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1 Divisibilité

Définition 1.1 Soient a et b des entiers. On dit que a divise b et on note alb s’il existe
un entier ¢ tel que b = ac. On dit alors que a est un diviseur de b, ou que b est divisible
par a.

Exemple 1.2
1. Comme 24 = 2-12 et 24 = 3-8, 2|24, 3|24, 8|24 et 12|24. De plus, 24 = (—2)(—12),
donc —2(24 et —12|24.

2. Aucun entier non nul n’est divisible par 0. Si a # 0, il ne peut exister d’entier c tel
que a = ¢+ 0. Par contre 0|0, comme 0 = 0 - ¢, pour tout entier c.

3. Tout entier a divise 0, parce que 0 = 0 - a pour tout entier a.

4. Les seuls diviseurs positifs de 5 sont 1 et 5.

Tout nombre positif a admet a et 1 comme diviseurs. Certains nombres n’en ont pas
d’autres.

Définition 1.3 Un nombre entier positif p > 1 est appelé nombre premier si ses seuls
diviseurs sont 1 et p. Un nombre non premier est dit nombre composé.

Les propriétés de base de la divisibilité sont les suivantes:
Proposition 1.4 Soient a,b,c,z ety des entiers.

1. Sialb et x|y, alors ax|by.

2. Sialb et b|c, alors alc.

3. Sialb etb#0, alors, |a| < |b].

4. St alb et alc, alors albx + cy.



Théoréme 1.5 Soient deux entiers a et b, tel que b # 0. Alors, il existe des entiers q et
r uniques, tels que
a=0bqg+ret0<r<lb.

Le nombre q est appelé le quotient de a par b et r le reste.

Exemple 1.6
1. Soient a = 37 et b = 15. Comme 37 = 2 - 15+ 7, le quotient de 37 par 15 vaut 2 et
le reste 7.

2. Sia=37et b= —15, alors 37 = (—2)(—15) + 7 implique que le quotient est —2 et
le reste 7.

3. Sia=—-37et b= 15, alors =37 = —-2-15—-7 = —3-15+ 8. Le quotient de —37
par 15 vaut —3 et le reste 8, comme le reste doit étre positif.

Définition 1.7 Soient a et b deux entiers. On appelle plus grand commun diviseur de a
et de b et on note pged (a, b), le plus grand entier qui est a la fois diviseur de a et diviseur

de b.

Proposition 1.8 Soient a,b et n des entiers. Il existe des entiers x ety tels que ax+by =
n si et seulement si n est un multiple de pged (a,b). En particulier, il existe des entiers
x ety tels que ax + by = pged (a, b).

Exemple 1.9
Comme 3 et 4 n’ont pas de diviseurs communs supérieurs a 1, I’équation 3x + 4y = 123
admet une solution.

Pour trouver les entiers = et y en pratique, on utilise ’algorithme d’Euclide étendu.

Définition 1.10 On dit que deux entiers a et b sont premiers entre eux si et seulement
si pged (a,b) = 1.

Théoréme 1.11 (Bezout) Deux nombres a et b sont premiers entre euz si et seulement
s’il existe deux entiers u et v tels que ua + vb = 1.

2 Arithmétique modulaire

Définition 2.1 Si a,b et n sont des entiers, on dit que a est congru a b modulo n et on
note a = b (mod n) si nla —b. On dit aussi que b est un résidu de a modulo n, ou un
reste de a modulo n. La relation ainst définie est appelée congruence modulo n.

Exemple 2.2
1. Comme 9 = 23 — 14, la définition ci-dessus implique que 23 = 14 (mod 9). En
fait, n’importe quels deux nombres de I'ensemble {..., —4,5 14,23, ...} sont congrus
modulo 9.

2. La congruence a = b (mod 1) est exacte pour tous entiers a et b.

3. Il est évident que a = b (mod n) si et seulement si a = b (mod (—n)). Pour cette
raison, on ne considére que des modules positifs.



Proposition 2.3 Sia,b,c et n sont des entiers, alors
1. a=a (mod n).
2. a=b (mod n), si et seulement si b=a (mod n).

3. Sia=b (mod n) eth=c (mod n), alors a = ¢ (mod n).

.....

gruence est une relatlon d’équivalence. La classe d’équivalence d'un entier a pour cette
relation, c’est-a-dire I’ensemble des entiers b congrus a a modulo n est la classe de congru-
ence de a modulo n. Il existe n classes d’équivalence distinctes de la congruence modulo
n. On les représente par les nombres 0,1, ...,n — 1 et on désigne ’ensemble de ces classes
de congruence par
Z/nZ =1{0,1,...,n —1}.

La proposition suivante donne les propriétés arithmétiques élémentaires des congru-

ences.

Proposition 2.4 Sia,b,c,d et n sont des entiers, alors

1. Sia=0b (mod n), alors ac = bc (mod n), pour tout entier c.

2. Sia=b (modn) et c=d (mod n), alorsa+c=b+d (mod n).
3. Sia=b (mod n) et c=d (mod n), alors ac = bd (mod n).
4. Sia=0b (mod n), alors a®* = b* (mod n), pour tout entier positif k.

Exemple 2.5
1. Comme 16 = —1 (mod 17), 16* =256 = 1 (mod 17).

2. Calculons 2% (mod 5). Comme 2* =16 =1 (mod 5), on a (24)2=2% =1 (mod 5),
212 = 2824 =1 (mod 5) et ainsi de suite. Donc, pour tout k > 1, 2** =1 (mod 5).

3. On peut calculer 232 (mod 17), sans évaluer 232, En effet, on obtient de proche en
proche 22 = 8 (mod 17),2* = 16 (mod 17),2° = 32 = 15 (mod 17),2!° = (2°)? =
152 = 4 (mod 17),2% = (219)3 = 43 = 64 = 13 (mod 17),2% = 23022 = 13 . 4 =
52 =1 (mod 17).

Proposition 2.6 Si a,b,c,d et n sont des entiers, alors
1. Sia=b (mod n) et dm, alors a =b (mod d).
2. Siac=0bd (mod n), alors a =b (mod n/pged (c,n)).

Exemple 2.7

Montrons que 3|n® — n, pour tout n. Comme ceci équivaut & montrer que n® —n = 0
(mod 3), pour tout n et que tout nombre n est ou bien congru a 0,1 ou 2 modulo 3, il
suffit de vérifier la relation ci-dessus pour ces trois valeurs. Or,

3

0°=0 (mod3), 1?-1=0 (mod3)et2®—-2=0 (mod 3).

Par conséquent, 3|n3 — n, pour tout n.



Proposition 2.8 Si pged (m,n) = 1, alors (a = b (mod m) et a = b (mod n)) si et

seulement si a = b (mod mn).

Exemple 2.9
1. a =b (mod 12) est équivalent a (a =b (mod 4) et a =b (mod 3))

I
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2. Si p et g sont des nombres premiers distincts et si a est un entier, alors a®? =
(mod pq) si et seulement si a®> =1 (mod p) et a®? =1 (mod q).

Définition 2.10 Soient a et n des nombres entiers. Un entier a’ est appelé inverse de a
modulo n si et seulement si aa’ = a'a =1 (mod n). On dit que a est inversible modulo
n, st a admet un tnverse. Si a admet un inverse, alors cet inverse est unique modulo n.

Exemple 2.11
1. Comme 2-6 =1 (mod 11), inverse de 6 modulo 11 est 2 et I'inverse de 2 modulo
11 est 6.

2. L’inverse de 3 modulo 8 est 3, car 3-3 =1 (mod 8).

3. 2 n’admet pas d’inverse modulo 8, parce que 2z = 1 (mod 8) implique que 8|2z — 1,
ce qui est impossible, comme 2z — 1 est toujours un nombre impaire.

Proposition 2.12 Les éléments inversibles de Z/nZ sont les entiers premiers avec n et
forment un groupe pour la multiplication noté (Z/nZ)*.

preuve: Soit a € Z/nZ. Alors, au =1 (mod n) si et seulement sl existe un entier v tel
que au — nv = 1. Le théoréme de Bezout implique que a et n sont alors premiers entre
eux. ([l

Si p est un nombre premier, tous les entiers plus petits que p sont premiers avec p. Tous

les éléments non nuls de Z/pZ sont donc inversibles et la propostion ci-dessus implique

Corollaire 2.13 Si p est un nombre premier, alors Z/pZ est un corps.

Cela veut dire qu’on peut faire toutes les opérations de calcul habituelles avec les classes
de congruences.

Comment calcule-t-on l'inverse 2 d’un entier v modulo n? Cet inverse est solution de
I’équation
ur =1 (mod n)

Cela équivaut a dire qu’il existe un entier v tel que
uxr — 1 =uvn

c’est-a-dire
ur —ovn =1

Si u et v sont premiers entre eux, I'existence de x et y suit du théoréme de Bezout et on
les trouve en pratique en utilisant ’algorithme d’Euclide étendu.



3 Les théorémes modulaires fondamentaux

Théoréme 3.1 (des restes chinois) Si my, ma,...,my sont des entiers deur & deux
premiers entre eur et si ai, as, ..., a, sont des entiers quelconques, il existe un entier x tel
que, pour tout v =1,.... k

r=a; (mod m,).

k
Corollaire 3.2 Sin =[] p;", alors

=1

k
Z/nZ~ ] Z/pZ.
=1

Théoréme 3.3 (Fermat) Soit p un nombre premier. Alors, a* = a (mod p), pour tout
entier a. En particulier, si a et p sont premiers entre euz, a?~* = 1 (mod p).

Exemple 3.4
1. Montrons que 2°° + 3°° est divisible par 13.

D’aprés le théoréme de Fermat, 2'2 = 1 (mod 13). Comme 50 = 4 - 12 + 2, on
a 20 = 241212 = (212)492 = 1.4 (mod 13). De plus, 32 = 1 (mod 13), donc
350 = 3%832 =9 (mod 13). Par conséquent, 2°° + 3 =4+ 9=13=0 (mod 13).

3372

2. Déterminons le reste de par 37.

Comme 37 est un nombre premier, 3 = 1 (mod 37). Or, 372 = 10 - 36 + 12,
donc 337 = 31036+12 = (336)10312 = 1. 312 (;mod 37). Comme 3* = 81 = 7
(mod 37),32 = 7 = 7-49 = 7-12 = 10 (mod 37). Par conséquent, le reste
cherché vaut 10.

Dans I'arithmétique des congruences, le nombre d’éléments inversibles joue un role impor-
tant. Il apparait entre autre dans la généralisation du théoréme de Fermat aux nombres
Ccomposés.

Définition 3.5 On note ¢(n) le nombre d’éléments inversibles de Z/nZ. La fonction ¢
est appelée lindicateur d’Fuler.

Exemple 3.6
1. ¢(8) =4, comme les éléments inversibles modulo 8 dans {0, 1,2, ..., 7} sont 1,3,5 et
7.

2. ¢(p) = p—1, si p est un nombre premier, car pged (p,a) = 1, pour tout a dans
(1,2, ...,p—11.

3. Si p est un nombre premier et r un entier positif, alors, il existe p"~" multiples de p
plus petits que p”. Comme tous les autres nombres plus petits que p” sont premiers
avec p, on a

1

Proposition 3.7 Si pged (m,n) = 1, alors ¢(mn) = o(m)e(n).



Corollaire 3.8 Sin = p*---p.*, alors

Exemple 3.9

(29 5%) = p(20)0(5%)
=28-52(1—1)
=28-20
= 560.

Théoréme 3.10 (Euler) Sia et n sont des entiers premiers entre euz, alors a?™ =1
(mod n).

4 Le RSA

Le RSA est sans doute le cryptosystéme a clef publique le plus utilisé. Sa sécurité est
basée sur la difficulté de factoriser de trés grands nombres entiers.

Expliquons son fonctionnement.

4.1 Génération des clés

L’entité B produit ses clés privé respectivement publique de la fagon suivante: B déter-
mine aléatoirement deux nombres premiers distincts p et ¢ et calcule leur produit

n=p-q.
De plus, B choisit un nombre entier e tel que

l<e<gp(n)=(p-1)(g—1)etpged (e, (p—1)(a—1)) =1

et il calcule son inverse modulo (p—1)(g—1), noté d. Comme pged (e, (p—1)(q—1)) =1,
cet inverse existe toujours. De plus, e est un nombre impair.

La clé publique est alors formé par la paire (n,e), la clé privée est d. On appelle n le
module RSA, e I’exposant public et d I’exposant privé.

Exemple 4.1

B obtient les nombres premiers p = 11 et ¢ = 23. Alors, n = 253 et (p — 1)(¢ — 1) =
10-22 = 22.5-11. Le plus petit choix possible pour e est e = 3. Pour ce choix, on trouve
d = 147.

Remarque 4.2

Dans la procédure de génération des clés pour le RSA, on peut remplacer la fonction ¢(n)
par la fonction A(n) = (p — 1)(¢ — 1)/2. Ceci a 'avantage d’obtenir un exposant privé
plus petit, ce qui peut accélérer le déchiffrage.



4.2 Chiffrage

Supposons que le message a chiffrer soit représenté par le nombre entier m vérifiant 0 <
m < n. On le transforme dans le texte chiffré ¢ en calculant

c=m (mod n).

Remarquons que ceci est bien possible, si on connait la clé publique (n,e).

Exemple 4.3
Si n =253 et e = 3, le nombre m = 165 est chiffé en ¢ = 165° (mod 253) = 110.

4.3 Déchiffrage

Le déchiffrage du RSA se fait en utilisant le résultat suivant:

Théoréme 4.4 Soient (n,e), respectivement d, une clé RSA publique et la clé privée
associée. Alors,
(m)*=m (mod n).

pour tout entier m tel que 0 < m < n.

preuve:
Comme ed =1 (mod (p — 1)(¢ — 1)), il existe un entier [ tel que

ed=1+1(p—1)(qg—1).

Ainsi,
(M) = me mitip=1-1) — m(m(pfl)(qfl)l)_

Ceci implique que
(m®)? = m(mP @V =m  (mod p).

En effet, si p est un diviseur de m, cette congruence est triviale, puisque des deux cotés
elle vaut 0. Sinon, le théoréme de Fermat implique que mP™! = 1 (mod p) et on obtient
la congruence annoncé en élevant les deux cotés a la puissance /(¢ — 1) et en multipliant
ensuite par m.

De méme, on peut montrer que

(m)*=m (mod q)
Par conséquent, la proposition 2.8 implique que
(m)Y=m (mod n)
OJ

Si un texte chiffré ¢ a été obtenu d’'un message original m, en utilisant le RSA, on peut
donc le déchiffrer facilement en calculant

m=c? (mod n),

sous condition de connaitre la clé privée d.



Exemple 4.5

Revenons sur 'exemple de ce paragraphe. On avait n = 253,e = 3 et d = 147. De plus,
on a chiffré le nombre m = 165 et obtenu le texte chiffré ¢ = 110. Pour déchiffrer ce
nombre, on calcule 110*" (mod 253) dont le résultat est bel et bien m = 165.

Remarque 4.6
On peut réduire considérablement le temps de calcul pour le déchiffrage en utilisant le
théoréme des restes chinois.
En effet, au lieu de calculer m = ¢* (mod n), on peut calculer les deux quantités
d

= ¢ (mod p) et m, = ¢ (mod q) et résoudre ensuite la double congruence

d

mp

m=m, (modp)etm=m, (modq)

Le théoréme des restes chinois implique que cette congruence admet une solution. Pour
la trouver, on utilise 'algorithme d’Euclide étendu pour déterminer des entiers y, et y,
tels que

YpP + Yqq = 1.

Alors,
m = (Mmpyeq + meypp) (mod n).

Remarquons que les entiers y,p et y,q ne dépendent pas du message a déchiffrer et peuvent
étre calculés une fois pour toutes.

5 Factorisation
Théoréme 5.1 (Euclide) [I existe une infinité de nombres premiers.

Théoréme 5.2 Tout nombre entier positif strictement supérieur a 1 peut étre décomposé
de facon unique comme produit de nombres premiers.

Pour des entiers négatifs, on obtient la factorisation unique, en multipliant par —1 et en
utilisant le théoréme précédent.

Lemme 5.3 Si a est un entier qui admet la factorisation en nombre premiers a =
pit..pik, alors un entier positif b divise a si et seulement si b admet une factorisation
en nombres premiers de la forme b = p?l...pz’“, avec 0 < b; < a; pour 1 <1 <k.

Comment trouve-t-on en pratique la décomposition en nombre premiers d’un entier n?
La méthode la plus simple consiste a diviser n par tous les nombres premiers plus petits
que /n, jusqu’a trouver un diviseur p. Puis, on applique la méme méthode au nombre
n/p et ainsi de suite. Cette méthode présuppose bien str que l'on dispose d’une table de
tous les nombres premiers plus petits que \/n. Elle devient vite inintéressante quand n
devient grand.

La premiére méthode qui ne procéde pas par divisions de test a été trouvé par Pierre
de Fermat (1601-1665). Elle utilise le fait que si n peut étre écrit comme différence de
deux carrés alors sa factorisation est facile. En effet, alors

n=a*>—b*= (a—b)(a+b).



Pour trouver une représentation d’'un entier comme différence de deux carrés, on procéde
de la facon suivante: on cherche le premier carré a? supérieur a n, et on calcule a? — n. Si

a? —n = b? pour un entier b, alors on a réussi, sinon on cherche le prochain carré supérieur

A n et ainsi de suite.
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