢(8)
2 2

@ The min and max functions are meaningful :

min(3,5) > min(1, 8)
min(¢(3), (5)) > min(¢(1), $(8))
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Principle of theory construction (Luce 1959)

Admissible transformations of the independent variables should lead
to an admissible transformation of the dependent variable.

Suppose that
Xnt1 = F(x1,...,%n)

where x,41 is an ordinal scale and xg, ..., X, are independent
ordinal scales.

Let A(R) be the automorphism group of R.

For any ¢1,...,¢n € A(R), there is &4, 4 € A(R) such that

Fl1(x1),- .- ¢n(xa)] = ¢¢17~-~:¢n[F(X1? s Xn)]
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Assume xi, ..., x, define the same ordinal scale.
Then the functional equation simplifies into

FIO0), - d0m)] = PlF a1, x0)] |

Equivalently, F fulfills the condition (Orlov 1981)

F(xi,...yxn) < F(xX1,...,x))
(3
Flp(x1), - - -, d(xn)] < Flp(x1), - - -, d(x5)]

F is said to be comparison meaningful (Ovchinnikov 1996)
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Assume xi,..., X, are independent ordinal scales.
Recall that the functional equation is

Flga(xa) -5 @n(xn)] = ¢¢17~~~:¢n[F(X]-? cees Xn)] J

Equivalently, F fulfills the condition

F(x1,. yxn) < F(X1,. .., %))

)
Flgr(x), - -, nlxn)] < Flg1(x1), - -, dn(x7)]

We say that F is strongly comparison meaningful
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Purpose of the presentation

To provide a complete description of
comparison meaningful functions

To provide a complete description of
strongly comparison meaningful functions J
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Str. comp. meaningful functions : the continuous case

First result (Osborne 1970, Kim 1990)
F :R" — R is continuous and strongly comparison meaningful

Jke{l,...,n}
dg:R — R - continuous

& - strictly monotonic or constant
such that

F(x1,...,xn) = g(xx)

+ idempotent, i.e., F(x,...,x) = x

Jk €{1,...,n} such that
F(x1,...,xn) = Xk
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The nondecreasing case

Second result (Marichal & Mesiar & Riickschlossova 2004)
F : R" — R is nondecreasing and strongly comparison meaningful

Jke{l,...,n}
Jg: R — R strictly increasing or constant
such that

F(xi,...,xn) = g(xx)

+ idempotent

Jk €{1,...,n} such that
F(x1,...,xn) = Xk
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The general case

Third result (Marichal & Mesiar & Riickschlossova 2004)
F :R" — R is strongly comparison meaningful

Jke{l,...,n}
Jg:R — R strictly monotonic or constant
such that

F(x1,...,xn) = g(x«)

+ idempotent

Jk € {1,...,n} such that
F(x1,...,xn) = Xk
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Comparison meaningful functions

First result (Orlov 1981)
F:R" - Ris - symmetric

- continuous

- internal, i.e., min;x; < F(x1,...,Xp) < max; x;
comparison meaningful

{ Jk € {1,...,n} such that
F(Xl,...,Xn) :X(k)

where x(1), ..., X(n) denote the order statistics resulting from
reordering xi,..., X, in the nondecreasing order.

Next step : suppress symmetry and relax internality into idempotency
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Lattice polynomials

Definition (Birkhoff 1967)
An n-variable /attice polynomial is any expression involving
n variables x1, ..., x, linked by the lattice operations

A=min and V = max

in an arbitrary combination of parentheses.

For example,
L(Xl, X2, X3) = (Xl vV X3) N Xo

is a 3-variable lattice polynomial.
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Lattice polynomials

Proposition (Ovchinnikov 1998, Marichal 2002)
A lattice polynomial on R" is symmetric iff it is an order statistic.

We have
w= NV Av= A Vx
TC{1,..,n} i€T TC{1,..,n} i€T
| T|=n—k+1 | TI=k

Define the kth order statistic function

OSk : x = Xk
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The nonsymmetric case

Second result (Yanovskaya 1989)
F:R" - Ris - continuous

- idempotent

- comparison meaningful

< 3 a lattice polynomial L : R" — R such that F = L.

+ symmetric

< Jke{l,...,n} such that F = OSj (kth order statistic).

Next step : suppress idempotency
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The nonidempotent case

Third result (Marichal 2002)
F:R" —Ris - continuous
- comparison meaningful

dL:R" — R lattice polynomial
dg:R — R - continuous
& - strictly monotonic or constant
such that
F=gol

+ symmetric
F =g oOS
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Towards the noncontinuous case

Fourth result (Marichal 2002)
F:R"” — Ris - nondecreasing
- idempotent
- comparison meaningful

< J a lattice polynomial L : R" — R such that F = L.

Note : These functions are continuous ! J

+ symmetric
F = OSk

Next step : suppress idempotency
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The nondecreasing case

Fifth result (Marichal & Mesiar & Riickschlossova 2004)
F:R" — Ris - nondecreasing
- comparison meaningful

dL:R" — R lattice polynomial
Jg : R — R strictly increasing or constant
such that

F=gol

These functions are continuous up to
possible discontinuities of function g

Final step : suppress nondecreasing monotonicity (a hard task!)
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The general case

. is much more complicated to describe

@ We loose the concept of lattice polynomial

@ The description of F is done through a partition of the
domain R” into particular subsets, called invariant subsets
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Let us consider the subsets of R" of the form

I ={x €R" | ;1) <1+ <n-1 Xe(n)}

where 7 is any permutation on {1,...,n} and <; € {<,=}.

Denote this class of subsets by Z(R").

Example : R?

Description of Z(R?) :

h ={(x1,x) | x1 = x2}
b = {(Xl,Xg) ’ x1 < X2}
/3 = {(Xl,XQ) | X1 > X2}

X2

X1 < X2

X1 > X2

X1 = X2

X1
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Invariant subsets

Proposition (Barttomiejczyk & Drewniak 2004)
The class Z(IR") consists of the minimal invariant subsets of R".

That is,
e Each subset | € Z(R") is invariant in the sense that

(X1, xn) €1 = (d(x1),...,0(xn)) €1 V¢ e AR)

e Each subset | € Z(R") is minimal in the sense that it has no
proper invariant subset



Comparison meaningful functions
00000e

The general case

Sixth result (Marichal & Mesiar & Riickschlossova 2004)
F :R" — R is comparison meaningful

(ke {1,...,n}
dg; : R — R strictly monotonic or constant
such that

Fli(xa, .. xn) = g1(xx)
n
& VIEI(R), where VI, 1" € Z(R"),
e either gy = gy
e or ran(g;) = ran(gy) is a singleton
e or ran(gy) < ran(gy)
e or ran(gy) > ran(gy)
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Invariant functions

Now, assume that
Xn4+1 = F(le s 7Xn)

where x1,...,x, and xp11 define the same ordinal scale.

Then the functional equation simplifies into

Flop(xa), .-, ¢(xa)] = ¢[F(xa, -, xn)] |

(introduced in Marichal & Roubens 1993)

F is said to be invariant (Barttomiejczyk & Drewniak 2004)
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The symmetric case

First result (Marichal & Roubens 1993)
F:R" - Ris -symmetric

- continuous

- nondecreasing

- invariant

< Jke{l,...,n} such that F = OS

Next step : suppress symmetry and nondecreasing monotonicity
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The nonsymmetric case

Second result (Ovchinnikov 1998)
F:R"” — R is - continuous
- invariant

< a lattice polynomial L: R” — R such that F =L

Note : These functions are nondecreasing ! J

+ symmetric
F = OSk

Next step : suppress continuity
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The nondecreasing case

Third result (Marichal 2002)
F:R" — Ris - nondecreasing
- invariant

< a lattice polynomial L: R” — R such that F =L

Note : These functions are continuous! J

+ symmetric
F = OSk

Final step : suppress nondecreasing monotonicity
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The general case

The general case was first described by Ovchinnikov (1998)

A simpler description in terms of invariant sets is due to
Barttomiejczyk & Drewniak (2004)

Fourth result (Ovchinnikov 1998)
F :R" — R is invariant

Ik €{1,...,n}
< VI eZ(R™), ¢ such that
F‘[(Xl, . ,Xn) = Xk,
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Conclusion

We have described all the possible merging functions
F:R" - R,
which map n ordinal scales into an ordinal scale.

These results hold true when F is defined on E", where E is any
open real interval.

The cases where E is a non-open real interval all have been
described and can be found in

J.-L. Marichal, R. Mesiar, and T. Riickschlossov3,
A Complete Description of Comparison Meaningful Functions,
Aequationes Mathematicae 69 (2005) 309-320.
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Thank you for your attention )
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