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1 Divisibilité
Définition 1.1 Soient a et b des entiers. On dit que a divise b et on note a|b s’il existe
un entier c tel que b = ac. On dit alors que a est un diviseur de b, ou que b est divisible
par a.

Exemple 1.2
1. Comme 24 = 2 · 12 et 24 = 3 · 8, 2|24, 3|24, 8|24 et 12|24. De plus, 24 = (−2)(−12),

donc −2|24 et −12|24.

2. Aucun entier non nul n’est divisible par 0. Si a ̸= 0, il ne peut exister d’entier c tel
que a = c · 0. Par contre 0|0, comme 0 = 0 · c, pour tout entier c.

3. Tout entier a divise 0, parce que 0 = 0 · a pour tout entier a.

4. Les seuls diviseurs positifs de 5 sont 1 et 5.

Tout nombre positif a admet a et 1 comme diviseurs. Certains nombres n’en ont pas
d’autres.

Définition 1.3 Un nombre entier positif p > 1 est appelé nombre premier si ses seuls
diviseurs sont 1 et p. Un nombre non premier est dit nombre composé.

Les propriétés de base de la divisibilité sont les suivantes:

Proposition 1.4 Soient a, b, c, x et y des entiers.

1. Si a|b et x|y, alors ax|by.

2. Si a|b et b|c, alors a|c.

3. Si a|b et b ̸= 0, alors, |a| ≤ |b|.

4. Si a|b et a|c, alors a|bx+ cy.
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Théorème 1.5 Soient deux entiers a et b, tel que b ̸= 0. Alors, il existe des entiers q et
r uniques, tels que

a = bq + r et 0 ≤ r < |b|.

Le nombre q est appelé le quotient de a par b et r le reste.

Exemple 1.6
1. Soient a = 37 et b = 15. Comme 37 = 2 · 15 + 7, le quotient de 37 par 15 vaut 2 et

le reste 7.

2. Si a = 37 et b = −15, alors 37 = (−2)(−15) + 7 implique que le quotient est −2 et
le reste 7.

3. Si a = −37 et b = 15, alors −37 = −2 · 15 − 7 = −3 · 15 + 8. Le quotient de −37
par 15 vaut −3 et le reste 8, comme le reste doit être positif.

Définition 1.7 Soient a et b deux entiers. On appelle plus grand commun diviseur de a
et de b et on note pgcd (a, b), le plus grand entier qui est à la fois diviseur de a et diviseur
de b.

Proposition 1.8 Soient a, b et n des entiers. Il existe des entiers x et y tels que ax+by =
n si et seulement si n est un multiple de pgcd (a, b). En particulier, il existe des entiers
x et y tels que ax+ by = pgcd (a, b).

Exemple 1.9
Comme 3 et 4 n’ont pas de diviseurs communs supérieurs à 1, l’équation 3x + 4y = 123
admet une solution.

Pour trouver les entiers x et y en pratique, on utilise l’algorithme d’Euclide étendu.

Définition 1.10 On dit que deux entiers a et b sont premiers entre eux si et seulement
si pgcd (a, b) = 1.

Théorème 1.11 (Bezout) Deux nombres a et b sont premiers entre eux si et seulement
s’il existe deux entiers u et v tels que ua+ vb = 1.

2 Arithmétique modulaire
Définition 2.1 Si a, b et n sont des entiers, on dit que a est congru à b modulo n et on
note a ≡ b (mod n) si n|a − b. On dit aussi que b est un résidu de a modulo n, ou un
reste de a modulo n. La relation ainsi définie est appelée congruence modulo n.

Exemple 2.2
1. Comme 9 = 23 − 14, la définition ci-dessus implique que 23 ≡ 14 (mod 9). En

fait, n’importe quels deux nombres de l’ensemble {...,−4, 5, 14, 23, ...} sont congrus
modulo 9.

2. La congruence a ≡ b (mod 1) est exacte pour tous entiers a et b.

3. Il est évident que a ≡ b (mod n) si et seulement si a ≡ b (mod (−n)). Pour cette
raison, on ne considère que des modules positifs.
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Proposition 2.3 Si a, b, c et n sont des entiers, alors

1. a ≡ a (mod n).

2. a ≡ b (mod n), si et seulement si b ≡ a (mod n).

3. Si a ≡ b (mod n) et b ≡ c (mod n), alors a ≡ c (mod n).

Ces trois propriétés, appelées réflexivité, symétrie et transitivité impliquent que la con-
gruence est une relation d’équivalence. La classe d’équivalence d’un entier a pour cette
relation, c’est-à-dire l’ensemble des entiers b congrus à a modulo n est la classe de congru-
ence de a modulo n. Il existe n classes d’équivalence distinctes de la congruence modulo
n. On les représente par les nombres 0, 1, ..., n− 1 et on désigne l’ensemble de ces classes
de congruence par

Z/nZ = {0, 1, ..., n− 1}.
La proposition suivante donne les propríétés arithmétiques élémentaires des congru-

ences.

Proposition 2.4 Si a, b, c, d et n sont des entiers, alors

1. Si a ≡ b (mod n), alors ac ≡ bc (mod n), pour tout entier c.

2. Si a ≡ b (mod n) et c ≡ d (mod n), alors a+ c ≡ b+ d (mod n).

3. Si a ≡ b (mod n) et c ≡ d (mod n), alors ac ≡ bd (mod n).

4. Si a ≡ b (mod n), alors ak ≡ bk (mod n), pour tout entier positif k.

Exemple 2.5
1. Comme 16 ≡ −1 (mod 17), 162 ≡ 256 ≡ 1 (mod 17).

2. Calculons 24k (mod 5). Comme 24 ≡ 16 ≡ 1 (mod 5), on a (24)2 ≡ 28 ≡ 1 (mod 5),
212 ≡ 2824 ≡ 1 (mod 5) et ainsi de suite. Donc, pour tout k ≥ 1, 24k ≡ 1 (mod 5).

3. On peut calculer 232 (mod 17), sans évaluer 232. En effet, on obtient de proche en
proche 23 ≡ 8 (mod 17), 24 ≡ 16 (mod 17), 25 ≡ 32 ≡ 15 (mod 17), 210 ≡ (25)2 ≡
152 ≡ 4 (mod 17), 230 ≡ (210)3 ≡ 43 ≡ 64 ≡ 13 (mod 17), 232 ≡ 23022 ≡ 13 · 4 ≡
52 ≡ 1 (mod 17).

Proposition 2.6 Si a, b, c, d et n sont des entiers, alors

1. Si a ≡ b (mod n) et d|m, alors a ≡ b (mod d).

2. Si ac ≡ bd (mod n), alors a ≡ b (mod n/pgcd (c, n)).

Exemple 2.7
Montrons que 3|n3 − n, pour tout n. Comme ceci équivaut à montrer que n3 − n ≡ 0
(mod 3), pour tout n et que tout nombre n est ou bien congru à 0, 1 ou 2 modulo 3, il
suffit de vérifier la relation ci-dessus pour ces trois valeurs. Or,

03 ≡ 0 (mod 3), 13 − 1 ≡ 0 (mod 3) et 23 − 2 ≡ 0 (mod 3).

Par conséquent, 3|n3 − n, pour tout n.
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Proposition 2.8 Si pgcd (m, n) = 1, alors
(
a ≡ b (mod m) et a ≡ b (mod n)

)
si et

seulement si a ≡ b (mod mn).

Exemple 2.9
1. a ≡ b (mod 12) est équivalent à

(
a ≡ b (mod 4) et a ≡ b (mod 3)

)
.

2. Si p et q sont des nombres premiers distincts et si a est un entier, alors a2 ≡ 1
(mod pq) si et seulement si a2 ≡ 1 (mod p) et a2 ≡ 1 (mod q).

Définition 2.10 Soient a et n des nombres entiers. Un entier a’ est appelé inverse de a
modulo n si et seulement si aa′ ≡ a′a ≡ 1 (mod n). On dit que a est inversible modulo
n, si a admet un inverse. Si a admet un inverse, alors cet inverse est unique modulo n.

Exemple 2.11
1. Comme 2 · 6 ≡ 1 (mod 11), l’inverse de 6 modulo 11 est 2 et l’inverse de 2 modulo

11 est 6.

2. L’inverse de 3 modulo 8 est 3, car 3 · 3 ≡ 1 (mod 8).

3. 2 n’admet pas d’inverse modulo 8, parce que 2x ≡ 1 (mod 8) implique que 8|2x−1,
ce qui est impossible, comme 2x− 1 est toujours un nombre impaire.

Proposition 2.12 Les éléments inversibles de Z/nZ sont les entiers premiers avec n et
forment un groupe pour la multiplication noté (Z/nZ)⋆.

preuve: Soit a ∈ Z/nZ. Alors, au ≡ 1 (mod n) si et seulement s’il existe un entier v tel
que au − nv = 1. Le théorème de Bezout implique que a et n sont alors premiers entre
eux. �

Si p est un nombre premier, tous les entiers plus petits que p sont premiers avec p. Tous
les éléments non nuls de Z/pZ sont donc inversibles et la propostion ci-dessus implique

Corollaire 2.13 Si p est un nombre premier, alors Z/pZ est un corps.

Cela veut dire qu’on peut faire toutes les opérations de calcul habituelles avec les classes
de congruences.

Comment calcule-t-on l’inverse x d’un entier u modulo n? Cet inverse est solution de
l’équation

ux ≡ 1 (mod n)

Cela équivaut à dire qu’il existe un entier v tel que

ux− 1 = vn

c’est-à-dire
ux− vn = 1

Si u et v sont premiers entre eux, l’existence de x et y suit du théorème de Bezout et on
les trouve en pratique en utilisant l’algorithme d’Euclide étendu.
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3 Les théorèmes modulaires fondamentaux
Théorème 3.1 (des restes chinois) Si m1,m2, ...,mk sont des entiers deux à deux
premiers entre eux et si a1, a2, ..., ak sont des entiers quelconques, il existe un entier x tel
que, pour tout i = 1, ..., k

x ≡ ai (mod mi).

Corollaire 3.2 Si n =
k∏

i=1

pαi
i , alors

Z/nZ ≃
k∏

i=1

Z/pαi
i Z.

Théorème 3.3 (Fermat) Soit p un nombre premier. Alors, ap ≡ a (mod p), pour tout
entier a. En particulier, si a et p sont premiers entre eux, ap−1 ≡ 1 (mod p).

Exemple 3.4
1. Montrons que 250 + 350 est divisible par 13.

D’après le théorème de Fermat, 212 ≡ 1 (mod 13). Comme 50 = 4 · 12 + 2, on
a 250 ≡ 24·12+2 ≡ (212)422 ≡ 1 · 4 (mod 13). De plus, 312 ≡ 1 (mod 13), donc
350 ≡ 34832 ≡ 9 (mod 13). Par conséquent, 250 + 350 ≡ 4 + 9 ≡ 13 ≡ 0 (mod 13).

2. Déterminons le reste de 3372 par 37.

Comme 37 est un nombre premier, 336 ≡ 1 (mod 37). Or, 372 = 10 · 36 + 12,
donc 3372 ≡ 310·36+12 ≡ (336)10312 ≡ 1 · 312 (mod 37). Comme 34 ≡ 81 ≡ 7
(mod 37), 312 ≡ 73 ≡ 7 · 49 ≡ 7 · 12 ≡ 10 (mod 37). Par conséquent, le reste
cherché vaut 10.

Dans l’arithmétique des congruences, le nombre d’éléments inversibles joue un rôle impor-
tant. Il apparaît entre autre dans la généralisation du théorème de Fermat aux nombres
composés.

Définition 3.5 On note φ(n) le nombre d’éléments inversibles de Z/nZ. La fonction φ
est appelée l’indicateur d’Euler.

Exemple 3.6
1. φ(8) = 4, comme les éléments inversibles modulo 8 dans {0, 1, 2, ..., 7} sont 1, 3, 5 et

7.

2. φ(p) = p − 1, si p est un nombre premier, car pgcd (p, a) = 1, pour tout a dans
{1, 2, ..., p− 1}.

3. Si p est un nombre premier et r un entier positif, alors, il existe pr−1 multiples de p
plus petits que pr. Comme tous les autres nombres plus petits que pr sont premiers
avec p, on a

φ(pr) = pr − pr−1 = pr
(
1− 1

p

)
.

Proposition 3.7 Si pgcd (m, n) = 1, alors φ(mn) = φ(m)φ(n).
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Corollaire 3.8 Si n = pα1
1 · · · pαk

k , alors

φ(n) =
k∏

i=1

pαi−1
i (pi − 1)

= n

k∏
i=1

(
1− 1

pi

)
Exemple 3.9

φ(29 · 52) = φ(29)φ(52)
= 28 · 52

(
1− 1

5

)
= 28 · 20
= 560.

Théorème 3.10 (Euler) Si a et n sont des entiers premiers entre eux, alors aφ(n) ≡ 1
(mod n).

4 Le RSA
Le RSA est sans doute le cryptosystème à clef publique le plus utilisé. Sa sécurité est
basée sur la difficulté de factoriser de très grands nombres entiers.

Expliquons son fonctionnement.

4.1 Génération des clés

L’entité B produit ses clés privé respectivement publique de la façon suivante: B déter-
mine aléatoirement deux nombres premiers distincts p et q et calcule leur produit

n = p · q.

De plus, B choisit un nombre entier e tel que

1 < e < φ(n) = (p− 1)(q − 1) et pgcd
(
e, (p− 1)(q− 1)

)
= 1

et il calcule son inverse modulo (p−1)(q−1), noté d. Comme pgcd
(
e, (p−1)(q−1)

)
= 1,

cet inverse existe toujours. De plus, e est un nombre impair.

La clé publique est alors formé par la paire (n, e), la clé privée est d. On appelle n le
module RSA, e l’exposant public et d l’exposant privé.

Exemple 4.1
B obtient les nombres premiers p = 11 et q = 23. Alors, n = 253 et (p − 1)(q − 1) =
10 · 22 = 22 · 5 · 11. Le plus petit choix possible pour e est e = 3. Pour ce choix, on trouve
d = 147.

Remarque 4.2
Dans la procédure de génération des clés pour le RSA, on peut remplacer la fonction φ(n)
par la fonction λ(n) = (p − 1)(q − 1)/2. Ceci a l’avantage d’obtenir un exposant privé
plus petit, ce qui peut accélérer le déchiffrage.
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4.2 Chiffrage

Supposons que le message à chiffrer soit représenté par le nombre entier m vérifiant 0 ≤
m < n. On le transforme dans le texte chiffré c en calculant

c ≡ me (mod n).

Remarquons que ceci est bien possible, si on connaît la clé publique (n, e).

Exemple 4.3
Si n = 253 et e = 3, le nombre m = 165 est chiffé en c ≡ 1653 (mod 253) = 110.

4.3 Déchiffrage

Le déchiffrage du RSA se fait en utilisant le résultat suivant:

Théorème 4.4 Soient (n, e), respectivement d, une clé RSA publique et la clé privée
associée. Alors,

(me)d ≡ m (mod n).

pour tout entier m tel que 0 ≤ m < n.

preuve:
Comme ed ≡ 1 (mod (p− 1)(q − 1)), il existe un entier l tel que

ed = 1 + l(p− 1)(q − 1).

Ainsi,
(me)d = med = m1+l(p−1)(q−1) = m(m(p−1)(q−1)l).

Ceci implique que
(me)d ≡ m(mp−1)(q−1)l ≡ m (mod p).

En effet, si p est un diviseur de m, cette congruence est triviale, puisque des deux côtés
elle vaut 0. Sinon, le théorème de Fermat implique que mp−1 ≡ 1 (mod p) et on obtient
la congruence annoncé en élevant les deux côtés à la puissance l(q − 1) et en multipliant
ensuite par m.

De même, on peut montrer que

(me)d ≡ m (mod q)

Par conséquent, la proposition 2.8 implique que

(me)d ≡ m (mod n)

�

Si un texte chiffré c a été obtenu d’un message original m, en utilisant le RSA, on peut
donc le déchiffrer facilement en calculant

m = cd (mod n),

sous condition de connaître la clé privée d.
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Exemple 4.5
Revenons sur l’exemple de ce paragraphe. On avait n = 253, e = 3 et d = 147. De plus,
on a chiffré le nombre m = 165 et obtenu le texte chiffré c = 110. Pour déchiffrer ce
nombre, on calcule 110147 (mod 253) dont le résultat est bel et bien m = 165.

Remarque 4.6
On peut réduire considérablement le temps de calcul pour le déchiffrage en utilisant le
théorème des restes chinois.

En effet, au lieu de calculer m = cd (mod n), on peut calculer les deux quantités
mp = cd (mod p) et mq = cd (mod q) et résoudre ensuite la double congruence

m ≡ mp (mod p) et m ≡ mq (mod q)

Le théorème des restes chinois implique que cette congruence admet une solution. Pour
la trouver, on utilise l’algorithme d’Euclide étendu pour déterminer des entiers yp et yq
tels que

ypp+ yqq = 1.

Alors,
m = (mpyqq +mqypp) (mod n).

Remarquons que les entiers ypp et yqq ne dépendent pas du message à déchiffrer et peuvent
être calculés une fois pour toutes.

5 Factorisation
Théorème 5.1 (Euclide) Il existe une infinité de nombres premiers.

Théorème 5.2 Tout nombre entier positif strictement supérieur à 1 peut être décomposé
de façon unique comme produit de nombres premiers.

Pour des entiers négatifs, on obtient la factorisation unique, en multipliant par −1 et en
utilisant le théorème précédent.

Lemme 5.3 Si a est un entier qui admet la factorisation en nombre premiers a =
pa11 ...pakk , alors un entier positif b divise a si et seulement si b admet une factorisation
en nombres premiers de la forme b = pb11 ...p

bk
k , avec 0 ≤ bi ≤ ai pour 1 ≤ i ≤ k.

Comment trouve-t-on en pratique la décomposition en nombre premiers d’un entier n?
La méthode la plus simple consiste à diviser n par tous les nombres premiers plus petits
que

√
n, jusqu’à trouver un diviseur p. Puis, on applique la même méthode au nombre

n/p et ainsi de suite. Cette méthode présuppose bien sûr que l’on dispose d’une table de
tous les nombres premiers plus petits que

√
n. Elle devient vite inintéressante quand n

devient grand.

La première méthode qui ne procède pas par divisions de test a été trouvé par Pierre
de Fermat (1601-1665). Elle utilise le fait que si n peut être écrit comme différence de
deux carrés alors sa factorisation est facile. En effet, alors

n = a2 − b2 = (a− b)(a+ b).
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Pour trouver une représentation d’un entier comme différence de deux carrés, on procède
de la façon suivante: on cherche le premier carré a2 supérieur à n, et on calcule a2−n. Si
a2−n = b2 pour un entier b, alors on a réussi, sinon on cherche le prochain carré supérieur
à n et ainsi de suite.
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