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Abstract

Multi-Context Systems is a rule-based representation model for distributed, heterogeneous knowledge
agents, which cooperate by sharing parts of their local knowledge through a set of bridge rules also known
as mappings. The concept of conviviality was recently proposed for modeling and measuring cooperation
among agents in multiagent systems. In this paper, we describe how conviviality can be used to model and
evaluate cooperation in Multi-Context Systems. As a potential application, we also propose a conviviality-
based method for inconsistency resolution based on the idea that the optimal solution is the one that
minimally decreases the conviviality of the system.

1 Introduction
Multi-Context Systems (MCS) [1, 2, 3] are logical formalizations of distributed context theories connected
through a set of bridge rules, which enable information flow between contexts. A context can be thought
of as a logical theory - a set of axioms and inference rules - that models local knowledge. Intuitively, MCS
can be used as a representation model for any information system that involves distributed, heterogeneous
knowledge agents including peer-to-peer systems, distributed ontologies (e.g., Linked Open Data) or Ambi-
ent Intelligence systems. In fact, several applications have already been developed on top of MCS or other
similar formal models of context including (a) the CYC common sense knowledge base [4]; (b) contextual-
ized ontology languages, such as Distributed Description Logics [5] and C-OWL [6]; (c) context-based agent
architectures [7, 8]; and (d) distributed reasoning algorithms for Mobile Social Networks [9] and Ambient
Intelligence systems [10].

The individual entities that such systems consist of cooperate by sharing information through their bridge
rules. By combining and reasoning on the information they import they are able to derive new knowledge.
This feature is enabled by the notions of contexts, bridge rules and contextual reasoning used in MCS. But,
how can we then evaluate the ways in which the system enables this cooperation? How can we characterise
a MCS based on the opportunities for information exchange that it provides to its contexts? To answer such
questions, we introduce in MCS the notion of conviviality.

Defined by Illich as “individual freedom realized in personal interdependence” [11], conviviality has
been introduced as a social science concept for multiagent systems to highlight soft qualitative requirements
like user friendliness of systems. Multiagent systems technology can be used to realize tools for conviviality
when we interpret “freedom” as choice [12]. Tools for conviviality are concerned in particular with dynamic
aspects of conviviality, such as the emergence of conviviality from the sharing of properties or behaviors
whereby each member’s perception is that their personal needs are taken care of [11]. We measure con-
viviality by counting the possible ways to cooperate, indicating degree of choice or freedom to engage in
coalitions. Our coalitional theory is based on dependence networks [13, 14], labeled directed graphs where
the nodes are agents, and each labeled edge represents that the former agent depends on the latter one to
achieve some goal. The focus on dependence networks and more specifically on their cycles, is a reason-
able way of formalizing conviviality as something related to the freedom of choice of individuals plus the
subsidiary relations –interdependence for task achievement– among fellow members of a social system.



In distributed information systems, individual freedom is linked with the choice to keep personal knowl-
edge and beliefs at the local level, while interdependence is understood as reciprocity, i.e. cooperation.
Participating entities depend on each other to achieve the enrichment of their local knowledge.

Considering the potential applications of MCS and the notion of conviviality as described above, our
main research question is the following: How to introduce the concept of conviviality to Multi-Context
Systems? This main research question breaks into the following questions: How to define and model con-
viviality for Multi-Context Systems? How to measure the conviviality of Multi-Context Systems? How to
use conviviality as a property of Multi-Context Systems?

Building on the ideas of [15], where we identified ways in which conviviality tools, and specifically de-
pendence networks and conviviality measures, can be used to evaluate cooperation in Contextual Defeasible
Logic (which can be viewed as a specific case of MCS), we propose: i.) a formal model for representing
information dependencies in MCS based on dependence networks, ii.) conviviality measures for MCS and
iii.) a potential application of these tools for the problem of inconsistency resolution in MCS.

So far, most approaches for inconsistency resolution in MCS have been based on the invalidation or un-
conditional application of a subset of the bridge rules that cause inconsistency. They differ in the preference
criterion that is applied for choosing among the candidate solutions. Here, we propose using the convivi-
ality of the system as a preference criterion, based on the idea that removing (or applying unconditionally)
a bridge rule affects the information dependency between the connected contexts, and, as a result, the con-
viviality of the system. We suggest that the optimal solution is the one that minimally affects conviviality.

The rest of the paper is structured as follows: Section 2 presents formal definitions for MCS, as these
were originally proposed in [3]. Section 3 proposes a model and measures for conviviality in MCS. Section
4 describes a potential use of conviviality as a property of MCS for the problem of inconsistency resolution.
Last section summarizes and presents directions for future work in the field.

2 Multi-Context Systems - Formal Definitions
For the needs of this paper we will use the definition of heterogeneous nonmonotonic MCS given in [3],
according to which a MCS is a set of contexts, each composed of a knowledge base with an underlying
logic, and a set of bridge rules which control the information flow between contexts. A logic L = (KBL,
BSL, ACCL) consists of the following components:
• KBL is the set of well-formed knowledge bases of L. Each element of KBL is a set of formulas.
• BSL is the set of possible belief sets, where the elements of a belief set is a set of formulas.

• ACCL: KBL→ 2BSL is a function describing the semantics of the logic by assigning to each knowl-
edge base a set of acceptable belief sets.

A bridge rule can add information to a context, depending on the belief sets which are accepted at other
contexts. Let L = (L1, . . ., Ln) be a sequence of logics. An Lk-bridge rule r over L is of the form

r = (k : s)← (c1 : p1), . . . , (cj : pj),not(cj+1 : pj+1), . . . ,not(cm : pm). (1)

where 1 ≤ ci ≤ n, pi is an element of some belief set of Lci , k refers to the context receiving information
s. We denote by hb(r) the belief formula s in the head of r.

A MCS M = (C1, . . . , Cn) is a collection of contexts Ci = (Li, kbi, bri), 1 ≤ ci ≤ n, where Li =
(KBi, BSi, ACCi) is a logic, kbi ∈ KBi a knowledge base, and bri a set of Li-bridge rules over (L1, . . .,
Ln). For each H ⊆ {hb(r)|r ∈ bri} it holds that kbi ∪ H ∈ KBLi , meaning that bridge rule heads are
compatible with knowledge bases.

A belief state of M = (C1, . . . , Cn) is a sequence S = (S1, . . . , Sn) such that Si ∈ BSi. Intuitively,
S is derived from the knowledge of each context and the information conveyed through applicable bridge
rules. A bridge rule is applicable in a belief state S iff for 1 ≤ i ≤ j: pi ∈ Sci and for j < l ≤ m: pl /∈ Scl .
By brM =

⋃n
i=1 bri we denote the set of all bridge rules of M .

Example 1. Consider a MCS M , through which the software agents of three research students exchange in-
formation and classify research articles that they access in online databases. M contains contexts C1−C3,
each encoding the knowledge of each of the three agents. The knowledge bases for the three contexts are:

kb1 = {sensors, corba, centralizedComputing ↔ ¬distributedComputing}
kb2 = {profA}



kb3 = {ubiquitousComputing ⊆ ambientComputing}

C1 collects information about the keywords of the articles and encodes this information in propositional
logic. In this case, the article under examination is about sensors and corba (Common Object Request
Broker Architecture). C1 also possesses the knowledge that centralized computing and distributed comput-
ing are two complementary concepts. C2 uses propositional logic to encode additional information about
articles, including the names of their authors; in this case profA is the author of the article under examina-
tion. Finally, C3 is an ontology of computing-related concepts, according to which ubiquitousComputing
is a type of ambientComputing.

The bridge rules that the three agents use to exchange information and collectively decide about the
classification of the article are as follows:

r1 = (1 : centralizedComputing)← (2 : middleware)
r2 = (1 : distributedComputing)← (3 : ambientComputing)
r3 = (2 : middleware)← (1 : corba)
r4 = (3 : ubiquitousComputing)← (1 : sensors), (2 : profB)

Rule r1 links the concept of middleware used by C2 to the concept of centralized- Computing of C1.
r2 expresses that ambientComputing (a term used by C3) implies distributedComputing (a term used
by C1). r3 expresses that corba is a type of middleware, while r4 expresses the belief of the third agent
(C3) that articles that are written by profB and that contain sensors among their keywords are about
ubiquitousComputing.

Equilibrium semantics selects certain belief states of a MCS M = (C1, . . . , Cn) as acceptable. Intu-
itively, an equilibrium is a belief state S = (S1, . . . , Sn) where each context Ci respects all bridge rules
applicable in S and accepts Si. Formally, S is an equilibrium of M , iff for 1 ≤ i ≤ n,

Si ∈ ACCi(kbi ∪ {hb(r)|r ∈ bri applicable in S}).

Example 2. In the example given above, S = (S1, S2, S3) is the only equilibrium of the system:

S = ({sensors, corba, centralizedComputing}, {profA,middleware}, ∅).

S3 is an empty set, since kb3, the knowledge base of C3, is an empty set, br3 = {r4}, namely the set of bridge
rules for context C3 only consists of bridge rule r4, and r4 is not applicable in S, because profB /∈ S2.

3 Modeling and measuring conviviality in MCS
We mentioned in the introduction that dependence networks have been proposed as a model for representing
social dependencies among the agents of a multiagent system. It has also been used as the underlying model
for formalizing and measuring conviviality in such systems. In this section, we describe how dependence
networks can be used to model the information dependencies among the contexts of a MCS and how convivi-
ality measures can then be applied in MCS. Our approach is based on the following ideas: (a) cooperation in
MCS can be understood as information sharing among the contexts; (b) it is enabled by the bridge rules of
the system; and (c) therefore, bridge rules actually represent information dependencies among the contexts.
The more bridges between the contexts, the more possibilities for cooperation and information exchange.
On the other hand, no bridge rules would mean that the different contexts are actually autonomous systems,
which do not share their local knowledge.

3.1 Dependence Networks Model for MCS
Conviviality may be modeled by the reciprocity-based coalitions that can be formed [16]. Some coalitions,
however, provide more opportunities for their participants to cooperate than others, being thereby more
convivial. To represent the interdependencies among agents in the coalitions, [16] use dependence networks.

In this subsection, we first present Definition 3.1 from [16], which abstracts from tasks and plans. Then,
building on [16]’s definition, we introduce our definition for a dependence network corresponding to a MCS.

A dependence network is defined by [16] as follows:
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Figure 1: The dependence network DN(M) of MCS M of the running example.

Definition 3.1 (Dependence networks). A dependence network (DN) is a tuple 〈A,G, dep,≥〉 where: A is
a set of agents, G is a set of goals, dep : A×A→ 2G is a function that relates with each pair of agents, the
sets of goals on which the first agent depends on the second, and ≥: A→ 2G × 2G is for each agent a total
pre-order on sets of goals occurring in its dependencies: G1 >(a) G2.

To capture the notions of contexts and bridge rules, we now introduce our definition, Definition 3.2, for
a dependence network corresponding to a MCS, as follows:

Definition 3.2 (Dependence networks for MCS). A dependence network corresponding to a MCS M , de-
noted as DN(M), is a tuple 〈C,R, dep,≥〉 where: C is the set of contexts in M ; R is the set of bridge rules
in M ; dep : C × C → 2R is a function that is constructed as follows: for each bridge rule r (in the form
of (1)) in R add the following dependencies: dep(k, ci) = {r} where k is the context appearing in the head
of r and ci stands for each distinct context appearing in the body of r; and ≥: C → 2R × 2R is for each
context a total pre-order on sets of bridge rules that the context appears in their heads.

In other words, a bridge rule r creates one dependency between context k, which appears in the head of
r, and each of contexts ci that appear in the body of r. The intuition behind this is that k depends on the
information it receives from each ci to achieve its goal, which is to apply r in order to infer s.

We should also note here that the total preorder that each context defines on the sets of bridge rules
may reflect the local preferences of a context, e.g., in the way that these are defined and used in Contextual
Defeasible Logic [17, 10]. For sake of simplicity, we do not use this feature in the conviviality model that
we describe below. However, it is among our plans to integrate it in future extensions of this work.

To graphically represent dependence networks, we use nodes for contexts and labeled arrows for de-
pendencies among the contexts that the arrows connect. An arrow from context a to context b, labeled as r,
means that a depends on b to apply rule r. In our running example, the dependence network that corresponds
to MCS M is the one depicted in Figure 1.

In this graph, each node corresponds to one of the contexts in M . Dependencies are derived from the four
bridge rules of M . For example, there are two dependencies labeled by r4: each of them connects C3, which
appears in the head of r4, to one of the contexts C1 and C2, which appear in the body of r4. This actually
means that to apply rule r4 in order to prove that the paper under examination is about ubiquitous computing,
C4 depends on information about the keywords of the paper that it imports from C1 and information about
the authors of the paper that it imports from C2.

3.2 Conviviality Measures
Conviviality measures have been introduced to compare the conviviality of multi agent systems [16], for
example before and after, making a change such as adding a new norm, or policy. Furthermore, to evaluate
conviviality in a more precise way, [16] introduce formal conviviality measures for dependence networks us-
ing coalitional game theoretic framework. Based on Illich’s definition of conviviality as “individual freedom
realized in personal interdependency”, the notions of interdependency and choice, if we interpret freedom
as choice, are stressed. Such measures provide insights into the type of properties that may be measured in
convivial systems and thus reveal the quality of the system.

The conviviality measures presented in this work reflect the following Assumptions:

A1 the cycles identified in a dependence network are considered as coalitions. These coalitions are used
to evaluate conviviality in the network. Cycles are the smallest graph topology expressing interdepen-
dence, thereby conviviality, and are therefore considered atomic relations of interdependence. When
referring to cycles, we are implicitly signifying simple cycles, i.e., where all nodes are distinct [18];
we also discard self-loops. When referring to conviviality, we always refer to potential interaction not
actual interaction.



A2 conviviality in a dependence network is evaluated in a bounded domain, i.e., over a [min,max] inter-
val. This allows the comparison of different systems in terms of conviviality.

A3 there is more conviviality in larger coalitions than in smaller ones.

A4 the more coalitions in the dependence network, the higher the conviviality measure (ceteris paribus).

Our top goal is to maximize conviviality in MCS. Some coalitions provide more opportunities for their
participating contexts to cooperate than others, being thereby more convivial. Our Requirements are thus:

R1 maximize the size of the coalitions, i.e., maximize the number of contexts involved in the coalitions,

R2 maximize the number of these coalitions.

Following the definition of the conviviality of a dependence network [16], we define the conviviality of
a dependence network of a MCS M as

Conv(DN(M)) =

∑
ci,cj∈C,i 6=j

coal(ci, cj)

Ω
, (2)

Ω = |C|(|C| − 1)×Θ, (3)

Θ =

L=|C|∑
L=2

P (|C| − 2, L− 2)× |R|L, (4)

where |C| is the number of contexts in M , |R| is the number of bridge rules in M , L is the cycle length,
P is the usual permutation defined in combinatorics, coal(ci, cj) for any distinct ci, cj ∈ C is the number
of cycles that contain both ci and cj in DN(M) and Ω denotes the maximal number of pairs of contexts in
cycles (which produces the normalization mentioned in Assumption A2).

This way, the conviviality measurement of a dependence network, which is a rational number in [0,1],
can be used to compare different dependence networks, with 0 being the conviviality of an acyclic depen-
dence network and 1 the conviviality of a fully-connected dependence network.

Example 3. Following Equation 2 and the dependence network of M , which is graphically represented in
Figure 1, we calculate the conviviality of DN(M) of our running example, as:

Conv(DN(M)) =
10

Ω
= 0.208, where Ω = 480.

The result of Example 3 is just a way of comparing the conviviality of different systems. By itself it
cannot be used to classify the conviviality of a MCS.

4 Use of conviviality as a property of MCS: Inconsistency Resolution
As we previously argued, conviviality is a property that characterizes the cooperativeness of a MCS, namely
the alternative ways in which the contexts of a MCS can share information in order to derive new knowledge.
By evaluating conviviality, the system may propose the different ways in which it can be increased, e.g., by
suggesting new connections (bridge rules) between the system contexts.

Consider, for example, a MCS in which a context does not import any information from other contexts.
Recommending other contexts that this context could import information from, could increase the convivi-
ality of the system, which would in turn lead to enriching the local knowledge of the context, but also the
knowledge of the whole system.

4.1 Problem Description
A potential way of using conviviality as a property of MCS, which we describe in more detail in this section,
is for the problem of inconsistency resolution. In a MCS, even if contexts are locally consistent, their
bridge rules may render the whole system inconsistent. This is formally described in [3] as a lack of an
equilibrium. All techniques that have been proposed so far for inconsistency resolution are based on the
same intuition: a subset of the bridge rules that cause inconsistency must be invalidated and another subset



must be unconditionally applied, so that the entire system becomes consistent again. For nonmonotonic
MCS, this has been formally defined in [19] as diagnosis:

“Given a MCS M, a diagnosis of M is a pair (D1, D2), D1, D2 ⊆ brM , s.t. M [brM\D1 ∪ heads(D2)]
6|= ⊥”. D±(M) is the set of all such diagnoses, while M [brM\D1 ∪ heads(D2)] is the MCS obtained from
M by removing the rules in D1 and adding the heads of the rules in D2.

In other words, if we deactivate the rules in D1 and apply the rules in D2 in unconditional form, M
will become consistent. In a MCS it is possible that there is more than one diagnosis that can be applied to
restore consistency.

Example 4. In our running example, consider the case that profB is also identified by C2 as one of the
authors of the paper under examination. In this case kb2 would also contain profB:

kb2 = {profA, profB}

This addition would result in an inconsistency in kb1, caused by the activation of rules r4 and r2. Specif-
ically, rule r4 would become applicable, ubiquitousComputing and ambientComputing would become
true in C3, r2 would then become applicable too, and distributedComputing would become true in C1

causing an inconsistency with centralizedComputing, which has also been evaluated as true. To resolve
this conflict, one of the four bridge rules r1-r4 must be invalidated. Using the definition of diagnosis that we
presented above, this is formally described as:

D±(M) = {({r1}, ∅), ({r2}, ∅), ({r3}, ∅), ({r4}, ∅)}.

Various criteria have been proposed for choosing a diagnosis including: i.) the number of bridge rules
contained in the diagnosis - specifically in [19] subset-minimal diagnoses are preferred, ii.) local preferences
on diagnoses proposed in [20] and iii.) local preferences on contexts and provenance information, which
have been proposed for Contextual Defeasible Logic [17, 10].

4.2 Proposed Solution
Our approach is to use the conviviality of the resulted system as a criterion for choosing a diagnosis. This
actually means that for each candidate solution (diagnosis), we measure the conviviality of the system that is
derived after applying the diagnosis, and we choose the diagnosis that minimally decreases the conviviality
of the system. The intuition behind this approach is that the system should remain as cooperative as possible,
and this is achieved by enabling the maximum number of agents to both contribute to and benefit from this
cooperation. In the extreme case of removing all bridge rules, there will be no inconsistencies; however
contexts will not be able to exchange information. Our proposed solution is to resolve inconsistencies, by
also keeping as many bridge rules (hence possibilities for information exchange) as possible.

Diagnoses contain two types of changes applicable in the bridge rules: invalidation (removal) of a rule;
and applying a rule unconditionally, which means removing the body of the rule. These changes affect the
dependencies of the system as follows: When invalidating or adding unconditionally rule r (as defined in
(1)) in a MCS M , all the dependencies labeled by r are removed from the dependence network of M .

Assuming that DN(M,Di) is the dependence network that corresponds to MCS M after applying
diagnosis D1, the optimal diagnosis is the one that maximizes the conviviality of DN(M,Di):

Dopt = {Di : Conv(DN(M,Di)) = max}

Example 5. In the running example, there are four diagnoses that we can choose from: D1-D4. Each of
them requires invalidating one of the four bridge rules r1 to r4, respectively. Figures 2 to 5 depict the four
dependence networks DN(M,Di), which are derived after applying Di. Dashed arrows in Figures 2-5
represent the dependencies that are dropped in each DN(M,Di), by applying diagnosis Di.

Following Equation 2 and the four dependence networks, which are graphically represented in Figures 2-
5, the conviviality of each DN(M,Di) is:

Conv(DN(M,D1)) =
8

Ω
= 0.037 and

Conv(DN(M,D2)) = Conv(DN(M,D3)) = Conv(DN(M,D4)) =
2

Ω
= 0.009,

with Ω = 216.
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Figure 5: DN(M,D4)

Since the number of bridge rules |R| is now 3, instead of 4, Ω has a different value than in DN(M). By
applying D1 (Figure 2), only one cycle (C1, C2) is removed from the initial dependence network DN(M),
illustrated in Figure 1. However, by applying any of the rest diagnoses D2-D4, two cycles are removed from
DN(M). Specifically, by applying D2 (Figure 3), we remove the cycles (C1, C3) and (C1, C3, C2). By
applying D3 (Figure 4), we remove the cycles (C1, C2) and (C1, C3, C2). Finally, by applying D4 (Figure
5), we remove the cycles (C1, C3) and (C1, C3, C2).

Therefore the optimal diagnosis is D1. By applying D1 the system will have the equilibrium S′:

S′ = ({sensors, corba, distributedComputing}, {profA, profB,middleware},
{ubiquitousComputing, ambientComputing})

This approach can also be combined with any of the approaches that have been proposed so far for
inconsistency resolution. For example, one may choose to apply the conviviality-based approach only to
those diagnoses that comply with some constraints representing user-defined criteria, as suggested by in
[20]. It can also be combined with preferences on diagnoses proposed by [20] or preferences on contexts
suggested by [17, 10]. A study of such combined approaches will be part of our future work in the field.

5 Conclusion
Today, with the rise of systems in which knowledge is distributed in a network of interconnected hetero-
geneous and evolving knowledge resources, such as Semantic Web, Linked Open Data, and Ambient In-
telligence, research in contextual knowledge representation and reasoning has become particularly relevant.
Multi-Context Systems (MCS) are logical formalizations of distributed context theories connected through
a set of bridge rules, which enable information flow between contexts. The individual entities, that such
systems consist of, cooperate by sharing information through their bridge rules. By combining and reason-
ing on the information they import, they are able to derive new knowledge. Evaluating the ways in which
the system enables cooperations, and characterizing a MCS based on the opportunities for information ex-
change that it provides to its contexts are therefore, key issues. The social science concept of conviviality
has recently been proposed to model and measure the potential cooperation among agents in multiagent sys-
tems and ambient intelligence systems. Furthermore, formal conviviality measures for dependence networks
using a coalitional game theoretic framework, have been introduced. Roughly, more opportunities to work
with other agents increase the conviviality of the system.

This paper is a preliminary step toward extending the concept of conviviality, modelled with dependence
networks, to MCSs. First, we describe how conviviality can be used to model cooperation in MCS. Based on
the intuition that contexts depend on the information they receive from other contexts to achieve their goals,
i.e., apply specific bridge rules to infer particular information, we define dependence networks for MCS.
Furthermore, the aim is for MCSs to be as cooperative as possible, and for contexts to have as many choices
as possible to cooperate with other contexts. This results in MCS being as convivial as possible. In order
to evaluate the conviviality of a MCS, we apply pairwise conviviality measures and allow for comparisons
among MCS. Finally we propose a potential use of conviviality as a property of MCS for the problem of
inconsistency resolution. Indeed, without considering contextual information, reasoning can easily run to
inconsistency problems, for example, when considering knowledge in the wrong context. We propose a
solution based on the idea that the optimal solution is the one that minimally decreases the conviviality of
the system. We illustrate how to model, measure and use conviviality for MCS with a running example.
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