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Chapitre I

PRESENTATION DU PROJET DE RECHERCHE

Notre projet de recherche se compose de deux parties distinctes. D’abord, le test
adaptatif informatisé en mathématiques, développé au cours du projet de recherche
postdoctoral BFR 98/027, est soumis a une étude de valorisation permettant de démontrer que
ses qualités de puissance, de flexibilité et d’économie d’utilisation ne vont pas au dépens des
qualités psychométriques classiques inhérents aux tests papier-crayon.

Une deuxiéme partie du projet de recherche est consacrée au dégagement d’une
taxonomie en mathématiques. L’étude de la littérature existante permet de proposer une
taxonomie hypothétique dont I’adéquation est vérifiée par rapport aux données obtenues par
la création d’un test expérimental, au moyen de différents procédés statistiques
complémentaires entre eux. L’interprétation de la structure cognitive latente tient compte de la
notion chomskyienne de compétence et de la conception de I’intelligence multiple de Howard

Gardner et s’inscrit dans 1’évolution actuelle des sciences cognitives.

1.1 Objectifs

Au cours du projet de recherche postdoctoral intitulé “Application d’un modele
stochastique a la construction d’un test adaptatif informatisé en mathématiques” (BFR

98/027), nous avons appliqué un modéle IRT (item response theory) a la construction d’un
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test adaptatif informatisé en mathématiques. Le point de départ était I’analyse et le traitement
de données recueillies en novembre 1996, lors de la passation de tests standardisés pour le
passage primaire post-primaire.

En adaptant les algorithmes mathématiques adéquats, nous avons construit un logiciel
permettant de présenter des items, sélectionnés par 1’ordinateur, adaptés au niveau de la
compétence actuelle du sujet, de telle sorte que le test ne soit ni trop facile, ni trop difficile,

¢pargnant a la fois la frustration et I’ennui a I’éléve.

Le but du nouveau projet de recherche est double
1) Faire une étude de valorisation de ce logiciel et ’adapter aux besoins différenciés des
instituteurs.

2) Construire une taxonomie des compétences en mathématiques

Le but de I’étude de valorisation est de montrer que le test adaptatif informatisé a les
mémes qualités psychométriques (capacité de discrimination, validité, fidélité, objectivité)
qu’un test "papier-crayon" classique et que ses qualités supérieures de puissance, de flexibilité

et d’économie d’utilisation ne vont pas au dépens des qualités psychométriques classiques.

Le but de la taxonomie est de trouver la structure latente des compétences entrant en
action lors de la résolution des épreuves en mathématiques et de créer une forme
expérimentale permettant de vérifier, au moyen d’une analyse hiérarchique ascendante, d’une
analyse factorielle et d’un échelonnement multidimensionnel si les difficultés des items

dépendent effectivement des facteurs latents trouvés.

1.2 Théories et procédés proposés

Du point de vue théorique, 1’étude de valorisation est basée sur les données actuelles
de la psychométrie (Dickes et al. 1994) et de la méthodologie expérimentale (Brink et Wood
1998, Ader et Mellenbergh 1999).

Pour comparer les qualités du test informatisé a celles du test papier-crayon, nous
présentons les deux formes a un échantillon de 6 classes d’éléves de sixiéme primaire, ¢’est-a-

dire & environ 120 éléves. Afin de neutraliser 1’effet de I’ordre de passation et de répétition, ils



1 . Présentation du projet de recherche 3

sont attribués au hasard a 2 sous-groupes dont I’un commence par le test papier-crayon et
’autre par le test informatisé. Nous analysons les correspondances et les différences entre les
deux situations, au moyen des statistiques inférentielles, pour mettre en évidence la spécificité
du test informatisé et pour montrer que son économie d’application ne va pas au dépens de ses

qualités psychométriques.

L’établissement de taxonomies est un probléme trés actuel aussi bien en psychologie
cognitive que dans les sciences de 1’éducation. Elle est a la base des nouvelles sciences
cognitives qui constituent ce nouveau secteur du savoir qui, touchant a la fois a la
philosophie, a la psychologie, & I’anthropologie et a la biologie, cherche a élucider les
principes qui réglent la connaissance humaine, a la lumiére des nouvelles révolutions
scientifiques et techniques nées de I’informatique, de la cybemnétique et des neurosciences. La
structure latente des compétences est dégagée au moyen de 1’analyse hiérarchique ascendante,
de I'analyse factorielle ainsi que de procédés statistiques multivariés de la deuxi¢éme
génération comme [’échelonnement multidimensionnel et le Lisrel (Linear Structural
Relations), permettant d’en étudier la hiérarchie. En effet, plusieurs aptitudes indépendantes
entre elles peuvent contribuer a la résolution d’un méme probléme et un méme probléme peut
étre résolu de maniére différente selon les sujets.

Alors que ’analyse hiérarchique ascendante permet de constituer un classement
hiérarchisé psychologiquement signifiant, I’analyse factorielle permet de dégager des facteurs
de second ordre et 1’échelonnement multidimensionnel de représenter les données dans
I’espace en les regroupant suivant la plus petite dimensionnalité possible.

Le Lisrel sert a tester 1’adéquation entre une structure théorique supposée et la
structure immanente aux données recueillies. L’interprétation théorique de la structure des
compétences tiendra compte des données actuelles de la psychologie cognitive.

Apreés un apergu historique sur la recherche en psychologie cognitive, en psychologie
développementale et en éducation des mathématiques, nous analysons les taxonomies
existantes.

L’analyse de la littérature historique et actuelle nous permet de proposer une
taxonomie théorique pouvant éventuellement s’appliquer i nos données. Pour établir cette
taxonomie, nous tenons compte également des besoins de la pratique pédagogique, qui se
dégageront d’une concertation avec le groupe d’instituteurs, professeurs, inspecteurs et
psychologue-chercheurs qui élaborent les épreuves standardisées dans le cadre de la

procédure de passage primaire-postprimaire.
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Pour vérifier 1’adéquation de notre taxonomie aux données empiriques, nous
construisons un test expérimental comportant plusieurs items dans chaque catégorie de la
taxonomie. Notre taxonomie théorique est valable si les procédés multivariés utilisés montrent
que les difficultés des items dépendent des catégories de la structure théorique latente

postulée.

1.3 Intérét scientifique

L’étude de valorisation permet de comparer les qualités psychométriques du test
- adaptatif informatis¢ avec celles des épreuves standardisées classiques. Si ces résultats sont
concluants, 1’utilité du test adaptatif informatisé que nous avons construit sera démontré de
maniére scientifique et le logiciel pourra étre exploité pour 1’orientation et 1’évaluation

formative et cognitive des savoir et savoir faire des él¢ves.

Par I’étude de la taxonomie, notre recherche se situe dans le cadre actuel des sciences
cognitives telle quelles ont été définies ci-dessus. Le dégagement de la structure latente des
compétences en mathématique nous permet de rapprocher la notion de compétence en
mathématique de la compétence définie par Chomsky pour le domaine linguistique et nous
pouvons examiner si elle a éventuellement des caractéristiques analogues.

En effet, d’aprés Chomsky (Reboul 1995), la compétence posséde les caractéristiques
suivantes :

Elle s’appuie sur un code qui est essenticllement restrictif ou négatif, montrant ce qui est
défendu mais laissant par ailleurs une grande marge de liberté.

Elle permet de produire des performances en nombre illimité et de fagon imprévisible.

Les performances produites doivent étre cohérentes entre elles et adaptées a la situation.

La compétence présuppose a la fois des savoir et savoir-faire et des capacités sans s’y réduire.

Les résultats de notre recherche peuvent donc apporter une contribution a la question
débattue actuellement en psychologie cognitive, si la conception chomskyienne de la
compétence, développée pour le domaine linguistique, peut s’élargir au domaine des

mathématiques.
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1.4 Résultats escomptés

Cette étude pourra apporter des résultats intéressants, aussi bien du point de vue
pratique que théorique.

Du point de vue pratique, la valorisation scientifique de notre logiciel permettra de
passer a la phase d’application pédagogique. La taxonomie pourra servir de guide pour
I’élaboration des futures épreuves standardisées, élaborées dans le cadre du passage primaire-
postprimaire. En effet elle permettra des tests plus conformes au fonctionnement cognitif des
éléves. D’autre part, elle donnera une base scientifique a 1’évaluation formative et sommative
continue des éléves en mathématiques.

Du point de vue théorique, le dégagement de la taxonomie se situe dans la discussion
actuelle sur la hiérarchie des compétences en mathématiques et ouvrira la voie a des
généralisations théoriques et des vérifications expérimentales ultérieures. En particulier, la
possibilité de concevoir les compétences en mathématiques selon un modéle chomskyien

permettra d’en approcher différemment I’enseignement de base.

De plus, cette recherche constitue une contribution originale luxembourgeoise par
rapport & un probléme de recherche en sciences cognitives trés actuel au niveau international.

En plus des applications pédagogiques immédiates, elle permettra de passer a
I’exploitation de toutes les possibilités du logiciel, comme le transfert a d’autres données et a
d’autres populations.

Elle permettra en outre de développer des épreuves standardisées regroupées selon les
compétences sous-jacentes a examiner, donnant la possibilité d’obtenir un profil des
compétences de chaque éléve et de 1’aider d’une manicre plus spécifique par rapport a ses
faiblesses en développant des stratégies compensatoires adéquates. En effet, il ne suffit pas de
dire qu’un éléve est faible en mathématiques, mais il faut savoir exactement quelles
compétences latentes sont en jeu. D’un autre c6té, il sera plus facile de rassurer un éleve
démotivé ayant subi des échecs scolaires, par rapport a ses compétences latentes, si ’on
dispose d’un instrument de mesure se situant & mi-chemin entre les tests d’intelligence
classiques, trop éloignés de la pratique pédagogique et des épreuves scolaires standardisées,

trop axés sur les programmes et ne permettant pas le dépistage des compétences réelles.
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Une application particulicrement intéressante est le  dépistage de
“I’'underachievement”, & un moment, ol une évolution défavorable et un blocage pernicieux

de certains éléves surdoués peuvent encore étre évités.



Chapitre 11

L’ETAT DE LA RECHERCHE
FONDAMENTALE

Aperc¢u historique

2.1 La psychologie cognitive

2.1.1 Les précurseurs psychométriques

Les premiéres études ont consisté en recherches factorielles sur la structure de
I’intelligence. Alors que Spearman a développé sa théorie bifactorielle des processus
mentaux, expliquant les corrélations entre les performances intellectuelles par une
combinaison d’un facteur d’intelligence générale (g) et de facteurs de groupe ou
spécifiques (s) dépendant de I’épreuve en question, Thurstone (1938) lui a opposé sa
théorie des facteurs multiples, extrayant 7 aptitudes mentales primaires (primary
mental abilities) & savoir le calcul, la fluidité verbale, la compréhension verbale, la
mémoire, le raisonnement, la représentation spatiale et la vitesse perceptive. D’autres
chercheurs, comme par exemple Guilford (1956), ont dégagé un nombre beaucoup
plus grand d’aptitudes élémentaires ; certains chercheurs estiment méme qu’on pourra
multiplier a I’infini les aptitudes spécifiques, en relation avec la nature de la tache, ce

qui souléve la question de la structure hiérarchique des aptitudes mentales.
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2.1.2 L’intelligence artificielle et le traitement de I’information

Les méthodes informatiques de traitement de 1’information ont permis un
progres important dans la modélisation cognitive (Richard, 1998).

A la fin des années 50, les chercheurs croyaient pouvoir étudier I’ensemble des
processus cognitifs & I’oeuvre dans la résolution des problémes, en les exprimant dans
un langage formalisé€ permettant le calcul et la simulation a I’ordinateur, de manicre a
pouvoir comparer les comportements simulés avec les comportements observés.
Cependant, aprés une période d’affirmations exagérées (années 60-70, a la suite du
colloque de Dartmouth), les théoriciens de I’intelligence artificielle sont revenus a une
vision plus mesurée. Is ont compris que certains champs en sont exclus, ce qui laisse
subsister la possibilité d’obtenir des résultats solides dans d’autres domaines. D’aprés
Howard Gardner (1993), I’ordinateur est un mode¢le adéquat pour comprendre certains
processus de la pensée, mais il n’est probablement pas le meilleur modeéle pour la
compréhension des processus les plus importants. Et c’est en étudiant la pensée
« computationnelle » que les chercheurs ont découvert a quel point les étres humains
sont différents de 1’ordinateur sériel digital, a partir du moment ou il s’agit d’exécuter

des taches complexes.

2.1.3 Les sciences cognitives

A partir des années 70, les interactions entre la psychologie, la philosophie, la
biologie, 1’anthropologie, la linguistique et [’informatique ont contribué au
développement de la discipline qu’on commengait & appeler les « sciences
cognitives », cherchant a comprendre les principes qui réglent la connaissance
humaine a la lumiére des découvertes scientifiques et techniques récentes, dans le but
de développer une théorie de la représentation générale, capable de modéliser et
d’expliquer globalement le fonctionnement cognitif humain. Au cours des années §80-
90, la recherche s’est concentrée sur des contenus cognitifs spécifiques et, en
particulier, un corpus de recherche trés important s’est développé autour du domaine

des mathématiques.
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D’aprés de Corte, Greer et Verschaffel (1996), il devient de plus en plus
évident que la pensée mathématique n’est pas uniquement basée sur la logique, mais
qu’il faut tenir compte d’aspects non rationnels tels que 1’intuition, les croyances, les
attitudes, les émotions et la pensée imagée.

La théorie de «[l’intelligence multiple » est une illustration de -cette
conception. Howard Gardner (1993b) distingue sept domaines d’aptitudes (« frames
of mind ») : les intelligences linguistique, logico-mathématique, spatiale, musicale,
somato-kinesthérique, introspective (connaissance de soi) et interpersonnelle
(connaissance des autres). Le caractére modulaire de ces intelligences signifierait que
la capacité d’un individu dans un domaine ne laisse pas prévoir sa capacité dans un
autre. En collaboration avec Robert Sternberg, Howard Gardner a élaboré un
programme ax¢ sur le développement de 1’intelligence pratique, apprenant aux éléves
comment s’organiser, comment réaliser une tdche et comment s’entendre avec les
autres (Sternberg et alt., 1995). Si la conception de Gardner a le mérite de placer
I’intelligence dans son contexte pratique et culturel, elle a cependant soulevé des
critiques. La principale, ¢’est qu’il sous-estime les aspects de I’intelligence générale
qui ne sont pas spécifiques a un domaine telle que la capacité d’avoir rapidement une
vision synthétique de n’importe quel domaine nouveau ou de la rapidité du

fonctionnement cognitif en général.

2.1.4 L’apport de la neuropsychologie

Etudiant les relations entre le fonctionnement cognitif d’une part et le
fonctionnement et la structure du systéme nerveux d’autre part, cette discipline permet
de tester les modéles théoriques mis au point pour rendre compte des performances
des sujets neurologiquement sains. En étudiant les performances de patients dont le
cerveau présente des l1ésions, elle obtient des indications sur les fonctions des parties
cérébralement atteintes, ce qui permet de compléter les études neurophysiologiques et
neuroanatomiques du systéme nerveux central (électroencéphalographie, imagerie par
résonance magnétique, tomographie cérébrale, etc...) chez un sujet qui est en train
d’accomplir une tache cognitive. La contribution de la neuropsychologie est

particuliérement intéressante pour comprendre le fonctionnement cérébral lors du
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traitement de l'information (encodage, recherche, comparaison, prise de décision,
organisation de la réponse) et pour étudier les niveau de vigilance et le
fonctionnement de la mémoire (mémoire implicite et explicite, mémoire a court terme
ou mémoire de travail et mémoire a long terme, mémoire procédurale, imagée et
lexicale). Delacour (1998) présente une synthése récente de ces contributions.

Des travaux actuels montrent a quel point les émotions affectent la cognition a

tous les niveaux (cf. Le Doux, 1996 ; Halberstadt & Niedenthal, 1997).

2.2 La psychologie développementale
2.2.1 Piaget

Piaget a ¢été un des principaux promoteurs de 1’idée d’apres laquelle la
représentation de la réalité est construite, la connaissance résultant du processus
d’adaptation qui vise a donner un sens & l’environnement. L’enfant assimile
I’information avec les schémes dont il dispose a la naissance et il accomode ces
schémes en se basant sur son expérience. Une autre contribution centrale de Piaget est
que la pensée est qualitativement différente a certains moments de la vie et que
I’évolution se fait par stades. L’étude de la constitution des concepts et des procédures
mathématiques occupe une place importante dans 1’oeuvre de Piaget (Piaget, 1947 ;

Piaget & Inhelder, 1941, 1948, 1959 ; Piaget & Szerminska, 1941).

2.2.2 Vigotsky

Vigotsky a souligné ’interaction entre le développement biologique et la
culture environnante dans le développement cognitif.

Des fonctions naturelles élémentaires sont transformées en fonctions mentales
d’un niveau plus élevé, grace a I’interaction avec des membres plus évolués de la
communauté et grice a I’utilisation d’outils intellectuels propres a I’environnement
socio-culturel. Les théories de Vigotsky ont influencé les sciences de 1’éducation en
Occident ; la théorie d’aprés laquelle 1’éducation des mathématiques consiste dans

I’introduction des enfants dans la communauté des mathématiciens dérive de cette
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conception. D’aprés Vigotsky, I’intelligence, c’est la capacité de tirer profit d’une

instruction.

2.2.3 La théorie de la Gestalt

Les conceptions actuelles sur les processus en jeu dans la résolution des
problémes remontent a la théorie de la Gestalt, dont I’idée centrale est que I’esprit
humain interpréte les données pergues en accord avec des principes d’organisation qui
le prédispose a voir des figures prégnantes ressortant sur un fond, plutét qu’une
collection de sensations atomisées; d’ou le développement d’une conception
structuralisante de la pensée. George Polya (1965), par exemple, un des premiers
théoriciens de la compréhension structurale des processus en jeu dans la résolution

des problémes, s’est directement inspiré de ’oeuvre de Wertheimer (1945).

2.3 L’apport de la psycho-linguistique aux sciences de I’éducation

2.3.1 La notion de compétence chez Chomsky

Noam Chomsky (1965) a utilisé I’expression « compétence linguistique » pour
souligner le fait que les enfants apprennent a parler correctement, malgré le fait que
dans leur entourage, ils entendent surtout des phrases lacunaires, inachevees,
incorrectes. Défendant une position innéiste et rationaliste, par opposition a
I’empirisme et au behaviorisme, il voulait montrer que 1’apprentissage d’une langue
ne peut pas se faire uniquement par imitation, mais présuppose l’existence de
structures syntaxiques permettant de comprendre et de former un nombre illimit¢ de
phrases nouvellement construites.

D’aprés Reboul (1994), la compétence linguistique posseéde donc les

caractéristiques suivantes :

1) Elle s’appuie sur un code qui est essentiellement restrictif ou négatif, montrant ce

qui est défendu mais laissant par ailleurs une grande marge de liberté.
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2) Elle permet de produire des performances en nombre illimité et de fagon
imprévisible.
3) Les performances produites doivent étre cohérentes entre elles et adaptées a la

situation.

Au début, Chomsky s’est surtout intéressé a la structure syntaxique de la langue,
ensuite, ses recherches se sont élargies aux relations entre la syntaxe, la sémantique et
la phonologie. Aujourd’hui le terme de compétence linguistique est devenu synonyme
de «compétence communicative » et s’applique tout aussi bien au domaine
syntaxique que morphologique, phonologique, sémantique, stylistique et expressif.
Elle inclut des facteurs non verbaux permettant de comprendre le sens d’un énoncé,

tels que 'intonation, la musique, le geste.

2.3.2 L’acception pédagogique courante

D’un c6té, la notion de compétence a acquis une importance capitale dans la
littérature pédagogique, puisque I’acquisition des compétences est présenté comme
étant le but principal de I’enseignement. D’un autre c6té, les pédagogues utilisent le
terme de maniere ambigiie, le confondant souvent avec les capacités, les savoirs, et les
savoir-faire. Reboul (1995) souligne que la compétence présuppose des capacités, des
savoir et des savoir-faire, mais ne s’y réduit pas. Les définitions données sont bien
plus souvent négatives que positives. La compétence est une construction théorique
inobservable en elle-méme; elle peut cependant étre estimée a partir des
performances observables et mesurables.

Selon Reboul (1995), une performance témoigne d’une compétence quand elle
est conforme a un code imprévisible, libre, cohérente avec d’autres performances de
méme type et adaptée a la situation. La compétence peut se situer a différents niveaux
de généralité. Bien qu’il existe des compétences fondamentales impliquant
I’acquisition de certaines habiletés nécessaires pour participer a la culture humaine,
telles que l'aisance dans la manipulation du code verbal, imagé, spatial, la
constitutions des schémes psycho-moteurs, des bases du traitement de I’information,

de la classification et de la formation des concepts, les pédagogues s’intéressent



2. L’état de la recherche fondamentale 13

surtout & des compétences spécifiques de niveau intermédiaire, s’inscrivant dans un
code précis, pour lesquelles la transférabilité n’est pas démontrée. Selon Delannoy et
Passegand (1992) la seule compétence transférable, c’est ’attitude métacognitive qui
permet a I’éléve de juger des stratégies d’apprentissage appropriées aux différentes
matiéres, ¢’est-a-dire la compétence dans I’acquisition et 1’organisation mnemonique
des connaissances nouvelles.

Lorsque les programmes officiels parlent de compétences transversales, le

terme est généralement utilisé de maniere impropre.

2.3.3 L’extrapolation des critéres de Chomsky

Une question intéressante pour la recherche en sciences cognitives et en
sciences de I’éducation est de savoir si les caractéristiques de la compétence
chomskyenne se rencontrent dans des domaines non linguistiques exigeant des
compétences spécifiques, tels que les mathématiques, les sciences, les sports, les arts
plastiques, la musique, etc...

Puisque chez Chomsky, la compétence se rapproche de 1’art de bien juger et
qu’il insiste surtout sur I’aspect créateur et dynamique du concept, il serait profitable
de refaire son travail dans d’autres domaines. Revenir a la précision,.a la complexité
et a la richesse de I’acception chomskyenne du terme de compétence permettrait
éventuellement de définir des buts pédagogiques plus fructueux que si ’on décrit des

hiérarchies de compétences calquées sur les programmes scolaires existants.






Chapitre 111

APPLICATION AUX MATHEMATIQUES

3.1 Psychologie de I’éducation et psychologie développementale
3.1.1 Bilan de la recherche

L’éducation des mathématiques figure parmi les premiers sujets étudiés en
psychologie de I’éducation. Dans les années 20, les théories de Thorndike
influengaient beaucoup les programmes d’arithmétique élémentaire des écoles.
Thorndike faisait partie de 1’école du behaviorisme dont le principe central était
qu’une théorie psychologique devrait étre batie seulement sur la base d’observations
du comportement ; des processus mentaux, comme, par exemple, les pensées, les
sentiments et les intentions sont exclus, car ils ne sont pas observables.

Le behaviorisme était dans une position dominante, surtout aux Etats-Unis,
depuis le début du vingtiéme siccle, jusqu’a la révolution cognitive dans les années
60. Dans un contexte historique, le behaviorisme se situe a l’intérieur d’un
mouvement de quéte générale visant la précision et 1’objectivité scientifique, dont les
manifestations incluent également le positivisme logique et des tentatives de créer des
fondements logiques inébranlables en mathématiques (De Corte, Greer & Verschaffel,
1996). Le désir de fournir des bases scientifiques a la psychologie menait & une
grande rigueur méthodologique et & 1’élaboration de procédures servant a quantifier et
mesurer les variables psychologiques.

Cependant, la théorie de Thorndike, ainsi que d’autres théories behavioristes

plus récentes, échouent généralement a expliquer la structure logique de la discipline
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des mathématiques. L’éducation basée sur les principes behavioristes était souvent
fragmentée en parties indépendantes qui pouvaient étre apprises par un renforcement
approprié mais qui n’avaient pas de cohésion interne.

Il y avait assez rapidement des chercheurs comme Judd (1928) et Brownell
(1935), qui s’opposaient aux essais initiaux d’appliquer le behaviorisme a I’éducation,
argumentant qu’une instruction efficace des mathématiques doit étre basée sur la
compréhension des concepts de base. Par contre, méme si Brownell donna des
exemples montrant comment enseigner des compétences spécifiques de fagon a ce que
les étudiant les comprennent, il ne développa pas de théorie compléte a ce sujet.

Malgré la perte de son statut comme systéme théorique et philosophique
dominant dans les cercles académiques, le behaviorisme persiste a influencer le
systeme éducatif et la mentalité des gens en général, ainsi que des responsables devant
prendre les décisions politiques et administratives, en particulier. R.B. Davis (1990) a
constaté qu’au niveau le plus important, a savoir celui des écoles et des enseignants,
I’'une des deux approches qui dominaient a I’époque aux Etats-Unis, était celle d’un
enseignement qui exige une détermination trés explicite de ce que les enseignants
veulent que les €léves apprennent, puis une exposition trés claire de ce contenu, un
nombre considérable d’exercices portant exactement sur ce contenu et enfin, des tests
de contréle sur le méme contenu, ce qui représente clairement un héritage du
behaviorisme. De plus, le développement du behaviorisme a conduit a 1’opinion
persistante qu’il faut apprendre des contenus hiérarchisés a [D’intérieur des

mathématiques, ce qui a eu des effets nocifs, d’aprés L.B. Resnick (1987).

Au cours des années 60 émergeaient plusieurs théories cognitives et
développementales qui permettaient de fournir un lien plus direct entre la théorie du
corps du savoir et I’enseignement des mathématiques. Les théories de Ausubel (1968),
Brunner (1960, 1966) et Gagné (1965) se concentraient explicitement sur la structure
du contenu de ce qui est & apprendre. Dans une perspective différente, Piaget (Piaget
1952 ; Piaget & Inhelder, 1956 ; Piaget, Inhelder & Szeminska, 1960) proposait une
théorie du développement des fondements des concepts des nombres entiers, de la
mesure et de la géométrie. Piaget a apporté de nouvelles contributions pendant toute
sa vie, et sa théorie a encore évolué dans les années 70. Son travail empirique et son

analyse théorique li€s a tous les grands sous-domaines des mathématiques ont été
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fondamentaux et continuent de stimuler des découvertes, des critiques et des
réactions.

D’un point de vue contemporain, on peut dire que la contribution principale de
Piaget a 1I’éducation des mathématiques est sa démonstration de la complexité de la
pensée des enfants et la mise en évidence des différences qualitatives de la pensée a
des étapes diverses de leur développement (De Corte, Greer & Verschaffel, 1996).
Son mérite d’avoir inspiré la conception de I’enfant comme constructeur actif de son
savoir est reconnu universellement. De plus, il a introduit des innovations
méthodologiques, par exemple 1’utilisation des entretiens cliniques. De cette fagon, il
a énoncé 1’élargissement des méthodes d’enquéte, caractéristiques de la recherche
récente en psychologie cognitive et en éducation des mathématiques.

Piaget est cependant généralement critiqué pour la raison qu’il n’a pas assez
insisté sur les facteurs sociaux et culturels et plus spécifiquement, qu’il ne s’intéressait
pas aux aspects pédagogiques (De Corte, Greer & Verschaffel, 1996). D’apres
Vergnaud (1990), il n’a jamais étudié le processus « enseigner-apprendre », ni en
salle de classe, ni & domicile.

Méme si Piaget ne s’est pas explicitement intéressé au probléme de
I’instruction et méme s’il n’a pas étudié directement le développement des concepts et
des procédures qui composaient la partie principale des programmes d’étude en
mathématiques, les opérations logiques qu’il décrivait semblaient étre sous-jacentes
aux concepts de base enseignés a I’école primaire. La formation de concepts tels que
la conservation, la transitivité et la classification paraissait indispensable a la
compréhension de la plupart des concepts liés aux nombres entiers et a la mesure. Un
certain nombre d’études essayait d’établir empiriquement comment les opérations
logiques de Piaget sont liées a I’apprentissage des concepts de base en mathématiques
(Carpenter, 1980 ; Hiebert & Carpenter, 1982). Bien que toutes les études aient
montré que la performance aux tiches piagétiennes correle avec la performance en
arithmétique, les opérations logiques de Piaget n’ont généralement pas été jugées
utiles pour expliquer les aptitudes des enfants a apprendre la plupart des concepts

mathématiques de base (Hiebert & Carpenter, 1982).

Les théories d’Ausubel, Bruner et Gagné pourraient étre appliquées plus
directement a I’élaboration des programmes d’étude que celles de Piaget. Méme si les

positions d’Ausubel et Bruner sont probablement plus conformes a 1’orientation
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théorique actuelle que le neo-behaviorisme initial de Gagné, c’est Gagné qui indiquait
le plus clairement comment on pourrait analyser les programmes d’étude en
mathématiques et faire de la recherche dans ce domaine (Case & Bereiter, 1982).
L’analyse des taches (task analysis) de Gagné fournit une structure méthodologique
permettant d’organiser systématiquement une maticre d’enseignement selon une
hiérarchie de principes, concepts et compétences. L’analyse des taches a été utilisée
dans la conception de plusieurs projets mathématiques élémentaires, comme, par
exemple des plans d’instruction individuels (Lindvall & Bolvin, 1967) et des projets
de développement des procédures mathématiques (Romberg, Harvey, Moser &

Montgomery, 1976).

Un autre théoricien du développement, dont les travaux s’appliquent plus
directement a 1’éducation est Vigotsky. D’aprés Bruner (1962), on peut méme dire
que sa conception du développement est en méme temps une théorie de 1’éducation.
Son travail a été essentiel pour le développement de la psychologie russe en générale
et pour les théories de 1’éducation mathématique en particulier (cf. Davydov, 1990 ;
Kruetskii, 1976). Des idées théoriques se situant dans la tradition de son oeuvre se
sont également répandues a 1’ouest, ces derniéres 15 années (Newman, Griffin &
Cole, 1989 ; Van Oers, 1990 ; Wertsch, 1985). Vigotsky proposait une interaction
entre le développement biologique et culturel, au moyen de laquelle les fonctions
mentales développées naturellement sont transformées en des fonctions mentales
supérieures, grace a ’'interaction avec des membres plus expérimentés d’une culture.
Bruner (1962) a caractérisé la conception de I’intelligence de Vigotsky comme une
« capacité de profiter de 1’enseignement ».

Les innovations méthodologiques radicales de Vigotsky sont inséparables de
ses analyses théoriques fondamentales et de ses critiques des autres écoles
psychologiques. Il inventait des méthodes expérimentales permettant d’observer le
développement produit par 1’enseignement. Cette méthodologie est actuellement
‘utilisée par des chercheurs en éducation, tels que Steffe (1991), lorsqu’il s’agit de
travailler avec des étudiants individuels. Dans le contexte de la salle de classe, ces
approches sont a la base d’expériences pédagogiques qui jouent actuellement un role
proéminent dans la rechérche didactique en mathématiques (cf. Cobb, Wood &
Yackel, 1991 ; Cobb, Wood, Yackel & McNeal, 1992 ; Lampert, 1986 ; Mahler,
Davis & Alston, 1991).
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La résolution de problémes constitue clairement un domaine de
chevauchement entre la psychologie cognitive et 1’éducation mathématique. L’école
psychologique de la théorie de la Gestalt était la source essentielle pour la recherche
et la théorisation des processus en jeu lors de la résolution de problemes. L’idée clé de
cette école, qui s’intéressait au début surtout a la perception, est que I’esprit interprete
les données venant des sens selon des principes d’organisation, de sorte que 1’étre
humain pergoit des formes (Gestalt) plutdt qu’une collection de perceptions
atomisées. Cette idée a été étendue plus tard a la pensée en général et a la résolution
de problémes, avec I’accent mis sur la structure. Pour des raisons de pertinence et de
commodité, il était naturel que la plus grande partie du travail des psychologues de la
Gestalt concernét des sujets mathématiques. Wertheimer (1945), par exemple, a cité
I’exemple historique du grand mathématicien Gauss, qui, comme jeune €léve, avait
simplifié le calcul impliqué dans 1’addition des nombres d’une suite arithmétique,
grice a sa compréhension de la structure d’une telle suite. Mais la source d’idées la
plus importante concernant la résolution de problémes mathématiques est le travail de
George Polya (1945, 1954a, 1954b, 1962, 1965). Méme s’il était un mathématicien
plutdt qu’un psychologue, il était influencé par la théorie de la Gestalt et son analyse
profonde de la compréhension structurale et des processus de découverte en
mathématique ont eu une grande influence sur la recherche en éducation des
mathématiques.

Polya essayait de présenter les mathématiques selon leur ordre de
développement naturel. Il croyait qu’il faut savoir comment un théoréme a été
découvert pour pouvoir vraiment le comprendre (cf. Albers & Alexanderson, 1985 ;
Tymoczko, 1986). Dans How to solve it (1945), il présenta un certain nombre de
directives heuristiques pour la résolution de problémes. Beaucoup d’essais ont été
faits pour utiliser ces directives, d’une maniére plus ou moins directe, dans le but
d’enseigner des compétences générales de résolution de problémes. Stanic et
Kilpatrick (1980) s’opposent a ce genre de distortion, oil « une heuristique devient
une compétence, une technique et méme, paradoxalement, un algorithme ». Polya lui-
méme affirmait qu’il n’existe pas de raccourci pour apprendre I’art de résoudre des
problémes : comme dans d’autres arts, il faut 1’apprendre en pratiquant et en
réfléchissant sur la maniére de le faire, sous la direction d’un enseignant expert en la

matiére.
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3.1.2 L’apprentissage des mathématiques

Wittrock (1974) était un des premiers a signaler les implications importantes
de la psychologie cognitive dans la recherche en éducation des mathématiques.

A partir des années 80, I’accent de la recherche s’est déplacé et 1’on tient
compte des processus cognitifs internes. L’analyse rationnelle des tiches, basée sur
une analyse logique d’experts a évolué en direction d’une analyse empirique, qui se
concentre sur ce que les enfants font vraiment quand ils résolvent des problémes en
situation naturelle (Romberg & Carpenter, 1986).

L’une des hypothéses principales au cours des années 80 est que les enfants
construisent activement leurs connaissances grace a Dinteraction avec leur
environnement et grace a la réorganisation de leur propre concept mental (Steffe, von
Glasersfeld, Richards & Cobb, 1983). Bien que 1’éducation affecte clairement ce que
les enfants apprennent, elle ne détermine pas complétement le processus
d’apprentissage. Les enfants ne sont pas des récipients passifs ; ils interprétent la
mati¢re exigée, 1’organisent et ’assimilent a la lumiére de leur propre structure
mentale (Wittrock, 1974). Déja au cours des années 70, certains chercheurs ont
souligné que les enfants inventent leur propre mathématique (Resnick, 1976) et qu’ils
viennent a ’école avec des systémes mathématiques informels bien développés
(Ginsburg, 1977). Quelques-uns des meilleurs exemples de la capacité d’invention des
enfants viennent de la recherche sur leurs stratégies pour effectuer des additions et des
soustractions.

Ces études suggérent qu’il n’est pas nécessaire de différer la résolution des
problémes jusqu’a ce que les techniques de calcul soient maitrisées et qu’elle pourrait
étre beaucoup plus intégrés dans les programmes d’étude que c’est le cas
actuellement. En fait, il a été proposé d’utiliser les problémes pour développer les
concepts de I’addition et la soustraction plutdt que d’enseigner d’abord les techniques
de calcul et de les utiliser ensuite pour résoudre des problémes (Carpenter & Moser,

1983).

Jusqu’a il y a une dizaine d’années, on disait souvent, qu’a 1’école primaire,
les mathématiques doivent étre limitées a des buts cognitifs modestes, en raison de
I’immaturité développementale des enfants qui imposerait des limites cognitives

strictes a leur capacité d’apprentissage. D’aprés Davis & Goffree (1991), cet argument
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est clairement contredit par les recherches des derni¢res années. Du projet coreéen
Chisanbop a 1’étude californienne SEED, chaque fois que des enfants ont eu
I’occasion d’apprendre les mathématiques véritables, la plupart d’entre eux se sont
bien débrouillés. Les auteurs sont d’avis que la vision réductrice des mathématiques
élémentaires refléte peut-étre les buts limités qu’une société fixe pour ces citoyens,
ainsi que la capacité limitée des systeémes d’éducation, mais elles ne reflétent
sirement pas le degré de fonctionnement cognitif des éleves. Bien sir, des limites
cognitives existent, mais elles correspondent surtout a la restriction des expériences
qu’un enfant peut avoir fait & un moment déterminé de sa vie. Si I’on tient compte de
ces limitations d’une fagon adéquate, la plupart des enfants sont capables de faire de
grands progrés. Actuellement, les écoles primaires qui offrent la possibilité
d’apprendre en quoi un raisonnement mathématique consiste vraiment sont rares dans

le monde.

L’hypothése de loin la plus répandue est, qu’a 1’école primaire, les
mathématiques consistent en des régles de calcul et des algorithmes qui doivent étre
mémorisés. La méthode courante consiste a les présenter ou démontrer aux éleves,
aprés quoi ceux-ci répétent les régles et les algorithmes jusqu’a ce qu’ils soient
capables de le faire correctement (David & McKnight, 1980). Cette interprétation de
ce que « connaitre » ses mathématiques veut dire, méme si elle est trés répandue,
presque jusqu’a 'université, est en fait trés controversée. Un tel savoir ou de telles
capacités procédurales dénuées de sens ont déja été rejetés par Bruner & Erlwanger
(1973), Alderman, Swinton & Braswell (1979) et beaucoup d’autres, au moins depuis
Dewey.

Au cours des quatre derni¢res décades peuvent étre identifiées au moins trois
écoles de pensée importantes concernant la nature de I’apprentissage des
mathématiques, ainsi que de nombreuses variations et alternatives moins répandues.

Premiérement, il y a la doctrine didactique de ’apprentissage par coeur,
décrite ci-dessus. Deuxiémement la doctrine de la structure mathématique abstraite
(abstract mathematical structure) qui affirme que la vraie nature des mathématiques
ne peut pas se révéler si I’on essaye de retracer les chemins chronologiques de leur
développement, avec ses détours, ses impasses et ses concepts bizarres, mais qu’il faut
au contraire commencer par les concepts abstraits simples et précis de 1’analyse

moderne, comme la notion d’ensemble, de groupe, d’espace vectoriel et ainsi de suite.
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Ce point de vue était trés populaire dans les années 60 et le début des années 70. De
nos jours, il a perdu du terrain par rapport a la troisiéme école, celle du point de vue
constructiviste.

L’école constructiviste, basée en partie sur les travaux de Piaget et exposée
plus récemment, entre autres, par Papert (1980) suppose que les connaissances sont
connectées entre elles et que de nouvelles représentations peuvent étre acquises
seulement & condition de pouvoir étre reliées a des représentations qui existent
préalablement. Les idées mathématiques, en particulier, sont basées en derniére
analyse sur des expériences de l’enfance, comme par exemple 1’expérience de
I’horizontalité par opposition & la verticalité, le comportement des fluides sous
I’influence de la gravité, le comportement d’une collection d’objets physiques quand
on les déplace etc... . Cette hypothése implique que certaines choses sont apprises
facilement et d’autres non, mais le critére de simplicité provient du développement
biologique et non de concepts abstraits tels que « groupe de transformation » ou
« ensemble ». Pour les constructivistes, la simplicité est basée sur les connaissances
antérieures, qui sont le plus souvent concrétes ou du moins empiriques. Du point de
vue constructiviste, il est important que les enfants aient fait des expériences

approprices, fonctionnant comme fondement de I’apprentissage ultérieur.

Si I’on juge d’apres le critére de 1’habileté générale en calcul, il est clair, que
méme dans un grand nombre de sociétés évoluées, les compétences en mathématiques
élémentaires sont loin d’étre universellement répandues (Davis & Goffree, 1991).
Mais, il existe un critére plus pertinent; en effet, les meilleurs programmes
expérimentaux modernes ont souvent montré que des enfants de 8 a 10 ans sont
capables d’assimiler des mathématiques réelles, expérimentant avec la pensée
mathématique, 1’analyse mathématique, la conjecture mathématique, 1’amoncellement
de preuves, la conception de lignes de raisonnement, la recherche et la découverte de
régularités et de motifs clés, et qu’ils en tirent un grand profit. Ce type d’éducation
n’est malheureusement offert qu’a un petit nombre éléves dans quelques pays,
comme, par exemple, la Hongrie, les écoles d’élite des Etats-Unis et surtout le Japon,
qui, du point de vue de 1’éducation mathématique est un des pays les plus efficaces du
monde. A I’dge de 6 ans, on y commence par la mesure directe des dimensions de
différents objets physiques (cf. Hashimoto Y. & Sawada T., 1979). Au Japon, on

attribue beaucoup d’importance & la signification des objets et des symboles
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mathématiques, 1’éducation ne s’y fait pas par simple mémorisation. Le programme
d’étude pour les enfants de 8 ans prévoit le début de 1’étude de 1’algebre; la
multiplication et la division sont connues a cet 4ge 1a ; les enfants sont familiers avec
les fractions décimales ; ils ont quelque connaissance de 1’idée de fonction et sont
capables de résoudre des problémes en utilisant le soroban (I’abacus japonais). A neuf
ans, les enfants japonais ont des connaissances considérables en géométrie,
manipulant des concepts comme la mesure d’angles, la perpendicularité, I’aire, le
volume, et ainsi de suite, et ils sont familiers avec de nombreuses formes
géométriques en deux et en trois dimensions. Leur compétence en arithmétique inclut
le maniement des nombres décimaux et des fractions. IIs savent représenter des
fonctions a ’aide d’expressions algébriques, de graphes et de tables de valeurs.

A la fin de I'école primaire, un éléve japonais a des connaissances
considérables en calcul arithmétique, en géométrie, en mesure de temps, de distances,
d’argent, d’aires, de volumes, d’angles et en notions ¢élémentaires d’algébre. Les
enfants sont capables de concevoir leurs propres algorithmes, ils maitrisent
’utilisation de leur abacus et comprennent la signification de ce qu’ils font. Ils ont
également quelques connaissances en statistiques descriptives, ils sont familiers avec
la proportionalité directe et inverse et ont quelque compétence en géométrie
descriptive. Ils ont commencé & manier des quantités discrétes et continues et
connaissent les concepts d’axe de symétrie, de rapport, de proportion, de prisme, de
cylindre, de cone, de pyramide, et ainsi de suite. On attend également d’cux de faire
preuve d’un peu d’originalité et d’invention.

D’aprés des études américaines, le haut niveau dans 1’éducation des
mathématiques était une des raisons essentielles de la haute productivité industrielle
du Japon. Au début des années 80, les Etats Unis, dont 1’économie était alors en trés
mauvaise position, lancérent un vaste programme éducatif, avec le but de devenir le
premier pays mondial pour la qualité de I’enseignement des mathématiques, jusqu’en

I’an 2000.
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3.2 L’approche psychométrique

L’approche psychométrique de la recherche sur les processus cognitifs
consiste a essayer de comprendre la variabilit¢ individuelle dans les aptitudes
humaines (Geary, 1994).

Historiquement, cette approche a procédé par I’administration de nombreux
tests papier-crayon a des individus et des groupes d’individus, pour identifier ensuite,
au moyen d’analyses factorielles et de techniques analogues, des groupes d’épreuves
ayant quelques propriétés communes (Spearman, 1927 ; Thurstone, 1938). Ces études
permettent de dégager des facteurs de second ordre, décrivant la corrélation entre les
différentes épreuves. Un facteur d’aptitudes représente un systéme de savoir
conceptuel ou de processus cognitifs que tous les tests qui le définissent ont en
commun. Avant de pouvoir affirmer avec certitude que les tests d’aptitudes
correspondent 4 un ensemble défini de processus cognitifs, il faut démontrer que les
mémes tests se retrouvent dans un grand nombre d’études. Ce critére est appelé
stabilité factorielle ou invariance du facteur (Thurstone, 1938). Si ce critére est vérifié,
le facteur pourrait représenter un domaine de base de la compétence humaine ; les
aptitudes représentées par un facteur peuvent étre distinctes d’autres aptitudes
cognitives pour des raisons tout aussi bien éducatives et culturelles que biologiques.
Ils sont donc indépendants de la controverse nature/culture.

Nous allons présenter quelques études psychométriques portant sur des tests
numériques ou mathématiques, dans le but d’identifier des domaines d’aptitudes
mathématiques de base et d’analyser les changements développementaux dans ces

domaines.

3.2.1 L’aptitude numérique

Dans la littérature psychométrique traditionnelle, 1’aptitude numérique est
mesurée & 1’aide de tests d’arithmétique (Thurstone, 1938). Ces études sont
importantes pour deux raisons. Premiérement, si ’on peut démontrer que le facteur
correspondant & 1’aptitude numérique est présent dans toutes les études, alors cette

découverte plaide en faveur de la conception que I’arithmétique représente un
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domaine fondamental de la compétence humaine (Gelman & Gallistel, 1978 ; Wynn
1992). Deuxiémement, dés que la stabilité de ce facteur aura été établie, des plans
factoriels permettront d’étudier le développement des compétences associées. En
particulier, ces techniques peuvent étre employées pour déterminer 1’age ou I’aptitude
en arithmétique émerge comme compétence distincte et pour étudier comment la
relation entre 1’aptitude numérique et, par exemple, l’aptitude en raisonnement
mathématique, évolue avec 1’age de I’enfant.

En ce qui concerne la stabilité du facteur, le facteur numérique ou d’aptitude
numérique a été identifiée dans des douzaines d’études psychométriques (voir p.ex.
Canisia, 1962 ; Chein, 1939 ; Coombs, 1941 ; French, 1951 ; Goodman, 1943 ;
Thurstone, 1938 ; Thurstone & Thurstone, 1941). Un facteur d’aptitude numérique
distinct a été trouvé dans études avec des étudiants Américains, Chinois et Philippins
(Guthrie, 1963 ; Vandenberg, 1959), aussi bien que dans des analyses avec des
groupes séparés d’hommes et de femmes d’ages différents (Dye & Very, 1968). En
fait, Pawlick (1966) soutenait que la « compréhension verbale (V) » et 1’« aptitude
numérique (N) » sont les deux facteurs cognitifs les mieux confirmés. French (1951),
dans un examen complet des facteurs d’aptitudes, déclare que le facteur d’aptitude
numérique est le plus clairement défini de tous. Méme Spearman (1927), qui était
pourtant d’avis que les différences individuelles dans les capacités humaines sont le
mieux expliquées par des différences en facteur d’intelligence générale (g), €crivait
que des compétences arithmétiques de base correspondent a un facteur de groupe tres
bien défini.

Dans les études fondamentales, le facteur d’aptitude numérique est saturé le
plus en tests de calcul arithmétique (p.ex. des tests qui exigent des opérations de
multiplication complexes) et en tests nécessitant une compréhension conceptuelle des
relations entre les nombres et les notions arithmétiques, mais pas en tests contenant
simplement des nombres comme stimulus (Thurstone, 1938 ; Thurstone & Thurstone,
1941). Au fond, le facteur d’aptitude numérique semble contenir toutes, ou presque
toutes, les compétences arithmétiques de base (Geary & Widaman, 1987). Du point de
vue de la perpective psychométrique, on peut dire que I’aptitude arithmétique ou
numérique représente une compétence unique (Thurstone, 1938). En d’autres mots,
les études psychométriques suggérent que les capacités arithmétiques se combinent et
définissent un seul domaine, qui se distingue des autres domaines, comme celui de la

perception spatiale. Cela ne veut pas dire que des différences individuelles en
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intelligence générale n’influencent pas les performances en arithmétique ou en
d’autres domaines, mais qu’il existe un ensemble de processus et de concepts qui
expliquent les différences individuelles en arithmétique, au-dela de I’influence de
I’intelligence générale.

La deuxiéme question qu’il convient de se poser est a quel moment du
développement, le facteur d’aptitude numérique commence a émerger, ou autrement,
a quel age on peut identifier les compétences en arithmétique comme compétences
distinctes. Dans une étude longitudinale de la structure factorielle de I’intelligence a
I’aide de 1’échelle de Wechsler pour les enfants (Wechsler Intelligence Scale for
Children), Osbore et Lindsey (1967) ont trouvé des preuves en faveur de 1’existence
d’un facteur d’aptitude numérique plus ou moins distinct, pour un échantilion
d’enfants de la maternelle. Le facteur était défini par les sous-tests d’arithmétique et
de mémoire immédiate des chiffres du WISC, ainsi que par des items quantitatifs du
sous-test d’informations (p.ex. Combien de pennies faut-il avoir pour posséder un
nickel 7). Ce résultat suggére que pour des enfants de la matemelle, ’aptitude
numérique comporte le comptage, 1’arithmétique simple, la mémoire de travail pour
les nombres et des connaissances générales sur des relations quantitatives. Dans un
examen des aptitudes de base des enfants de la maternelle, Meyers et Dingman (1960)
ont trouvé que les compétences numériques peuvent étre identifiées comme une
aptitude distincte a partir de I’age de 5 a 7 ans. Cela ne veut pas dire que le facteur
d’aptitude numérique ne se manifeste pas comme facteur distinct avant cet age, mais
plutdt que les tests psychométriques standards ne peuvent étre utilisés avant 1’age de
la maternelle, parce que ce sont généralement des tests papier-crayon. Le facteur
d’aptitude numérique a également été identifié pour des échantillons d’enfants et
d’adolescents, & 1’école primaire, & 1’école secondaire et dans 1’enseignement
supérieur (Dye & Very, 1968 ; Osbome & Lindsey, 1967 ; Thurstone & Thurstone,
1941), ainsi que pour des personnes dgées (Schaie, 1983).

Méme si le facteur d’aptitude numérique a été identifi€é pour toutes les
tranches d’dges, il semble y avoir deux changements développementaux dans les tests
qui le définissent. Pour des enfants en troisiéme année d’école primaire, par exemple,
le facteur d’aptitude numérique regroupe les tests d’arithmétiques et de mémoire
numérique immédiate (Osborne & Lindsey, 1967), mais pour des adolescents plus
agés et des jeunes adultes, les tests qui définissent ce facteur sont presque

exclusivement de nature arithmétique (Thurstone & Thurstone, 1941). Le fait que des
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tests de la mémoire de travail pour les nombres et les tests d’arithmétique sont
groupés pour des enfants de la maternelle et de I’école primaire, est probablement di
a la composante mnésique des procédures arithmétiques élémentaires, telles que le
comptage (Widaman & Little, 1992). Pour des enfants de 1’école élémentaire, Little et
Widaman (In press) ont trouvé que la mémoire de travail pour les nombres contribue
directement a la performance dans des tests d’aptitude numérique, tandis que Geary et
Widaman (1992) n’ont pas trouvé une telle relation directe pour des adultes. En
d’autres mots, les tests de la mémoire numérique corrélent avec les test d’arithmétique
pour les jeunes enfants parce que la mémoire numérique est importante pour les
premiéres compétences arithmétiques. Quand, plus tard, les procédures élémentaires
deviennent plus automatiques, c’est-a-dire effectués sans effort, le facteur d’aptitude
numérique se réduit correspond exclusivement a la compétence arithmétique.

La seconde tendance au changement s’observe dans la relation entre la
performance dans des tests d’aptitude numérique et des tests de raisonnement
mathématique. En gros, pour des échantillons relativement peu compétents, comme
des enfants de 12 ans, les tests d’aptitude numérique et de raisonnement
mathématique sont plus ou moins corrélés : les enfants qui ont une compétence plus
grande en arithmétique élémentaire ont également une compétence plus grande en
raisonnement mathématique (c.f. Chein, 1939 ; Dye & Very, 1968 ; Murray, 1949 ;
Thurstone & Thurstone, 1941). Pour des échantillons d’adolescents plus agés et de
jeunes adultes, ou presque tous les sujets maitrisent 1’arithmétique de base, il n’y a
plus aucune relation entre I’aptitude numérique et le raisonnement mathématique
(Dye & Very, 1968). Pichot (1965) avait déja souligné que les facteurs de groupe
trouvés avec la méthodologie de Thurstone se différencient avec 1’dge. Le facteur
quantitatif trouvé chez les jeunes enfants se dédouble en facteur numérique et en
facteur de raisonnement. Selon cet auteur, la structure intellectuelle se différencie
avec I’Age par une sorte de perte de la plasticité et une augmentation de la

spécialisation.

3.2.2 Le raisonnement mathématique

En plus du facteur d’aptitude numérique, un facteur de raisonnement

mathématique a été identifié dans toutes les études effectuées grace a 1’analyse
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factorielle (Canisia, 1962 ; Dye & Very, 1968 ; Ekstrom, French & Harman, 1976 ;
French, 1951 ; Goodman, 1943 ; Thurstone, 1938 ; Vandenberg, 1959 ; Very, 1967).
Dans les différentes études, ce facteur a obtenu beaucoup de désignations différentes,
comme par exemple raisonnement arithmétique, raisonnement général et
raisonnement mathématique. Pour des raisons de cohérence, nous allons toujours
I’appeler facteur de raisonnement mathématique. Les tests qui définissent ce facteur
exigent typiquement la capacité de trouver et d’évaluer des relations quantitatives et
de tirer des conclusions sur la base de ces informations. Ainsi, D’aptitude de
raisonnement mathématique décrite par les études psychométriques semble concorder
avec ce qu'on appelle d’habitude la compétence de résoudre des problémes
mathématiques. Les études psychométriques peuvent nous aider & mieux comprendre
la compétence de résoudre les problémes mathématiques de plusieurs fagons. Comme
c’est le cas pour I’aptitude numérique, les études psychométriques peuvent étre
utilisées pour déterminer a quel niveau le raisonnement mathématique émerge comme
facteur distinct. Puis, ’approche psychométrique peut étre utilisée pour évaluer la
relation entre D’aptitude de raisonnement mathématique et d’autres aptitudes
numeériques et de raisonnement.

Thurstone et Thurstone (1941) ont trouvé dans une étude sur 1154 enfants de
12 ans environ que les tests de raisonnement mathématique corrélaient avec les tests
d’aptitude numérique classiques. Ce résultat, ainsi que d’autres résultats d’études
semblables (Guthrie, 1963) suggérent que les facteurs d’aptitude numérique et de
raisonnement mathématique ne représentent pas nécessairement des aptitudes
différentes pour la plupart des enfants a I’école primaire. Dans une autre étude a large
¢échelle, Dye et Very (1968) ont administré une batterie de tests psychométriques a
358 éléves d’école secondaire et 4 198 étudiants. Ces tests comportaient entre autres
des mesures d’aptitude numérique, de vitesse de perception, de raisonnement verbal,
de raisonnement déductif, de raisonnement mathématique et d’aptitude d’estimation.
Ils ont trouvé un facteur de raisonnement mathématique, a la fois pour les éléves
masculins et pour les éléves féminins a tous les dges. Alors que, pour les étudiants, ce
facteur était indépendant du facteur d’aptitude numérique, il y avait une corrélation
modérée pour les plus jeunes éléves d’école secondaire, probablement parce que un
grand nombre d’items de raisonnement mathématiques présupposaient la capacité de
résolution des problemes d’arithmétique appliquée. Comme de bonnes compétences

en arithmétique facilitent la résolution de tels problémes, il est naturel que des tests
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d’aptitude numérique et de raisonnement mathématique aient une faible corrélation a
un ige ou tous les sujets ne maitrisent pas encore compleétement 1’arithmétique
élémentaire (Geary 6 Widaman, 1992). Toutes les études suggerent que les systémes
cognitifs sous-jacents a I’aptitude numérique respectivement au raisonnement
mathématique commencent a diverger au cours de la scolarité.

Ceci laisse ouverte la question de savoir si l’aptitude de raisonnement
mathématique est distincte d’autres formes de raisonnement (p.ex. le raisonnement
déductif et inductif). Dye et Very (1968) n’ont pas trouvé de relation significative
entre la performance dans des tests de raisonnement verbal et déductif et celle dans
des tests de raisonnement mathématique. Ce résultat suggére, que pour des
adolescents et de jeunes adultes, 1’aptitude de raisonner dans un domaine quantitatif,
est distincte de I’aptitude de raisonner dans des domaines non quantitatifs.
Néanmoins, d’autres études ont trouvé que des tests de résolution de problémes
arithmétiques et algébriques corrélent parfois avec des tests de raisonnement verbal et
d’autres formes de raisonnement non quantitatif (Ekstrom, French & Harman, 1979 ;
French, 1951 ; Vandenberg, 1959). L’ensemble de ces résultats suggere que le
raisonnement mathématique se développe initialement & partir d’une compétence
représentée par un facteur d’aptitude numérique et a partir de compétences de
raisonnement plus générales, ce qui nous renvoie aux discussions sur 1’existence et la
nature d’un facteur d’intelligence générale (g), susceptible d’étre remplacé avec 1’age
par des facteurs de groupe de plus en plus différenciés (Pichot, 1965). Un systéme
distinct de compétence en raisonnement mathématique émerge seulement chez les
adolescents a la fin de 1’école secondaire, ayant beaucoup d’expériences en

mathématiques (Very, 1967).

3.2.3 Autres compétences mathématiques

Les facteurs d’aptitude numérique et de raisonnement mathématique
représentent le seul systéme de capacités mathématiques, se retrouvant dans la plupart
des études basées sur ’analyse factorielle. D’autres facteurs mathématiques ont
cependant été identifiés dans certaines études. Il n’est pas clair pourquoi ils n’ont pas
été trouvés aussi réguliérement que I’aptitude numérique et le raisonnement

mathématique. Une raison semble consister dans le type de tests utilisé. Thurstone et
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Thurstone (1941), par exemple, ont trouvé un facteur de comptage de points, qui était
défini par des items évaluant la compétence de compter rapidement et justement des
configurations de points. De tels items de comptage de points n’ont pas généralement
été inclus dans les autres études psychométriques. Certaines études ont aussi mis en
évidence des facteurs de flexibilité numérique ou bien d’estimation (Canisia, 1962 ;
Very, 1967).

Le facteur de comptage de points identifié par Thurstone et Thurstone (1941)
pour un échantillon d’éléves de 12 ans est intéressant, parce que les tests qui
définissent ce facteur ressemblent beaucoup aux tests qui sont utilisés de nos jours
dans les expériences de comptage de points (subitizing). Dans 1’étude originelle, la
performance numérique était indépendante de la performance au comptage de points.
Ce résultat suggere, que pour des jeunes éleves de 1’enseignement secondaire, les
capacités en arithmétique ne sont pas liées aux capacités associées avec le comptage
de points, qui sont le comptage et 1’estimation (Mandler & Shebo, 1982). Les enfants
comptent souvent pour résoudre des problémes arithmétiques, d’ou il résulte que les
tests de comptage et d’arithmétique corrélent pour des enfants de la matemelle
(Osborne & Lindsey, 1967), alors que le comptage n’était certainement plus beaucoup
utilisé par les éléves de I’enseignement secondaire confrontés aux problémes
arithmétiques proposés dans 1’étude de Thurstone et Thurstone (Ilg & Ames, 1951).
Le fait qu’il n’y pas de corrélation entre le comptage de points et 1’aptitude numérique
suggére que les compétences de comptage de points pourraient étre distinctes des
aptitudes arithmétiques, contrairement a ce qui ressort des recherches du début des
années 90, affirmant que le comptage de points et 1’arithmétique émergent du méme
systéme de comptage préverbal inné (Gallistel & Gelman, 1992). Ceci ne veut pas
dire que le comptage de points ne soit pas utilisé dans le développement initial des
compétences arithmétiques. Ce résultat suggere plutdt que les systémes cognitifs sous-
jacents au comptage de points et a I’arithmétique pourraient se différencier plus tard,
par exemple au début de 1’adolescence.

Le facteur de flexibilité numérique identifié par Very (1967) et Canisia (1962)
implique la capacité de manipuler, d’arranger et de comparer des nombres, sans faire
d’opérations arithmétiques. Des tests associés a ce facteur comportent par exemple
des items de comparaison du style « plus grand que — moins grand que » d’ensembles
de nombres, des items demandant d’écrire le plus grand nombre possible de nombres

vérifiant certaines conditions (p.ex. étre pair ou impair) ou des items de complétion de
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séries de nombres (p.ex 2,4,6,...). Canisia a trouvé que le facteur de flexibilité
numérique était indépendant du facteur d’aptitude numérique et du facteur de
raisonnement mathématique pour un groupe d’éléves de lycée.

Very (1967) a identifié un facteur d’estimation mesurant la capacité de faire
des estimations quantitatives. Thurstone (1938) a trouvé qu’un test d’estimation
quantitative ne corrélait pas avec les tests d’aptitudes numériques traditionnels, mais
qu’il corrélait avec des tests de raisonnement mathématique. Very (1967) argumentait
que le facteur d’estimation contient en effet la compétence de créer et d’évaluer
rapidement de nouvelles hypothéses afin de tirer les bonnes conclusions, ce qui
implique que 1’estimation nécessite des capacités de raisonnement. La vitesse avec
laquelle on effectue des comparaisons quantitatives est en elle-méme distincte des
aptitudes d’arithmétique et de raisonnement mathématique. Cependant, dans les
performances aux tests, la capacité de faire de bonnes estimations quantitatives
pourrait cependant ne pas se distinguer de 1’aptitude de raisonnement mathématique.

En conclusion, certaines études psychométriques suggerent qu’il existe des
domaines mathématiques mal explorés, impliquant des compétences moins bien mis
en évidence que 1’aptitude numérique et le raisonnement mathématique. Ces domaines
paraissent inclure des aptitudes associées avec le comptage de points, la flexibilité
numérique, 1’aptitude d’estimation quantitative. De ces trois domaines méthématiques
potentiels, les preuves en faveur des compétences associées au comptage de points et
a la flexibilité numérique sont plus fortes que les preuves en faveur d’un facteur
d’estimation quantitatif. (Thurstone & Thurstone, 1941 ; Very, 1967). Le comptage de
points et la numérique semblent étre distinct de Vaptitude numérique et du
raisonnement mathématique, au moins pour des individus compétents. Les processus
associés au facteur d’estimation par contre pourraient simplement refléter la

compétence de raisonnement mathématique (Petitto, 1990).

3.2.4 L’étude de J.B. Carroll

Carroll (1993) a repris les données de quelque 480 études apparues dans la littérature
psychométrique et il les a analysées a 1’aide d’analyse factorielles exploratives afin de
dégager une taxonomie des capacités cognitives. Ses résultats ont confirmé les

modéles de structure hiérarchique des capacités cognitives qui ont été proposés déja
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plus tot par des chercheurs comme Vernon (1961), Cattell (1971) et Cattell et Horn
(1978). Dans sa synthese, Carroll suggere une théorie a trois strates dans laquelle les
compétences cognitives peuvent €tre classifiées hiérarchiquement selon le niveau de
généralité en facteurs généraux, larges et étroits. Comme le montre le diagramme de
la page suivante, au sommet de I’hiérarchie, le facteur d’intelligence générale, qu’on
retrouve dans plus ou moins tous les tests de compétence cognitive, compose la strate
la plus élevée. Une deuxiéme strate se compose de facteurs « larges » relativement
peu nombreux qu’il a appelés intelligence fluide, intelligence cristallisée, mémoire et
savoir, perception visuelle, perception auditive, capacité de remémoration, vitesse de
pensée, respectivement vitesse d’exécution. Sur la troisiéme strate, au niveau le plus
bas, on trouve un nombre relativement grand (environ 65) de facteurs « étroits » qui
représentent des capacités spécifiques dans des domaines variés.

Les études factorielles ne disent en général pas grand chose sur les sources des
facteurs (par exemple, a quel degré ils sont influencés par les caractéristiques
génétiques ou par apprentissage), sur leur stabilité et leur degré de constance au cours
de la vie. On peut cependant affirmer que la plupart des facteurs sont présents a
presque tous les stades de la vie, méme si les niveaux d’aptitude qu’ils déterminent

peuvent augmenter ou diminuer avec le temps.

Passons en revue ceux parmi ces facteurs qui peuvent étre pertinents pour le

raisonnement mathématique ou pour résoudre des problémes de nature mathématique.

a) Le facteur d’intelligence générale g

Dans les analyses factorielles exploratoires, le facteur d’intelligence générale g
provient de la découverte que les facteurs de premier ordre sont substantiellement
corrélés, de manic¢re a ce qu’un seul facteur parvienne a expliquer le mieux leurs
intercorrélations. Dans des analyses factorielles confirmatoires, on peut postuler un
facteur général, indépendant des autres facteurs et confirmé par 1’analyse (Gustafsson,
1988). Par 'un ou l'autre type d’analyse, un facteur général est trouvé trés
fréquemment dans les études cognitives.

Il y a eu beaucoup de spéculations et de publications sur la nature de g.
Spearman a pensé que g est impliqué dans les opérations cognitives dés que ’individu

doit (a) appréhender une expérience et y penser, (b) déduire ou trouver des relations
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parmi des stimuli ou (c) trouver des correspondances. De nos jours, le facteur général
est souvent interprété comme représentant la complexité maximale ou la difficulté
générale des tches qu’un individu possédant un niveau donné de g peut accomplir et
par conséquent la quantité de manipulation mentale consciente requise par ces tiches
(Jensen, 1980 ; Marshalek, Lohman & Snow, 1983). Ceci n’explique cependant pas
tous les résultats. Des personnes exceptionnelles, par exemple, capable d’effectuer des
tiches arithmétiques trés complexes, comme de trouver la racines 23-éme d’une
nombre & 201 chiffres, n’ont pas toujours des niveaux particuliérement élevés de
compétence générale (e.g. Jensen, 1990).

Il est cependant difficile d’aboutir a4 des conclusions sur la nature de g en
étudiant des cas isolés. La question peut étre mieux résolu en analysant des tests
hautement chargés en g. La plupart de ces tests nécessitent des raisonnements détailleés
et complexes sur des similitudes, des comparaisons, le sens de mots et de phrases
difficiles, des relations et des implications logiques, des problemes quantitatifs et ainsi
et suite. Certains tests nécessitent aussi de larges connaissances de principes ou de
faits, ainsi que I’aptitude d’appliquer ces principes ou faits a une variété de problémes,
sans tenir compte de leur complexité. Ceci pourrait signifier que g représente
Paptitude générale d’assimiler et d’appliquer les connaissances. Des bons résultats
dans un test mesurant g pourraient aussi présupposer une mémoire de travail étendue
et capable (Carpenter, Just et Shell, 1990 ; Kyllonen et Christal, 1989) et des capacités
de trouver la stratégie adéquate a la résolution des problémes.

L’importance pratique du facteur g pour les mathématiques est bien illustré par
I’étude de Stanley (1974) qui montre que des éléves précoces en mathématiques sont
également caractérisés par un haut niveau en facteur g. D’autre part, elle montre que
des éléves qui ont un QI bas (le QI est en général un bon indicateur de g) ont des
difficultés considérables pour apprendre I’arithmétique élémentaire ; et méme s’ils
sont capables d’apprendre des opérations mathématiques élémentaires, ils ont besoin
de beaucoup plus de temps pour le faire.

Tous ces résultats doivent cependant étre complétés par le fait que le facteur g,
comme la plupart des autres compétences cognitives est soumis au développement. Le
niveau de I’aptitude correspondante tend & augmenter continuellement de 1’enfance

jusqu’au début de 1’4ge adulte, mais la vitesse de croissance dépend des individus.
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b) L’intelligence fluide

Un certain nombre de facteurs de la strate inférieure, notamment 1’induction, le
raisonnement séquentiel et le raisonnement quantitatif sont corrélés fortement, mais,
d’aprés le modéele décrit par Carroll, ce n’est pas seulement par I’influence du facteur
g, mais également par celle du facteur de deuxiéme niveau appelé intelligence fluide
par Cattell (1971). L’intelligence fluide représente 1’aptitude générale de la pensée se
manifestant dans I’induction (trouver des régles ou des généralisations qui expliquent
ou gouvernent des configurations de stimuli données), du raisonnement séquentiel
déductif (effectuer des raisonnements logiques qui nécessitent plusieurs pas) et des
raisonnements quantitatifs (faire un raisonnement qui implique des concepts
quantitatifs). L’intelligence fluide est hautement corrélée avec g et il y a méme
certains auteurs qui affirment que ces deux facteurs sont identiques (Gustafsson
1988 ; Undheim et Gustafsson, 1987). Carroll est néanmoins d’avis que ce sont deux
facteurs différents, parce que la corrélation entre eux n’est pas toujours parfaite et
qu’on peut donc les estimer indépendamment. Ainsi, 1’intelligence fluide représente
une compétence qui est spécifiquement en relation avec des raisonnements associés a
des concepts logiques et quantitatifs.

I1 est intéressant que ces raisonnements peuvent étre classifiés en sous-groupes
impliquant des processus inductifs, déductifs et des processus quantitatifs. De plus, on
peut identifier un quatriéme facteur de niveau inférieur appelé raisonnement piagétien,
qui permet d’accomplir des tdches impliquant des phénomeénes périodiques ou de
conservation, comme celles étudiés par Piaget (Flavell 1977).

. Les facteurs qui constituent ’intelligence fluide semblent caractériser les
aspects majeurs de la pensée mathématique. En effet, comme on 1’a vu dans les
sections précédentes, beaucoup de chercheurs qui ont étudi€ la pensée mathématique,
affirment que résoudre des problémes mathématiques implique fréquemment les
processus séparés d’induction, de déduction et de conceptualisation mathématique
(Nesher & Kilpatrick, 1990). Hadamard (1954) a méme proposé de classer les
chercheurs en mathématiques en deux groupes, selon qu’ils sont plutdt inclinés a
utiliser I’induction et I’intuition ou plutét la déduction et le raisonnement.

Un autre facteur faisant partie de I'intelligence fluide est le facteur de vitesse
de raisonnement qui représente la vitesse de résoudre des problémes, par contraste

avec le niveau d’aptitude, permettant de les résoudre en un temps indéfini. 11 existe
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bien sfir une corrélation entre le niveau d’aptitude et la vitesse de résolution. En effet,
des individus qui ont une compétence plus grande a résoudre des problemes
mathématiques ont tendance a les résoudre plus rapidement que ceux qui ont une
faible compétence dans ce domaine, mais la corrélation est loin d’étre parfaite. Cela
implique que des tests de raisonnement dans lesquels est imposé une limite de temps
pour les résoudre évaluent souvent mal ’aptitude de résoudre des problémes comme

telle.

¢) L’intelligence cristallisée

Un second facteur de deuxiéme strate s’appelle intelligence cristallisée
(Cattell, 1971). Elle influence un certain nombre de facteurs de niveau inférieur qui
concernent surtout le langage, aussi bien oral qu’écrit et aussi bien réceptif (entendre
et lire) que productif (parler et écrire). En fait, ce facteur pourrait trés bien s’appeler
compétence linguistique, s’il ne contenait pas aussi des compétences qui sont acquises
par I’expérience ou apprises & 1’école. C’est pourquoi intelligence cristallisee est
souvent caractérisée comme étant I’aptitude qui représente les aspects de
’intelligence générale acquis par expérience, apprentissage et instruction.

On peut mentionner un certain nombre de compétences linguistiques qui ont
un rapport avec la pensée mathématique. Le développement du langage caractérise le
niveau de compétence général d’un individu en ce qui concerne les langues,
particuliérement dans les premiéres années de sa vie ; il mesure jusqu’a quel point, a
un temps donné, la personne a assimilé la phonologie, le vocabulaire et la grammaire
de sa langue maternelle. Il est bien connu, qu’en effectuant des raisonnements
mathématiques, les gens utilisent généralement leur langue maternelle pour désigner
les nombres (Cohen, 1994). Plus généralement, le développement linguistique
individuel joue un rdle dans la résolution de problémes mathématiques. La méme
remarque s’ applique au facteur compréhension de 1’écrit qui est d’habitude hautement
corrélé avec le facteur développement du langage.

Les autres facteurs de niveau inférieur faisant partie de !’intelligence
cristallisée ne sont pas spécifiques a ’apprentissage des mathématiques et nous

n’allons pas les analyser en détail.
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d) La mémoire

Un certain nombre de compétences relatifs a la mémoire sont suffisamment
corrélés entre eux pour définir la strate de deuxiéme niveau appelé mémoire et savoir.
Les facteurs de troisiéme niveau incluent I’envergure de la mémoire, la mémoire
associative et la mémoire significative.

L’envergure de la mémoire est souvent testée en donnant aux sujets une série
de chiffres ou lettres qu’ils doivent répéter dans 1’ordre exact. Le fait que le facteur
d’envergure de la mémoire est souvent substantiellement corrélé avec g peut étre
interprété d’aprés Carroll (1996) par le fait que ce facteur est une mesure de 1’étendue
de la mémoire de travail. Par conséquent, I’envergure de la mémoire peut é&tre
impliquée dans la résolution d’un probléme mathématique, surtout si c’est un
probléme qu’il faut résoudre mentalement. D’autre part, Kyllonen et Christal (1989)
affirment que les items utilisés pour tester 1’envergure de la mémoire semblent tirés
par les cheveux et ne correspondent pas & ce que les gens font quand ils apprennent
vraiment quelque chose. Ils ont proposé des mesures plus réalistes de la mémoire de
travail.

La mémoire associative est d’habitude testée en présentant aux sujets une série
de paires de stimuli arbitraires qu’ils doivent observer pendant un temps relativement
limité et en leur demandant ensuite de répondre a chaque stimulus par 1’élément qui
lui était associé dans la série d’apprentissage. La mémoire associative est impliqué
dans D’apprentissage du vocabulaire d’une langue étrangere, mais elle influence
¢galement la vitesse avec laquelle un individu peut apprendre une série quelconque
d’¢€léments, tels les nombres impliqués dans 1’arithmétique ¢lémentaire, les carrés des
logarithmes d’une sériec de nombres ou méme des formules et des équations
mathématiques. Ce facteur influence alors la vitesse d’apprentissage et non la maniére
d’apprendre, ni la quantité maximale qui peut étre assimilée. Les différences
individuelles dans la vitesse d’apprentissage sont souvent trés grandes tant chez les
enfants que chez les adultes.

Un autre facteur qui pourrait étre impliqué dans 1’ apprentissage des mathématiques est
la mémoire significative, qu’on observe dans des tests ou il faut mémoriser des idées
qui ont un sens logique et non pas seulement des stimuli arbitraires. Le succes dans de
tels tests semble dépendre non seulement de la faculté des individus de comprendre

les idées, mais aussi de la vitesse avec laquelle ces idées peuvent étre mémorisées.
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¢) La perception visuelle

D’aprés Carroll (1996), il est trés probable que le facteur de second niveau
appelé perception visuelle est impliqué dans beaucoup de types de raisonnements
mathématiques. On pourrait aussi 1’appeler compétence spatiale ; La compétence
spatiale a souvent été cité (e.g. Werdelin, 1961) comme intervenant dans la pensée
mathématique. En fait, la perception visuelle représente un élément commun dans une
variété de facteurs d’ordre inférieur, comme la visualisation, les relations spatiales, la
vitesse de perception, la vitesse et la flexibilité de la reconnaissance. Nous ne savons
pas encore lesquels parmi ces facteurs sont vraiment importants pour les
raisonnements mathématiques, méme si certains travaux ont été entrepris dans ce sens
(Gustafsson et Balke, 1993 ; Lubinski et Humphreys, 1990, Humphreys, Lubinski et
Yao, 1993).

Les tests de visualisation présupposent la représentation d’une forme qu’il faut
manipuler pour arriver a résoudre un probléme dans 1’espace visuel. Ils mesurent donc
le niveau de difficulté auquel le sujet peut faire face et non nécessairement la vitesse
avec laquelle il maitrise ces problémes. Les tests de relations spatiales par contre
présentent des problémes simples, comme identifier des lettres aprés différentes
rotations, et ils mesurent la vitesse avec laquelle les sujets les résolvent. Dans les tests
mesurant la vitesse de reconnaissance, on présente aux sujets des images qui sont
partiellement cachées et on mesure le temps dont ils ont besoin pour reconnaitre ce
que ces images représentent. Dans les tests de flexibilité de reconnaissance, on
présente au sujet une forme ou un dessin géométrique au sujet et on lui demande s’il
est contenu dans un autre dessin qu’on lui montre. Les tests de vitesse de perception
exigent la remémoration d’une configuration spatiale donnée et la capacité de la
retrouver dans une série d’autres configurations spatiales.

Aucune de ces tiches n’est vraiment identique aux opérations perceptives requises en
mathématiques, comme par exemple en géométrie ou en analyse fonctionnelle, mais il
semble évident que des individus qui ont des problémes avec des tests de perception
visuelle ou d’aptitude spatiale éprouvent également des difficultés avec des opérations

similaires dans des raisonnements mathématiques.
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f) Les autres facteurs de la seconde strate

Les ¢études d’analyses factorielles ont identifié plusieurs autres facteurs de la seconde
strate, comme la perception auditive, la capacité de remémoration, la vitesse de
pensée et la vitesse d’exécution. Ces facteurs ne semblent cependant ne pas étre
tellement importants pour les raisonnements mathématiques a part D’aptitude
numérique de laquelle on a déja parlé dans le paragraphe 3.2.1. De plus, les deux
facteurs de vitesse pourraient corréler avec la vitesse d’exécution des problémes

mathématiques.

3.2.5 Conclusion

Il n’est en fait pas évident de donner une théorie des aptitudes cognitives qui
jouent un rdle dans les raisonnements mathématiques. Malgré sept décades de travaux
psychométriques, les relations entre les compétences dégagées a 1’aide d’analyses
factorielles et les performances réelles sont restées incertaines dans de nombreux
domaines de la vie (Carroll, 1996). Il n’y a pas de doute que des relations existent,
mais la nature exacte de ces relations n’est pas aussi bien connue qu’on pourrait le
désirer. On sait également que 1’aptitude mathématique n’est pas untiaire, ¢’est-a-dire
qu’il existe plusicurs types de compétences sousjacentes aux performances
mathématiques, mais il est difficile de déterminer quelles compétences sont les plus
importantes pour des performances particuliéres.

Un certain nombre de chercheurs sérieux (e.g., Ceci, 1990; Winch, 1990) ont
méme récemment mis en question quelques unes des hypothéses de base de la
tradition psychométrique, par exemple, I’hypothése que les aptitudes cognitives
identifiées par l’analyse factorielle représentent vraiment des caractéristiques
importantes et durables des individus et également 1’hypothése que les scores obtenus
dans des tests psychologiques peuvent étre des mesures fiables et valides de telles
caractéristiques.

Un argument pour de telles mises en questions est que les tests psychologiques
sont typiquement décontextualisés, c’est-a-dire qu’on y présente des tiches qui ne
sont pas enracinés dans des contextes ressemblant & ceux que les sujets rencontrent

dans la « vraie vie ». Il y a de nombreux exemples de personnes qui sont capables
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d’effectuer des raisonnements complexes et compliqués et n’obtiennent que des
scores médiocres dans des tests qui sont censés mesurer justement la compétence de
faire de tels raisonnements (e.g. Ceci and Liker, 1986)

Un autre argument est que les corrélations généralement positives de tests
psychologiques sont surtout le résultat du fait les sujets différent quant a la quantité, la
diversité et la complexité de leurs expériences et apprentissages, ne serait-ce qu’a
cause de différences de leurs environnements sociaux. Ceci indique que le facteur
d’intelligence générale g, obtenu par des corrélations positives dans des tests, pourrait
étre surtout un objet mathématique fabriqué artificiellement. 11 est soutenu de plus que
les facteurs de niveau inférieur trouvés dans les analyses factorielles réfletent
simplement des classes d’expériences qui tendent & étre apprises ensemble, comme le
sens des mots ou les nombres ou les formes spatiales. Il est en outre signalé que la
spécialisation des compétences résulte souvent d’une longue pratique dans le domaine
en question (Ericsson & Charness, 1994), et pas nécessairement d’une supériorité de
quelque aptitude cognitive sousjacente.

Méme si certains de ces arguments pourraient trés bien étre fondés, la plupart
des chercheurs d’aujourd’hui pensent qu’ils vont trop loin. Il y a des preuves
abondantes pour D’existence de compétences mentales mesurables par des tests
psychologiques et dont on connait des relations substantielles avec 1’apprentissage et
I’exécution de tdches mathématiques. Méme si les tiches qui apparaissent dans les
tests psychologiques sont décontextualisés, il existe des similarités fortes entre ces
taches et celles rencontrées dans la vie réelle. Et méme si 1’apprentissage dépend
beaucoup des conditions et des stimulations de ’environnement social, on peut
prouver que le degré dans lequel les gens peuvent tirer et tirent effectivement
avantage de ces occasions dépend au moins en partie de leur constitution biologique.

De plus, aucun de ces arguments n’a un rapport immédiat avec la question si
les résultats psychométriques qu’on a présenté dans ce paragraphe sont importants
pour I’analyse des raisonnements mathématiques, parce que les mesures de facteurs
effectués dans les études qu’on a mentionnées concernent uniquement la performance
d’individus a un instant donné et n’impliquent rien sur les sources des différences
individuelles ou les développements ultérieurs de leurs capacités. Ce qu’il faudrait
mettre en question, par contre, est toute prédiction qui affirmerait que des sujets qui
présentent de bas niveaux d’aptitude dans de tels processus sont incapables de profiter

d’un entrainement spécifique. La question de la possibilité d’entrainement des
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processus cognitifs impliqués dans la résolution de problémes mathématiques et de
I’existence de limites hériditaires aux raisonnements mathématiques n’est pas encore

tranchée (Geary, 1994).

3.3 L’approche cognitive

Au-dela des différences mesurables, cette approche cherche a identifier les
[;rocessus cognitifs sous-jacents a la variabilité individuelle. La recherche, aussi bien
que la conceptualisation dans 1I’éducation des mathématiques a bénéficié des vagues
successives de la révolution cognitive en psychologie, qu’elle a influencé a son tour
(Gardner, 1993a).

Au cours des années 60 et 70, la richesse et la complexité des taches, en partie
mathématiques, utilisées dans la recherche sur la résolution des problémes augmentait
prodigieusement (Newell & Simon, 1972) et des systémes théoriques rendant compte
des structures complexes du savoir étaient congus. Une conséquence de grande portée
¢tait ’interaction entre la psychologie de 1’éducation et la pratique de 1’enseignement
dans les écoles qui s’instaurait a cette époque (Greeno, 1980).

Les ordinateurs ont joué un réle clé dans ces changements. La simulation sur
ordinateur devenait la méthodologie standard pour une grande partie des chercheurs
en théorie de traitement de I’information (Rabinowitz, 1988). Le mérite primordial de
cette approche est le fait de devoir détailler une théorie suffisamment pour pouvoir
I’incorporer dans un logiciel qui tourne sur ordinateur, ce qui renforce la rigueur dans
la construction de cette théorie et dans 1’élaboration des hypothéses nécessaires pour
la vérifier empiriquement. L’influence des ordinateurs s’étendait cependant bien au-
dela de leur utilisation spécifique dans la simulation, grace a la conceptualisation de la
pensée comme systéme de traitement de I’information (Davis, 1984). L’interaction
conséquente entre les études empiriques et le développement de modéles sur
ordinateur était particuliérement fructueuse, entrainant des avantages dans les deux
sens ; c’est pourquoi, ce domaine de recherche montre de manic¢re exemplaire les
forces et les faiblesses de I’approche de la simulation sur ordinateur (cf. De Corte &

Verschaffel, 1988).
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La simulation décrite par Riley, Greeno et Heller (1983) fonctionne de la
maniére suivante : le chercheur qui veut analyser les composantes d’un probléme
construit d’abord un schéma, sous forme de résecau de quantités et de relations
semantiques internes, en termes de changement, de combinaison ou de comparaison.
Basés sur I’information recueillie & partir de ce modele, les processus de résolution
opérent alors sur des ensembles de blocks sémantiques, correspondant a 1’ensemble
des objets impliqués dans cette situation. Un éventail de modéles de calcul,
correspondant aux différents niveaux de compétence dans la résolution de problémes
de changement, de combinaison et de comparaison, engendre des performances
comparables a celles observées empiriquement.

Du point de vue de 1’éducation en mathématiques, ces efforts constituent une
des démonstrations les plus impressionnantes du potentiel de la simulation sur
ordinateur. Comme I’indique Greeno (1987), les simulations ont le mérite de fournir
des descriptions explicites de connaissances et de processus qui sont d’habitude
implicites et souvent vagues. De plus, elles sont potentiellement utiles pour élaborer
du matériel et préparer des interventions pédagogiques.

Il faut cependant souligner que les résultats empiriques n’ont pas tous
correspondu aux modéles (Carpenter & Moser, 1984 ; De Corte & Verschaffel, 1988).
De plus, I’application de ces études est limitée et elles laissent de c6té des aspects
psychologiques importants, telle que l’influence de variables textuelles sur la
construction de la représentation initiale du probléme. On a trouvé des divergences
significatives quand on a comparé la performance des programmes d’ordinateur avec
les résultats empiriques, & un niveau supérieur aux simples données de performance
(difficulté du probléme, temps nécessaire a la résolution, erreurs typiques), pour
analyser les représentations sous-jacentes, les manipulations cognitives et les
stratégies de résolution (De Corte & Verschaffel, 1998).

A vpartir de 1990, il y a eu un regain d’intérét pour les facteurs non-
intellectuels inhérents aux processus cognitifs ; en particulier, en ce qui concerne la
pensée mathématique, il faut faire place a I’intuition, les croyances, les attitudes, les
émotions et la pensée imagée. De Corte, Greer et Verschaffel (1996) caractérisent ce
courant de seconde vague cognitive, par opposition a la premiére vague qui s’était

exclusivement intéressée au coté logique et rationnel de la cognition.
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Nous avons vu que, depuis les années 70, les psychologues cognitifs
s’intéressent a I’identification des processus cognitifs sous-jacents a la performance
observable dans les tests psychomeétriques traditionnels (voir Hunt, Lunneborg &
Lewis, 1975). On montrait, par exemple, qu'une bonne performance dans des tests
d’aptitude verbale est associée, entre autre, a la vitesse avec laquelle on peut récupérer
les informations verbales de la mémoire a long terme. La tentative de combiner les
approches psychométriques et cognitives pour mieux comprendre la variabilité
individuelle dans les aptitudes intellectuelles a donné des résultats peu probants
(Keating, List & Merriman, 1985). Néanmoins, 1’essai de relier les études cognitives
des procédures d’arithmétique (Ashcraft, 1992) aux concepts d’aptitude numérique et
de raisonnement mathématique, définis de mani¢re psychométrique, a été relativement
couronnée de succes (Geary & Widaman, 1987 ; Siegler, 1988). Ces recherches ont
fourni un apercu sur les processus cognitifs et les stratégies intellectuelles sous-jacents
aux différences individuelles dans les performances aux tests d’aptitude numérique et
de raisonnement mathématique. Les résultats et les implications de ces études seront

résumés ci-dessous.

3.3.1 L’aptitude numérique

Il y a eu plusieurs études qui ont directement examiné la relation entre les
processus cognitifs associés a la résolution de problémes arithmétiques, comme, par
exemple, récupérer des concepts et procédures arithmétiques dans la mémoire a long
terme, et la performance dans des tests d’aptitude numérique (Geary & Widaman,
1987, 1992 ; Widaman & alt, 1992). Dans la premic¢re de ces ¢études, Geary et
Widaman ont administré une batterie de tests papier-crayon a 1000 étudiants ; ils ont
demandé aux étudiants de résoudre en outre des problémes arithmétiques administrés
par ordinateur. La batterie de tests papier-crayon incluait des tests d’aptitude
numérique, de vitesse de perception (i.e la vitesse de codage ou de lecture des
symboles) et d’aptitude spatiale. Le traitement statistique des données des problémes
administrés par ordinateur a permis de décomposer la résolution des problémes en
composantes procédurales élémentaires, telles que le codage des nombres (i.e. lire les
nombres qui apparaissent sur 1’écran), la récupération des données arithmétiques de la

mémoire a long terme, le passage au sous-ensemble de symboles suivant. De plus, ces
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techniques ont fourni de l’information sur la vitesse d’exécution de tous ces
processus. Par exemple, en résolvant des problémes d’addition complexes, tels que
47+79, un sujet avait besoin de 0,9s pour passer d’une colonne a la suivante, tandis
qu'un deuxiéme sujet avait besoin de 0,5s seulement, pour effectuer le méme
processus.

Ces résultats ont montré une trés forte corrélation entre la vitesse avec laquelle
des processus arithmétiques de base peuvent étre accomplis et la performance dans les
tests traditionnels d’aptitude numérique. Plus précisément, la performance dans les
tests d’aptitude numérique papier-crayon était d’autant meilleure que la vitesse de
récupération de la mémoire a long terme et le passage a 1’opération suivante €taient
plus grands. De plus, la vitesse d’exécution de ces processus arithmétiques n’était pas
directement liée a la performance dans les tests de vitesse de perception et dans les
tests spatiaux. Ces résultats sont importants pour plusieurs raisons. Premi¢rement, en
ce qui concerne le domaine mathématique, ils montrent que des chercheurs cognitifs
contemporains (p.ex Ashcraft, 1992) identifient les mémes processus sous-jacents aux
différences individuelles dans les performances arithmétiques de base que les
premiers chercheurs psychométriques (p.ex. Thurstone, 1938). Deuxiémement, le
concept d’aptitude numérique apparait comme étant clairement de nature arithmétique
et les processus qui contribuent aux aptitudes en arithmétique semblent étre disctincts
des processus associés aux autres aptitudes mentales, en particulier a I’aptitude
spatiale. -

Plusieurs études ont examiné la relation entre les processus arithmétiques et la
performance aux tests arithmétiques traditionnels pour des groupes d’enfants (Geary
& Brown, 1991 ; Geary & Burlingham-Dubree, 1989 ; Siegler, 1988 ; Widaman et
alt., 1992). Dans une de ces études (Geary & Burlingham-Dubree, 1989), les
chercheurs ont administré les Wechsler Preschool and Primary Scale of Intellignece
(WPPSI ; Wechsler, 1967) et le sous-test d’arithmétique du Wide Range Achievement
Test (WRAT ; Jastak & Jastak, 1978) a des enfants de la maternelle et méme a des
sujets plus jeunes, et ils ont enregistré sur vidéo les enfants en train de résoudre une
séric de problémes d’addition simples. Les bandes vidéo ont été analysées pour
déterminer le type de stratégie que les enfants ont utilisé pour résoudre les problemes
d’addition, comme par exemple compter sur les doigts, et la vitesse avec laquelle ils
ont exécuté les différentes opérations. Ensuite, deux dimensions cognitives furent

dégagées ; la premiére concernait la vitesse avec laquelle les enfants avaient acces a
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leur mémoire a long pour les problémes connus. La deuxiéme dimension concernait le
choix des stratégies appropri¢es. Par exemple, si un enfant se rappelait la réponse
correcte d’un probléme, alors le choix judicieux consistait a donner la réponse dont il
se souvenait. D’autre part, s’il ne pouvait pas se souvenir de la réponse correcte, alors
une meilleure stratégie était de résoudre le probléme lui-méme, par exemple, en
comptant sur ses doigts. Pour des enfants de cet 4ge, compter sur les doigts est
souvent préférable a 1’extraction de la réponse de la mémoire, parce que cette stratégie
donne des résultats plus précis. Un mauvais choix aurait été de donner une réponse un
peu au hasard. Cette étude, ainsi que d’autres recherches effectuées par Siegler (1988,
1993) ont montré que les enfants variaient beaucoup dans 1’adéquation du choix.
Certains enfants choisissaient presque toujours la meilleure stratégie, tandis que
d’autres faisaient souvent de mauvais choix. Le choix de la stratégie appropriée
implique la capacité¢ d’utiliser la procédure la plus rapide et la plus exacte pour
trouver la réponse : il faut choisir une stratégie qui fournit un bon équilibre entre le
temps nécessaire a la résolution du probléme et la probabilité que cette stratégie
fournisse la réponse correcte.

Le but principal de I’étude de Geary et Burlingham-Dubree (1989) était de
déterminer la relation entre ces deux dimensions cognitives et la performance dans
les tests. Ils ont trouvé une corrélation significative entre la variable « choix d’une
stratégie » et les sous-tests d’arithmétique du WPPSI et WRAT. L’aptitude de faire un
bon choix de stratégie est associée a une meilleure performance dans les deux tests
arithmétiques. Les choix de stratégies étaient aussi plus ou moins liés a la
performance dans plusieurs des sous-tests spatiaux du WPPSI, mais ils étaient
indépendants des sous-tests verbaux. Chez les jeunes enfants, la relation entre le choix
d’une stratégie permettant de résoudre des problémes d’addition et I’aptitude spatiale
était probablement due a I'utilisation d’information spatiales, comme par exemple
I’habitude de représenter des additions sur les doigts (cf. Carpenter & Moser, 1984).
La vitesse de récupération mnésique des données arithmétiques était aussi liée a la
performance dans les tests arithmétiques, mais pas a la performance dans les sous-
tests spatiaux ou verbaux du WPPSIL. Ce que Geary et Widaman (1987) avaient
démontré pour des étudiants et Widaman et alt. (1992) pour des éléves de 1’école
primaire est valable également pour les enfants plus jeunes: plus les données
arithmétiques de base peuvent étre retirées rapidement de la mémoire, plus la

performance est bonne dans les tests d’arithmétique.
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Du point de vue de la psychologie cognitive, cela ne signifie pas que les
différences individuelles dans 1’aptitude arithmétique ne soient pas liées au savoir
conceptuel. En fait, Geary, Bow-Thomas Et Yao (1992) ont trouvé dans une ¢tude
d’enfants de la premiére classe de I’école primaire que le fait de savoir compter
implique une bonne partie des différences individuelles dans les choix de stratégies
pour résoudre des problémes arithmétiques. En particulier, l'utilisation d’une
procédure de comptage efficace paraissait dépendre d’une compréhension mature des
concepts de comptage. Aussi bien le savoir conceptuel que la compétence de faire de
bons choix stratégiques étaient liés a la performance dans un test mathématique
traditionnel. La compréhension des concepts de comptage était corrélée positivement
a I'utilisation de stratégies de comptage sophistiquées pour résoudre des problémes
d’addition et contribuait largement a la variance des scores aux tests mathématiques.
Dans une étude plus récente, Geary, Bow-Thomas et alt. (1993) ont trouvé que
I’étendu de la mémoire de travail influence également 1'utilisation des stratégies de
comptage chez les enfants de la maternelle. En particulier, I’utilisation de stratégies de
comptage verbal, par opposition au comptage sur les doigts, était liée a une bonne

compétence de la mémoire de travail.

Figure 3.1 : Facteurs influangant I’aptitude numérique chez les jeunes enfants
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Ces ¢tudes font apparaitre une continuité claire entre les études
psychométriques décrites dans la section ci-dessus et les études cognitives sur les
différences individuelles dans I’aptitude arithmétique de base. Les chercheurs
psychométriques et expérimentaux ont identifié les mémes sources de différences
individuelles. Les deux approches suggérent également que la source de la variabilité
individuelle dans les aptitudes de base change un peu avec 1’dge. Pour des enfants de
la maternelle et de I’école primaire, les différences individuelles dans les aptitudes a
faire de bons choix de stratégie et les facteurs qui affectent ces choix, comme le savoir
conceptuel et la mémoire de travail, semblent étre la source principale des différences
individuelles dans I’aptitude arithmétique. La vitesse avec laquelle les opération de
base, telle que la récupération de données de la mémoire, peuvent étre exécutées,
influence également la variabilité individuelle, mais elle semble seulement étre un
facteur mineur, comparée aux différences dans la capacité stratégique et peut-étre le
savoir conceptuel. Au fur et a mesure que les données de base sont stockées dans la
mémoire et que 1’utilisation des procédures devient plus ou moins automatique, les
différences de stratégie entre les individus disparaissent en grande partie. A partir de
ce moment, la source primaire des différences dans les aptitudes arithmétiques est la

vitesse avec laquelle on exécute les processus arithmétiques de base.

En conclusion, les enfants qui excellent en arithmétique semblent avoir une
bonne compréhension des concepts numériques et arithmétiques de base et une bonne
mémoire de travail numérique (Geary, Bow-Thomas & alt., 1993 ; Geary, Bow-
Thomas & Yao, 1992). Les capacités conceptuelles et la mémoire de travail bien
développée contribuent a la compétence dans les choix de stratégies efficaces pour
résoudre des problémes. L’utilisation efficace de stratégies de résolution de problémes
alternatives, d’autre part, semble étre une source essentielle de différences
individuelles dans les aptitudes arithmétiques des jeunes enfants, bien que la vitesse
d’exécution des processus arithmétiques de base soit également importante (Geary &
Burlingham-Dubree, 1989 ; Siegler, 1988).

Des recherches préliminaires sur 1’utilisation de procédés imageants lors de la
résolution de problémes arithmétiques suggerent que des circuits neuronaux différents
sont utilisés lors de la comparaison de la grandeur de différents nombres et lors de la
multiplication des nombres (Dehaene et al., 1996). L’importance des recherche en

neuro-psychologie est donc cruciale dans ce domaine.
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3.3.2 Le raisonnement mathématique

Méme s’il y a eu plusieurs études cognitives sur les différences individuelles
dans les aptitudes de raisonnement en général (Sternberg, 1977 ; Sternberg &
Gardner, 1983), les études concernant le raisonnement mathématique sont
relativement rares.

Geary et Widaman (1992) ont examiné les relations entre la vitesse
d’exécution d’opérations arithmétiques, le maintien de ces opérations dans la mémoire
de travail et la performance dans une batterie de tests psychométriques, chez 112
recrues de 1’aviation militaire américaine. Les tests psychométriques évaluaient
I’aptitude numérique, la vitesse de perception, le raisonnement mathématique et un
facteur de mémoire. Un facteur de raisonnement mathématique était défini par deux
ensembles de problémes d’arithmétique appliquée. L’un des deux ensembles exigeait
des recrues de résoudre de vrais problémes, tandis que 1’autre exigeait simplement la
détermination de la suite d’opérations arithmétiques nécessaires. Le facteur de
mémoire était défini par des tests de rappel de suites de nombres, présentés
visuellement et verbalement pendant un cours laps de temps.

Un des buts de cette étude consistait a déterminer dans quelle mesure les
différences individuelles dans I’aptitude de raisonnement mathématique étaient liées a
la vitesse d’exécution des procédures arithmétiques de base et a 1’aptitude de faire des
opérations arithmétiques mentalement dans la mémoire de travail. Les résultats
répliquaient les conclusion de leur étude sur les aptitudes numériques : la vitesse
d’exécution des processus de base expliquait environ 80% de la variance des aptitudes
d’arithmétiques de base des jeunes adultes. Méme ce facteur contribuait également a
la performance aux tests de raisonnement mathématique, elle n’expliquait qu’une
petite partie de la variance. La capacité d’effectuer mentalement des opérations
arithmétiques, par contre, était une source importante de différences individuelles et
expliquait environ 25% de la variance de ’aptitude de raisonnement mathématique
chez les adultes.

Cette étude, combinée aux résultats de recherche sur 1’aptitude de
raisonnement général (Sternberg & Gardner, 1983), permet d’affirmer que les
différences individuelles dans 1’aptitude de raisonnement mathématique proviennent
de quatre types de compétences cognitives. D’une part, 1’aptitude de constituer

mentalement des représentations de problémes d’arithmétique appliquée ; en effet
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Lewis et Mayer (1989) ont montré que cette compétence joue un réle important chez
les étudiants de premier cycle universitaire. D’autre part, la facilité avec laquelle des
plans de résolution de problémes sont développés est aussi probablement une source
de différences individuelles dans les aptitudes de raisonnement mathématiques
(Mayer, 1981).

La troisieme source de différences individuelles dans 1’aptitude de
raisonnement mathématique semble étre la mémoire de travail, ou I’aptitude de garder
de l'information importante a 1’esprit pendant qu’on effectue des opérations
mathématiques. Finalement, la vitesse avec laquelle on effectue des procédures

mathématiques de base est également une source de différences individuelles.

En résumé, des individus qui sont compétents en raisonnement mathématique
semblent exécuter des calculs faciles rapidement et automatiquement, ils semblent
étre capables de garder des informations importantes a D’esprit pendant qu’ils
effectuent d’autres opérations, ils développent facilement des schémas pour aider la

représentation du probleéme et ils développent des plans de résolution adéquats.

Figure 3.2 : Facteurs influangant I’aptitude de raisonnement mathématique

Chez les ¢leves plus agés, ayant acquis une plus grande habileté¢ dans la
résolution des problémes, les aptitudes en jeu sont plus complexes. D’aprés De Corte,

Greer et Verschaffel (1996), les chercheurs ont actuellement reconnu 1’importance de
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4 aptitudes de base : les connaissances spécifiques, les méthodes heuristiques, les
habiletés métacognitives et les dispositions affectives favorables.

Chi, Glaser et Farr (1988) ont montré que ceux qui savent résoudre les
problémes mathématiques d’une maniére experte disposent d’un savoir étendu,
souplement organisé et facilement accessible.

Les méthodes heuristiques permettent de transformer le probleme original de
maniére a ce qu’il puisse étre abordé par des procédures familieres, ce qui revient a
poser le probléme autrement (Silver, 1994).

Les processus métacognitifs entrant en jeu comprennent d’un coté la prise de
conscience de son propre fonctionnement mental, d’un autre c6té le contréle de ce
fonctionnement. La théorie d’autorégulation de Kuhl (1985) peut faire comprendre
pourquoi les experts en raisonnement mathématique présentent un degré élevé d’auto-
contrdle ; ne perdant jamais de vue leurs objectifs, ils peuvent faire les corrections
nécessaires, dés qu’ils s’écartent de la bonne direction. L’activité métacognitive est
loin d’étre complétement éclaircie. Deux questions ne sont pas résolues : le degré de
conscience ou d’inconscience de ces processus et la question de la transférabilité des
activités métacognitives d’un domaine a un autre.

Selon McLeod (1990), les croyances, attitudes et émotions des éleves
interférent avec ’apprentissage des mathématiques. Alors que les croyances et
attitudes sont plutot stables, les émotions se dissipent rapidement. Parmi les
croyances, McLeod a distingué celles qui se rapportent aux mathématiques et celles
qui se rapportent a soi-méme et a sa propre compétence. Schoenfeld (1988) a montré
que, méme lorsque ’enseignement des mathématiques se fait d’aprés une méthode
scientifiquement valable, les éléves peuvent présenter des croyances et attitudes
négatives reflétant les influences du groupe environnant.

Les activités métacognitives sont spécialement susceptibles d’étre altérées par
les émotions, alors que la mémoire et les procédures sont moins affectées. D’autre
part, la nature des réactions affectives peut changer selon le stade de résolution du
probléme.

Il y a une interaction complexe entre ces différents types d’aptitudes. Goldin
(1992) donne une idée de cette complexité dans son modele des différents types de
représentations internes. Des chercheurs tels que Perkins, Jay et Tishman (1993)
parlent d’une disposition aux mathématiques, disposition qu’on doit acquérir par une

longue familiarité avec la matiére et qui ne dépend pas enti¢rement de 1’enseignement.
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3.3.3 L’étude du traitement de I’information

Dans les années 70, une nouvelle approche de 1’étude des processus mentaux
s’est largement répandue: 1’étude du traitement de 1’information (information
processing).

Ces théories décrivent les processus de la pensée a 1’aide de la manipulation de
symboles (Siegler, 1982); elles portent principalement sur le traitement et la
représentation mentale de ’information et elles essayent d’atteindre un haut degré de

précision dans la description de la connaissance.

La plupart des approches du traitement de l'information partagent certaines
hypotheéses sur ’architecture du systéme de traitement de 1’information. Il est
généralement admis qu’il existe trois degrés structuraux du systéme: un registre
sensoriel ou d’accueil, une mémoire de travail et une mémoire a long terme.

Toute information entre dans le systéme par le registre sensoriel, mais elle
peut y étre retenu seulement pendant un court laps de temps. Pour rester dans le
systéme, I’information doit pénétrer dans la mémoire de travail, ou elle peut étre
combinée avec d’autres informations de la mémoire a long terme.

Toutes les opérations de traitement d’information se font dans la mémoire de
travail. En d’autres termes, c’est a cet endroit que toute réflexion consciente se fait. La
mémoire de travail est cependant trés limitée en capacité et peut seulement traiter un
petit nombre de morceaux d’information simultanément. La mémoire a long terme,
par contre, est potentiellement illimitée en capacité et contient toute 1’information
qu’on a enregistrée au cours de sa vie. Elle est limitée par les difficultés d’acceés a

cette information.
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Figure 3.3 : Schéma de I’architecture cognitive proposé en 1969 par Atkinson et Shiffrin. (D’aprés
Lemaire, 1999)

En plus de ces caractéristiques structurales de base, la plupart des théories de
traitement de linformation supposent D’existence de processus exécutifs ou
d’évaluation, qui contrdlent les opérations du systéme. Cela inclut des actes de routine
comme [’utilisation de stratégies de répétition pour fixer l'information dans la
mémoire a long terme ou le développement d’une heuristique générale pour la

résolution de problémes.

Les théories de ’étude du traitement de I’information peuvent étre classées
dans deux grandes catégories : celles qui s’occupent principalement de la nature du
systéme de traitement de I’information et celles qui examinent comment le systéme de
traitement de ’information fonctionne dans des situations particuliéres (Siegler,
1983). D’aprés Romberg et Carpenter (1986), la seconde permet le plus facilement de
comprendre comment on apprend les mathématiques. Plutdt que de fonder leurs
théories sur des simples tiches de laboratoire, comme ’ont fait les behavioristes, les
chercheurs du traitement de I’information se sont souciés d’avantage des opérations
cognitives complexes. Voila pourquoi leur travail constitue une approche idéale pour

1’étude de I’apprentissage des mathématiques.
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3.4 La notion de compétence en mathématique

Nous avons vu que 1’acception chomskyenne du terme de compétence consiste
dans le développement d’une intuition juste, présupposant une vision synthétique du
domaine en question. C’est seulement a cette condition qu’on devient expert en la
matiere, c’est-a-dire capable d’exécuter des performances respectant un code,
appropriées a la situation, en nombre illimité et de maniére imprévisible et libre.

En se basant sur les critéres de Chomsky, on peut donc raisonnablement
postuler qu’il existe un certain nombre de compétences authentiques en
mathématiques, puisque, dans ce domaine nous sommes précisément confrontés a un
code, & des reégles restrictives laissant une grande marge de liberté permettant de
produire des performances selon les modalités définies par Chomsky. Ces
compétences peuvent seulement &tre estimées a travers les performances scolaires si
I’enseignant ne pose pas simplement des problémes de routine dans lesquels les éleves

reproduisent des automatismes appris.

D’autre part, nous pouvons admettre que 1’enseignement des mathématiques a 1’école
primaire fait appel & de nombreuses compétences fondamentales, acquises au cours
des premi¢res années de la vie, telles que la compétence conceptuelle, la compétence
dans I’utilisation d’un code imagé, la compétence dans la manipulation des structures
spatiales, la compétence dans la manipulation des structures temporelles, la
compétence logique, la compétence combinatoire, la compétence dans la résolution
des problémes, la compétence dans le domaine de la pensée divergente etc...
(Richard, 1990). Au contact de la matiére enseignée, des compétences plus
spécifiquement scolaires peuvent émerger. Cette question sera approfondie a la suite

de I’établissement de notre taxonomie.



Chapitre IV

APERCU SUR LES TAXONOMIES
EXISTANTES

Les études psychométriques ont mis en évidence qu’il existe deux domaines

généraux d’aptitudes mathématiques :

a) les nombres entiers et 1’arithmétique

b) larésolution de problémes.

Nous avons vu que, vers 1’4ge de 15 ans, ces deux classes d’aptitudes sont
indépendantes 1’une de I’autre (Dye & Very, 1968). Cela suggére que les processus
cognitifs qui contribuent & de bonnes compétences en arithmétiques sont différents de

ceux qui permettent de résoudre des problémes, du moins a partir de 1’adolescence.

A cOté de cette classification sommaire, il y a eu plusieurs recherches
cognitives effectuées dans le but de classifier les compétences en mathématiques.
Depuis Tyler, on distingue généralement deux dimensions, I’'une concernant le
contenu mathématique (content) et 'autre D’activité (activities) c’est-a-dire les

processus cognitifs en jeu.
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4.1 La taxonomie de Bloom

Benjamin S. Bloom a établi une taxonomie pour le domaine cognitif en
général (cf. Krathwohl, Bloom & Masia, 1956), au début des années 50. Il y distingue
deux dimensions, le savoir et les compétences intellectuelles.

Pour établir la taxonomie, des chercheurs qui étaient en contact avec des
enseignants, regroupaient les buts éducatifs possibles dans un vaste systéme, construit
selon un ordre de complexité croissante. Ils le soumettaient a I’évaluation, au moyen
de tests, construits selon les définitions de la taxonomie. Les buts éducatifs
proviennent donc d’une discussion a priori et non pas d’une recherche
psychométrique ni d’une expérimentation cognitive. Ils ont été complétés par une
classification des buts €ducatifs dans le domaine affectif et dans le domaine psycho-

moteur (cf. Krathwohl, Bloom & Masia, 1956).

LE SAVOIR
1.00 LE SAVOIR

Le savoir, (ou la connaissance), selon la définition de Bloom, est constitué de
rappels de détails et de généralités, de rappels de méthodes et de processus ou de
rappels de schémas, de structures ou de cadres. Pour pouvoir mesurer cette dimension,
il suffit de présenter le matériel approprié¢ a I’esprit (situation de rappel). Méme si
quelques modifications du matériel peuvent étre exigées, cela ne constitue qu’une
partie relativement peu importante de la tache. L’étude du savoir insiste surtout sur les
processus psychologiques de la mémorisation. Pour utiliser une analogie, si ’on se
présente I’esprit comme un fichier, une situation de test du savoir consiste & demander
au sujet de trouver dans le probléme ou la tache les signaux appropriés pour produire

le plus efficacement possible I’information classée ou stockée.

1.10 Connaissance de détails

Il s’agit du rappel de détails et de morceaux d’information isolés. L’accent est

mis sur des symboles ayant des référents concrets. Ce matériel, d’un niveau
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d’abstraction trés bas, peut fournir les éléments & partir desquels des formes plus

complexes et abstraites de savoir sont construites.

1.11 Connaissance de terminologie
Il s’agit de reconnaitre des référents pour des symboles spécifiques (verbaux et
non verbaux), comme par exemple la connaissance du référent généralement accepté
d’un symbole, la connaissance de variétés de symboles pouvant étre utilisés pour un
seul référent ou la connaissance du référent le plus approprié a une utilisation donnée.
Exemples :
- définir des termes techniques en donnant leurs attributs, propriétés ou relations

- étre au courant d’un grand nombre de mots avec leur sens courant.

1.12 Connaissance de faits spécifiques

Il s’agit de la connaissance de dates, d’événements, de personnes, d’endroits, etc...

L’information peut étre trés précise et spécifique ou bien approximative ou relative.
Exemples :

- serappeler les faits les plus importants de cultures particulicres

- posséder d’un savoir minimal sur les organismes étudiés en laboratoire.

1.20 Connaissance de moyens de traiter des détails

Il s’agit de la connaissance des moyens d’organiser, d’étudier, de juger et de
critiquer, par exemple les méthodes d’enquéte, 1’ordre chronologique et les standards
de jugement dans un domaine, ainsi que le modéle d’organisation par lequel les
domaines eux-mémes sont déterminés et organisés intérieurement. Ce savoir se trouve
a un niveau d’abstraction intermédiaire entre le savoir spécifique et les connaissances
générales. Il demande une conscience passive de la nature des matériaux plutét qu’une

expérience active d’utilisation de ces mémes matériaux.

1.21 Connaissance de conventions

11 s’agit de la connaissance de fagons caractéristiques de traiter et de présenter
des idées et des phénoménes. Pour des raisons de communication et de cohérence, des
travailleurs dans un domaine utilisent les usages, les styles, les pratiques et les formes

les mieux adaptées a leur objectif ou aux phénomenes auxquels ils ont affaire. I1 faut
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remarquer que, méme si ces formes et conventions sont vraisemblablement établies

sur des bases arbitraires, accidentelles ou dogmatiques, elles sont retenues a cause du

consentement général des individus concernés par le sujet, phénomeéne ou probléme.
Exemples :

- é&tre familier avec les formes et conventions de type artistique ou scientifique
d’oeuvres majeurs ; comme, par exemple, la poésie, les piéces de théatre, les
articles scientifiques, etc...

- rendre des éléves conscients de la forme et de I’utilisation correctes de la parole et

de 1I’écriture.

1.22 Connaissance de tendances et de successions
Il s’agit de la connaissance des processus, directions et développements
chronologiques des phénomeénes.
Exemples
- comprendre la continuité¢ de le développement de la culture américaine telle
qu’elle est illustrée par la vie de tous les jours
- connaitre les tendances principales sous-jacentes au développement des

programmes d’assistance publique.

1.23 Connaissance de classifications et de catégories
Il s’agit de la connaissance de classes, d’ensembles, de divisions et d’arrangements
fondamentaux pour un domaine, objectif, argument ou probléme donné.
Exemples :
- reconnaitre les domaines de divers types de problémes ou matériaux

- se familiariser avec un certain type de littérature.

1.24 Connaissance de critéres

Il s’agit de la connaissance de critéres selon lesquels des faits, principes,
opinions et conduites sont testés ou jugés.

Exemples :
- étre au courant des critéres de jugement appropriés a un type de travail

- connaitre les critéres d’évaluation d’activités de récréation.

1.25 Connaissance de méthodologie
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Il s’agit de la connaissance des méthodes d’enquétes, des techniques et des
procédures utilisées dans un domaine particulier, ainsi que de celles utilisées pour
I’analyse des problémes et phénoménes particuliers. L’accent est mis ici sur la
connaissance de la méthode plutét que sur la capacité de 'individu d’utiliser la
méthode.

Exemples :

- connaitre les méthodes scientifiques servant a évaluer des concepts de santé
- connaitre les méthodes d’investigation de problemes importants en sciences

sociales.

1.30 Connaissance des généralités et des faits abstraits dans un domaine.

Il s’agit de la connaissance des schémas et mod¢les majeurs, d’apres lesquels
les phénoménes et idées sont organisés. Ce sont les grandes structures, les théories et
les généralisations qui dominent un domaine ou qui sont utilisés généralement pour
étudier des phénoménes ou résoudre des probleémes du domaine concerné. Cette

compétence correspond au plus haut degré d’abstraction et de complexiteé.

1.31 Connaissance de principes et de généralisations

Il s’agit de la connaissance d’abstractions conceptuelles particulicres
résumant les observations de phénoménes. Ces généralisations sont utiles pour
expliquer, décrire, faire des prévisions ou déterminer 1’action ou la direction la plus
appropriée ou la plus importante.

Exemples :
- connaitre les principes majeurs qui gouvernent notre expérience avec les

phénoménes biologiques

- serappeler les généralisations les plus importantes sur des cultures particulicres

1.32 Connaissance des théories et des structures

Il s’agit de la connaissance du corps de principes et de généralisations
représentant un phénomeéne, probléme ou domaine complexe d’une manicre claire,
arrondie et systématique. Ce sont les formulations les plus abstraites ; elles rendent
compte de I’organisation d’un grand nombre de détails.

Exemples :
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- serappeler les théories majeures sur des cultures particulieres

- connaitre une formulation relativement compléte de la théorie de I’évolution.

LES COMPETENCES INTELLECTUELLES

Ces compétences concernent les opérations et techniques servant a traiter des
problémes et des matériaux. Les matériaux et problémes peuvent étre de nature a
n’exiger que peu ou pas du tout d’information spécialisé€ et technique. L’information
dont on a besoin est présupposée faire partie des connaissances générales de
I’individu. D’autres problémes peuvent exiger de I'information spécialisée et
technique a un niveau assez élevé. La dimension des compétences intellectuelles met
I’accent sur les processus mentaux d’organisation et de réorganisation nécessaires
pour aboutir a un objectif particulier. Les matériaux peuvent soit €tre présentés soit

provenir de la mémoire.

2.00 LA COMPREHENSION

Le niveau le plus bas de la compréhension est la compréhension implicite ;
I’individu sait ce qui lui est communiqué et peut utiliser ce matériel ou cette idée sans

la lier nécessairement & un autre matériel et sans en voir toutes les implications.

2.10 La traduction

La qualité de la traduction dépend du soin et de la précision avec lesquels la
communication est paraphrasée ou transférée d’une langue ou d’une forme de
communication dans une autre. La traduction est évaluée sur la base de la fidélité et
de la précision, c’est-a-dire sur le degré de préservation du matériel original.

Exemples :

- étre capable de comprendre des déclarations non littérales (métaphores,
symbolismes, ironie, exagération)
- étre capable de traduire du matériel mathématique verbal dans une écriture

symbolique et vice versa.
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2.20 L’interprétation

Il s’agit d’expliquer ou de résumer le contenu d’une communication. Alors
que la traduction implique une reproduction littérale de la communication,
I’interprétation implique un réordonnement, un réarrangement ou une révision du
matériel.

Exemples :

- étre apte a saisir le sens d’un travail & tout degré de généralité

- Savoir interpréter différents types de communication sociale.

2.30 L’extrapolation

Il s’agit d’aller au-dela des informations regues, de déterminer les implications,
conséquences, corollaires, effets, etc..., pouvant étre inférées a partir de la
communication originale.
Exemples :
- étre apte a traiter les conclusions d’un travail en termes d’inférence immédiates
leffectuées a partir de déclarations explicites

- étre capable de prédire le développement ultérieur de tendences actuelles.

3.00 L’APPLICATION

Il s’agit d’utiliser des abstractions dans des situations particuliéres et concretes. Les
abstractions peuvent avoir la forme d’idées générales, de régles, de procédures ou de
méthodes généralisées. Elles peuvent également consister en principes techniques,
idées ou théories, devant étre rappelées et appliquées.
Exemples :
- appliquer les termes ou concepts scientifiques d’un article aux phénoménes décrits
dans d’autres articles
- prédire les effets probables d’une perturbation au sein d’un état biologique

auparavant en équilibre.
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4.00 L’ANALYSE

Il s’agit de la décomposition d’une communication dans ses composantes
¢lémentaires, de fagon a mettre en évidence la hiérarchie des idées ou la relation entre
elles. De telles analyses doivent rendre la communication plus compréhensible,
indiquer ses principes d’organisation et découvrir la maniére dont elle réussit a

transmettre un contenu complexe.

4.10 L’analyse d’¢léments

11 s’agit de I’identification des éléments contenus dans une communication.
Exemples :
- &tre capable de reconnaitre des hypotheses non citées

- savoir distinguer les faits des hypotheses.

4.20 L’analyse de relations

I s’agit d’extraire les connections et les interactions entre les éléments et les
parties d’une communication.

Exemples :
- €tre apte a vérifier la cohérence d’hypothéses

- étre capable de comprendre les relations entre les idées d’un passage.

4.30 L’analyse de principes d’organisation

11 s’agit de I’organisation, de ’arrangement systématique et de la structure de
la communication. Cette forme d’analyse inclut la structure explicite autant que la
structure implicite, ainsi que les bases, les arrangements nécessaires et la dynamique
qui font de la communication une unité.

Exemples :

- savoir reconnaitre la forme ou le modeéle utilisé dans des oeuvres littéraires ou
musicales comme moyen de comprendre leur sens
- étre capable de reconnaitre les techniques générales utilisées dans du matériel

persuasif, comme par exemple les publicités, la propagande, etc...
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5.00 LA SYNTHESE

Il s’agit de rassembler des éléments et des parties afin de former un tout, c’est-a-dire
d’utiliser des piéces, parties, éléments, etc... et de les arranger et combiner d’une

maniére a constituer un modéle ou une structure nouvelle.

5.10 La production d’une communication originale

Il s’agit du développement d'une forme de communication personnelle par
laquelle 1’écrivain ou l’orateur essaye de transmettre ses idées, sentiments ou
expériences a autrui.

Exemples :

- étre capable d’écrire en utilisant une excellente organisation formelle et stylistique

- étre capable de raconter une expérience personnelle d’une fagon expressive.

5.20 La production d’un plan ou d’un ensemble d’opérations planifiées

Il s’agit du développement d’un plan de travail ou de 1’élaboration de la suite
des opérations a effectuer. Le plan devrait satisfaire les exigences de la tiche,
proposée a I’auteur par autrui ou choisie par lui-méme.

Exemples :
- proposer un plan expérimental pour tester des hypotheses

- planifier une situation particuliére d’enseignement.

5.30 La déduction d’un ensemble de relations abstraites
Il s’agit du développement d’un ensemble de relations abstraites, dans le but
de classifier ou d’expliciter des données ou phénomenes particuliers, grace a la
déduction de propositions ou de relations d’un ensemble de propositions ou de
représentations symboliques de base.
Exemples :
- laptitude de formuler des hypothéses appropriées, basées sur une analyse de
facteurs impliqués et de modifier de telles hypothéses a la lumicre de facteurs et
considérations nouvelles

- faire des découvertes et des généralisation mathématiques.
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6.00 EVALUATION

Tal . : Les dimensions principales de la taxonomie de Bloom

Il s’agit de faire des jugements sur la valeur qu’ont les matériaux et les

méthodes, en vue d’objectifs donnés. Cette compétence implique la capacité de faire

des jugements quantitatifs et qualitatifs sur 1’adéquation du matériel et des méthodes

par rapport a certains critéres, ainsi que 1’utilisation des normes d’¢évaluation. Les

critéres peuvent étre fournis au sujet ou déterminés par lui-méme.

6.10 Le jugement en termes d’évidence interne

Il s’agit de I’évaluation de la précision d’une communication, selon des

critéres internes comme 1’exactitude logique et la cohérence.

Exemples :

3
- évaluer la précision en rapportant des faits d’'une documentation

- trouver des fautes logiques dans une argumentation.
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6.20 Le jugement en termes de critéres externes
Il s’agit de I’évaluation de matériel, en se référant a des critcres sélectionnés.
Exemples :

- comparer des théories majeures, des généralisations et des faits socio-cultures
comparer un travail, selon des critéres externes, avec des travaux d’un niveau

supérieur dans le méme domaine.

Malgré sa complétude, la taxonomie de Bloom a posé beaucoup de problémes
quand on essayait de I’adapter au domaine des mathématiques. Pour cette raison, les
chercheurs ont élaboré différentes classifications qui conviennent mieux a ce domaine

particulier de la cognition humaine.

4.2 L’Etude Internationale des Performances en Mathématiques

L’Etude Internationale des Performances en Mathématiques (International
Study of Achievement in Mathematics) (Husen, 1967) a classifié les objectifs de
I’enseignement en mathématiques, grice a une analyse détaillée et des objectifs
possibles et des objectifs réels poursuivis dans les programmes d’études des 12 pays
participants. Les chercheurs sont arrivés a établir une matrice tridimensionnelle.

La premiére dimension spécifie le comportement que 1’él¢ve acquiert. En fait,

le comportement comporte trois facettes, une cognitive, une affective et une motrice.

Les 10 aptitudes comportementales dégagées sont les suivantes :
a) L’aptitude de se rappeler et de reproduire des définitions, notations, opérations et
concepts.
b) L’aptitude de calculer rapidement et efficacement et de manipuler des symboles.
¢) L’aptitude de traduire des données en symboles.
d) L’aptitude d’interpréter des données qui apparaissent sous forme symbolique.
e) L’aptitude de suivre une ligne de raisonnement ou de preuve.
f) L’aptitude de construire une démonstration.

g) L’aptitude d’appliquer des concepts a la résolution de probleémes mathématiques.
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h) L’aptitude d’appliquer des concepts a la résolution de problémes non
mathématiques.

i) L’aptitude d’analyser des problémes et de déterminer les opérations qui pourraient
y €tre appliquées.

j) L’aptitude de trouver des généralisations mathématiques.

La deuxiéme dimension est celle des différents contenus mathématiques. Elle
comporte entre autres les thémes suivants :
a) Arithmétique
b) Algebre
c) Geéométrie plane, géométrie de 1’espace, géométrie analytique
d) Trigonométrie
€) Probabilité, analyse

f) Aspects généraux

La troisiéme dimension conceme [’utilisation des connaissances ou des
compétences acquises. D’aprés M. Pellerey (1991), la raison pour la distinction qu’on
y fait entre les mathématiques considérées comme un corps de savoir (mathématiques
pures) et les mathématiques considérées comme un instrument (mathématiques
appliquées) est probablement due a la division introduite dans 1’éducation

mathématique dans différents pays de la terre.

4.3 L’étude Longitudinale Nationale des Aptitudes Mathématiques

Le travail effectué par un groupe de chercheurs américains, intitulé Etude
Longitudinale Nationale des Aptitudes Mathématiques (National Longitudinal Study
of Mathematical Abilities) (Wilson, 1971) a abouti 4 un modéle & deux dimensions.
Les facettes de la dimension comportementale sont les suivantes :

a) Le calcul (computation): cette aptitude consiste a se rappeler les faits
mathématiques fondamentaux, la terminologie et les procédures nécessaires pour
appliquer des algorithmes. L’accent est placé sur la simple évocation du savoir et

I’accomplissement des opérations d’une manicre appropriée.
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b)

d)

La compréhension (comprehension) : cette catégorie comporte 1’aptitude de se
rappeler des concepts et de faire une généralisation mathématique : 1’éléve doit
montrer qu’il a compris les concepts et les relations qui les relient entre eux et
transférer ces données.

Application (application) : il s’agit de résoudre des problemes familiers, similaires
a ceux que I’éléve avait & maitriser pendant son processus d’apprentissage ; les
éléves doivent choisir la méthode qui permet de trouver la solution et 1’appliquer
correctement.

Analyse (analysis) : cette aptitude consiste a aller plus loin que ce qu’on a appris,
a faire des expériences mathématiques nouvelles, & résoudre des problémes

inhabituels.

4.4 La taxonomie de M. Pellerey

M. Pellerey (1974) a fait une synthése de ces premiéres taxonomies et a

proposé de scinder la dimension comportementale en deux, en distinguant des

processus de reproduction et des processus de production. Il discerne les aptitudes

suivantes :

Processus de reproduction :

a)

Connaissance d’éléments isolés, non organisés en un tout, sous une forme
répétitive courante. Connaissance d’organisations, mais sous forme de données
purement mnémoniques. Ceci peut se passer a un degré verbal ou non verbal,
comme dans le cas de graphiques, de I’application d’algorithmes, de constructions
avec régle et boussole. Tous ces processus impliquent la mémoire ou la
reconnaissance.

Font partie de cette catégorie :

La terminologie, les symboles.

Les principes et les régles.

Les faits, les énoncés mathématiques.

Le développement d’algorithmes.

La résolution de problémes de routine.
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b)

Les capacités motrices, comme par exemple 1'utilisation de la régle et de la
boussole.

Connaissance avec compréhension de concepts, d’organisations pergues comme
un tout, construit précédemment. Cette aptitude se distingue de la précédente du
fait qu’elle implique une plus grande activité, surtout d’analyse, de la part de celui
qui apprend, sans pour autant demander un réel engagement constructif. Cette
aptitude peut également se réaliser & un degré verbal ou non verbal.

Exemples :

Voir des relations, par exemple, entre une hypothése et une conséquence ou voir

* des régularités.

Comprendre des organisations spatiales, temporelles ou logiques et leurs principes
de structuration.

Encoder et traduire (au moyen de mots, de graphiques et de symboles).

Suivre un raisonnement.

Comprendre un probléme.

Approfondir les moyens de résoudre des problémes.

Processus de production :

a)

b)

Construction de concepts et d’organisations, sur la base d’expériences ou de
connaissances ou d’informations préalables : les associer ou les séparer au fur et a
mesure qu’ils apparaissent.

Processus faisant partie de cette dimension :

Construction de concepts, de systémes d’idées unifiées, de symboles.

Construction de schémes, d’organigrammes, de graphiques, d’algorithmes.
Formulation d’une définition.

Construction d’une organisation logique (axiomatique).

Représentation de données ou d’informations.

Construction de jeux, résolution de problémes simples.

Résolution de problémes. Cette aptitude concerne les problémes véritables, au
sens ou leur solution n’est pas donnée par des procédés simples, comme le rappel
ou la reconnaissance.

Exemples :

Deviner, supposer, formuler des hypothéses.

Trouver des objets, réels ou mathématiques, qui vérifient des conditions données.
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Trouver tous les objets qui vérifient des conditions données.
Généraliser, étendre des concepts par analogie.

Trouver un modéle mathématique adéquat (parmi des modéles connus).
Construire un modéle mathématique apte a résoudre un probléme.
Trouver un algorithme de résolution qui standardise un probléme.

c) Juger. Cette aptitude consiste a défendre un point de vue par argumentation ou a
rejeter un jugement, une solution, etc... sur la base de principes ou critéres venant
a la fois de ’intérieur de 1’objet en question et de I’extérieur.

Exemples :

Juger si un énonce a un sens.

Juger si un énoncé est vrai.

Juger si un probléme est bien défini, si on dispose d’assez, respectivement de trop
de données, respectivement de données contradictoires.

Juger si un symbole, une définition, une solution proposée conviennent.

Juger si un raisonnement est correct.

Juger si une solution vérifie les hypotheses.

Juger si une solution est raisonnable et/ou pratique.

Juger si une solution est élégante et/ou stimulante.

4.5 La taxonomie de la TIMSS

La Troisiéme Etude Internationale des Mathématiques et des Sciences (Third
International Mathematics and Science Study) (1991-1996) est 1I’étude internationale
la plus étendue et plus ambitieuse qui ait jamais été faite dans le domaine de la
comparaison de la performance d’éléves. On a comparé la performance en
mathématiques et en sciences d’éléves de plus de 50 pays.

La structure du programme de la TIMSS fournissait un systtme unifi¢ de
catégories pour I’analyse des programmes d’études dans les différents pays. Le
développement des tests d’évalvation se faisait suivant une structure deux-
dimensionnelle, une dimension de contenu et une dimension de performance

cognitive. La premiére décrivait la branche des mathématiques ou des sciences testée
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et la seconde caractérisait le type de performance cognitive que 1’éléve devait

accomplir pour résoudre 1’item en question.

Les 6 catégories de contenu mathématiques pour les enfants de 12 ans étaient
a) les nombres entiers
b) les fractions et la proportionalité
¢) la mesure, I’estimation et le sens des nombres
d) lareprésentation de données, I’analyse et les probabilités
e) la géométrie

f) les structures, les relations et les fonctions.

Les 4 catégories de performance cognitive pour les enfants du méme age
étaient
a) savoir
b) utiliser des procédures de routine
¢) rechercher et résoudre des problémes

d) faire un raisonnement mathématique.

4.6 La taxonomie de John B. Carroll

Comme on I’a déja mentionné dans le chapitre précédent, John B. Carroll (1993) a
réanalys¢ plus de 480 ensembles de données provenant de la littérature
psychométrique des 60 a 70 derniéres années, a 1’aide d’analyses factorielles
exploratives, dans le but de trouver une taxonomie des abilités cognitives. Il a établi
une taxonomie comportant trois strates.

La strate de niveau le plus élevé comporte un seul facteur, a savoir le facteur g
d’intelligence générale.

La strate de niveau moyen comporte les huit facteurs énumérés ci-dessous, qui

possédent tous une sous-strate avec plusieurs facteurs de niveau iinférieur.

1. I’INTELLIGENCE FLUIDE

1.1 Le raisonnement séquentiel
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1.2 L’induction
1.3 Le raisonnement quantitatif
1.4 La raisonnement piagétien

1.5 La vitesse de raisonnement

2. L’INTELLIGENCE CRISTALLISEE
2.1 Le développement du langage

2.2 La compréhension du langage parlé
2.3 Le savoir lexical

2.4 La compréhension de I’écrit

2.5 Le décodage de ’écrit

2.6 Les connaissances orthographiques
2.7 Le codage phonétique

2.8 La sensibilité grammaticale

2.9 L’aptitude aux langue étrangeres
2.10 L’aptitude a la communication
2.11 La capacité d’écouter

2.12 Lavitesse de lecture

2.13 L’aisance d’expression orale

2.14 La capacité d’écriture

3. LAMEMOIRE ET LE SAVOIR
3.1 L’envergure de la mémoire

3.2 La mémoire associative

3.3 La mémoire de rappel libre

3.4 La mémoire significative

3.5 La mémoire visuelle

3.6 L’aptitude d’apprendre

4. LA PERCEEPTION VISUELLE
4.1 La visualisation

4.2 Les relations spatiales

4.3 La vitesse de reconnaissance

4.4 La flexibilité de reconnaissance
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4.5 L’intégration sérielle perceptuelle
4.6 Le balayage spatial

4.7 La vitesse de perception

4.8 La formation d’images

4.9 L’estimation de longueurs

4.10 La perception d’illusions

4.11 L’alternance de perceptions

5. LA PERCEPTION AUDITIVE

5.1 3 facteurs d’audition et de paroles

5.2 Le discernement des bruits de la parole
5.3 Le discernement de bruits généraux

5.4 Le discernement de la fréquence de bruits
5.5 Le discernement de la durée de bruits

5.6 Le discernement et le jugement musical
5.7 La résistance a la déformation de stimuli auditifs
5.8 Le pistage temporel

5.9 Le maintien et la perception de rythmes
5.10 La mémoire de motifs sonores

5.11 La tonalité absolue

5.12 Lalocalisation de sons

6. LA CAPACITE D’ABSTRACTION
6.1 L’originalité créative
| 6.2 L’aisance d’idées
6.3 La capacité de nommer
6.4 L’aisance d’association
6.5 L’aisance d’expression
6.6 L’aisance linguistique
6.7 La sensibilité aux problémes
6.8 L’aisance formelle

6.9 La flexibilité formelle
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7. LA VITESSE DE PENSEE
7.1 La vitesse d’exécution des tests
7.2 La capacité numérique

7.3 La vitesse de perception

8. LA VITESSE D’EXECUTION

8.1 Le temps de réaction simple

8.2 Le temps de réaction & un choix

8.3 La vitesse de traitement sémantique

8.4 La vitesse de comparaison mentale

Carroll conclut qu’il n’existe pas de capacités uniquement mathématiques, a
part peut étre deux, mais que la plupart des abilités cognitives entrent en action lors de
la résolution de problémes mathématiques, ce qui rend trés ardu I’ établissement d’une

taxonomie mathématique.

4.7 Synthese

Alors que les taxonomies de Bloom et de Carroll concernent les compétences
cognitives en général, les 4 taxonomies mathématiques qui ont été présentées ci-
dessus ont été établies a partir de I’analyse des programmes de mathématiques
existants. Elles se sont cependant inspirées des recherches psychométriques et
cognitives, au sens ou elles distinguent les procédures des contenus. Il n’est donc pas
étonnant qu’elles soient assez semblables en ce qui concerne les contenus scolaires et
qu’elles se distinguent seulement par la mise en évidence des procédures qu’elles
jugent pertinentes et qui dépendent évidemment de 1’dge des éleves examinés. La
distinction entre processus de production et de reproduction introduite par Pellerey
correspond & la reconnaissance de l’importance du role de la mémoire dans les
performances scolaires.

Nous allons tester ces taxonomies sur la base de nos propres données.






Chapitre V

METHODES MULTIVARIEES D’ANALYSE
STATISTIQUE

Dans ce chapitre, nous introduisons quelques méthodes d’analyse statistique

multivariée que nous utiliserons dans la suite.

5.1 L’échelonnement multidimensionnel

L’objectif des méthodes d’échelonnement multidimensionnel (multidimensioal
scaling) est de représenter des données de proximité sous formes de distances, dans
un espace d’un nombre restreint de dimensions (Dickes et alt., 1994). A partir d’un
ensemble de données représentant différentes formes de proximité entre items
(similarités, dissimilarités, distances psychologiques, cooccurences, correlations, ...),
on cherche si la représentation des items par rapport & quelques axes de coordonnées

est réalisable.

L’exemple suivant (Tournois et Dickes, 1993) donnera une idée approximative
de I’objectif de ces échelonnements. Supposons que nous disposions d’une liste des
distances routiéres entre différentes villes francaises. Est-il possible de reconstituer la

carte de la France, a partir de cette seule information?
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Le tableau des distances kilométriques, qui rassemble les données soumises
dans I’analyse, est présentée dans le tableau ci-dessous. Ces données ne sont, pour la
réalisation d'une carte, qu’approximatives, puisqu’il ne s'agit pas de distances a vol
d’oiseau mais de distances routiéres: la distance entre les villes des zones
montagneuses est, comparativement plus grande que celle entre les villes situées en

plaine.
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Tableau 1.1 Distances kilométriques entre 21 villes frangaises

1. Bayonne 8. Le Havre 15 Nice

2. Bordeaux 9. Lille 16. Poaris

3. Brest 10. Limoges 17, Perpignan
4. Cherbourg 11. Lyon 18. Rennes
5. Clermont-Femand 12. Marseiile 19. Strasbourg
6. Dijon 13. Monfpellier 20. Toulouse
7. Grenoble 14. Nantes 21. Tours

Figure 5.1 : Distances kilométriques entre 21 villes frangaises (Tournois et Dickes, 1993)

L’analyse par échelonnement multidimensionnel a pour objectif de restituer la
position respective des villes, a partir de ces distances routiéres, donc de restituer la
carte de la France. Toutefois, comme les données dont on dispose sont erronées du
point de vue de la représentation cartographique (on peut dire qu'elles sont entachées
d'erreurs), I’échelonnement ne prend pas en compte les distances routiéres de ce
tableau en tant que valeurs absolues: le mod¢le ne retient que 1’ordre des distances
entre villes ; il retient seulement que Grenoble et Lyon (105) sont plus proches 1’'une
de I’autre que ne le sont Nantes et Rennes (106), elles-mémes étant plus proches que

ne le sont Marseille et Montpellier (158), etc ... .
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Le modéle transforme 1’information d’ordre du tableau des données en des
distances euclidiennes qui respectent cet ordre et cherche la position théorique des
villes qui respecte ces distances. I1 la traduit dans une représentation géométrique,

présentée ci-dessous.
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Figure ] 1.  Configuration bidimensionnelle issue de I'EMD des distances roufiéres entre 21 villes
francoises.

Figure 5.2 : Configuration bidimensionnelle des distances routi¢res (Tournois et Dickes, 1993)

L’analyse nous informe que, pour représenter ces données, deux dimensions
suffisent : c’est la dimensionnalité appropriée pour cette représentation. Le terme
dimensionnalité renvoie simplement au nombre de dimensions de 1’espace dans lequel
sont représentées les données, c’est-a-dire au nombre d’axes de coordonnées de la
solution.

Il va sans dire que dans les applications réelles, la dimensionnalité vraie est
inconnue au départ ; elle doit donc étre recherchée par I’analyste. L’échelonnement
multidimensionnel permettra de déterminer la dimensionnalité la plus petite qui soit
suffisante pour représenter correctement les données. Dans le cas présent,

I”échelonnement multidimensionnel signale que les distances entre villes sont trés mal
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représentées sur une seule dimension : I’information de départ est falsifiée et ne peut
entrainer que le rejet d’un tel échelonnement pour cause d’inefficacité. D’autre part,
ces distances ne sont pas micux représentées dans un espace tridimensionnel que dans

I’espace a deux dimensions de la figure 5.1, qui constitue donc la solution retenue.

Les modgéles de I’échelonnement multidimensionnel sont donc des modéles de
représentation spatiale. Pour en avoir une vue d’ensemble, il est utile de distinguer
trois aspects de ces modeles : les données, la transformation et la métrique (Coxon,
1982).

- Les données peuvent étre constituées d’une (ou de plusieurs) matrice(s) de
proximités, carrée(s) symétrique(s) ou asymétrique(s) ou rectangulaire(s)
conditionnelle(s) ou non conditionnelle(s).

- La transformation peut étre monotone, linéaire ou logarithmique.

- La métrique peut étre une quelconque des distances de Minkowski.

Chaque croisement de ces caractéristiques fournit un modele différent.
Comme nous ne pourrons naturellement pas présenter ici I’ensemble de ces modeles,
nous nous bomerons a expliciter le modéle de base élaboré par Shepard (1962) et
Kruskal (1964a, 1964b), qui est encore a I’heure actuelle le modele le plus largement
répandu. Dans ce mod¢le, 1’échelonnement réalise une transformation monotone des
données d’entrée en distances euclidiennes, c’est-a-dire que seul ’ordre des données
d’entrée est pris en compte dans la transformation. Pourtant, & la sortie, les données
sont représentées dans un espace euclidien. Le résultat est un systéme de coordonnées
des points dans un espace a n dimensions. Les analyses par échelonnement
multidimensionnel sont donc des ré-échelonnements. Il y a généralement passage de
données d’un faible niveau de mesure (ordinal le plus souvent) & des résultats d’un
niveau de mesure plus €levé, le niveau métrique.

Si l'on se référe au résultat de 1’analyse, les échelonnements
multidimensionnels sont des techniques de représentation géométrique. En effet, les
données de départ sont, a I’issue de I’analyse, représentées géométriquement dans un
espace euclidien.

Une remarque s’impose : ce ne sont pas nécessairement des techniques qui
visent a rechercher des « facteurs » sous-jacents au phénomeéne étudié. Ces techniques

résument l’information en la représentant une forme immédiatement perceptible.
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L’appréhension visuelle d’une carte est, certes, plus facile que la lecture d’une grande
matrice de données. C’est aussi la totalité de I’information qui est représentée sur la
carte géographique. Ces techniques ne réduisent pas ’information, elles la condensent
en une forme accessible.
D’aprés Tournois et Dickes (1993), les échelonnements multidimensionnels
reposent sur un modéle de mesure qui présente plusieurs avantages :
- il est trés peu exigeant sur les données qu’il permet de traiter : I’information
ordinale suffit ;
- il est peu contraignant dans son fonctionnement : une transformation monotone
suffit ;
- il est avantageux dans sa réalisation : les distances de la configuration finale sont
du niveau d’intervalle et dépassent donc ’information ordinale des données de

départ.

La plus grande source de diversification des modeles d’échelonnement
multidimesionel reste la diversité des données qu’ils peuvent traiter. Il s’est imposé
une distinction entre données de similarité directe et données de similarité indirecte.
Les similarités directes sont des données dont les observations comportent déja la
signification de similarité (ou de dissimilarité). La collecte porte donc nécessairement
sur les relations entre éléments. Les similarités indirectes sont des données de
similarité obtenues par le calcul d’un coefficient ou d’un indicateur quelconque de
proximité (ou distance), a partir d’observations ne contenant en elle-mémes aucun
indice de similarité.

Historiquement, les échelonnements multidimensionnels étaient destinés au
traitement de données de similarité directe. La pratique de la recherche en a étendu
I’usage aux proximités calculées sur des profils, ce qui ouvre incontestablement les
champs potentiels d’application : toutes les observations de type « stimulus unique »
se prétent a l’application d’un échelonnement multidimensionnel, aprés calcul
d’indicateurs de profil, telle la corrélation, qui les transforment en données de
proximité ou de dissimilarité.

Les similarités directes offrent cependant I’avantage de ne pas introduire de
présupposés quant aux dimensions qui sous-tendent le jugement, le comportement, la

perception, etc ... . On s’est donc efforcé de forger des techniques ou, plutot,



5. Méthodes multidimensionnelles d’analyse statistique 76

d’aménager des techniques de collecte déja existantes, pour recueillir des similarités

directes.

Les similarités directes étant des informations relationnelles, les techniques de
collecte excluent la présentation de type stimulus unique.Les techniques les plus
utilisées sont les suivantes :

- Le tri subjectif est trés utilisé pour sa rapidité d’exécution lorsque les stimuli sont
nombreux. Il permet de récolter des observations nominales : sont similaires les
¢léments classés dans une méme catégorie.

- L’estimation de similarité de paires est une technique plus lourde puisqu’elle
suppose la présentation de paires d’items. Le relevé de confusion (assimilation de
deux stimuli présentés simultanément ou successivement) en est une variante. Plus
généralement, la présentation de paires d’items, assortie d’une évaluation de leur
similarité, soit dichotomique, soit ordinale, permet 1’obtention de similarités
directes.

- La méthode des tétrades (présentation de quatre stimuli) est une transpositibn de
la technique de collecte des comparaison par paires, dans laquelle on présente des
paires de paires. Cette technique a deux inconvénients majeurs : elle est trés
lourde et 1a tache est difficile pour le sujet.

- La méthode des triades (présentation de trois stimuli) se veut un allégement de la
précédente. On parle quelquefois de «tétrades conjointes » pour en rendre
compte, considérant ainsi que trois €léments constituent une tétrade ayant deux
¢léments en commun.

- La technique des rangements conditionnels se présente comme une extension de la
collecte par ordination. Prenant tour & tour chacun des items comme terme de
comparaison, 1’ensemble des items restants est ordonné par rapport a ce terme, en
fonction de sa dissimilarité. Ainsi, s’il y a 15items, cette technique réclame 15
ordinations de 14 stimuli. Ce type de collecte est plus simple dans sa présentation
que la technique des triades et offre le méme nombre de comparaisons (Roskam,
1979).

Plus généralement, 1’observation de similarité est un fait courant. Par exemple,
pour un ensemble de périodiques scientifiques, le relevé bibliographique du nombre
de citations des différents périodiques par chacun d’entre eux permet de dresser un
tableau de proximités asymétriques entre les périodiques (Coxon, 1982). La fréquence

des rencontres entre les personnes, telle qu’elle se présente dans un sociogramme, est
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peut-étre I’exemple le plus courant de proximités observées en situations naturelles.
Ainsi, en dehors du recours a des techniques spécifiques de collecte de similarités
directes, 1’observation permet d’obtenir des similarités de ce type, qui se prétent a un
traitement par échelonnement multidimensionnel.

Historiquement, on peut reconnaitre deux grands courants de travaux qui
participent indépendemment aux développementx du modele de base, le courant des
Bell Laboratories, avec le programme de Shepard-Kruskal et le courant de Guttman-
Lingoes, avec les programmes de la série SSA (Smallest Space Analysis ou
Similarities Structure Analysis) (cf. Lingoes, 1972).

Le modele de base traite une matrice symétrique de proximités. 11 est
indifférent que les données soient des dissimilarités ou des similarités, la fonction qui
les relie aux distances étant seulement définie comme croissante ou décroissante selon
le cas. Il est toutefois plus simple, sur le plan logique, de considérer les dissimilarités.
Dans ce cas, les grandes dissimilarités doivent étre représentées par de grandes
distances, les petites, par de spetites distances.

Le modéle réalise une transformation monotone des dissimilarités. Cette
transformation est faiblement monotone dans le modele de Shepard-Kruskal,
strictement monotone dans le modéle de Guttman-Lingoes.

La métrique est celle de la distance euclidienne.

Les points (correspondant aux items) sont, a I’issue de I’application du
modéle, positionnés dans un espace euclidien d’une certaine dimension.

Le coeur du modéle réside dans la transformation monotone des dissimilarités
en distances : les distances euclidiennes croissent quand les dissimilarités croissent.

Alors que les distances euclidiennes résultantes réalisent nécessairement les
axiomes de la métrique euclidienne, les dissimilarités de départ ne les respectent pas
obligatoirement. En d’autres termes, les données ne sont pas nécessairement
représentables dans un espace de petite dimension. Il y a des dérogations au modcle.
Celles-ci sont appréciées par un indicateur d’inadéquation appelé stress dans le
modéle de Shepard-Kruskal repectivement coefficient d 'aliénation dans le modele de
Guttman-Lingoes.

L’échelonnement multidimensionnel est réalisé par une procédure itérative
dont on peut trouver I’exposé mathématique chez Takane, Young et De Leeuw (1977)

et une présentation détaillée, moins technique, chez Tournois et Dickes (1993).
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L’échelonnement multidimensionnel travaillant dans une dimensionnalité
donnée, la pratique du chercheur consiste, en fait, & obtenir plusieurs solutions (en 5,
en 4, en 3, en 2 dimensions) et a retenir la solution la plus intéressante : le plus
souvent, la plus petite dimensionnalité produisant un résultat qui a du sens.

Le choix de la dimensionnalité reste le plus souvent intuitif. Il repose sur la
consultation de la chute des valeurs de stress (celles-ci décroissent toujours quand la
dimensionnalité augmente) et sur la possibilité d’interpréter la configuration. Cette
pratique parait ressembler au choix du nombre de facteurs dans une analyse
factorielle, mais elle est pourtant différente. Elle est en fait beaucoup plus simple, ne
serait-ce que parce que les échelonnements multidimensionnels n’effectuent pas de
solutions au-dela de six dimensions, limite posée par les logiciels. Cette limite
s’explique par le fait que soit les dissimilarités sont représentables au plan métrique
et, dans un tel cas, elles le sont dans une dimension petite, soit elles ne sont pas
représentables et dans ce cas, il est inutile d’augmenter la dimensionnalité. En
pratique, on trouve généralement une solution acceptable en deux ou trois dimensions.

Deux mises en garde doivent toutefois étre faites pour le choix de la
dimensionnalité :

1) On obtient toujours de bonnes valeurs de stress avec tres peu d’éléments a
échelonner. Tous les auteurs mettent en garde contre le risque de demander une
solution de dimensionnalité trop élevée par rapport au nombre d’items. Par
exemple, pour une solution bidimensionnelle, il faut avoir de neuf a douze items,
pour une solution tridimensionnelle, de treize a dix-huit items (Spence et
Domoney, 1974 ; Kruskal et Wish, 1978 ; Schiffman, Reynolds et Young, 1981 ;
Coxon, 1982). En effet, la représentation géométrique des données sera toujours
d’autant meilleure que la solution demandée aura plus de dimensions. Et il est
toujours possible de représenter quatre points en trois dimensions avec un stress
nul, et méme en deux dimension, si la distance est euclidienne (Lingoes, 1971).

2) Une valeur de stress exceptionnellement bonne (proche de zéro) est le plus
souvent le signal d’une « dégénérescence » de la solution. On dit que la solution
est dégénérée quand, en présence de sous-groupe trés nets dans les données, les
points tendent a s’agglomérer selon ces sous-groupes. En effet, de par sa nature
ordinale, 1’algorithme peut toujours rapprocher les similarités intragroupe et

éloigner les similarités intergroupes. Dans les cas extrémes, le stress tend vers
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zéro (Shepard, 1974). Ainsi, une trés bonne valeur de stress n’est souvent que le
reflet d’une dégénérescence partielle des solutions. Ce phénomene n’est pas rare
dans les applications qui traitent par exemple, des données mettant en relation soi
et autrui ou l’ingroup et I’outgroup. Les applications de ce type produiront
toujours des stress d’apparence exceptionnelle, qui ne garantissent pas la qualité
du résultat en termes de mesure. En face d’une solution dégénérée, le seul résultat
acquis est la présence de sous-groupes. La pratique consiste soit 4 recommencer
des échelonnements multidimensionnels séparés pour chacun des sous-groupes,
soit 4 augmenter la dimensionnalité (si le nombre d’éléments & échelonner le
permet), soit & réaliser un échelonnement multidimensionnel en recourant a une

transformation linéaire (si la nature des données le permet).

Dans la configuration résultante, toutes les distances entre points sont
significatives. Mais la configuration exprimée en distances euclidiennes permet la
translation d’origine, la rotation orthogonale des axes, la réflection et le changement -
d’échelle.

Il n’est pas rare que ces configurations prennent une structure évidente, par
exemple, la forme d’un cercle, la forme d’un fer & cheval, représentant une dimension
qui s’est incurvée en raison de la nature ordinale de 1’algorithme, ou de deux ou trois
sous-ensembles de points, comme dans les phénoménes de dégénérescence. La
conduite interprétative est dés lors facilitée par 1’organisation globale de la
configuration. Le cas général est toutefois 1’apparence de points qui ne présentent pas
de structure manifeste. Dans ce cas, la conduite interprétative peut étre engagée selon
plusieurs voies.

- Une approche dimensionnelle consiste a rechercher des grands axes porteurs de
signification, qui traversent I’ensemble de la configuration. Il faut toutefois garder
a Desprit que les dimensions significatives ne sont pas nécessairement portées par
les axes de coordonnées et peuvent étre recherchées dans n’importe quelle
orientation. Cette recherche de grandes dimensions significatives peut étre
vérifiée, lorsqu’on dispose de I’information nécessaire, par la projection d’une
dimension interprétative dans 1’espace résultant de 1’échelonnement
multidimensionnel (Kruskal et Wish, 1978).

- Des groupes de points peuvent étre recherchés dans cette configuration. Cette

recherche peut étre validée par la mise en oeuvre d’une analyse en grappes
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(analyse en « clusters »), pratiquée sur la matrice de proximités qui a été soumis a
I’échelonnement. On valide ainsi, par convergence, la plus grande proximité des
distances intragroupe. Les résultats de cette analyse peuvent étre représentés
manuellement dans 1’espace de 1’échelonnement multidimensionnel (cf.
Fillenbaum et Rapoport, 1971).

- L’interprétation peut aussi consister a rechercher des régions dans la
configuration , c’est-a-dire des zones contigués de 1’espace, qu’elle qu’en soit par
ailleurs la forme, dans lesquelles tous les points ont une signification commune.
Cette démarche est essentiellement utilisée dans une approche confirmatoire, le
plus souvent en liaison avec une phrase en facettes qui a permis de spécifier a
I’avance les significations a rechercher. L’approche en facettes constitue le

prototype d’une telle pratique.

Ces diverses voies interprétatives ne s’excluent pas. J. Tournois (1989) montre
qu’elles gagnent a étre pratiquées conjointement, surtout lorsque la recherche est
exploratoire. La multiplicité des voies interprétatives qui peuvent étre appliquées a ces
configurations est une richesse qui fait de I’échelonnement multidimensionnel un outil
exploratoire puissant. Dans une approche confirmatoire, la voie interprétative est

naturellement guidée par les hypothéses posées.

5.2 L’analyse hiérarchique ascendante

5.2.1 Introduction

L'analyse hiérarchique ascendante (appelée également analyse en grappes ou
clusters) répond au probléme suivant : comment classer » individus, sur lesquels on a

mesuré p caracteristiques X,...,X,, en un certain nombre K de sous-groupes

homogénes? L’analyse se déroule en deux phases :

a) il s’agit d’abord de définir un indice de dissimilarité entre toutes les paires
d’individus, d’autant plus élevé que leurs profils (sur les p caractéristiques) sont
¢loignés.

b) il faut ensuite convenir d’une régle de regroupement permettant de décider si deux

individus doivent appartenir au méme groupe, pour un seuil donné (représentant
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un niveau de précision ou de pouvoir discriminant) : & un certain niveau, deux
individus peuvent étre confondus dans le méme groupe, alors qu’a un niveau de
précision plus élevé ils seront distingués et appartiendront donc a deux sous-
groupes différents. En faisant varier le seuil, les » individus au départ distincts se
trouveront ultimement rassemblés dans un groupe unique. Le dendogramme

constitue une représentation graphique de ce processus d’agrégation.

D’aprés Frangois Bavaud (Bavaud et alt., 1996), 1’analyse hiérarchique

ascendante est un outil un peu a part dans I’univers des méthodes statistiques :

Elle ne comporte pas de tests d’hypotheses: 1’aspect inférentiel est donc
inexistant. De fait, la « justification » d’une analyse hiérarchique asendante est son
aptitude a produire des classifications qui « font sens ».

Elle posséde un grand nombre de variantes fort diverses et ceci pour le traitement
des deux phases mentionnées ci-dessus ; comme la classification obtenue dépend
en général fortement des options choisies, 1’analyse hiérarchique asendante se
présente comme un ensemble de recettes empiriques, dont seule une petite partie
est adaptée a un type spécifié¢ de données.

Enfin, I’accent est mis sur ’analyse des » individus plut6t que sur les p variables,
comme c’est le cas habituellement. Cette approche centrée sur les individus
résulte souvent non pas de l’intérét particulier porté aux individus eux-mémes

mais bien du constat que les alternatives sont limitées lorsque 1’échantillon est

petit (n<p).

Pour toutes ces raisons, l’analyse hiérarchique asendante est un outil

exploratoire dont le seul mérite est de produire un ordre qui « parle » au chercheur et

lui suggére de nouvelles hypothéses et pistes d’analyse. 11 est conseillé au chercheur

de varier les options d’analyse sur un méme jeu de données et d’écarter sans trop

d’états d’ame les classifications trop peu éclairantes.
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5.2.2 Les indices de dissimilarité
5.2.2.1 Généralités

La premiére étape d’une classification hiérarchique ascendante consiste a

définir un indice de dissimilarit¢ d; entre toutes les paires (7, j)d’individus. Un
indice de dissimilarité doit satisfaire les conditions de
(1) non-négativité : d; >0
(2) symétrie : dl.j =d P
(3) normalisation : d;; = 0.
Si, en plus, on a
(4) I'inégalité triangulaire : d; <d, +d,;, Vk,
on parle de distance métrique ou simplement de distance. Enfin, lorsque
(5) linégalité ultramétrique : d; <max(d,,d ), Vk,
est satisfaite, on parle de distance ultramétrique. Dans un monde ultramétrique, trois

objets 7, j et k forment toujours un triangle isocéle, les deux cOtés égaux étants plus

grands que le troisiéme. Une distance ultramétrique est forcément métrique.

I faut parfois considérer des indices de similarité s, satisfaisant aux

conditions s, =0,s; =s; et s, =s,, =constante,Vi. Une similarit¢ s; peut €tre

Ji

convertie en distance d; par d;=s,, —s;. Pour les puristes, la transformation

suivante

c?,.j =d, +m,:caxmax(a’ dy>d ;)

i

transforme une dissimilarité d; en distance métrique d,.

5.2.2.2 Scores quantitatifs

Lorsque les p variables sont quantitatives, on peut définir une distance d,

entre les profils (x;,...,x,,) deiet (x

155X ;) de /i, de quantité de fagons, répertoriées

ou non, en particulier la distance euclidienne, la distance euclidienne au carré, la
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distance city block, la distance de Chebychev, les distances de Minkovski et les

distances en puissances généralisée.

De plus, il est toujours possible de considérer des scores x; et xj

standardisés : cela revient a déclarer chacune des p variables également importantes
dans la classification, plutét que de priviligier celles dont 1’écart-type est important.
On peut aussi considérer une « standardisation multivariée » (éliminant également les
corrélations entre variables) avec la distance de Mahalanobis.

En outre, le carré du coefficient de corrélation entre les individus i et j peut

étre utilisé comme indice de similarité s,

;» avec s, =1. Pour que cet indice de

similarité fasse sens, il est nécessaire que les p variables X, soient du méme type. La

distance métrique d; = /1 - r; obtenue ainsi est appelée distance de Pearson.

5.2.2.3 Scores catégoriels

Pour p variables qualitatives, on se limitera principalement au cas fréquent de
variables binaires, exprimant de fait la présence ou 1’absence d’un attribut qu’il est
commode de coder par «1» (présence de l’attribut) et par «0» (absence de
I’attribut). Au besoin, on effectuera une dichotomisation des variables plurimodales,
transformant une variable 4 m modalités en m—1 variables binaires de
présence/absence.

Deux individus i et j étant donnés, il est nécessaire de distinguer la co-
occurence d’un attribut de la co-absence de I’attribut, la premiére étant souvent plus
significative que la seconde (la co-occurence de « posséde une résidence secondaire »
pouvant par exemple refléter une similarité plus forte que ne le ferait sa co-absence).
Il existe plusieurs possibilités de définir des distances a ’aide des nombre de co-

occurences respectivement de co-absences.
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5.2.2.4 Scores de comptage

Lorsque les profils des individus sont constitués de p effectifs, il est naturel de

définir la dissimilarité associée a une paire d’individus comme le y* du tableau

(2x p) de contingence associé, ou, de facon presque équivalente, par ¢> = y*/n, n
étant 1’effectif total du tableau. L’indice de dissimilarité ainsi défini est symétrique,
non-négatif, et nul si et seulement si les profils des deux individus sont

proportionnels.

5.2.3 La constitution des groupes

Etant donné les distances d; entre individus, il s’agit de construire une

partition dont les g classes ou groupes sont aussi homogénes que possible. La
classification hiérarchique ascendante consiste a regrouper les 2 individus les plus
proches, et a réitérer le processus jusqu’au regroupement complet. L’algorithme
aboutit donc a un arbre de classification ou dendrogramme. L’échelle verticale est le

niveau d’agrégation D(A,B), i.e. la distance a laquelle les groupes A et B ont été

réunis.
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Figure 5.3 : Exemple de dendogramme (Bavaud et al., 1996)

1

L’algorithme sera donc entiérement spécifié une fois que le sera la distance D(A4, B)

entre deux groupes.
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e La méthode du saut minimal (single linkage ou nearest neighbourhood) consiste a
prendre

D, (A,B)=minmaxd(i, j).
ied jeB

e La méthode du saut maximal (complete linkage ou furthest neighbor) consiste a
prendre

D, (A4,B)= maxm%xd(i,j).

icd  je
A partir d’un nuage étiré de n points, 1’algorithme du saut minimal tendra a
ajouter les individus un a un au cluster déja formé (chainage) , tandis que I’algorithme
du saut maximal tendra & former des sous-sous-clusters de taille similaire qui seront

regroupés dans des sous-clusters de taille similaire, etc ... (dendogramme homogene).

e Un compromis entre ces deux critéres est fourni par la méthode du saut moyen entre
les groupes (baverage ou beween-groups linkage) avec

LS ai )

nAnB ied,jeB

D,(4,B) =

ou n, et ny sont les effectifs des deux groupes. Ce critére ne fait pas intervenir les
dissimilarités intra-groupes : il garantit que les deux clusters 4 et B soient composés
d’individus proches en moyenne, mais ne garantit pas 1’homogénéité de chacun des

deux clusters.

e La variante du saut moyen intra-groupes (waverage ou within-groups linkage)

D, (4,B) = 1 Y. dG,))

(ng+ng)(ny+nz—1) e

garantit également 1’homogénéité intragroupe.

e La matrice (px p) de variance-covariance totale 7' se décompose en variance

interclasse et intraclasse 7 =B +W?. Au début du processus d’agglomération,

g=nB" =T et W =0. A mesure que les clusters sont formés, q¢ et B'¥
diminuent tandis que W'” augmente. A la fin, ¢g=1,B" =0 et W" =T. Par

construction, la perte d’inertie intraclasse W@ — W) est positive. La méthode de
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Ward (Ward’s method) consiste a agglomérer les deux groupes A et B de fagon a ce
que la trace de la perte d’inertie intraclasse soit minimale. On obtient ainsi

nag

D,(4,B)= (X3+X3),

n,+n,

ot X, et X, désignent les centres de gravité des ensembles 4 respectivement B.

¢ Enfin, la méthode centroide (centroid clustering) consiste a prendre simplement

D.(4,B)= X3+ X;.

De fagon générale, I'indice d’aggrégation D(4,B) induit une distance D;

entre individus, qui est définie comme le niveau d’agrégation minimal ot i et j ont été

réunis dans un méme groupe. La distance D, est ultramétrique; de fait, a tout

dendogramme est associé une structure de distance ultramétrique et vice-versa.

Or, les distances d;; de départ entre individus ne sont pas ultramétriques en

général ; toute classification, induisant une distance ultramétrique entre individus,

crée donc une distorsion dans les données initiales.

5.3 L’analyse factorielle
5.3.1 Généralités

L’analyse factorielle est un procédé qui raméne un grand nombre de variables
a un petit nombre de grandeurs causales latentes appelées facteurs. Cela se fait en
regroupant les variables qui corrélent fortement entre eux sous un facteur. Ainsi des
variables appartenant a des facteurs différents sont corrélées peu entre eux. Le but de
P’analyse factorielle est par conséquent de déterminer des facteurs qui permettent
d’expliquer le plus complétement possible les rapports observés entre les différentes
variables.

Les méthodes d’analyse factorielle figurent sans doute parmi les modéles
psychométriques les plus connus. L’ancienneté de ces méthodes (elles remontent au
début du siecle) et leur présence dans tous les programmes intégrés d’analyses

statistiques ont beaucoup contribué a leur diffusion. D’apres Dickes et al. (1994), les
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principes de base qui sous-tendent ces modeles ne sont pourtant pas toujours bien
connus des chercheurs, ce qui donne lieu a des utilisations mal appropriées (comme le
note Reuchlin (1992). Nous rappellons ces principes ici.

I1 est nécessaire de parler d’analyses factorielles au pluriel pour rendre compte
de la diversité des méthodes : outre I’analyse en composantes principales et I’analyse
en facteurs communs et uniques évoquées plus loin, on peut citer, par exemple,
I’analyse factorielle des images de Guttman (1953), ’analyse factorielle alpha de
Kaiser et Caffrey (1965) ou I’analyse factorielle des correspondances de Benzécri
(1973).

L’objectif de I’analyse factorielle est de condenser un ensemble d’observations
qui se présentent sous la forme d’une matrice a deux modes, sujets-variables. La
plupart du temps, ce sont les similarités entre les variables qui intéressent le
chercheur, mais on peut également effectuer une analyse factorielle sur les sujets (on
parle alors d’analyse factorielle en plan Q).

Pour pouvoir condenser les observations, il faut postuler I’existence de
variables latentes appelées facteurs, qui doivent rendre compte des relations entre les
variables observées (ou variables manifestes). Généralement, on a besoin de plusieurs
facteurs pour rendre compte de maniére satisfaisante de ces relations. Lorsque le
chercheur n’a pas d’hypothése a priori sur le nombre de variables latentes nécessaires,
on dit que sa démarche est exploratoire. Dans le cas opposé, lorsque le chercheur a
des hypothéses précises sur le nombre de facteurs nécessaires ou, plus généralement,
sur différents paramétres de la solution factorielle, on parle de démarche
confirmatoire. La frontiére entre démarche exploratoire et confimatoire n’est pas
toujours trés nette ; Il est rare en effet de n’avoir aucune attente par rapport aux
résultats. Mais, en tout état de cause, méme dans une démarche confirmatoire,
I’analyse factorielle ne fournit pas de critére statistique d’adéquation permettant
d’évaluer la plausibilité de telles hypothéses. Ce n’est qu’avec les modeles
d’équations structurales que de telles possibilités existent.

La démarche commune a toutes les analyses factorielles peut étre résumée de
la maniére suivante. C’est la matrice de corrélations ou de covariances entre les
variables qui constitue les données d’entrée du modele. S’agissant de corrélations, les
variables devraient, en toute rigueur, étre du niveau de mesure d’intervalles. Comme
un tel niveau est rarement atteint avec des variables psychologiques, 1’utilisation de

I’analyse factorielle s’est généralisé a des variables ordinales. Mais dans ce cas,
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plusieurs précautions doivent étre prises ; les variables doivent comporter un nombre
suffisant de modalités et leur distribution doit étre proche d’une distribution normale.
A vpartir de la matrice de corrélations, 1’analyse factorielle génére deux nouvelles
matrices. La premiére est la matrice factorielle ; elle exprime les corrélations
(appelé€es saturations) entre les variables manifestes et les variables latentes. Les
variables les plus saturées permettent de donner une interprétation psychologique aux
facteurs. A partir de cette matrice, on peut recalculer une matrice de corrélations entre
les variables (la corrélation entre deux variables est égale a la somme des produits des
saturations de ces variables dans les facteurs de 1’analyse) ; lorsque les différences
entre ces corrélations et les corrélations observées sont petites, la solution factorielle
est jugée satisfaisante. La seconde matrice exprime les scores des sujets dans chacun
des facteurs (ces scores sont appelés scores factoriels). Les facteurs expriment donc
les observations de départ sous forme condensée. Les analyses factorielles visent alors
a rendre compte de variables par d’autres variables.

Selon Reuchlin (1964), le mod¢le général de 1’analyse factorielle peut
s’exprimer de la maniére suivante :

Si =CuXy +CpXp + ot Cp X,

ou s, est la mesure du comportement de I’individu i dans la situation j (e.g. réponse
de I’individu 7 a la question j d’un questionnaire), x,; est le score de 'individu i dans

le facteur g et ¢, est la saturation de la variable j dans le facteur g.

Comme 1’atteste cette équation, le modeéle de toute analyse factorielle est
linéaire. Deux autres postulats font également partie du modéele : les scores des sujets
pour les variables manifestes et pour les variables latentes ont une distribution
normale (on les exprime en général sous forme de scores centrés-réduits) et les

facteurs sont indépendants (corrélation nulle entre les facteurs).

5.3.2 L’analyse en composantes principales

La corrélation simple entre deux variables est une mesure de la dépendance

linéaire, mais 1’examen de la matrice de corrélations offre difficilement une vue

d’ensemble des relations. De plus, une corrélation entre deux variables peut étre
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influencée par d’autres variables ; il est alors préférable de calculer la corrélation
partielle qui élimine I’effet linéaire des variables restantes.

L’analyse en composantes principales transforme les variables originales en de
nouvelles variables non corrélées entre elles. Les nouvelles variables sont appelées
composantes principales (facteurs), elles ont la forme d’une combinaison linéaire des
variables observées originales. On mesure la quantité d’information contenue dans
chaque composante principale par sa variance. Les composantes principales sont
hiérarchisées, c¢’est-a-dire que la premiére composante exprime la plus grande
proportion de la variance totale et la derniére, la proportion la plus faible (la variance
totale est la variance du nuage de points formé par les variables dans I’espace des
sujets). Autrement dit, la premiére composante est celle qui permet de reproduire au
mieux la matrice de corrélations observée. C’est pourquoi la premicre composante est
souvent assimilée & un facteur géneral. Le nombre de composantes nécessaires pour
reproduire exactement la matrice de corrélations est égal au nombre de variables
manifestes. Si I’on désire réduire la dimension du probléme sans perdre trop
d’information, on ne retient que les premicres composantes principales.

L’analyse en composantes principales ne s’applique que sur les données ayant
une bonne structure de corrélations. La pertinence d’une analyse en composantes
principales peut se vérifier a ’aide du test de sphéricité de Bartlett qui teste si toutes
les corrélations sont nulles. On rejette cette hypothése lorsque la statistique du test est
trop grande. On n’applique la méthode d’analyse en composantes principales que si

I’on rejette cette hypothese.

L’analyse en composantes principales recherche des transformations linéaires
non corrélées des variables initiales qui expliquent le mieux la diversité des données.
Elle effectue donc une rotation orthogonale des axes originaux sur les axes majeurs.

De maniére algébrique, 1’analyse en composantes principales transforme les p
variables originales en p nouvelles variables ; la solution est donnée par 1’ensemble

des p valeurs propres A, et des p vecteurs propres 7, de la matrice des corrélations :

les vecteurs propres indiquent la direction des axes majeurs et les valeurs propres

indiquent la variance dans cette direction.
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Ainsi ’analyse en composantes principales décompose la variablilité totale des
données initiales en une somme de variabilité expliquée par chacune des
composantes, d’apres le théoréme de la décomposition spectrale.

A partir des vecteurs propres et des valeurs propres, on calcule la matrice des
saturations qui est composée des corrélations entre les variables initiales et les
composantes principales.

La j-¢me composante principale peut s’écrire de la fagon suivante a 1’aide des
saturations :

_corr(X,,Y)) x corr(X,,Y;) corr(X ,,Y)) X

Pour interpréter les composantes Y, on utilise les variables X, pour lesquels

X, +

lcorr(X ,.,Yj)| est grand. Si les corrélations des variables retenues sont de méme signe,

on dit que la composante mesure un effet de taille ; si les corrélations des variables
retenues sont de signes différents, on dit que la composante mesure un effet de forme

(opposition entre deux groupes de variables).

Le carré des saturations corr’(X, ;»Y;) mesure la proportion de variabilité¢ de

H

X; expliquée par Y, ; on peut ainsi décéler les variables mal expliquées par chaque

composante.

L’analyse factorielle des correspondances, développée en France par Benzécri
et ses collaborateurs (1973), réalise une analyse en composantes principales sur un

tableau de contingence.

Remarque :

On confond parfois I’analyse en composantes principales et 1’analyse en
facteurs communs et uniques. Méme si ’analyse en facteurs communs et uniques
répond effectivement au méme objectif général de condensation d’un ensemble
d’observations, elle repose sur une logique différente qu’il est bon de rappeler.

Dans I’analyse en facteurs communs et uniques, les facteurs sont des variables
hypothétiques censées expliquer les corrélations observées entre des variables
manifestes. Comme ces facteurs ne peuvent rendre compte que de ce qui est commun

a plusieurs variables, il subsiste une partie spécifique a chaque variable. Cette partie
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spécifique correspond & un facteur unique (il y a autant de facteurs uniques que de
variables, ce qui conduit & extraire avec cette méthode plus de facteurs que de
variables manifestes). Les analyses en facteurs communs et uniques visent donc a

rechercher les sources de variation communes a plusieurs variables.

5.3.3 Le nombre de facteurs

Le choix du nombre de facteurs est un probléme crucial en analyse factorielle.
Pourtant, ce probléme n’admet pas de solution évidente : si le chercheur décide de
retenir un nombre important de facteurs, il reproduira correctement la matrice de
corrélations entre les variables mais 1’économie réalisée sera faible. A I’inverse, en
retenant peu de facteurs, il perdra de 1’information.

De multiples méthodes formelles ont été proposées pour aider le chercheur
dans son choix. Selon Walkey (1983), Vernon aurait déja recensé vingt-cinq méthodes
différentes en 1949, et bien d’autres sont apparues depuis. Pourtant, aucune de ces
méthodes ne peut étre considérée comme entiérement satisfaisante, car elles reposent
toutes en partie sur des critéres subjectifs. Parmi les méthodes les plus utilisées, on
citera celle de Kaiser (1960) et celle de Cattell (1966b). Le critére de Kaiser repose
sur ’hypothése d’une distribution aléatoire de la variance expliquée par les facteurs,
celui de Cattell, sur les différences entre les pourcentages de variance expliquée par

les facteurs. Plus précisément,

1) La régle de Kaiser ne garde que les composantes avec une valeur propre
supérieure a 1.

2) Larégle de Catell garde les composantes situées avant un saut dans le diagramme
des valeurs propres.

3) La régle de Joliffe demande que 80% de la variabilité soit expliquée (d’autres

auteurs proposent un pourcentage variant de 70% a 90%).

Mais ces critéres ne sont qu’indicatifs ; ¢’est au chercheur qu’il appartient de
prendre une décision qui sera d’autant plus satisfaisante qu’elle prendra appui sur des
bases theoriques. Pratiquement, 1’analyse en composantes principales est inutile si on

doit garder plus de 4 ou 5 composantes.
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Ayant retenu les » premiéres composantes, la communalité de la variable X,

A . a 2 0 N OC10 71 7 R ,
définie par Z;corr (X;,Y,), mesure la proportion de la variabilité expliquée par les r
=
premiéres composantes. Les variables avec corr’(X, »Y;) grand, pour des

composantes non retenues, seront mal expliquées apres réduction de la dimension.

Il existe deux représentation graphiques liées a ’analyse en composantes

principales :

1) Représentation des individus par leurs premiers scores factoriels; c’est la
meilleure représentation au niveau de la variance, elle peut étre utile pour un test
de normalité ou pour la détection de données aberrantes.

2) Cercle des corrélations qui représente les variables par leurs coordonnées

(eorr(X,.,Yl)

a D’intérieur d’un cercle de rayon 1. Plus une variable est proche
corr(X,,Y,)

du cercle, plus elle est bien expliquée par les deux premieres composantes. Si on
retient trois composantes, on représentera les corrélations dans une sphére de

rayon 1, etc ... .

5.3.4 Le choix de la solution factorielle et les rotations

A nombre égal de facteurs, il existe une infinité de solutions permettant de
reproduire une méme matrice de corrélations. Se pose alors le probléme du choix de la
solution factorielle. Le critére adopté est un critére de simplification. Sous le nom de
«structure simple », Thurstone (1947) a proposé de choisir une solution factorielle
dans laquelle un nombre maximum de variables a des saturations nulles. Cette
méthode permet d’obtenir des solutions plus simples a interpreter, puisqu’on diminue
le nombre de variables saturées dans chaque facteur.

Plus généralement, le probléme du choix de la structure factorielle est assimilé
au probléme des rotations. Cette notion renvoie a une interprétation géométrique de

I’analyse factorielle dans laquelle les saturations des variables sont des coordonnées
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spatiales, les facteurs constituant les axes de coordonnées de ce systéme.
Intuitivement, une rotation consiste a utiliser un autre systéme de coordonnées que les
facteurs initiaux. Aprés rotation, les saturations factorielles des variables (i.e. les
coordonnées) sont différentes mais la qualité de la solution est inchangée : la matrice
de corrélations reproduite a partir des nouveaux axes de coordonnées (ie. les
nouveaux facteurs) est exactement la méme qu’avec la solution initiale.

Plusieurs méthodes de rotation ont été proposées. Une distinction importante
oppose les rotations orthogonales aux rotations obliques. Dans une rotation
orthogonale, on conserve 1’indépendance entre les facteurs ; dans une rotation oblique,
on obtient des facteurs corrélés. Dans ce dernier cas, on opére souvent une nouvelle
analyse factorielle sur les facteurs corrélés pour identifier les sources de variation
communes aux différents facteurs : on parle alors d’analyse factorielle de second
ordre. Ici aussi, ce sont les connaissances théoriques sur le domaine étudi¢ qui doivent
contribuer a choisir la rotation la plus appropriée.

Les principales rotations orthogonales utilisés sont les rotations
- varimax qui minimise le nombre de coefficients élevés pour chaque facteur,

- quartimax qui minimise le nombre de coefficients élevés pour chaque variable,

- équimax qui est une combinaison des deux rotations précédentes.

D’aprés Sean Hammond (2000), un point souvent sousestimé est le choix d’un
échantillon assez large. Comme [’analyse factorielle est une méthode de
décomposition de la variance, on a besoin d’un échantillon dont la taille minimise les
erreurs d’attribution. Pour avoir une solution factorielle fiable il est recommandé de
prendre un échantillon d’au moins 200 individus si possible. D’une maniére générale,
il est également recommandé d’avoir au moins quatre fois plus de sujets que de

variables.

5.4 L’analyse de la variance

5.4.1 Introduction

Le but de 1’analyse de variance est d’identifier et de comparer les sources de

variations d’une variable. Cette technique, aux ramifications et développements
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multiples, est en principe utilisable chaque fois qu’il s’agit d’évaluer ’effet de
variables indépendantes (catégorielles) sur une variable dépendante (quantitative).
Historiquement 1’analyse de la variance s’est développée de facon relativement
autonome dans des contextes essentiellement expérimentaux tels que I’agronomie, la
biologie, la recherche pharmaceutique, ce qui se traduit par une terminologie un peu
particulic¢re. Il s’agissait a I’origine de mesurer les effets des geénes et des divers
facteurs environnementaux sur le rendement de cultures ou d’animaux domestiques.

Ainsi, chaque variable (fonctionnellement) indépendante est appelée facteur et
les modalités correspondantes niveaux. Une combinaison des niveaux des facteurs est
appelée traitement.

Aujourd’hui, 1’analyse de variance est devenue classique dans la plupart des
sciences expérimentales et est utilisée pour tester I’efficacité de nouveaux traitements
entendus au sens large. Les applications de 1’analyse de variance sont donc
nombreuses et variées.

A un niveau général, les mode¢les d’analyse de variance, d’analyse de
covariance et de régression linéaire sont des cas particuliers du Mod¢le Linéaire
Généralisé, la structure de dépendance entre variables étant explicitée au moyen d’une
matrice de design. Nous allons nous limiter dans cet exposé a présenter brievement les
deux situations les plus simples, les plans d’expérience a un facteur ainsi que les plans

d’expérience a deux facteurs.

5.4.2 L’analyse de variance a un facteur (One-Way ANOVA)

Le plan d’expérience le plus simple est celui & un facteur. On I’utilise pour
étudier 1’effet d’un seul facteur sur une variable. Un facteur est un agent susceptible
d’influencer la distribution de la variable. Pour détecter et quantifier une telle
influence, on fait varier le facteur : on obtient ainsi des traitements différents.

11 s’agit en fait d’une généralisation du test de la moyenne pour plus de deux
populations. On dispose de m groupes (m =3) de tailles respectives n;,n,,...,n, sur
lesquels les scores d’une variable quantitative X ont été mesurés. Il s’agit de

déterminer si les groupes sont différents, au sens que leurs moyennes, prises

globalement (et non comparées deux a deux) différent significativement. L’idée est de
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comparer la variance intergroupe (mesurant la dispersion des moyennes de chaque
groupe par rapport & la moyenne empirique générale) a la variance intragroupe
(mesurant la dispersion moyenne de l'intérieur de chaque groupe): les groupes
apparaitront comme distincts pour autant que ce rapport soit suffisamment élevé .

On peut justifier rigoureusement ce résultat intuitif : la variance totale Var(.X)
(évalué sur I’échantillon complet de n=n, +n, +---+n, individus) se décompose
exactement en deux parties, a savoir

Var(X) = Var,(X) + Var, (X),
ou Vary(X) est la variance intergroupe (between groups) et Var, (X) est la variance

intragroupe (within groups), définies par

VarB(X)=lZn,.(A_’,.—)?)2 et VarW(X):lZIn,.sf.
nia

i=1

Ici X désigne la moyenne totale, X, celle du groupe i et s dénote la variance du

groupe i.

L’hypothése statistique que 1’on tente de rejeter est celle de 1’égalité entre les
moyennes théoriques des m groupes :
H,:p = p, =--= u, (pas de différence entre les groupes)
Pour faire cela, on lui oppose I’hypothése alternative complémentaire

« H,:H, fausse », dans le cadre théorique ot X, ~ N (4;,,5°). Cette hypothése de
travail, qui reste a justifier, postule que les scores X, du i-éme groupe sont distribués

normalement autour d’une moyenne . inconnue et avec une variance ¢~ inconnue,

identique pour chaque groupe. Concrétement, une prudence certaine est de mise en

face de groupes aux variances empiriques trop disparates.

Si H, est vraie, la distribution de la variable de décision d, défini ci-dessous,

suit une loi de Fisher-Snedecor :

Var,(X)
—_m-1
= Var, ()

n—m

~F [m-1L,n-m].

On rejette donc H,, (et accepte H|) au niveau o si
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d>F_,[m-1,n—m].

Remarques :

1

2)

3)

Var(X) est la variance totale, tandis que Vary(X) peut étre interprété comme la
variance expliquée (par I’appartenance & tel ou tel groupe), alors que Var,(X),

qui mesure la dispersion dans les groupes, est la variance résiduelle. Comme en
régression linéaire, on définit le rapport de corrélation par

» _ variance expliquée _ Var,(X)

variance totale ~ Var(X) '

Un rapport d significatif (i.e. suffisemment grand pour « et n donnés) indique que
les moyennes des populations correspondantes aux groupes ne sont probablement
pas toutes égales, mais n’indique pas quels sont les groupes dont les moyennes
différent significativement. Pour ce faire, on recourt aux procédures de
comparaison multiples (post hoc multiple comparaison); essentiellement ces
procédures ajustent le niveau de signification au contexte des comparaisons
multiples, contexte qui rend fallacieux I’usage simple du test de la moyenne entre
toutes les paires possibles : avec 5 groupes par exemple, il y a 10 paires de

comparaisons et la probabilité (sous H,) pour que au moins un des niveaux de

signification d’un test de la moyenne soit inférieur & & = 0,05 estde «, =0,29.

réel
Dans le contexte de 1’analyse de la variance, on parle souvent de « Somme de
carrés » (SS = Sum of Squares) et de « Carrés moyens » (MS = Mean Squares). lls
sont définis par

SST =nVar(X), SSB=nVar,(X), SSW =nVar, (X),

MSBzﬂ et MSW = SSW.
m-—1 n—m

Alors,

MSB

SST =SSB+SSW et d=———.
MSW
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5.4.2 L’analyse de variance a deux facteurs (Two-Way ANOVA)

Il s’agit maintenant d’examiner dans quelle mesure une variable quantitative X
(la «réponse ») peut dépendre d’un premier facteur 4 (variable catégorielle & a
modalités), d’un second facteur B (variable catégorielle a b modalités), ainsi que de
déterminer, le cas échéant, si ces influences s’additionnent simplement ou non, se
combinant de fagon spécifique pour produire de nouveaux effets (interaction). Tout
ceci est réflété par le modéele

Xy=pu+oa;+ P +7,u+&,

ou j=1,...,a indice les niveaux du facteur 4, k =1,...,b indice les niveaux du facteur

B, X, dénote la variable X restreinte au groupe (ou traitement) Jjk . Dans ce modg¢le,
4 représente un effet global, commun pour tous les groupes, «; represente I’effet
« de ligne » di au facteur 4, S, représente ’effet « de colonne » dii au facteur B et
¥, représente 1’effet d’interaction entre les facteurs: tous ces termes sont des
constantes. £, est une variable d’erreur, supposée suivre une distribution normale
N (0,6%), o o ne dépend pas du groupe : comme dans I’analyse de la variance a
un facteur, seules les moyennes des X, et non leurs variances sont supposces

pouvoir varier d’un groupe a I’ autre.

On suppose, pour simplifier, que chaque groupe jk est composé du méme
nombre ¢ d’individus, indicés par / =1,...,c (on parle alors de design balanc€) ; on a

alors affaire 4 un total de n=abc scores x,. La moyenne du groupe jk est

- . ; 7 =
X —Ez,xﬂd. La moyenne de la ligne j est X; =4 ) x,. La moyenne de la

abe

%, =L ¥ =-L
colonne kest X, = EZ,, x ;- La moyenne totale est X = Zﬂd X -

La variance (& un facteur de normalisation pres) se décompose comme

3 (x—%) =bcy (%, - %) +ac) (%, - %)’
Jk i k
— — - —\2 = N2
+cZ(xjk —X,— X, +X) +Z(xjk, - X))

Jjhk Jjkd

ce que ’on abrévie (dans 1’ordre) par
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SST = 8§51+ 852+ SSint+ SSW.

Les degrés de liberté associés aux différents termes sont a —1 pour SS1, b—1
pour S§2,(a—1)b-1) pour SSint et ab(c—1) pour SSW . On définit les carrés

moyens (MS = Mean Squares) comme les sommes de carrés divisés par leur degrés de

liberté correspondants :

MS1= 551 M52=§2

a—1 b-1
MSint = —>oomt msw =W
(a-1)(b-1) ab(c-1)

Trois hypothéses sont alors a tester, & savoir :
H( :iln’y apas d’effet dii au facteur A4 : a;=0,j=1,...,a.
H} :iln’y a pas d’effet di au facteur B: B, =0,k =1,...,b.
H™M : il n’y a pas d’effet d’interaction entre les facteurs 4 et B: y #« =0, pour tous

J,k. Cela signifie que tel niveau du facteur A affecte uniformément les individus,

quel que soit le niveau du facteur B_(et réciproquement).

Les hypothéses alternatives sont simplement les négations de H{', H/ et
H™. Les variables de décision sont les rapports des carrés moyens :

Sous H{,d* =ML - F [a—1,ab(c-1)].

— MSwW

Sous H,,d® =2 - F [b-1,ab(c-1)].

Sous H",d™ =Mt _ F [(q—1)(b—1),ab(c - 1)].

Par exemple, si d” > F,_[b—1,ab(c —1)], on rejette H, au niveau « .

Contrairement a ce qui peut se passer dans certains modéles loglinéaires

hiérarchiques, tous les cas de rejet ou de non-rejet peuvent en principe se produire : il

se peut par exemple que H;' et H_ ne soient pas rejetées alors que H." le soit, ou

que H;' soit rejetée alors que H™ et H} ne le soient pas, etc ... .
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Le diagramme d’interaction consiste a représenter en ordonnée X, , les
moyennes par groupe (traitement), les a modalités du premier facteur étant
représentées en abscisse et les points correspondant & la méme modalité du second
facteur étant reliés par un trait (le role des facteurs pouvant étre échangés). Les figures

ci-dessus illustrent 4 situations typiques (avec a =3,b=2).

I | f—= A=1 Aa2 A=3
A=l Aw2 A=3 figure 2
figure 1
A A
B=2 B=2
>o< i -
g, - e
Awl A=?2 A=3 A=1 A=2 A=3
figure 3 figure 4

Figure 5.4 : Exemples de diagrammes d’interaction (Bavaud et al., 1996)

Ces diagrammes permettent de visualiser les effets éventuels de chacun des
facteurs et de leur interaction :

Figure 1 : effet de 4, effet de B, pas d’effet d’interaction.

Figure 2 : pas d’effet de 4, effet de B, pas d’effet d’interaction.

Figure 3 : pas d’effet de 4 (en moyenne), effet de B (en moyenne), effet

d’interaction

Figure 4 : pas d’effet de 4 (en moyenne), pas d’effet de B (en moyenne), effet

d’interaction.

On voit qu’un effet d’interaction entraine le non-parallélisme des segments. La
significativité des effets (de 4, de B d’interaction) dépend par contre également des

effectifs et des variances intragroupe : elle ne peut étre uniquement déterminée a partir

du diagramme d’interaction.
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11 se peut que pour des raisons de temps ou d’argent il y ait un seul individu
par groupe (c=1), d’ot MSW =0/0 devient indéterminé : la procédure habituelle
pour tester les trois hypothéses n’est alors plus applicable. Dans ce cas, pour autant

que I’on ait de bonnes raisons de croire en ’absence d’effets d’interaction (H™
vraie), on peut encore tester H;' et H; par

Sous H',d* =L - F [a-1,(a-1)(b-1)].

Sous H),d® = M2 _F [b-1,(a-1)(b-1)].

Si I’on utilisait la procédure ci-dessus dans une situation avec interaction (i.e.

telle que H," soit fausse), la valeur p ainsi obtenue serait supérieure a la vraie valeur

p. En d’autres termes, si H,' et/ou H, étaient significativement rejetés par la

procédure (supposée abusivement simplifiée), ils le seraient encore plus avec une
procédure plus correcte. '

Toujours sous I’hypotheése de non-interaction, la procédure a deux facteurs
peut étre simplifiée en ne considérant que les effets simples, i.e. en testant 1’effet des
niveaux du facteur 4 séparément pour chaque niveau du facteur B (en oubliant
momentanément les autres niveaux du facteur B) et vice-versa, ce qui revient a

effectuer a + b analyses de variance a un facteur.

5.5 Le LISREL

5.5.1 Généralités

La pratique de routine des analyses factoriclles est actuellement largement
facilitée par les moyens automatiques de calcul qu’offrent les logiciels statistiques.
Mais, d’apres Dickes (1996), cette facilité a aussi ses inconvéniants. Lorsqu’il utilise
ces programmes, le chercheur est en quelque sorte contraint d’adopter les modéles tels
qu’ils sont proposés et d’accepter les contraintes qui y sont associées. L’utilisation de
ces programmes conduit ainsi trop naturellement & une démarche a-théorique que 1’on
peut qualifier d’exploratoire : le chercheur dispose de données auxquelles il applique
un modéle d’analyse fourni par un logiciel et il interpréte ensuite les résultats. Les

méthodes d’analyses structurales de relations linéaires introduisent une rupture par
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rapport 4 une telle démarche en proposant, par contraste, une approche confirmatoire
(Dickes, 1986). Le LISREL (Linear structural Relationships), introduit par Joreskog
(1970, 1973) repose sur des systémes d’équations structurales linéaires et il englobe et
généralise les méthodes linéaires classiques : méthodes de régressions, analyses en
pistes causales, analyses canoniques, analyses factorielles. D’aprés Dickes et al.
(1994), le LISREL a changé la démarche des chercheurs en sciences sociales, car il
exige une explication a priori des liens entre la théorie et les données: on pose
d’abord Iles hypothéses, puis on regarde si elles sont infirmées ou confirmées par le
modeéle. De plus, il présente la possibilité d’exprimer sous forme de modeles les
représentations théoriques les plus subtiles et notamment les représentations
factorielles. En fait cette méthode ne se contente méme pas d’intégrer les modeles
existants : elle permet la mise a 1’épreuve de bien d’autres modéles dont le nombre est

seulement limité par I’imagination du chercheur (Dickes, 1986).

La logique fondamentale du LISREL est de mettre a 1’épreuve, a partir du lien
observé entre des variables empiriques (exprimé le plus souvent en termes de
variances-covariances), des hypothéses inférées a partir d’une théorie concernant les
relations de dépendance et/ou d’interdépendance entre des variables observées et/ou
des variables latentes, par ’intermédiaire de la manipulation de parametres.

Soit 2 la matrice de variances-covariances entre les variables observées et 2"
la matrice des variances-covariances théorique. Le point de départ consiste a élaborer
une représentation théorique concernant les données. Une telle représentation
théorique est susceptible d’étre concrétisée par le choix des paramétres. D’apres
Dickes et al (1994), toute la richesse du modéle d’équations structurales est contenue
dans la variété des paramétres et la flexibilité de leur gestion. En fonction de la
représentation théorique et en fonction de la matrice de variances-covariances
observée on peut calculer une matrice de variances-covariances théorique. Cette
matrice est obtenue par des procédures itératives (en particulier par un algorithme de
maximum de vraisemblance) qui permettent de rendre minimum les différences entre
X et 2'. Si I’adéquation entre les deux matrices est satisfaisante, on estime que la
représentation théorique sied aux données. En revanche, si 1’adéquation est
insatisfaisante, on considére que la représentation théorique n’est pas adéquate aux

données, ce qui conduit soit a la rejeter, soit a la modifier.
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USREL ————> | _}

b | _T'

adéquation
Figure 5.5 : Représentation générale du LISREL (Dickes et al, 1994)

Les données sont constituées par la matrice de variances-covariances calculée
entre les variables observées. Sa diagonale contient les variances des variables. Une
matrice de variances-covariances a la méme signification qu’une matrice de
corrélations : elle exprime les relations linéaires entre les variables. Dans le modele
LISREL, on préfére cependant la matrice de variances-covariances a la matrice de
corrélations, car on a ainsi la possibilité d’évaluer des hypothéses sur les variances.

Le fait d’utiliser des covariances met bien en évidence qu’il s’agit de modéles
linéaires. Ceci suppose que les variables d’origine possédent au moins les propriétés
des échelles d’intervalles et que la relation entre deux variables quelconques est
linéaire. Le LISREL impose donc des contraintes fortes aux variables d’origine. Ces
contraintes peuvent cependant étre relachées dans la pratique par divers procédés.

La propriété la plus importante du LISREL est la possibilité¢ qu’il donne au
chercheur de tester des théories. La démarche est confirmatoire, en opposition a la
démarche exploratoire généralement appliquée dans les analyses linéaires
multivariées (Dickes, 1986). Si I’on rend ces représentations théoriques transparentes,
explicites, on peut les tester et évaluer leur adéquation aux données empiriques. Ceci
est réalisé en libérant la métrique, en manipulant les paramétres et en multipliant les

contrbles d’adéquation (Bacher et Dickes, 1994).

5.5.2 Le modéle mathématique

Le modéle LISREL comporte deux composantes interconnectées mais qui peuvent

étre appliquées séparément : un modéle de mesure et un modéle structural. Ces
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modéles établissent le lien entre les quatre types de variables représentés dans le

tableau ci-dessous.

Variable indépendante | Variable dépendante

Variable observée X Y

Variable latente & n

Les variables latentes sont inférées a partir des variables observées. Elles
correspondent aux concepts théoriques. Les variables observées sont celles qui sont
produites a partir du dispositif d’observation ou d’expérimentation ; elles sont
supposées centrées, ¢’est-a-dire de moyenne nulle. Les variables indépendantes ne
sont influencées par aucune autre. On les appelle aussi variables exogenes. Les
variables dépendantes sont celles qui sont influencées par des variables indépendantes
ou par d’autres variables dépendantes. On parle également de variables endogenes.

Le modéle complet du LISREL est exprimé, sous forme matricielle, par les trois

équations linéaires suivantes :

Modele de mesure pour x :

x=A<&+0.
Modele de mesure pour y :

y=An+e.

Modg¢le d’équation structurale :

n=Bn+I'¢£+C.

Les deux premiéres équations constituent le modéle de mesure et établissent le
lien entre les variables observées (x ou y) et des variables latentes (£ ou 7). La
matrice A, est la matrice factorielle des variables latentes indépendantes (elle
exprime les relations entre les variables observées et les variables latentes) et la
matrice A, est la matrice factorielle des variables latentes dépendantes. Les matrices
£ et & sont les résidus, qui sont composés de deux parties : les erreurs de mesure des

variables x et y ainsi que les parties spécifiques de ces variables non partagées avec les

facteurs communs.
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La troisiéme €quation constitue le modéele structural. Elle met en relation les
variables latentes endogeénes et exogenes ; elle sert a tester des hypothéses concernant
des liens de dépendance entre les variables latentes. Le modéle est suffisamment
souple pour tester des liens de dépendance entre plusieurs variables dépendantes a la
fois. Les €léments de la matrice B représentent les effets directs des variables latentes

n sur d’autres variables latentes 77 et les éléments de la matrice /™ représentent les
effets directs des variables latentes & sur les variables latentes 7. La matrice & est

une matrice de résidus.

Ces trois équations constituent le modéle structural complet. Mais, en général,
la premi¢re équation suffit pour tester un modéle psychométrique. En fait, le
chercheur a la possibilité d’exprimer ses hypothéses de recherche en intervenant sur
huit matrices différentes dont tous les éléments constituent les parameétres du modéle.
Dans les applications, certains des éléments des matrices sont fixés (des valeurs
préétablies sont assignées aux paramétres), ou contraints (les paramétres contraints
sont inconnus mais égaux a un ou a plusieurs autres paramétres), ou libres (les
paramétres libres ne sont ni connus, ni égaux a d’autres). Les paramétres contraints
sont fixés par le modele et les paramétres libres sont estimés par une fonction
d’estimation.

A partir des différents parameétres, fixés par le chercheur et estimés par le
mod¢le, on peut calculer une matrice de variances-covariances théorique. La
différence entre les matrices de variances-covariances théorique et observée est
appelée matrice des résidus. On dispose d’un certain nombre d’indicateurs statistiques
qui permettent d’évaluer 1I’importance des fésidus. Si ceux-ci sont négligeables, la

représentation théorique est considérée comme s’appliquant aux observations.
5.5.3 Les représentations multifactorielles

Le LISREL sert en particulier a tester le modéle factoriel, plus précisément des
hypothéses théoriques concernant le nombre de facteurs et leur structure. Il s’agit
d’une exploitation confirmatoire qui exige du chercheur des connaissances a priori sur
ses données. Cette approche suppose que les variables observées puissent étre classées
en termes de contenu, de processus théoriques mis en oeuvre, ou encore de conditions

expérimentales.
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Dans ce modele, les facteurs sont considérés comme les variables latentes qui
mesurent le(s) concept(s) psychologique(s) sans erreur. D’apres Dickes et al. (1994),
I’idée de base de I’analyse factorielle peut étre formulée dans les termes du mode¢le
LISREL de la maniére suivante: pour un ensemble de variables observées
X5 Xy50-15 X, , ON désire trouver un ensemble de variables latentes (facteurs) &,4,,....¢,
dont le nombre soit inférieur au nombre de variables observées. Les facteurs sont
censés rendre compte des intercorrélations (interdépendances) existant entre les
variables observées. Si on retire ’influence des facteurs, on suppose qu’il n’existe
plus aucune corrélation entre les variables.

Supposons donc que les variables observées x dépendent de plusieurs variables

latentes £, que les erreurs de mesure & ne soient pas corrélées avec les variables
latentes &, que les coefficients qui expriment les effets des variables latentes sur les
variables observées soient représentés par la matrice A_ et que la moyenne des erreurs

o soit égale a zéro.

Si I’on a par exemple huit variables observées x,,x,,...,x, qui forment deux
1272 8

facteurs communs & et &,, le modéle de mesure peut étre écrit sous forme matricielle

de la fagon suivante :

% Ay 0 )
X3 Ay 0 %,
%3 Ay 0 J;
Fa | _ Ay 0 [f 1 J N S,
Xs 0 A, (& Js
Xs 0 g o
X7 0 A &,
\ ¥ 0 Ay s

Cette équation matricielle correspond & la représentation ci-dessous :
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Figure 5.6 : Représentation d’un mode¢le factoriel avec deux facteurs
orthogonaux (Dickes et al., 1994)

Dans le modele, la représentation théorique a tester peut étre paramétrisée
ainsi :
- Le premier choix opéré concerne le nombre de facteurs. On suppose que deux
variables latentes permettent de rendre compte des interdépendances observées.

- Le second choix consiste & assigner des paramétres fixes et libres aux éléments de

la matrice factorielle A_.. On suppose que les quatre premicres variables
observées x; a x,définissent le premier trait latent et les quatre variables
observées suivantes x; a x; le second. On veut obtenir des estimations
Aypsees s Asyoeens Ay de ces €léments : on les déclare libres. On suppose que les
variables x; & x, ne servent pas a définir le premier trait latent. Ceci conduit a
fixer les éléments Aj,..., 4, comme égaux & zéro. De méme, on suppose que les

¢léments A,,,...,4,, sont égaux a zéro.

- Le troisieme choix concemne les interrelations entre les variables latentes. On peut
supposer que les variables sont indépendantes les unes des autres : il s’agit 1a
d’une représentation de deux facteurs indépendants (ou orthogonaux). Pour mettre
a I’épreuve cette hypothése, il faut faire appel a une nouvelle matrice, nécessaire a
la paramétrisation du modéle, qui n’a pas encore été€ présentée : la matrice des
variances-covariances entre les traits latents, appelée matrice @. Comme cette

matrice est symétrique, elle a la forme triangulaire suivante :

¢l 1 ¢2 1
¢2 1 ¢22 .

La diagonale contient les variances des variables latentes et 1’élément ¢,

exprime la covariance entre les deux facteurs. Comme on suppose qu’il n’y a pas

de corrélation entre les facteurs, cet élément est fixé a zéro. En revanche, si on
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supposait que les variables latentes étaient interdépendantes, 1’élément ¢, serait
laissé libre.

- Enfin, une derniére matrice nécessite d’étre définie: la matrice de variances-
covariances entre les erreurs de mesure J Cette matrice, désignée par & est

également symétrique ; elle a donc la forme suivante :

( 6, Oy 0y 64 0Oy 0Oy 0, 06y
O 0n Oy b, O, O, 0, 6Oy
Op Oy Oy 05 65 65 05 0Oy
On On O Oy 6y Oy Oy Oy
Oy Oy, Oy Oy b5 Os O Oy
O On O Oy Oy Op O Oy
O O O Oy 05 O 0 0Oy
Oy Oy Oy Gy Oy O Oy O

Sur la diagonale, on trouve la variance des erreurs. Les éléments non diagonaux
représentent les covariances entre les erreurs. Dans le modele classique, on
considére que ces éléments sont égaux a zéro, c’est-a-dire que les erreurs de
mesure sont aléatoires et non corrélées. Les possibilités de paramétrisation de
cette matrice constituent un avantage du LISREL sur les méthodes factorielles
traditionnelles, car on peut mettre a 1’épreuve des hypothéses spécifiques
concernant I’interdépendance des erreurs de mesure. Pour simplifier, on suppose
cependant ici que ces éléments sont fixés a zéro.

Aprés cette traductions des définitions des concepts théoriques en parametres,
les quatre matrices permettent de calculer la matrice théorique de variances-
covariances entre variables observées. Ce sont les variances-covariances que 1’on
obtiendrait si la représentation théorique était vraie. Cette matrice théorique est égale

a ’expression suivante :
J'=A DA +0,
A, étant la matrice des 4 et A, sa transposee.
Les paramétres libres sont estimés par une fonction de maximum de
vraisemblance. Les matrices de variances-covariances théorique et observée sont alors

comparées. Si les résidus sont négligeables, la représentation théorique est adéquate

aux données. Sinon elle est rejetée ou modifiée.






Chapitre VI

ANALYSE DES TAXONOMIES EXISTANTES

6.1 Démarche méthodologique

Dans un premier temps, nous allons effectuer une représentation spatiale de
nos propres données, en nous servant d’un modéle d’échelonnement
multidimensionnel (multidimensional scaling) dont I’objectif consiste a représenter
des données de proximité sous forme de distances, dans un espace euclidien possédant
un nombre restreint de dimensions; cette procédure nous permettra d’avoir une
premiére approche des possibilités de regroupement psychologiquement signifiants en
2,3 ou 4 dimensions.

Nous positionnons ensuite nos items par rapport aux taxonomies existantes, en
les classant dans les catégories de ces taxonomies, d’aprés les définitions données par
les auteurs. Nous présentons les graphiques montrant la configurations spatiale du
regroupement des items d’aprés les différentes catégories, ce qui nous donne un
premier apercu sur la capacité des différentes taxonomies de réaliser une classification

en dimensions séparables, correspondant a nos données.

Il faut cependant remarquer qu’il est difficile de juger de la composition
factorielle d’un test seulement en analysant les scores obtenus par une certaine
population. Le probléme est que, compte tenu de son procédé de fabrication, de ses
présupposés théoriques et d’autres aspects, un test mesure souvent plus d’un facteur,
respectivement un facteur différent de celui qu’il est censé mesurer. Des tests qui

portent sur des séries de nombres, par exemple, peuvent mettre I’accent sur des
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raisonnements inductifs, des raisonnements déductifs ou bien des raisonnements
quantitatifs, selon le genre de problémes qu’ils contiennent. De méme, des tests
portant sur les analogies verbales sont supposés mesurer des raisonnements inductifs,
seulement si les analogies présentées correspondant a des problémes relativement
difficiles ; sinon ils pourraient mesurer seulement 1’étendue du vocabulaire. L’analyse
factorielle est seulement capable de classer et d’identifier des facteurs séparés, si la
batterie de test contient un échantillon adéquat d’items mesurant chaque facteur. Dans
notre cas, les épreuves standardisées qu’on analyse ont été construites surtout d’aprés
des critéres de conformité au programme scolaire. Cela implique qu’elles ne
contiennent pas forcément assez d’items de chaque type pour pouvoir identifier tous
les facteurs influangant la compétence mathématique des €léves se situant dans la

tranche d’age de 12 ans.

6.2 L’échelonnement multidimensionnel de nos données

Nous avons utilisé le logiciel SPSS pour faire un échelonnement
multidimensionnel des similarités entre les items constituant la banque d’items de
notre logiciel et provenant des données de 1’épreuve standardisée en mathématique de
novembre 1996, faisant partie de la nouvelle procédure de passage entre le primaire et
le post-primaire au Luxembourg. Nous avons effectué un échelonnement en 2, 3 et 4
dimensions. Le logiciel SPSS nous donne deux indicateurs d’adéquations du modéle,
Ie stress et le RSQ.

- Le stress est calculé d’aprées la formule de Kruskal (1964a, 1964b). Si le stress est
inférieur & 0,2 les données peuvent étre adéquatement représentées par le modéle.

- Le RSQ représente la proportion de la variance des dissimilarités expliquée par les
distances relatives des points dans 1’espace euclidien. Un RSQ proche de 1 est

donc favorable.

En deux dimensions, on trouve un stress de 0,13363 et un RSQ de 0,94611. La

représentation des items dans I’espace euclidien a deux dimensions est la suivante :
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Derived Stimulus Configuration

Euclidean distance model
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Figure 6.1 : Représentation des items en deux dimensions.
En trois dimensions, on trouve un stress de 0,10915 et un RSQ de 0,95979. La
représentation des items dans I’espace euclidien a trois dimensions est la suivante :

Derived Stimulus Configuration

Euclidean distance model
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Figure 6.2 : Représentation des items en trois dimensions.

En quatre dimensions, le stress est de 0,09144 et le RSQ de 0,96814. Puisqu’il

n’est pas possible de faire une représentation graphique en quatre dimensions de fagon
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satisfaisante, nous donnons ici la représentation des items dans les trois premicres

dimensions de 1’espace euclidien & quatre dimensions.

Derived Stimulus Configuration

Euclidean distance model
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Figure 6.3 : Représentation des items dans les 3 premiéres de 4 dimensions.

Les trois solutions donnent donc un RSQ proche de 1, ce qui veut dire que la
variance des similarités est presque complétement expliquée.

Pour les solutions 4 2 et 3 dimensions, le stress indique un niveau
d’adéquation satisfaisant (< 0,2) du mod¢le, pour la solution 51\ 4 dimensions,
I’adéquation est méme bonne (< 0,1).

Les 3 modéles sont donc adaptés a la situation. Nous allons utiliser dans la
suite de ce chapitre un modéle d’échelonnement & deux dimensions. En effet, les deux
autres modéles impliquent des représentations plus difficiles a saisir, sans pour autant
améliorer ni la précision, ni I’interprétabilité des résultats. Nous présentons ci-dessous

les coordonnées des différents items dans 1’espace euclidien a deux dimensions.
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1 1,1582 0,2396
2 1,6168 0,1305
3 1,3397 0,0205
4 1,4177 0,0323
5 -2,5006 -0,2283
6 1,1949 0,2115
7 1,5212 0,0901
8 -1,8101 0,4191
9 1,4547 0,1161
10 0,2632 0,5767
11 0,8303 0,4173
12 1,1175 0,1796
13 0,9669 0,2487
14 0,5310 0,6027
15 -0,6826 0,8044
16 0,5129 -0,4748
17 1,1073 0,1277
18 0,7362 -0,1896
19 0,7209 -0,2895
20 0,1093 -1,1628
21 0,6452 0,1044
22 0,7520 0,0526
23 -0,0952 0,3405
24 0,9352 0,0505
25 -1,2490 -0,0256
26 0,5888 0,1390
27 0,0127 0,2107
8 0,7990 20,1115
29 0,9496 0,2363
30 0,2530 0,3374
31 1,3468 0,1106
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32 -0,3398 0,0437
33 1,2602 0,0146
34 1,0204 -0,8393
35 0,9381 0,0364
36 0,6418 0,1004
37 20,8736 -1,2594
38 -1,1368 -1,5362
39 -0,8460 -1,2403
40 1,3709 -0,1420
41 1,3404 -0,0708
42 0,0985 0,0741
43 0,1348 0,8314
44 0,3124 0,2358
45 -1,4973 0,5211
46 -2,4458 20,2189
47 22,5009 -0,1631
48 1,0247 0,1614
49 1,157 -0,0112
50 2,1733 -0,0789
51 -1,0262 0,0064
52 22,5223 -0,3061
53 -2,4486 -0,2625
54 13776 0,1909
55 0,9875 0,2809
56 1,6574 0,1464
57 1,1209 0,3764
58 -2,2280 -0,1308
59 -1,1826 0,2035
60 -0,9950 0,3269
61 -0,2493 0,1118
62 22,6533 -0,3093
63 22,7946 -0,4101

Tableau 6.1 : Coordonnées des items dans 1’espace a deux dimensions.
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6.3 Analyse des taxonomies existantes

Nous avons élaboré un tableau donnant 1’appartenance des items aux différentes
catégories des taxonomies présentées dans le chapitre quatre, ensuite nous
représentons les items de notre banque de données dans les classes des différentes
taxonomies dans ’espace a deux dimensions, d’aprés le modéle de base de
I’échelonnement multidimensionnel. Remarquons qu’on a laissé de c6té la taxonomie
établi par Carroll, parce qu’elle est construite d’une maniére que la plupart des items

appartiennent a plusieurs classes.

6.3.1 Appartenance de nos items aux différentes taxonomies analysées

! Bloom : 1 = connaissance de détails, 4 = traduction, 5 = interprétation, 7 = application, 8 = analyse
d’éléments, 9 = analyse de relations, 10 = analyse de principes d’organisation, 14 = jugement en termes
d’évidence interne.

2NLSMA : 1 = calcul, 2 = compréhension, 3 = application, 4 = analyse.

3 Pellerey : 1 = connaissance d’éléments isolés, 2 = connaissance avec compréhension de concepts, 3 =
construction de concepts et d’organisations, 4 = résolution de problemes, 5 = jugement.

* ISAM comportement : 1 = rappel et reproduction, 2 = calcul et manipulation de symboles, 4 =
interprétation de données symboliques, 7 = résolution de problémes mathématiques, 8 = résolution de
problémes non mathématiques, 9 = analyse des problémes et détermination des opérations nécessaires.
> ISAM contenu : 1 = arithmétique, 2 = algébre, 3 = géométrie, 5 = analyse, 6 = aspects généraux.

® TIMSS comportement : 1 = savoir, 2 = utiliser des procédures de routine, 3 = résoudre des problémes,
4 = raisonner.

71 = nombres entiers, 2 = fractions et proportionalité, 3 = mesure, estimation et sens des nombres, 4 =
représentation de données, analyse et probabilités, 5 = géométrie, 6 = structures, relations et fonctions.
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14

10

Tableau 6.2 : Appartenance des items aux différentes dimensions des taxonomies
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6.3.2 Echelonnement multidimensionnel de nos données dans les catégories des
différentes taxonomies
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Figure 6.4 : Représentation des classes de la taxonomie de Bloom.
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Figure 6.5 : Représentation des classes cognitives de la taxonomie de 'ISAM.
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Figure 6.6 : Représentation des classes de contenu mathématique de la taxonomie
de PISAM.
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Figure 6.7 : Représentation des classes de la taxonomies de 'NLSMA,
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Figure 6.8 : Représentation des classes de 1a taxonomie de Pellerey.
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Figure 6.9 : Représentation des classes cognitives de la taxonomie du TIMSS.
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Figure 6.10 : Représentation des classes de contenu mathématique de la taxonomie
du TIMSS.

Nous voyons que les taxonomies établies par Bloom, I’'ISAM et le TIMSS
s’appliquent assez mal aux éléves qui ont participé & I’épreuve standardisée
luxembourgeoise de novembre 1996. Les taxonomies établies par Pellerey et
I’NLSMA, par contre, sont plus pertinentes par rapport a nos données. La taxonomie
de ’'NLSMA donnerait méme un trés bon résultat, si les catégories de compréhension

et d’application étaient réunies en une seule.






Chapitre VII

ANALYSE DES RESULTATS DE
L’EPREUVE STANDARDISEE

7.1 Analyse hiérarchique ascendante

Nous avons utilisé le logiciel SPSS pour faire une analyse hiérarchique
ascendante de la banque d’items d’aprés laquelle nous avons construit notre logiciel.
La base de données pour cette analyse a comporté comme variables les 63 items qui
constituent la banque d’items de notre test. Ces variables sont des variables
dichotomiques ; en effet, nous avons codé par 0 une mauvaise réponse a l'item
considéré et par 1 une bonne réponse et ceci pour chacun des 3590 éléves qui ont

effectué la version papier-crayon du test.

.Comme indice de dissimilarité, nous avons utilisé la distance euclidienne au
carré pour variables binaires, procédure qui fournit I’indice de dissimilarité d’apres la
méthode standard pour des variables binaires. Nous avons demandé au logiciel de
nous donner I’appartenance des items aux groupes constitués pour un nombre de
groupes (clusters) variant entre 2 et 9. Nous avons effectué cette analyse au moyen de
deux méthodes différentes de constitution des groupes, a savoir par la méthode du

saut moyen entre les groupes, ainsi que par la méthode de Ward.

Les schémas d’agglomération obtenus par ces 2 méthodes sont les suivants :
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Agglomeration Schedule

Stage Cluster First
Cluster Combined Appears Next

Stage Cluster 1 Cluster 2 Coefficients Cluster 1 Cluster 2 Stage

1 46 47 142,000 0 0 15
2 2 56 369,000 0 0 3
3 2 7 483,500 2 0 4
4 2 9 529,333 3 0 6
5 54 55 631,000 0 0 16
6 2 40 655,500 4 0 7
7 2 33 701,800 6 0 9
8 62 63 728,000 0 0 15
9 2 4 731,833 7 0 10
10 2 41 779,714 9 0 11
11 2 3 806,500 10 0 13
12 59 60 811,000 0 0 34
13 2 31 828,556 11 0 16
14 35 36 862,000 0 0 31
15 46 62 871,000 1 8 17
16 2 54 879,200 13 5 19
17 46 53 885,000 15 0 20
18 21 24 890,000 0 0 24
19 2 17 900,333 16 0 22
20 46 52 921,600 17 0 28
21 18 19 956,000 0 0 32
22 1 2 975,923 0 19 23
23 1 29 988,643 22 0 25
24 21 26 1010,000 18 0 27
25 1 6 1022,667 23 0 26
26 1 57 1057,875 25 0 29
27 21 22 1066,000 24 0 35
28 46 50 1073,000 20 0 30
29 1 13 1080,177 26 0 31
30 46 58 1096,429 28 0 36
31 1 35 1096,778 29 14 33
32 18 20 1102,000 21 0 50
33 1 48 1129,250 31 0 35
34 59 61 1132,500 12 0 47
35 1 21 1141,810 33 27 38
36 5 46 1146,875 0 30 39
37 27 28 1162,000 0 0 42
38 1 12 1185,000 35 0 41
39 5 49 1200,778 36 0 55
40 23 25 1210,000 0 0 53
41 1 11 1219,654 38 0 46
42 27 30 1260,000 37 0 46
43 32 42 1265,000 0] 0 45
44 14 15 1272,000 0 0 57
45 32 44 1281,500 43 0 48
46 1 27 1312,407 41 42 49
47 51 59 1328,000 0 34 48
48 32 51 1359,500 45 47 53
49 1 34 1360,767 46 0 51
50 16 18 1368,667 0 32 51
51 1 16 1372,048 49 50 54
52 37 38 1381,000 0 0 60
53 23 32 1399,286 40 48 59
54 1 10 1407,543 51 0 57
55 5 8 1442,500 39 0 56
56 5 45 1464,182 55 0 60
57 1 14 1475,472 54 44 58
58 1 43 1479,789 57 0 59
59 1 23 1513,470 58 53 62
60 5 37 1600,833 56 52 61
61 5 39 1612,643 60 0 62
62 1 5 1917,122 59 61 0

Tableau 7.1 : Schéma d’agglomération des groupes d’apres la méthode du saut moyen
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Agglomeration Schedule

Stage Cluster First
Cluster Combined Appears Next

Stage Cluster 1 Cluster 2 Coefficients Cluster 1 Cluster 2 Stage

1 46 47 71,000 0 0 a7
2 2 56 255,500 0 0 3
3 2 7 516,333 2 0 4
4 2 9 802,000 3 0 9
5 54 55 1117,500 0 0 38
6 40 41 1470,000 0 0 18
7 62 63 1834,000 0 0 15
8 33 34 2225,000 0 0 55
9 2 4 2625,200 4 0 12
10 59 60 3030,700 0 0 32
1 35 36 3461,700 0 0 43
12 2 3 3901,833 9 0 14
13 21 24 4346,833 0 0 24
14 2 31 4810,357 12 0 18
15 53 62 5281,690 0 7 17
16 18 19 5759,690 0 0 25
17 52 53 6238,357 0 15 26
18 2 40 6723,000 14 6 19
19 2 17 7235,900 18 0 28
20 22 26 7750,900 0 0 24
21 28 29 8271,400 0 0 27
22 1 6 8824,900 0 0 28
23 12 13 9384,900 0 0 33
24 21 22 9951,900 13 20 54
25 18 20 10527,233 16 0 59
26 50 52 11117,634 0 17 35
27 27 28 11710,467 0 21 39
28 1 2 12307,400 22 19 40
29 48 57 12911,900 0 0 38
30 23 25 13516,900 0 0 52
31 5 58 14122,400 0 0 35
32 59 61 14742,233 10 0 58
33 11 12 15366,900 0 23 43
34 32 42 15999,400 0 0 37
35 5 50 16632,930 31 26 47
36 14 15 17268,930 0 0 53
37 32 44 17912,430 34 0 46
38 48 54 18665,930 29 5 40
39 27 30 19232,096 27 0 49
40 1 48 19906,637 28 38 55
41 49 51 20588,137 0 0 44
42 37 38 21278,637 0 0 56
43 11 35 22007,770 33 11 49
44 45 49 22745,604 0 41 50
45 10 16 23486,604 0 0 46
46 10 32 24242,803 45 37 48
47 5 46 25005,041 35 1 60
48 10 43 25789,174 46 0 53
49 11 27 26591,762 43 39 54
50 8 45 27397,928 0 a4 51
51 8 39 28232,428 50 0 52
52 8 23 29071,428 51 30 56
53 10 14 29914,344 48 36 57
54 11 21 30765,379 49 24 57
55 1 33 31617,559 40 8 61
56 8 37 32589,504 52 42 58
57 10 11 33591,855 53 54 59
58 8 59 34625,660 56 32 60
59 10 18 35755,137 57 25 61
60 5 8 37625,742 47 58 62
61 1 10 39597,949 55 59 62
62 1 5 47707172 61 60 0

Tableau 7.2 : Schéma d’agglomération des groupes d’aprés la méthode de Ward.
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Ces schémas indiquent la chronologie de la constitution des groupes.
Expliquons briévement ces tableaux. La premiére colonne est constituée tout
simplement du numéro des différentes étapes. La deuxieme et la troisieme colonne
indiquent les numéros des 2 groupes qui se sont agglomérés au cours de 1’étape
considérée, tandis que la quatriéme colonne donne le coefficient de dissimilarité entre
ces 2 groupes. La cinquiéme et la sixiéme colonne indiquent les étapes au cours
desquelles les 2 groupes agglomérés dans 1’étape courante ont été traités pour la
premicre fois et la derniére colonne renvoie a la prochaine étape, au cours de laquelle
le nouveau groupe formé va de nouveau entrer en jeu.

Si I’on compare les deux méthodes, on voit que les 5 premiéres étapes sont
exactement pareilles. Dans la sixiéme étape, par contre, le regroupement d’aprés la
méthode du saut moyen entre les groupes implique le regroupement des groupes
numéro 2 et 40, alors que d’aprés la méthode de Ward, on regroupe les groupes 40 et
41. Cela ne change cependant rien au résultat final, si on se limite & un nombre de
groupes compris entre 2 et 9. En effet, en utilisant la méthode du saut moyen entre les
groupes, le groupe 41 est aggloméré lors de la dixiéme étape au groupe formé lors de
la sixiéme étape et en utilisant la méthode de Ward, le groupe 2 est aggloméré lors de
la dix-huitiéme étape au groupe formé précédemment.

Pour décider quel est le nombre réaliste de groupes, on examine les sauts dans
les coefficients de dissimilarité. Or, dans les deux méthodes, le seul saut un peu plus
grand se produit entre la 61-éme et la 62-éme étape (de 1612,643 a 1917,122 pour la
méthode des sauts moyens et de 39597,949 a 47757,172 pour la méthode de Ward.
Cela indique que la structure naturelle associée a nos données est une classification en
deux groupes.

L’ordinateur nous sort également la répartition des items en groupes sous
I’hypothése d’existence de 2 8 9 groupes. Les tableaux 7.3 et 7.4 donnent ‘cette
répartition pour la répartition effectuée d’aprés la méthode des sauts moyens entre

groupes, respectivement d’apres la méthode de Ward.

Ensuite, nous allons montrer les dendogrammes représentant graphiquement

ces résultats pour les deux méthodes de calcul utilisées.



125

7. Analyse des résultats de I'épreuve standardisée

Cluster Membership

2 Clusters

3 Clusters

4 Clusters

5 Clusters

6 Clusters

7 Clusters

8 Clusters

9 Clusters

Case

10
"

12
13
14
15
16
17
18
19
20

21

22
23
24
25

26
27
28

29

30
31

32
33
34
35

36
37

38

39

40

41

42
43
44

45
46

47
48
49
50
51

52
53

54
55
56
57
58
59
60
61

62
63

Répartition des items en groupes d’aprés la méthode du saut moyen entre les groupes.

Tableau 7.3
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Cluster Membership

2 Clusters

3 Clusters

4 Clusters

5 Clusters

6 Clusters

7 Clusters

8 Clusters

9 Clusters

Case

10

1

12
13
14
16
16
17
18
19
20
21
22
23

24
25
26

27

28
29
30
31

32
33
34
35

36
37

38
39

40

41

42
43

44
45
46

47

48
49

50
51

52

53
54
55
56
57

58
59
60
61

62
63

Tableau 7.4 : Répartition des items en groupes d’aprés la méthode de Ward.
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Dendogramme d’aprés la méthode du saut moyen entre les groupes :

Rescaled Distance Cluster Combine
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Dendogramme d’aprés la méthode de Ward :

Rescaled Distance Cluster Combine

CASE 0 5 10 15 20 25
Label Num A==—====-- e e e e Fm——————— +
Q_18a 46  —+-——+
Q_18B 47 -+ I
0_24A 62 -+-+ I
O_24B 63 -+ I 4----- +
Q 20D 53 ---+ I I
Q 20C 52 -——+ I I
Q_20A 50 ———+—+ I
Q 1E 5 ==+ R e e e st t
Q_22c 58 -——+ I iC
Q_23Aa 59 -——+ I I
Q 23B 60 —-——+-+ I I
Q 23C 61 -—-+ I I I
Q_12B 37 B e + I
Q_12¢C 38 -—-—+ I i
Q_6C 23 ———==F I
Q_6E 25 -+ I I
Q 19B 49 =——ah I
Q 20B 51 ===+ 0 I
Q 17 45  ----- + I
0 1H 8 - + I
0 12D 39 -———- + I
Q 10A 33 —t-——t &
Q 10B 34 -+ I I
0_12E 40 —+—+ I I
Q_12F 41 -+ 1I1 il
Q 1B 2 -+ I I I
Q_22A 56 -+ IT1 I
Q 1G 7 —+—+ $————= + I
Q 1I 9 -—+1ITI I I
0 1D 4 -———+ I I I
Q_1c 3 -+ 1 I I
Q 97 31 -—-+ I I I
Q 4B 17 -——+ I I I
0 1A 1 ———t+—+ I I
Q_1F 6 -+ I I
Q_21a . 54 —+-+ drmm e e e st e s —— +
0 21B 55 -+ I I
Q 19 48 -——+ I
Q 22B 57 -——+ I
0 4c 18 -——+ I
0 _4E 19 ———t-—=+ I
O_AF 20 -——+ I I
Q_3A 14 -—=+-+ I I
0 3B 15 ---+ I I I
0 9B 32 -——+ I +--—+
0 13 42 ——=+-+ I
Q 15 44 -—-+ I I
Q17 10 ----- + I
Q_4A 16 ----- + I
Q 14A 48 === +-+
Q 4G 21 ---+ I
Q_6D 24 ———t+-+
Q 6A 22 --—+ I
Q 6F 26 ---+ I
0 7B 28 -——+ I
Q_7cC 29 ——+1I
Q 7A 27 —-——t-+
Q8 30 -——+ I
Q 11Aa 35 ——=+-+
Q 11B 36 ==+ I
Q 2B 12 -——+ I
Q 2C 13 -——t+-+

0 2a 11 -
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La méthode de Ward aboutit plus rapidement a une structure visuelle claire en
deux ou trois groupes. Le niveau d’agrégation final est cependant le méme dans les

deux méthodes.

7.2 Analyse factorielle

Nous avons également utilisé le logiciel SPSS pour faire une analyse
factorielle de la banque d’items de notre logiciel. En partant de la méme base de
données que pour I’analyse hiérarchique ascendante, nous avons fait une analyse
factorielle, utilisant la méthode d’analyse en composantes principales comme
méthode d’extraction, puis une méthode de rotation oblique. La méthode de rotation
oblique était appropriée dans notre cas, parce que, d’aprés les considérations
théoriques du chapitre 3, il est évident qu’on doit obtenir des facteurs qui sont corrélcs
entre eux ; en effet, toutes les études effectuées jusqu’ici a ce sujet, tant en
psychologie de I’éducation qu’en psychologie cognitive ont montré que les différentes

aptitudes mathématiques ne sont pas indépendantes les unes des autres.

On obtient le tableau suivant, représentant les valeurs propres des différentes
composantes, avant la rotation dans 1’ordre décroissant, ainsi que le pourcentage de la

variance qui peut étre expliqué par chacune des composantes.
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Total Variance Explained

Initial Eigenvalue: Rotation
% of Cumulative

Component Total Variance % Total
1 9,317 14,789 14,789 7,283
2 1.874 2,975 17,763 6,102
3 1,662 2,463 20,226 4,937
4 1,499 2,379 22,605
5 1,416 2,247 24,852
6 1,339 2,125 26,977
7 1,312 2,083 29,060
8 1,229 1,950 31,011
9 1,188 1,886 32,897
10 1,174 1,863 34,760
1 1,122 1,781 36,540
12 1,107 1,757 38,298
13 1,091 1,731 40,029
14 1,076 1,708 41,737
15 1,048 1,663 43,400
16 1,024 1,625 45,025
17 1,006 1,596 46,621
18 997 1.582 48,203
19 ,983 1,560 48,764
20 978 1,653 51,316
21 ,952 1,511 52,827
22 944 1,498 54,326
23 ,938 1,489 56,815
24 ,929 1.474 57,289
25 917 1,455 58,744
26 ,904 1,434 60,179
27 ,896 1,422 61,600
28 ,871 1,382 62,983
29 ,866 1,375 64,357
30 ,859 1,364 65,721
N ,848 1,345 67,066
32 ,838 1,331 68,397
33 ,815 1,293 69,690
34 ,808 1,282 70,972
35 ,798 1,267 72,240
36 ,793 1,259 73,498
37 ,783 1,243 74,742
38 773 1,227 75,968
39 ,754 1,197 77,165
40 ,746 1,184 78,349
41 ,740 1,174 79,523
42 732 1,162 80,685
43 719 1,142 81,827
44 710 1,127 82,954
45 ,702 1,115 84,068
46 ,699 1,109 85,178
47 ,683 1,084 86,262
48 ,659 1,045 87,307
49 ,653 1,036 88,344
50 633 1,005 89,349
51 625 ,992 90,341
52 615 976 91,318
53 ,607 ,963 92,280
54 ,588 933 93,213
55 ,583 ,925 94,138
56 567 ,899 95,038
57 ,562 ,893 95,930
58 533 ,846 96,776
59 528 ,838 97,614
60 ,504 ,800 98,414
61 ,453 ,720 99,134
62 ,428 679 99,813
63 118 187 100,000

Extraction Method: Principal Component Analysis.

a. When components are correlated, sums of squared
loadings cannot be added to obtain a total variance.

Tableau 7.5 : Répartition de la variance totale sur les différentes composantes.
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On voit qu’il existe 17 composantes qui ont une valeur propre supérieure a 1.
D’aprés la régle de Kaiser, cela voudrait dire qu’on est en présence de 17 facteurs, ce
qui correspondrait 4 des facteurs trés spécifiques, alors que nous nous intéressons a
des facteurs plus généraux, correspondant a ceux de la strate moyenne de Carroll.

Pour arriver & un nombre de facteurs plus adapté, nous analysons le

diagramme suivant, qui représente la taille des valeurs propres sous forme graphique.

Scree Plot

10

21 ._\4
Beg,

.'-';':-Emaag:-g@g—.-;—;;-.;:;‘-__“__:.‘_...., TP B e
0 =

1 5 9 13 17 21 25 290 33 37 41 45 49 53 57 61
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B T aTE

Eigenvalue

m

Component Number

Figure 7.1 : Représentation de la taille des valeurs propres.

On voit qu’a partir de la troisiéme composante, la pente de la courbe devient
presque nulle. Cela indique que seuls les trois premiers facteurs sont importants. On
peut donc supposer qu’on est en présence de trois facteurs principaux qui représentent

aedéquatement les compétences en mathématiques.

Ces facteurs sont corrélés entre eux de la maniére suivante

Component Correlation Matrix

Component 1 2 e}

1 1,000 ,459 -,349
2 ,459 1,000 -,304
3 -,349 -,304 1,000

Extraction Method: Principal Component Analysis.
Rotation Method: Oblimin with Kaiser
Normalization.

Tableau 7.6 : Matrice de corrélation entre les 3 facteurs postulés.
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Il est intéressant de remarquer que le troisieme facteur est négativement
corrélé avec les deux autres, ce qui signifie que les aptitudes utilisées pour traiter les

différents items sont partiellement exclusives les unes des autres.

La saturation des items selon les 3 facteurs postulés est quant a elle indiquée
par le tableau 7. En analysant ce tableau, on arrive & I’interprétation suivante des trois

facteurs :

e Facteur 1 :

La résolution des items saturés en facteur 1 présuppose une bonne aptitude de
visualisation spatiale. Celle-ci s’exerce soit directement sur les figures géométriques,
soit sur la série des nombres étalés mentalement dans 1’espace.

Dénomination proposée : Représentation spatiale.

e Facteur 2 :
La résolution des items saturés en facteur 2 présuppose 1’application de procédures de
calculs apprises.

Dénomination proposée : Connaissances procédurales de calcul.

e Facteur 3 :

Les items saturés dans ce facteur, qui est corrélé négativement avec les deux
précédents, présupposent la découverte de solutions inédites, donc I’utilisation du
raisonnement.

Dénomination proposée : Raisonnement mathématique.

La bipolarité constatée signifie que les éleéves utilisent soit des schemes appris,
soit un moyen de pensée plus créatif, correspondant a la capacité de résolution de
problémes. L’opposition bipolaire entre ces deux types d’aptitude peut étre interprétée
en termes d’intelligence fluide et d’intelligence cristallisée, opposition apparue depuis
longtemps dans les testes d’intelligence classiques.

Si nous rapprochons notre taxonomie de celle des compétences cognitives de
Carroll, notre premier facteur pourrait se situer au niveau du facteur 2V (perception

visuelle), notre deuxiéme facteur pourrait correspondre a 2C (intelligence cristallisée)
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Pattern Matrix

Component
2 3

46 ,785 -.239
47 ,782 -,225
59 ,581
60 ,509
58 ,482
53 478
61 470 134
49 470
52 464
50 ,452
51 446 -129
63 ,361
45 ,338
62 ,335
32 ,297 ,198 -,280
5 ,205
44 271 195 -139
43 237 ,189
57 ,234
14 ,206 ,206
17 ,206 152 -,155
8 ,185 176
55 ,529
13 473
54 ,453 155
9 ,431
12 419
35 377 -,184
3 ,365
11 ,362
27 129 ,358 -131
7 ,355
24 ,349 -,339
10 135 348
1 ,335
36 114 ,334 -,229
29 331 -,183
6 310
4 300
31 ,299
30 ,183 287 -,132
28 ,284 -,169
2 251
48 191 ,198
15 146 ,187 -,157
19 -,552
33 104 -,546
18 -,527
20 -515
34 -,199 -443
21 107 ,249 -,351
40 -332
25 ,269 ,114 -318
16 212 -,276
22 ,148 150 -,266
26 128 ,252 -,256
39 130 -,254
42 229 ,185 -,252
38 114 -,239
23 71 ,184 -,230
41 -217
37 154 -,200
56 146 147

Extraction Method: Principal Component

Analysis.

Rotation Method: Oblimin with Kaiser

Normalization.

a. Rotation converged in 12 iterations.

Tableau 7.7 : Saturation des items selon les 3 facteurs postulés.
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et 2Y (mémoire et savoir), et notre troisiéme facteur pourrait correspondre exactement
a 2F (intelligence fluide).

Certains items sont saturés a la fois dans les facteurs 1 et 2 ; ils sont donc
résolus par beaucoup d’éléves par une combinaison de la visualisation spatiale et des
connaissances procédurales, alors que 1’utilisation du raisonnement semble plutdt

exclure d’autres stratégies de résolution.

7.3 Proposition d’une taxonomie

Une démarche exploratoire, basée sur l’utilisation conjointe de plusieurs
procédés multivariés, a savoir 1’échelonnement multidimensionnel, permettant de
classer nos items par rapports aux taxonomies existantes, 1’analyse hiérarchique
ascendante et 1’analyse factorielle, servant a dégager la structure factorielle latente de
notre banque de données, nous a fourni une taxonomie théorique des compétences en
mathématiques, correspondant a la dénomination de nos trois facteurs de second

ordre :

a) lareprésentation spatiale
b) les connaissances procédurales de calcul

¢) le raisonnement mathématique.

Les coordonnées des items dans 1’espace & deux dimensions fournies par
échelonnement multidimensionnel nous permettent de faire la représentation spatiale

suivante des facteurs trouvés :
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Figure 1 : Représentation de la structure factorielle dégagée.

La représentation graphique des facteurs devient plus satisfaisante, si les items

suivants, saturés presque aussi fortement dans deux facteurs différents, sont reclassés

de la maniére suivante :
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Figure 2 : Représentation de la structure factorielle modifiée.
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Le résultat de notre analyse factorielle est psychologiquement plausible. II est
en accord avec la taxonomie des compétences cognitives de Carroll, qui correspond a
une synthése de la recherche sur les tests d’intelligence. D’autre part, nous avons vu

que notre banque de données se positionne trés bien par rapport a la taxonomie de
I’'NLSMA.

Ce qui est surprenant dans nos résultats, c’est le fait que le facteur de
raisonnement est corrélé négativement avec les deux autres facteurs. Nous allons

discuter ce point dans la suite de notre démarche confirmatoire.



Chapitre VIII

ANALYSE CONFIRMATOIRE DE NOTRE
TAXONOMIE

8.1 Analyse de la taxonomie par le LISREL

Pour vérifier ’adéquation de notre taxonomie aux données empiriques, nous
avons effectué une analyse d’un test expérimental autre que celui utilisé pour
constituer notre banque de données et nous avons examiné, au moyen du logiciel
LISREL, si I’on y retrouve les trois facteurs constituant notre taxonomie avec les
mémes relations entre eux.

Comme test expérimental, nous avons choisi ’épreuve standardisée en
mathématiques de mars 1997 de la procédure de passage primaire-postprimaire. Ce
choix avait ’énorme avantage que nous disposions déja des résultats de presque 3600
éléves, alors que cela aurait pris beaucoup trop de temps et de moyens de construire
nous-méme un tel test et surtout de le faire passer par un groupe tellement grand

d’éleves.

Nous testons ensuite sur notre modéle factoriel, obtenu par I’analyse
factorielle des items de la banque de données de notre logiciel, en appliquant le
LISREL sur ce nouveau test expérimental. Puisque, dans la vérification d’un modéle
factoriel, le modéle structural du LISREL n’est pas de mise, nous avons seulement

besoin de son modéle de mesure.
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Notre modé¢le de mesure comporte comme variables observées exogeénes les
réponses aux 43 items contenus dans le test expérimental et comme variables latentes
indépendantes correspondantes les trois catégories de notre taxonomie, & savoir la
représentation spatiale, les connaissances procédurales de calcul et le raisonnement

mathématique.

L’hypothése que nous voulons tester est que la matrice des covariances des 43
items de notre test expérimental peut étre expliquée par 1’existence de 3 facteurs
latents liés entre eux par la matrice de covariance obtenue lors de 1’analyse factorielle

des items de la banque de données de notre logiciel.

En utilisant la terminologie habituelle du LISREL, nous notons nos variables
exogenes Xx,,Xx,,...,X,; , les facteurs latents &,&,,&,, les résidus des variables exogénes
0,,0,,...,0,, ¢t les résidus des facteurs latents ¢;,¢,,4;. En tenant compte du fait que

les trois catégories de notre taxonomie ne sont pas indépendantes, nous obtenons la

représentation suivante de notre modéle de mesure :

Figure 8.1 : Représentation de notre modéle de mesure

En notant A, la matrice factorielle des variables latentes indépendantes de

dimension 43 x3, @ leur matrice de covariance de dimension 3x3 et @& la matrice
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de covariance des résidus des variables exogenes de dimension 43x43, nous
obtenons 1’équation de mesure

x=AE+0,

ou x désigne le vecteur de dimension 43 x1 comportant les variables x;, 1 <i <43 et

6 le vecteur de méme dimension comportant les résidus &;, 1 <i<43.

Comme les catégories de notre taxonomie sont intercorrélées entre elles et

qu’elles sont toutes définies a priori par ’ensemble des 43 items, nous ne pouvons

pas fixer une partie des paramétres de la matrice 4, comme €tant €gaux a zero ; nous

déclarons donc cette matrice comme matrice libre. Pour des raisons d’unicité de la
solution calculée par I’ordinateur, il faut fixer cependant au moins un élément de la

matrice. Nous posons donc 1’élément A, ,,, comme étant égal & 1. Cet €lément

correspond en effet 4 une question 26 du test, qui nécessite clairement un
raisonnement.

La matrice @ par contre est entiérement fixée, puisque nous supposons
qu’elle doit étre égale a la matrice de covariance entre nos trois facteurs, obtenue par
’analyse factorielle des items constituant la banque de données de notre logiciel. Elle

est par conséquent €gale a

0,984 0,721 1,491
@=0,721 1,164 0,267
1,491 0,267 2,773

Pour la matrice & finalement, nous utilisons le modé¢le classique, c’est-a-dire
nous supposons que les erreurs de mesure sont aléatoires et non corrélées. Cette

matrice est donc une matrice diagonale.

Pris comme cela, le logiciel LISREL infirme notre mode¢le & un niveau de
95%, mais il I’accepte a un niveau de 80 %. Cela n’est pas trés étonnant. En effet,
I’analyse factorielle qu’on a effectué sur les réponses aux items de notre banque de
données avairt déja montré que les trois facteurs retenus n’expliquent qu’environ un
tiers de la variance totale et qu’a c6té, il existe un trés grand nombre de facteurs

négligeables qui pris ensemble ont un poids de deux tiers. Comme 1’explication de la
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variance est un critére important du LISREL pour le calcul de son indice
d’adéquation, nous ne pouvions pas espérer un résultat excellant.

De plus, le fait d’avoir fixé complétement la matrice de covariance entre les
trois facteurs latents est une hypothése trés contraignante. Si nous laissons libre la

matrice @, le LISREL accepte notre mod¢le a un niveau de 90 %.

Compte tenu de ces explications, nous pouvons conclure que notre modele est
confirmé par le LISREL. En effectuant une analyse factorielle sur les résultats de
notre test expérimental confirmatoire, nous obtenons d’ailleurs une solution a trois
facteurs et une matrice de corrélation entre les facteurs qui correspond assez bien a

celle donné dans le tableau 7.6.

8.2 Analyse de la variance

Nous avons finalement comparé notre taxonomie a toutes celles que nous
avons testées en effectuant une analyse de la variance multivariée. Nous avons testé
I’effet de trois facteurs sur la matrice de dissimilarité des différentes taxonomies, a
savoir les 2 parameétres « difficulté » et « discrimination » de nos items provenant du
modéele de Birnbaum (variables 4 et B) (voir Schiltz, 1996), ainsi que la probabilité de
réussite, établie empiriquement pour chaque item (variable P). Ces trois variables sont
de niveau de mesure d’intervalle et comportent un nombre élevé de modalités. Ceci
nous a amené a les prendre comme covariants plutdt que comme facteurs et nous
avons ainsi en fait effectué une analyse de la covariance.

Comme variable dépendantes nous avons pris les catégories des différentes
taxonomies. Nous avons donc examiné I’effet des trois covariants sur la capacité des
différentes taxonomies de classer nos items sous des facteurs de second ordre,

identifiés par des études préliminaires et psychologiquement parlants.

Comme nos variables dépendantes sont intercorrélées entre elles, nous avons
utilisé un modele multivarié, plutét que d’analyser la situation a 1’aide de plusieurs

procédures univariées.
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Malheureusement nous n’avons pas pu calculer les effets interactifs des trois
facteurs sur les variables dépendantes, en raison du nombre trop élevé de modalités,
situation, qui se présente d’ailleurs fréquemment en analyse de la covariance. Nous
avons par conséquent effectué des analyses unifactorielles multivariés pour chacun

des trois covariants.

Pour pallier a cet inconvénient, nous avons examiné les relations des trois
facteurs entre eux. Gardons en mémoire que leur mode de construction n’est pas le
méme. Alors que les variables 4 et B sont les parametres des items d’apres le modéle
de Birnbaum et dépendent donc uniquement des items, la variable P a été construite

de maniére empirique et dépend également de 1’échantillon des sujets examings.

Calculons les corrélations entre les trois covariants :

Correlations

prob

reussite discrimination difficulté
Spearman’s  Correlation  prob reussite 1,000 -215 -,942*1
rho Coefficient  discrimination -215 1,000 ,316*

difficulté -,942*4 ,316* 1,000

Sig. prob reussite , ,090 ,000

(2-tailed) discrimination ,090 : ,012

difficulté ,000 ,012 5

N prob reussite 63 63 63

discrimination 63 63 63

difficulté 63 63 63

**. Correlation is significant at the .01 level (2-tailed).
*. Correlation is significant at the .05 level (2-tailed).

La corrélation négative hautement significative entre P et A est tout a fait
plausible. En toute logique, la probabilité de réussite des items doit étre inversement
proportionnelle a leur difficulté. D’un autre c6té, la probabilité de réussite n’est pas
liée au pouvoir de discrimination des items, ce qui signifie que, pour un éléve donné,
le fait qu’un item soit réussi ou non, ne dépend pas du pouvoir de I’item de
discriminer entre lui et d’autres éléves, mais de la maniére dont il est capable de le
résoudre.

Ce qui est surprenant, c’est la corrélation positive entre 4 et B, alors que

d’aprés le modeéle IRT, 4 et B devraient étre des parametres indépendants (voir
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Schiltz, 1996). Ceci probablement di au fait que notre banque d’items provenant des
procédures de passage primaire-postprimaire est mal équilibrée. Pour des raisons
pédagogiques, elle comprend trop d’items de calcul faciles et faiblement

discriminants.

Les résultats des tests des effets intergroupes (test of between-subjects effects)
sur les catégories des différentes taxonomies sont présentés sur les pages suivantes.

Pour le covariant 4 (« indice de difficulté »), I’analyse de la variance donne un
effet significatif au seuil de 5 % pour notre taxonomie, ainsi que pour celle du contenu
mathématique de [I’Etude Internationale des Performances en Mathématiques
(ISAM2), celle de I’Etude Longitudinale Nationale des Aptitudes Mathématiques
(NLSMA), et celles du contenu mathématique et de performance cognitive de la
Troisieme Etude Internationale des Mathématiques et des Sciences (TIMSS1 et
TIMSS?2).

Pour le covariant B («indice de discrimination »), I’analyse de la variance
fournit un effet significatif au seuil de 1 % pour notre taxonomie, ainsi que pour celle
des aptitudes comportementales de 1’Etude Internationale des Performances en
Mathématiques (ISAM1), celle de I’Etude Longitudinale Nationale des Aptitudes
Mathématiques (NLSMA), ainsi que celle de Pellerey et un effet significatif au seuil
de 5 % pour celle du contenu mathématique de I’Etude Internationale des
Performances en Mathématiques (ISAM2).

Pour le covariant P (« probabilité de réussite »), finalement, 1’analyse de la
variance donne un effet significatif au seuil de 1 % pour notre taxonomie, ainsi que
pour pour celle des aptitudes comportementales de 1’Etude Internationale des
Performances en Mathématiques (ISAM1), celle de I’Etude Longitudinale Nationale
des Aptitudes Mathématiques (NLSMA), ainsi que celle de Pellerey et un effet
significatif au seuil de 5 % pour celle de la performance cognitive de la Troisiéme

Etude Internationale des Mathématiques et des Sciences (TIMSS2).

Examinés séparément, nos trois covariants ont donc une influence significative
sur la structure classificatrice de notre taxonomie, c’est-a-dire qu’elle répond aux
exigences que nous avons posées. Parmi les autres taxonomies examinées, seule la
taxonomie celle de I’Etude Longitudinale Nationale des Aptitudes Mathématiques

(NLSMA) remplit également ces conditions.
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Tests of Between-Subjects Effects
Type lll
Dependent Sum of Mean Noncent. Observed
Source Variable Squares df Square F Sig. Parameter Power?
Corrected Taxonomie b
Model proposée 2,507 1 2,507 4,340 ,041 4,340 ,536
TIMSS2 12,760° 1 12,760 5,016 ,029 5,016 ,597
TIMSS1 4,408¢ 1 4,408 5,041 ,028 5,041 599
BLOOM 1,2784 1 1,278 ,256 615 256 079
ISAM1 4,901¢ 1 4,901 711 ,402 711 132
ISAM2 25,716 1 25,716 6,814 011 6,814 729
NLSMA 2,7169 1 2,716 4,703 034 4,703 ,569
PELLEREY 6,86E-02" 1 6,86E-02 054 816 ,054 056
Intercept Taxonomie
P proposée 39,518 1 39,518 68,406 ,000 68,406 1,000
TIMSS2 11,461 1 11,461 4,505 ,038 4,505 551
TIMSS1 17,616 1 17,616 20,146 ,000 20,146 ,993
BLOOM 221,320 1 221,320 44,355 ,000 44,355 1,000
ISAM1 78,675 1 78,675 11,409 ,001 11,409 914
ISAM2 6,298 1 6,298 1,669 ,201 1,669 ,246
NLSMA 11,906 1 11,906 20,620 ,000 20,620 994
PELLEREY 32,901 1 32,901 26,125 ,000 26,125 999
A Taxonomie
proposée 2,507 1 2,507 4,340 ,041 4,340 536
TIMSS2 12,760 1 12,760 5,016 ,029 5,016 ,597
TIMSS1 4,408 1 4,408 5,041 ,028 5,041 ,599
BLOOM 1,278 1 1,278 ,256 615 ,256 ,079
ISAM1 4,901 1 4,901 71 402 711 132
ISAM2 25,716 1 25,716 6,814 011 6.814 729
NLSMA 2,716 1 2,716 4,703 ,034 4,703 ,569
PELLEREY 6.86E-02 1 6,86E-02 ,054 ,816 ,054 ,056
Error Taxonomie
proposée 35,239 61 578
TIMSS2 155,176 61 2,544
TIMSS1 53,338 61 874
BLOOM 304,372 61 4,990
ISAM1 420,654 61 6,896
ISAM2 230,221 61 3,774
NLSMA 35,221 61 577
PELLEREY 76,820 61 1,259
Total Taxonomie
proposée 274,000 63
TIMSS2 643,000 63
TIMSS1 454,000 63
BLOOM 2935,000 63
ISAM1 1670,000 63
ISAM2 811,000 63
NLSMA 298,000 63
PELLEREY 388,000 63
Corrected Taxonomie
Total proposée Bigras 62
TIMSS2 167,937 62
TIMSS1 57,746 62
BLOOM 305,651 62
ISAM1 425,556 62
ISAM2 255,937 62
NLSMA 37,937 62
PELLEREY 76,889 62

a. Computed using alpha = ,05
b. R Squared =,066 (Adjusted R Squared =,051)
€. R Squared =,076 (Adjusted R Squared =,061)
d. R Squared =,004 (Adjusted R Squared = -,012)
€. R Squared =,012 (Adjusted R Squared = -,005)

f. R Squared = ,100 (Adjusted R Squared = ,086)

g- R Squared =,072 (Adjusted R Squared = ,056)
h. R Squared = ,001 (Adjusted R Squared = -,015)

Figure 8.3 : Effets de la source de variation « difficulté » sur les différentes taxonomies
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Tests of Between-Subjects Effects

Type Il
Dependent Sum of Mean Noncent. Observed
Source Variable Squares df Square F Sig. Parameter Power?
ﬁgg:lcted :;X:;‘S"é?e 7,520° 1 7520 | 15477 000 15,177 970
TIMSS2 4,311¢ 1 4,311 1,607 210 1,607 ,239
TIMSS1 2,505d 1 2,505 2,766 101 2,766 374
BLOOM ,639¢ 1 ,639 ,128 722 128 ,064
ISAM1 62,637° 1 62,637 10,528 ,002 10,528 83
ISAM2 17,2529 1 17,252 4,409 ,040 4,409 543
NLSMA 12,1390 1 12,139 28,703 ,000 28,703 1,000
PELLEREY 10,234 1 10,234 9,365 ,003 9,365 ,854
Intercept Taxonomie
P proposée 162,440 1 162,440 327,828 ,000 327,828 1,000
TIMSS2 424,765 1 424,765 158,354 ,000 158,354 1,000
TIMSS1 349,298 1 349,298 385,714 ,000 385,714 1,000
BLOOM 2122,384 1| 2122,384 424,461 ,000 424,461 1,000
ISAM1 1245,632 1| 1245,632 209,368 ,000 209,368 1,000
ISAM2 533,130 1 533,130 136,251 ,000 136,251 1,000
NLSMA 258,478 1 258,478 611,186 ,000 611,186 1,000
PELLEREY 300,132 1 300,132 274,668 ,000 274,668 1,000
B Taxonomie
proposée 7,520 1 7,520 15,177 ,000 16,177 970
TIMSS2 4,311 1 4,311 1,607 210 1,607 ,239
TIMSS1 2,505 1 2,505 2,766 ,101 2,766 374
BLOOM 639 1 ,639 128 722 128 ,064
ISAM1 62,637 1 62,637 10,528 ,002 10,528 ,891
ISAM2 17,252 1 17,252 4,409 ,040 4,409 ,543
NLSMA 12,139 1 12,139 28,703 ,000 28,703 1,000
PELLEREY 10,234 1 10,234 9,365 ,003 9,365 ,854
Error Taxonomie
proposée 30,226 61 ,496
TIMSS2 163,625 61 2,682
TIMSS1 55,241 61 ,906
BLOOM 305,011 61 5,000
ISAM1 362,919 61 5,949
ISAM2 238,684 61 3,913
NLSMA 25,798 61 423
PELLEREY 66.655 61 1,093
Total Taxonomie
proposée 274,000 63
TIMSS2 643,000 63
TIMSS1 454,000 63
BLOOM 2935,000 63
ISAM1 1670,000 63
ISAM2 811,000 63
NLSMA 298,000 63
PELLEREY 388,000 63
Corrected  Taxonomie
Totai proposée 37,746 6
TIMSS2 167,937 62
TIMSS1 57,746 62
BLOOM 305,651 62
ISAM1 425,556 62
ISAM2 255,937 62
NLSMA 37,937 62
PELLEREY 76,889 62

a. Computed using alpha = ,05

b. R Squared = ,199 (Adjusted R Squared = ,186)
€. R Squared =,026 (Adjusted R Squared =,010)
d. R Squared =,043 (Adjusted R Squared = ,028)
€. R Squared =,002 (Adjusted R Squared = -,014)
f. R Squared = ,147 (Adjusted R Squared =,133)
9. R Squared =,067 (Adjusted R Squared =,052)
h. R Squared = ,320 (Adjusted R Squared = ,309)
i. R Squared =,133 (Adjusted R Squared = ,119)

Figure 8.4 : Effets de la source de variation « discrimination » sur les différentes taxonomies
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Tests of Between-Subjects Effects

Type
Dependent Sum of Mean Noncent. Observed
Source Variable Squares df Square F Sig. Parameter Power?
Corrected  Taxonomie b
Model proposée 11,299 1 11,299 26,063 ,000 26,063 ,999
TIMSS2 10,633¢ 1 10,633 4,123 ,047 4,123 515
TIMSS1 1,0454 1 1,045 1,124 ,293 1,124 ,181
BLOOM 4,59E-02¢ 1 4,59E-02 ,009 924 ,009 ,051
ISAM1 55,321 1 55,321 9,115 ,004 9,115 ,844
ISAM2 15,4909 1 15,490 3,930 ,052 3,930 ,496
NLSMA 17,7230 1 17,723 53,485 ,000 53,485 1,000
PELLEREY 14,576 1 14,576 14,269 .000 14,269 .961
Intercept Taxonomie
P proposée 3,454 1 3,454 7,966 ,006 7,966 ,793
TIMSS2 104,449 1 104,449 40,504 ,000 40,504 1,000
TIMSS1 56,041 1 56,041 60,290 ,000 60,290 1,000
BLOOM 288,923 1 288,923 57,670 ,000 57,670 1,000
ISAM1 345,293 1 345,293 56,890 ,000 56,890 1,000
ISAM2 130,768 1 130,768 33,175 ,000 33,175 1,000
NLSMA 85,743 1 85,743 258,756 ,000 258,756 1,000
PELLEREY 88,069 1 88,069 86,213 ,000 86,213 1,000
P Taxonomie
proposée 11,299 1 11,299 26,063 ,000 26,063 ,999
TIMSS2 10,633 1 10,633 4,123 ,047 4,123 ,515
TIMSS1 1,045 1 1,045 1,124 293 1,124 181
BLOOM 4,59E-02 1 4,59E-02 ,009 ,924 ,009 ,051
ISAM1 55,321 1 55,321 9,115 ,004 9,115 844
ISAM2 15,490 1 15,490 3,930 ,052 3,930 ,496
NLSMA 17,723 1 17,723 53,485 ,000 53,485 1,000
PELLEREY 14,576 1 14,576 14,269 ,000 14,269 .961
Error Taxonomie
proposée 26,447 61 434
TIMSS2 157,303 61 2,579
TIMSS1 56,701 61 ,930
BLOOM 305,605 61 5,010
ISAM1 370,235 61 6,069
ISAM2 240,447 61 3,942
NLSMA 20,213 61 ,331
PELLEREY 62,313 61 1,022
Total Taxonomie
proposée 274,000 63
TIMSS2 643,000 63
TIMSS1 454,000 63
BLOOM 2936,000 63
ISAM1 1670,000 63
ISAM2 811,000 63
NLSMA 298,000 63
PELLEREY 388,000 63
Corrected  Taxonomie
Total proposée Sige 62
TIMSS2 167,937 62
TIMSS1 57,746 62
BLOOM 305,651 62
ISAM1 425,556 62
ISAM2 255,937 62
NLSMA 37,937 62
PELLEREY 76.889 62
a. Computed using alpha = ,05
b. R Squared =,299 (Adjusted R Squared = ,288)
¢. R Squared =,063 (Adjusted R Squared =,048)
d. R Squared =,018 (Adjusted R Squared = ,002)
€. R Squared =,000 (Adjusted R Squared = -,016)

=

R Squared =,130 (Adjusted R Squared =,116)

g. R Squared =,061 (Adjusted R Squared = ,045)
h. R Squared = ,467 (Adjusted R Squared = ,458)
i. R Squared =,190 (Adjusted R Squared =,176)

Figure 8.5 : Effets de la source de variation « probabilité de reussite » sur les différentes taxonomies
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8.3 Interprétation psychologique de notre taxonomie

Nous nous étions également proposé d’examiner si les trois catégories de
seond ordre de notre taxonomie, a savoir la représentation spatiale, les connaissances
procédurales de calcul et le raisonnement mathématique, peuvent étre interprétés en
termes de compétences au sens chomskyien du terme. Rappelons les caractéristiques
d’une telle définition des compétences (Reboul, 1995) :

- Elles s’appuient sur un code qui est essentiellement restrictif ou négatif, montrant
ce qui est défendu mais laissant par ailleurs une grande marge de liberté.

- Elle permettent de produire des performances en nombre illimité et de fagon
imprévisible.

- Les performances produites doivent étre cohérentes entre elles et adaptées a la

situation.

Nous avons établi que notre taxonomie ne dépend pas seulement du contenu
des items, mais qu’il y a une interférence significative des facteurs covariants
« difficulté », « discrimination » et « probabilité de réussite ». En tenant compte de
nos résultats et en particulier de ’influence significative de la difficulté et de la
probabilité de réussite des items, nous pouvons aisément présupposer, qu’a un degré
de difficulté élevé des items, les trois catégories de notre taxonomie correspondent a
des compétences authentiques, dans le sens ou elles permettent de résoudre des
problémes en nombre illimité, de mani¢re imprévisible et créatrice , mais en se basant
sur un code €tabli et en tenant compte de la situation.

Lorsque les problémes sont faciles, par contre, 1’on peut concevoir qu’ils
n’exigent pas 1’entrée en action de réelles compétences, mais uniquement de savoirs et
de savoir-faire ; qu’ils puissent donc étre résolus de maniére purement mécanique par
des schémas appris. Le comportement de nos éléves dans les situations d’examen

réelles peut d’ailleurs aisément corroborer cette interprétation.

Il est facile de comprendre que le facteur « raisonnement mathématique »
puisse correspondre a une compétence au sens chomskyien. En est-il également ainsi
pour la représentation spatiale et pour les connaissances procédurales de calcul ? Nous

pensons que c’est théoriquement possible, mais qu’en pratique, au niveau de la
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tranche d’4ge de nos sujets, les problémes d’arithmétique et de géométrie
élémentaires sont rarement résolus en faisant appel a des compétences réelles.

Rappelons 4 ce sujet un résultat tout a fait intéressant de notre analyse
factorielle : le facteur de raisonnement mathématique est corrélé négativement avec la
représentation spatiale et les connaissances procédurales de calcul. Cela peut signifier
que les mémes problémes peuvent étre résolus par des stratégies différentes et que les
éléves qui réfléchissent personnellement ont moins tendance a employer aveuglément
des schémas appris.

Pour trancher la question si nos trois catégories peuvent €tre considérées
comme des compétences authentiques & cette tranche d’4ge, il faudrait faire une étude
avec des épreuves plus difficiles que celles utilisées dans la réalité scolaire
quotidienne, ne pouvant pas étre résolues de maniére mécanique, mais nécessitant la

découverte de stratégies originales.

8.4 Conclusion

Etablir une taxonomie en mathématiques implique qu’il faut tenir compte de la
recherche fondamentale en sciences cognitives, en psychologie développementale et
en psychologie de 1I’éducation.

Un aper¢u sur la littérature consacrée aux résultats de la recherche
fondamentale et appliquée dans ces différents domaines nous a permis de donner une
idée de la complexité du probléme. Une taxonomie est seulement valable pour une
certaine tranche d’Age et une certaine culture, puisque la structure cognitive sous-
jacente tend a changer et a se différencier, sous 1’impact de la maturation biologique
et des influences socio-culturelles et éducatives multiples.

Sur les aptitudes mathématiques détectées depuis la premiére moitié du
vingtiéme siécle, ¢’est-a-dire 1’aptitude numérique et ’aptitude de raisonnement
mathématique, un assez grand consensus semble régner actuellement parmi les
chercheurs. A partir de 1’adolescence moyenne, 1’aptitude numérique semble étre
définitivement distincte de ’aptitude de raisonnement mathématique. D’autres
aptitudes, moins bien connues, englobant des facteurs affectifs, sont actuellement au

centre de 1’intérét des chercheurs.
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L’analyse des taxonomies existantes nous a montré que leur utilité comme
systeme de classification de nos propres données est de valeur inégale. Un premier
essal de traiter nos données par 1’échelonnement multidimensionnel nous a montré
qu’une solution de petite dimensionnalité conduit a une représentation graphique

satisfaisante et explique la presque totalité de la variance de la dissimilarité des items.

Nous avons ensuite ¢laborée une taxonomie personnelle en combinant
différents procédés statistiques multivariées a savoir 1’échelonnement
multidimensionnel, I’analyse hiérarchique ascendante et I’analyse factorielle.

Cette taxonomie a été vérifiée dans une derniére étape par la construction d’un
test expérimental comportant plusieurs items dans chaque catégorie de la taxonomie
théorique proposée, en utilisant le LISREL (Linear Structural Relations). Grace a
cette procédure nous avons démontré que 1’adéquation entre la matrice de covariance
observée et théorique était suffisante. Ensuite, nous avons effectué une analyse de la
variance, pour examiner I'influence des deux paramétres du modéle de Birmbaum,
ainsi que du facteur empirique de la probabilité de réussite des items sur les
différentes taxonomies de la littérature, ainsi que sur notre taxonomie personnelle.
Nous avons ainsi montré que sa structure factorielle dépend effectivement des trois
facteurs examinés et qu’elle répond donc aux exigences posées.

Nous avons proposé une interprétation de nos trois catégories de second ordre,
a savoir le raisonnement mathématique, la représentation spatiale et les connaissances
procédurales de calcul, en terme de compétences chomskyennes, en tenant compte du
degré des difficultés des items.

Notre recherche a cependant été limitée par la banque de données dont nous
disposions. Pour pouvoir situer notre classification de compétences en mathématiques
par rapport au fonctionnement cognitif général, il serait intéressant de passer une
batterie de tests plus vaste, comprenant & la fois des épreuves de type scolaire et des
épreuves non scolaires, correspondant a celles utilisées dans les tests d’intelligence
classiques. De méme, on pourrait inclure des épreuves permettant de mesurer
I’interférence des facteurs émotionnels et motivationnels sur les performances en
mathématiques. Comme nous 1’avons montré dans notre partie théorique, I’interaction
entre le fonctionnement affectif et intellectuel est au centre de la recherche actuelle en

sciences cognitives et en sciences de 1’éducation.
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Cette piste d’études représenterait une continuation prometteuse de notre

recherche.






Chapitre IX

ETUDE DE VALIDATION DE NOTRE
LOGICIEL

9.1 Introduction

Dans ce chapitre, nous soumettons le test adaptatif informatisé en
mathématiques, développé au cours du projet de recherche postdoctoral BFR 98/027,
4 une étude de valorisation permettant de démontrer que ses qualités de puissance, de
flexibilité et d’économie d’utilisation ne vont pas au dépens des qualités

psychométriques classiques inhérentes aux tests papier-crayon.

9.1.1 Hypothéses

Le but de 1’étude de valorisation est de montrer que le test adaptatif
informatisé donne des résultats comparables du point de vue de 1’évaluation des
performances des éléves, tout en réalisant un gain de temps important et en épargnant
aux éléves des situations trop difficiles, donc décourageantes, respectivement trop
faciles, donc ennuyeuses. Nous nous sommes intéressés aux résultats globaux, a'la
capacité de classification et a la capacité de dépistage des difficultés individuelles des

éléves. Nous avons donc voulu tester les hypothéses suivantes :
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Hypothése 1 : Les scores et les taux de réussite obtenus dans les deux conditions sont
comparables.

Hypothése 2 : L’ordre de classification est sensiblement le méme.

Hypothese 3 : La capacité de dépistage des difficultés individuelles des éleves est

comparable.

De plus, nous avons analysé ’influence de 1’ordre de passation de ces deux
tests, ce qui nous fournit notre quatricme hypoth¢se, basée sur les qualités
intrinséques du test adaptatif informatisé, qui font que la situation d’apprentissage

n’est pas la méme.

Hypothése 4 : L’ordre de passation a une influence sur les résultats.

9.1.2 Construction de la forme expérimentale du test

Pour commencer, nous avons changé notre logiciel selon les proposition des
instituteurs afin de faciliter son emploi et de permettre 1’utilisation des procédés de
statistiques inférentielles prévus. Le logiciel crée maintenant pour chaque €léve un
fichier Word dans lequel sont notés, outre son nom et prénom les numéros des items

qu’il a résolu, les réponses qu’il a données, ainsi que sa note finale.

9.1.3 Description du dispositif expérimental

Pour comparer les qualités du test informatisé & celles du test papier-crayon,
nous avons présenté les deux formes & un échantillon de 6 classes d’éléves de
septieme du Lycée Michel Rodange, ce qui a fait un total de 123 éléves. Afin de
neutraliser I’effet de I’ordre de passation et de répétition, nous avons attribué ces
¢éléves au hasard a 2 sous-groupes de méme taille, dont 1’un devait commencer par le
test papier-crayon et I’autre par le test informatisé. Les éléves qui ont commencé par
le test papier-crayon ont effectué le test sur ordinateur deux mois plus tard et vice
versa. Malheureusement, des problémes d’installation de notre logiciel sur les

ordinateurs du Lycée ont eu pour conséquence que, pendant les deux premiéres
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séances, tous les éléves d’une classe ont di faire la version papier-crayon. Ceci

explique que, finalement, les deux sous-groupes ont des effectifs différents.

De cette maniére, nous avons pu constituer un fichier avec 123 sujets,
comportant comme variables la note du test sur ordinateur (variable note), la note du
test papier-crayon (variables notepap), ainsi que deux fois 58 variables dichotomes
indiquant si les éléves ont bien répondu aux différents items des deux tests.

Pour compléter le test sur ordinateur, les éléves ont dii répondre a un nombre
d’items compris entre sept & quatorze, alors que le test papier-crayon a nécessité la
réponse a la totalité des 58 items. Le test sur ordinateur réalise donc effectivement une
économie de temps appréciable. Ce résultat permet donc de prévoir un gain de temps
appréciable si ’on devait utiliser des batteries de tests plus larges.

Nous avons scindé 1’étude statistique en trois parties. Dans la premicre partie,
nous analysons s’il existe une différence significative entre les scores obtenus par les
tests sur ordinateurs, respectivement sous la forme papier-crayon (hypothése 1) ainsi
qu’entre les classements effectués (hypothese 2), dans la deuxiéme partie, nous avons
analysé I’effet de I’ordre de passation sur les scores (hypothése 4) et dans la troisicme
partie, nous avons analysé certains items, pour voir s’il existe, entre les deux tests, des

différences dans le taux de réussite a ces items particuliers (hypothése 3).

9.2 Comparaison des scores et capacité de classification

Nous commencons par quelques statistiques descriptives des variables note et
notepap qui contiennent respectivement les notes des tests sur ordinateur et des tests

papier-crayon.

Descriptive Statistics

Std.
Mean Deviation N
NOTEPAP ,6520 ,6140 123
NOTE 5507 4671 123

Figure 9.1: Statistiques descriptives des scores
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On constate que les moyennes sont assez proches (0,652 pour la version
papier-crayon contre 0,5507 pour la version ordinateur) et que le test papier-crayon,
qui admet une moyenne un peu plus élevée, a également une variance, donc une
dispersion plus grande. Nous examinerons plus loin si ces différences sont

significatives.

Ensuite, nous établissons la matrice de corrélations entre les deux situations

expérimentales.
Correlations
NOTEPAP NOTE
Pearson NOTEPAP 1,000 ,493*1
Correlation  NOTE 493 1,000
Sig. NOTEPAP , ,000
(2-tailed) NOTE ,000 ;
N NOTEPAP 123 123
NOTE 123 123
**. Correlation is significant at the 0.01 level
(2-tailed).

Figure 9.2 : Corrélations entre les 2 situations expérimentales

La corrélation entre les résultats du test sur ordinateur et du test papier-crayon
est hautement significative (seuil 0,01). Le pouvoir de classification de notre test
informatisé est donc comparable a celui du test papier-crayon. L’hypothése 2 a donc

pu étre vérifiée.

Puis, nous effectuons un test de comparaison des moyennes des deux variables
de scores. Les histogrammes de ces deux variables ci-dessous suggerent une

distribution normale.
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Figure 9.3 : Histogramme de la variable note
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Figure 9.4 : Histogramme de la variable notepap

Pour vérifier cette impression, nous effectuons un test de Kolmogorov-
Smirnov, qui confirme effectivement ’adéquation suffisante 4 la distribution normale,

puisque les indices de significativé sont de 0,654 pour la variable notepap et de 0,348

pour la variable note.
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One-Sample Kolmogorov-Smirnov Test

NOTEPAP NOTE

N 123 123
Normal Parametersa®  Mean ,6210 ,5345

Std. Deviation ,6296 ,4835
Most Extreme Absolute ,064 ,081
Differences Positive ,064 ,046

Negative -,051 -,081
Kolmogorov-Smirnov Z 734 934
Asymp. Sig. (2-tailed) ,654 ,348

a. Test distribution is Normal.
b. Calculated from data.

Figure 9.5 : Résultat du test de Kolmogorov-Smirnov

Le test de comparaison des moyennes appropri€ est donc le test de Student

pour échantillons appareillés.

Paired Samples Test

Paired Differences

95% Confidence
Std. Interval of the
Std. Error Difference sig.
Mean | Deviation | Mean Lower Upper t df (2-tailed)
Pair [\l,eg-'E-EAP 8.65E-02 ,6320 |5.48E-02 | -2.2E-02 ,1949 1,578 122 A17

Figure 9.6 : Résultat du test de comparaison des moyennes

Il n’y a pas de différence significative entre les moyennes obtenues dans la

situation expérimentale du test sur ordinateur et du test papier-crayon.

Finalement, nous comparons encore la fréquence de réussite dans les deux
tests. On trouve un taux d’échec de 13,8 % pour la version papier-crayon contre 8,9 %

pour la version ordinateur. En effctuant un test du chi deux, on trouve une distance de
2* =2,65, ce qui, pour une loi 4 un degré de liberté, n’est pas significatif au seuil de
5%. Les résultats et le pourcentage de réussite ne sont pas significativement

différents dans la situation ordinateur et la situation papier-crayon.

L’ hypothése 1 est donc également vérifiée.
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9.3 Etude de I’effet de I’ordre de passation

Dans cette partie, nous analysons 1’effet de 1’ordre de passation des deux tests
sur les résultats. Pour cela, nous avons crée une variable dichotomique appelée groupe
qui vaut 1 pour les éléves qui ont d’abord passé le test sur ordinateur et 2 pour ceux

qui ont commenceé par le test papier-crayon.

Group Statistics

Std.

Std. Error

ordre de passage N Mean Deviation Mean
NOTE ordinateur-papier 42 ,5674 ,4080 6,30E-02
papier-ordinateur 81 ,5420 ,4972 5,52E-02
NOTEPAP  ordinateur-papier 42 1,0093 ,5580 | 8,61E-02
papier-ordinateur 81 4668 5601 6,22E-02

Figure 9.8 : Statistiques descriptives des scores suivant la variable groupe

En examinant les moyennes des scores suivant les deux sous-groupes ainsi
créés, on remarque que la note moyenne du test sur ordinateur ne varie pas beaucoup
suivant I’ordre de passation des tests (0,5674 pour ceux qui ont commencé avec le test
sur ordinateur contre 0,5420 pour ceux qui ont commenceé avec le test papier-crayon),
alors que celle du test papier-crayon est plus que deux fois plus grande (1,0093 contre

0,4668) pour le sous-groupe des éléves qui ont commence avec le test sur ordinateur.

Le test de Student confirme cette impression.

Independent Samples Test

Levene's Test for
Equality of Variances t-test for Equality of Means
95% Confidence
Sig. Mean Std. Error Interval of the Mean
F Sig. t df (2-tailed) | Difference | Difference Lower Upper
NOTE Equal
variances ,801 373 ,285 121 776 | 2,541E-02 | 8,916E-02 -1511 ,2019
assumed
Equat
i 303 | 98,506 762 | 2,541E-02 | 8,376E-02 -1408 1916
assumed
NOTEPAP  Equal
variances 415 520 5,100 121 ,000 ,5425 ,1064 3319 7531
assumed
Equal
. 5106 | 83,362 000 5425 1062 3312 7538
assumed

Figure 9.9 : Résultat du test de comparaison des moyennes
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En effet, le test de Student montre effectivement que si la situation
expérimentale « ordinateur » est présentée en premier lieu, elle ne conduit pas a une
différence significative entre les moyennes, alors que, si la situation « papier-crayon »
est présentée d’abord, il y a une différence hautement significative entre les
moyennes. Cela permet de conclure qu’il y a eu un effet d’apprentissage positif de

I’ordinateur a la situation papier-crayon, mais non vice-versa.

Nous effectuons aussi une analyse de la variance multivariée pour vérifier ce
résultat, en prenant comme variables dépendantes les variables note et notepap et

comme facteur la variable dichotomique groupe.

Le choix de la méthode a été dicté par les considérations suivantes : Notre plan
expérimental correspond en fait & un plan factoriel (ou systématique) mixte
(Delhomme & Meyer, 1997).

Deux groupes indépendants (facteurs intersujets) de sujets ont été soumis a
deux conditions expérimentales (facteurs intrasujets). En effet, si le facteur groupe est
constitué par 1’ordre de passation, tous les sujets n’ont pas participé a ses deux
modalités, ce qui nous permet de les séparer en deux groupes indépendants, selon les
modalités 1 et 2. Par contre, tous les sujets ont été soumis aux deux modalités du
facteur méthode (genre du test).

L’analyse de la variance a effectuer correspond donc en fait a la figure d’une
analyse de la variance bifactorielle de type mesures mixtes (two-factor mixed means
analysis of variance) (cf. Tumer & Thayes, 2001). Ce plan comprend 4 conditions
expérimentales issues du croisement de deux variables & deux modalités chacune,
chaque sujet ayant seulement été soumis a la moiti¢ des conditions possibles.

Or, le logiciel SPSS for Windows 7.5 n’est pas directement adapté a ce type de
plan expérimental. Pour utiliser le modéle « mesures répétées », il faudrait que tous
les sujets aient été soumis aux quatre conditions expérimentales, ce qui n’est pas le

cas dans notre étude.

Nous avons donc été réduit a effectuer une analyse unifactorielle multivariée,
nous permettant de mesurer ’effet du facteur intersujet groupe sur les variables
dépendantes constituées par les scores obtenus dans les deux conditions

expérimentales ordinateur et papier-crayon.
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Tests of Between-Subjects Effects

Type Il

Dependent Sum of Mean Noncent. Observed
Source Variable Squares df Square F Sig. Parameter Power?
Corrected NOTE 1.79E-02° 1 1.79E-02 .081 776 .081 .059
Model NOTEPAP 8.140¢ 1 8.140 26.015 .000 26.015 999
Intercept NOTE 34.039 1 34.039 154.827 .000 154.827 1.000

NOTEPAP 60.262 1 60.262 192.596 .000 192.596 1.000
GROUPE NOTE 1.79E-02 1 1.79E-02 .081 776 .081 .059

NOTEPAP 8.140 1 8.140 26.015 .000 26.015 .999
Error NOTE 26.602 121 220

NOTEPAP 37.860 121 313
Total NOTE 63.915 123

NOTEPAP 98.293 123
Corrected NOTE 26.620 122
Total NOTEPAP 46.000 122

a. Computed using alpha = .05
b. R Squared = .001 (Adjusted R Squared = -.008)
C. R Squared = .177 (Adjusted R Squared = .170)

Figure 9.10 : Résultat de ’analyse de variance

Le résultat confirme les résultats précédents. Il existe bien une influence
significative de I’ordre de passation sur les notes du test papier-crayon, mais pas sur
les notes du test sur ordinateur. En d’autres termes, nous avons pu mettre en évidence
un effet d’apprentissage de l’ordinateur sur la situation papier-crayon, mais non
inversément. L’hypothése 4 a donc été vérifiée ; 1’ordre de passation a un effet
significatif sur les résultats dans le sens ou il y a un effet d’apprentissage positif si les

items sont d’abord présentés par I’ordinateur.

Au-dela de la contribution théorique & 1’étude de validation du test adaptatif
informatisé, ce résultat permet de souligner 1’ utilité pédagogique d’un outil de ce type.
Pour D’interpréter, il faudrait tenir compte de la composante motivationnelle. Une
étude englobant les facteurs non intellectuels intervenant dans les épreuves de
performance aurait dépassé le cadre de ce travail, mais en observant les €éléves et en
écoutant leurs commentaires, il nous a paru évident que le test sur ordinateur a suscité
plus de motivation intrinséque parmi eux. Etudier les processus affectifs et
motivationnels associés a la situation ordinateur et ne se rencontrant pas de la méme
maniére dans la situation papier-crayon constituerait un prolongement intéressant de

notre étude.
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9.4 Analyse de quelques items

Finalement, nous avons encore examiné s’il y a des différences entre la
fréquence de réussite aux items particuliers effectués sur papier ou sur ordinateur.
Comme [’ordinateur administre lui-méme les questions lors du test adaptatif et que
chaque éléve doit répondre en principe a une série d’items adaptée a sa capacité, il est
clair que tous les items n’ont pas été présentés assez souvent pour pouvoir étre soumis
a une analyse statistique. Nous nous sommes donc limité aux cinq items qui ont été
administré a presque tout le monde, a savoir les items numéros 26, 32, 38, 47 et 52.
Ce sont des items de difficulté moyenne qui discriminent bien entre les sujets. Nous
avons fait un test de comparaison de la médiane de Wilcoxon pour analyser s’il y a
une différence significative du score de réussite de ces items si on les effectue sur

ordinateur, respectivement sur papier.

Test Statistics®

P26 - Q26 | P32 - Q32 | P38 - Q38 | P47 - Q47 | P52 - Q52
Z -1,2602 -1,886° -, 4472 -,8492 -1,0002
Asymp.
Sig. ,208 059 ,655 ,396 317
(2-tailed)

a. Based on positive ranks.
b. Based on negative ranks.
€. Wilcoxon Signed Ranks Test

Figure 9.11 : Résultat du test de Wilcoxon

Le résultat de ce test est tout a fait positif. Au seuil de 5 %, il n’y a pour aucun
item une différence significative entre la réussite sur ordinateur respectivement sur
papier, ce qui montre que les éléves de septiéme n’ont en général pas plus de
problémes de résoudre un test de mathématiques sur ordinateur que sur papier et que,
si I’on fait une analyse différentielle par rapport aux items réussis et non réussis, il n’y

a pas de différence entre les deux méthodes de présentation.

Remarquons cependant que pour 1’item 32, le résultat est moins concluant que
pour les quatre autres. En fait, I’item 32 était assez mal adapté pour un test sur

ordinateur. C’était I’item suivant :
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Item numéro 32 :

In der Samenhandlung hingt folgende Preisliste aus:

25 Erdbeerpflanzen: 200 F
20 g Gemiisesamen: 35F
25 Kohlpflanzen: l 87F
Zwiebeln pro Kilogramm: 80F

Der Lehrling hat fiir einen Kunden folgende Rechnung aufgestellt. Vervollstindige

sie!
Rechnung Nr: 3587 vom 10. April 1996 fiir Frau Irene Miiller

Artikel Betrag
3 Tiiten Kunstdiinger 3.275 825
0,5 kg Zwiebeln ~ (  |..

Les instructions étaient de ne taper que ce qui devrait se trouver a 1’endroit des
cinq points. La bonne réponse était donc de taper simplement le nombre 40. I y avait
cependant un certain nombre d’éléves qui ont tapé 2 x40 =80, ce que ’ordinateur a

considéré comme mauvaise réponse.

L’hypothése 3 a donc également été vérifiée : la probabilité de réussite des
items particuliers et donc la possibilité de dépistage des difficultés individuelles est

comparable dans les 2 situations.

9.5 Conclusion

Les qualités psychométriques intrinséques d’un test adaptatif informatisé
dépendent de son mode de construction et sont liés aux modéles IRT. Nous les avons
largement exposés dans notre rapport du projet de recherche postdoctoral BFR 98/027
(Schiltz, 1999).

Dans notre étude de valorisation nous n’avions plus besoin de revenir sur ce

point, mais nous avons voulu comparer ’efficience de notre logiciel en matiere
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d’évaluation des performances des éléves avec celle de la situation standard papier-
crayon a laquelle ils ont été habitués depuis le début de leur scolarité. Nous sommes
partis de 1’idée que, si les capacités de mesure des performances, de classification et
de discrimination se montrent comparables, notre logiciel a prouvé sa supériorité
grice a ses qualités de puissance, de flexibilité et d’économie inhérents & sa
construction et par ses effets psychologiques favorables, liés au fait qu’il évite de
décourager et d’ennuyer inutilement les éléves. Nos attentes générales ont été
formulées en quatre hypothéses opérationnelles, qui ont été soumises a la vérification
statistique.

Nos quatre hypothéses ont été vérifiées, en comparant notre test informatisé€ a
la forme standard papier-crayon, ce qui constitue une confirmation indirecte de la
validité interne de notre test. Les limites temporelles assignées & notre étude ne nous
ont pas permis d’étudier la validité externe de notre test, en utilisant par exemple les
scores scolaires obtenus par les éléves a la fin de ’année ou les résultats d’un test

d’intelligence classique.

Puisque ces résultats sont concluants, I’utilité du test adaptatif informatisé que
nous avons construit a ét¢ démontré de manicre scientifique et le logiciel pourra étre
exploité pour I’orientation et 1’évaluation formative et cognitive des savoir et savoir

faire des éléves.

Du point de vue pratique, la valorisation scientifique de notre logiciel
permettra de passer a la phase d’application pédagogique. La taxonomie pourra servir
de guide pour I’élaboration des futures épreuves standardisées, élaborées dans le cadre
du passage primaire-postprimaire. En effet elle permettra de réaliser des tests plus
conformes au fonctionnement cognitif des éléves. D’autre part, elle donnera une base
scientifique a 1’évaluation formative et sommative continue des ¢€léves en

mathématiques.

En plus des applications pédagogiques immédiates, elle permettra de passer a
I’exploitation de toutes les possibilités du logiciel, comme le transfert a d’autres
données et & d’autres populations.

Elle permettra en outre de développer des épreuves standardisées regroupées

selon les compétences sous-jacentes a examiner, donnant la possibilité d’obtenir un
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profil des compétences de chaque éléve et de 1’aider d’une maniére plus spécifique
par rapport a ses faiblesses, en représentation spatiale, en connaissances procédurales
et en raisonnement mathématiques, en développant des stratégies compensatoires
adéquates. En effet, il ne suffit pas de dire qu’un éle¢ve est faible en mathématiques,
mais il faut savoir exactement quelles compétences latentes sont en jeu.

Il sera plus facile de rassurer un éléve démotivé, ayant subi des échecs
scolaires, par rapport a ses compétences latentes, si I’on dispose d’un instrument de
mesure se situant 4 mi-chemin entre les tests d’intelligence classiques, trop éloignés
de la pratique pédagogique et des épreuves scolaires standardisées, trop axés sur les
programmes et ne permettant pas le dépistage des compétences réelles.

Une application particuliérement intéressante est le dépistage de
“I’underachievement”, 2 un moment, ou une évolution défavorable et un blocage

pernicieux de certains éléves surdoués peuvent encore étre €vités.

En général, les liens entre la recherche fondamentale, par exemple au niveau
de I’établissement d’une structure hiérarchique du fonctionnement cognitif et entre la
recherche appliquée en pédagogie, par exemple au niveau de 1’élaboration d’épreuves

d’évalluation, devraient étre plus serrés.

Notre recherche permet de nombreux prolongements ultérieurs dans le
domaine du fonctionnement cognitif et dans le domaine des applications

pédagogiques.






Annexe

LA BANQUE D’ITEMS DU LOGICIEL

On donne ci-dessous la liste des items retenus pour faire partie de la banque d’items

du logiciel.

Item numéro 1 :
Berechne im Kopf.
51+37+53+149=

Item numéro 2 :
Berechne im Kopf.
53+527=

Item numéro 3 :
Berechne im Kopf.
90:5=

Item numéro 4 :
Berechne im Kopf.
1999-430=
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Item numéro 5 :
Berechne im Kopf.
10-7-0-20=

Item numéro 6 :
Berechne im Kopf.
400-12=

Item numéro 7 :
Berechne im Kopf.
21+9:3=

Item numéro 8 :
Berechne im Kopf.
(8+40):4=

Item numéro 9 :
Berechne im Kopf.
609+...... =700

[tem numéro 10 :
Berechne im Kopf.
...... -429=2999
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[tem numéro 11 :
Mache als Tafelrechnung am freigelassenen Platz.
17321-2735-87

[tem numéro 12 :
Mache als Tafelrechnung am freigelassenen Platz.

27-483

Item numéro 13 :
Mache als Tafelrechnung am freigelassenen Platz.

5208:14

Item numéro 14 :
Mache einen Uberschlag! Kreuze jeweils die Zahl an, welche dem Resultat der
angeschriebenen Rechnung am néchsten kommt. |
72-31
O 210 O 2100 O 750 O 21000 O Keine Ahnung

Item numéro 15 :
Mache einen Uberschlag! Kreuze jeweils die Zahl an, welche dem Resultat der
angeschriebenen Rechnung am nichsten kommt.
8023:98
O 8000 O 80 O 8 O 800 O Keine Ahnung

Item numéro 16 :
Setze das richtige Zeichen (>, <, =).
191...... 1,191
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Item numéro 17 :

Setze das richtige Zeichen (>, <, =).

0,01...... 0,010

Item numéro 18 :

Setze das richtige Zeichen (>, <, =).

Item numéro 19 :

Setze das richtige Zeichen (>, <, =).

Item numéro 20 :

Setze das richtige Zeichen (>, <, =).

70 10

Item numéro 21 :

Setze das richtige Zeichen (>, <, =).

Item numéro 22 :
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Item numéro 23 :

Erginze.

Item numéro 24 :
Erginze.

Ilminl2s=...... S

Item numéro 25 :
Ergénze.
2500kg=25......

Item numéro 26 :

Ergéinze.

Item numéro 27 :
Hier sind fiinf Zahlen:
22738 76372 21670
Welche von ihnen ist teilbar durch 4? ......

13655

35742

[tem numéro 28 :
Hier sind fiinf Zahlen:
22738 76372 21670
Welche von ihnen ist teilbar durch 3 ?......

13655

35742
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Item numéro 29 :
Hier sind finf Zahlen:
22738 76372 21670 13655 35742
Welche von ihnen ist gleichzeitig teilbar durch 2 und durch 57 ......

Item numéro 30 :
Die Zahl 6352 ist nicht teilbar durch 9. Wieviel mufy man mindestens zu der Zahl 6352
hinzuzdhlen damit sie durch 9 teilbar wird?

Deine Antwort: ......

Item numéro 31 :

In der Samenhandlung hingt folgende Preisliste aus:

Kunstdiinger pro Tiite: 275 F
25 Erdbeerpflanzen: 200 F
20 g Gemiisesamen: 35F
25 Kohlpflanzen: 87F
Zwiebeln pro Kilogramm: 80F

Der Lehrling hat fiir einen Kunden folgende Rechnung aufgestellt. Vervollstindige sie!

Rechnung Nr: 3587 vom 10. April 1996 fiir Frau Irene Miiller

Artikel Betrag

3 Tiiten Kunstdiinger 3.275=
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Item numéro 32 :

In der Samenhandlung héingt folgende Preisliste aus:

Kunstdiinger pro Tiite:
25 Erdbeerpflanzen:
20 g Gemiisesamen:
25 Kohlpflanzen:

Zwiebeln pro Kilogramm:

275F
200 F
35F
87F
80F

Der Lehrling hat fiir einen Kunden folgende Rechnung aufgestellt. Vervollstindige sie!

Rechnung Nr: 3587 vom 10. April 1996 fiir Frau Irene Miiller

Artikel Betrag

0,5 kg Zwiebeln

Item numéro 33 :

5
Hier sind zwei Briiche : E und Z

Welcher der beiden Briiche ist groflerals 1 ? ......

Item numéro 34 :

5
Hier sind zwei Briiche : g und Z

Welcher der beiden Briiche liegt auf dem Zahlenstrahl am nichstenbei 1 ? ......

Item numéro 35 :
Hier ist eine Zahlenfolge. Suche die folgende Zahl.
569 548 527 506 ...
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Item numéro 36 :

Hier ist eine Zahlenfolge. Suche die folgende Zahl.

14 8 16 10 20 14 28 e

Item numéro 37 :

Ist der folgende Satz wahr oder falsch? Kreuze an!

57 ist eine Primzahl O wahr

O falsch

Item numéro 38 :

Ist der folgende Satz wahr oder falsch? Kreuze an!

Das Produkt von zwei Primzahlen ist nie eine Primzahl

O wahr | O falsch

Item numéro 39 :

Ist der folgende Satz wahr oder falsch ? Kreuze an !

Die Diagonalen eines Rechteckes stehen O wahr O falsch
senkrecht zueinander
[tem numéro 40 :
Ist der folgende Satz wahr oder falsch? Kreuze an!
Die gegeniiberliegenden Seiten eines O wahr O falsch

Rechtecks sind parallel

Item numéro 41 :

Ist der folgende Satz wahr oder falsch? Kreuze an!

Ein Wiirfel hat 6 quadratische Seitenflachen O wahr O falsch
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Item numéro 42 :

Hier ist die Breite eines Rechteckes:

R {
n
O
3

Vervollstindige das Rechteck, wenn du weif3t, dafl seine Lange doppelt so grofl wie die Breite

ist.

Item numéro 43 :

Wenn du weillt, da} | 72 - 28 = 2016 | ergibt, erginze folgende Rechenaufgabe, ohne

zusitzliche schriftliche Berechnungen.

36-28=

Item numéro 44 :
Du darfst die Ziffern [0] [9] und das Komma jeweils einmal benutzen.

Welches ist die kleinste Dezimalzahl, die du mit diesen Zeichen bilden kannst?

Deine Antwort: ......
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[tem numéro 45 :
Hier sind 5 Wiirfel aus verschiedenen Blickwinkeln gesehen. Welche Figur unterscheidet
sich von den anderen?

Umkreise die richtige Antwort.

Z
Figur 1 Figur 2 Figur 3 Figur 4
Keine Figur 1 Figur 2 Figur 3 Figur 4

Item numéro 46 :

Bestimme den Bruch, welcher durch den Buchstaben m auf dem Zahlenstrahl dargestellt

ist.

Item numéro 47 :

Bestimme den Bruch, welcher durch den Buchstaben p auf dem Zahlenstrahl dargestelit

ist.
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[tem numéro 48 :
Bestimme die Dezimalzahl, welche durch den Buchstaben y auf dem Zahlenstrahl

dargestellt ist?

0 | 0,05 01
il 1 | ! L | |

s
—=

Item numéro 49 :
Bestimme die Dezimalzahl, welche durch den Buchstaben x auf dem Zahlenstrahl

dargestellt ist?

[0 [0,05] 0.1
| | | | | | | % 1|

I | I I | ! ! I

L= LY
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Item numéro 50 :

_ Berechne die Fliche F;.

m
4m
Fi l
|‘4—3m
im | P
- 3 4m
Fo [3m
3m
Bt wna m’
Item numéro 51 :
Berechne die Fliche F, .
im
4 m
Fi |
L(-—'Sm
7m | .
o 2 | 4m
Fo Im
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Item numéro 52 :

Berechne die Flédche F;.
im
4am
Fi |
I<-3 m—>
7m 1 ‘
/I 3 4am
Fo 3m
3m
E = s m’
Item numéro 53 :
Berechne den Umfang der Figur.
im
4m
Fi |
|-<—3 m—>1
7m | ¢
T 3 | am
Fo ([3m

Im

Der Umfang der Figur betrdgt ...... m,
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Item numéro 54 ;

Lose folgende Gleichung in dem vorgesehenen Kasten.

x+26=281

Item numéro 55 :

Lose folgende Gleichung in dem vorgesehenen Kasten.

Item numéro 56 :

+

Zeichne die Strecke [AB].
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Item numéro 57 :

Mif} und stelle fest: Die Strecke [AB] ist ...... cm lang.

Item numéro 58 :

+
C
Zeichne die Halbgerade [CA)
42) Item numéro 59 :
A B
+
+
+
C

Konstruire zu der Geraden g die Senkrechte durch den Punkt C.
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Item numéro 60 :

Zeichne, mif und stelle fest:

+

s

Der Abstand des Punktes A von der Geraden g betrégt ...... cm.

Item numéro 61 :

+

Ot

Zeichne die Parallele zu g durch den Punkt D.
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Item numeéro 62 :

Diese Eintrittsscheine wurden wihrend drei Tagen an der Kinokasse verkauft:

Montag | Dienstag | Mittwoch
Der erste verkaufte Schein trug die Nummer 120 387 501
Der letzte verkaufte Schein trug die Nummer 386 500 713

Wieviele Eintrittsscheine wurden am Montag verkauft? ......

Item numéro 63 :

Diese Eintrittsscheine wurden wihrend drei Tagen an der Kinokasse verkauft:

Montag | Dienstag | Mittwoch
Der erste verkaufte Schein trug die Nummer 120 387 501
Der letzte verkaufte Schein trug die Nummer 386 500 713

Wieviele der Eintrittsscheine, die am Dienstag verkauft wurden, trugen wenigstens eine

Ziffer 47 ......
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