Associative and preassociative functions

Jean-Luc Marichal Bruno Teheux

University of Luxembourg

Associative functions

Let X be a nonempty set
$G: X^{2} \rightarrow X$ is associative if

$$
G(x, G(y, z))=G(G(x, y), z)
$$

Example: $G(x, y)=x+y$ on $X=\mathbb{R}$

Associative functions of multiple arities

Let

$$
X^{*}=\bigcup_{n \in \mathbb{N}} X^{n}
$$

$F: X^{*} \rightarrow X$ is associative if

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{p}, \quad y_{1}, \ldots, y_{q}, \quad z_{1}, \ldots, z_{r}\right) \\
= & F\left(x_{1}, \ldots, x_{p}, F\left(y_{1}, \ldots, y_{q}\right), z_{1}, \ldots, z_{r}\right)
\end{aligned}
$$

Example: $F\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}$ on $X=\mathbb{R}$

Notation

We regard n-tuples \mathbf{x} in X^{n} as n-strings over X
0 -string: ε
1-strings: x, y, z, \ldots
n-strings: $\mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots$
X^{*} is endowed with concatenation
Example: $x \in X^{n}, y \in X, z \in X^{m} \quad \Rightarrow \quad x y z \in X^{n+1+m}$

$$
|\mathbf{x}|=\text { length of } \mathbf{x}
$$

Functions of multiple arities

Let

$$
\begin{gathered}
X^{*}=\bigcup_{n \in \mathbb{N}} X^{n} \\
F: X^{*} \rightarrow X
\end{gathered}
$$

Components of F :

$$
\begin{aligned}
& F_{n}: X^{n} \rightarrow X \\
& F_{n}=\left.F\right|_{X^{n}}
\end{aligned}
$$

F is described by its components $F_{1}, F_{2}, F_{3}, \ldots, F_{n}, \ldots$

Associative functions of multiple arities

$F: X^{*} \rightarrow X$ is associative if

$$
F(x y z)=F(x F(y) z) \quad \forall x y z \in X^{*}
$$

Theorem (Couceiro and M.)
$F: X^{*} \rightarrow X$ is associative if and only if

$$
F(\mathbf{x y})=F(F(\mathbf{x}) F(\mathbf{y})) \quad \forall \mathbf{x y} \in X^{*}
$$

Associative functions of multiple arities

$F: X^{*} \rightarrow X$ is associative if

$$
F(\mathrm{xyz})=F(\mathrm{x} F(\mathrm{y}) \mathbf{z}) \quad \forall \mathrm{xyz} \in X^{*}
$$

Theorem

We can assume that $|x z| \leqslant 1$ in the definition above
That is, $F: X^{*} \rightarrow X$ is associative if and only if

$$
\begin{aligned}
& F(\mathbf{y})=F(F(\mathbf{y})) \\
& F(x \mathbf{y})=F(x F(\mathbf{y})) \\
& F(\mathbf{y} z)=F(F(\mathbf{y}) z)
\end{aligned}
$$

Associative functions of multiple arities

Associative functions are completely determined by their unary and binary components

$$
F_{n}\left(x_{1} \cdots x_{n}\right)=F_{2}\left(F_{n-1}\left(x_{1} \cdots x_{n-1}\right) x_{n}\right) \quad n \geqslant 3
$$

Proposition

Let $F: X^{*} \rightarrow X$ and $G: X^{*} \rightarrow X$ be two associative functions such that $F_{1}=G_{1}$ and $F_{2}=G_{2}$. Then $F=G$.

Associative functions of multiple arities

Link with binary associative functions ?

Proposition

A binary function $G: X^{2} \rightarrow X$ is associative if and only if there exists an associative function $F: X^{*} \rightarrow X$ such that $F_{2}=G$.

Does F_{1} really play a role ?

$$
\begin{gathered}
F_{1}(F(\mathbf{x}))=F(\mathbf{x}) \\
F(\mathbf{x} y \mathbf{z})=F\left(\mathbf{x} F_{1}(y) \mathbf{z}\right)
\end{gathered}
$$

Associative functions of multiple arities

Theorem

$F: X^{*} \rightarrow X$ is associative if and only if
(i) $F_{1}\left(F_{1}(x)\right)=F_{1}(x), \quad F_{1}\left(F_{2}(x y)\right)=F_{2}(x y)$
(ii) $F_{2}(x y)=F_{2}\left(F_{1}(x) y\right)=F_{2}\left(x F_{1}(y)\right)$
(iii) $F_{2}\left(F_{2}(x y) z\right)=F_{2}\left(x F_{2}(y z)\right)$
(iv) $F_{n}\left(x_{1} \cdots x_{n}\right)=F_{2}\left(F_{n-1}\left(x_{1} \cdots x_{n-1}\right) x_{n}\right) \quad n \geqslant 3$

Suppose F_{2} satisfying (iii) is given. What could be F_{1} ?
Example: $F_{2}(x y)=x+y$
By (i), we have

$$
F_{1}(x+y)=F_{1}\left(F_{2}(x y)\right)=F_{2}(x y)=x+y
$$

$\Rightarrow \quad F_{1}(x)=x$

Associative functions of multiple arities

Theorem

$F: X^{*} \rightarrow X$ is associative if and only if
(i) $F_{1}\left(F_{1}(x)\right)=F_{1}(x), \quad F_{1}\left(F_{2}(x y)\right)=F_{2}(x y)$
(ii) $F_{2}(x y)=F_{2}\left(F_{1}(x) y\right)=F_{2}\left(x F_{1}(y)\right)$
(iii) $F_{2}\left(F_{2}(x y) z\right)=F_{2}\left(x F_{2}(y z)\right)$
(iv) $F_{n}\left(x_{1} \cdots x_{n}\right)=F_{2}\left(F_{n-1}\left(x_{1} \cdots x_{n-1}\right) x_{n}\right) \quad n \geqslant 3$

Example: $F_{n}\left(x_{1} \cdots x_{n}\right)=\left(\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}\right)^{1 / 2}$

$$
\begin{gathered}
F_{1}(x)=x \\
F_{1}(x)=|x|
\end{gathered}
$$

Preassociative functions

Let Y be a nonempty set
Definition. We say that $F: X^{*} \rightarrow Y$ is preassociative if

$$
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \Rightarrow F(\mathbf{x y z})=F\left(\mathbf{x y}^{\prime} \mathbf{z}\right)
$$

Example: $F_{n}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2} \quad(X=Y=\mathbb{R})$

Proposition

$F: X^{*} \rightarrow Y$ is preassociative if and only if

$$
F(\mathbf{x})=F\left(\mathbf{x}^{\prime}\right) \text { and } F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \quad \Rightarrow \quad F(\mathbf{x y})=F\left(\mathbf{x}^{\prime} \mathbf{y}^{\prime}\right)
$$

Preassociative functions

Remark. If $F: X^{*} \rightarrow X$ is associative, then it is preassociative
Proof. Suppose $F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right)$
Then $F(\mathbf{x y z})=F(\mathbf{x} F(\mathbf{y}) \mathbf{z})=F\left(\mathbf{x} F\left(\mathbf{y}^{\prime}\right) \mathbf{z}\right)=F\left(\mathbf{x y}^{\prime} \mathbf{z}\right)$

Proposition

$F: X^{*} \rightarrow X$ is associative if and only if it is preassociative and $F_{1}(F(\mathbf{x}))=F(\mathbf{x})$

Proof. (Necessity) OK.
(Sufficiency) We have $F(\mathbf{y})=F(F(\mathbf{y}))$
Hence, by preassociativity, $F(\mathbf{x y z})=F(\mathbf{x} F(\mathbf{y}) \mathbf{z})$

Preassociative functions

Proposition

If $F: X^{*} \rightarrow Y$ is preassociative, then so is $F \circ(g, \ldots, g)$ for every function $g: X \rightarrow X$, where

$$
F \circ(g, \ldots, g): \quad x_{1} \cdots x_{n} \mapsto F_{n}\left(g\left(x_{1}\right) \cdots g\left(x_{n}\right)\right)
$$

Example: $F_{n}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2} \quad(X=Y=\mathbb{R})$

Proposition

If $F: X^{*} \rightarrow Y$ is preassociative, then so is $g \circ F$ for every function $g: Y \rightarrow Y$ such that $\left.g\right|_{\operatorname{ran}(F)}$ is constant or one-to-one

Example: $F_{n}(\mathbf{x})=\exp \left(x_{1}^{2}+\cdots+x_{n}^{2}\right) \quad(X=Y=\mathbb{R})$

Preassociative functions

Proposition

Assume $F: X^{*} \rightarrow Y$ is preassociative If F_{n} is constant, then so is F_{n+1}

Proof. If $F_{n}(\mathbf{y})=F_{n}\left(\mathbf{y}^{\prime}\right)$ for all $\mathbf{y}, \mathbf{y}^{\prime} \in X^{n}$, then $F_{n+1}(x \mathbf{y})=F_{n+1}\left(x \mathbf{y}^{\prime}\right)$ and hence F_{n+1} depends only on its first argument...

Proposition

Assume $F: X^{*} \rightarrow Y$ is preassociative
If F_{n} and F_{n+1} are the same constant c, then $F_{m}=c$ for all $m \geqslant n$

Proof. If $c=F_{n}(\mathbf{x})=F_{n+1}(\mathbf{x y})$, then $c=F_{n+1}(\mathbf{x z})=F_{n+2}(\mathbf{x} y z)$.
So $F_{n+2}=c \ldots$

Preassociative functions

We have seen that $F: X^{*} \rightarrow X$ is associative if and only if it is preassociative and $F_{1}(F(\mathbf{x}))=F(\mathbf{x})$

Relaxation of $F_{1}(F(\mathbf{x}))=F(\mathbf{x})$:

$$
\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)
$$

We now focus on preassociative functions $F: X^{*} \rightarrow Y$ satisfying $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$

Proposition

Let $F: X^{*} \rightarrow Y$ and $G: X^{*} \rightarrow Y$ be two preassociative functions such that $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$ and $\operatorname{ran}\left(G_{1}\right)=\operatorname{ran}(G)$.
If $F_{1}=G_{1}$ and $F_{2}=G_{2}$, then $F=G$.

Preassociative functions

Theorem

Let $F: X^{*} \rightarrow Y$ be a function. The following assertions are equivalent:
(i) F is preassociative and satisfies $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$
(ii) F can be factorized into $F=f \circ H$, where $H: X^{*} \rightarrow X$ is associative and $f: \operatorname{ran}(H) \rightarrow Y$ is one-to-one.
In this case, we have $f=\left.F_{1}\right|_{\operatorname{ran}(H)}$ and $F=F_{1} \circ H$

Open problems

(1) Suppress the condition $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$ in this theorem
(2) Find necessary and sufficient conditions on F_{1} for a function F of the form $F=F_{1} \circ H$, where H is associative, to be preassociative.

Axiomatizations of function classes

Theorem (Aczél 1949)

$H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous, one-to-one in each argument, and associative if and only if there exists a continuous and strictly monotone function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
H(x y)=\varphi^{-1}(\varphi(x)+\varphi(y))
$$

Axiomatizations of function classes

Theorem

Let $F: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be a function. The following assertions are equivalent:
(i) F is preassociative and satisfies $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$,
and F_{1} and F_{2} are continuous and one-to-one in each argument
(ii) there exist continuous and strictly monotone functions $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ and $\psi: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
F_{n}(\mathbf{x})=\psi\left(\varphi\left(x_{1}\right)+\cdots+\varphi\left(x_{n}\right)\right)
$$

Axiomatizations of function classes

Recall that a triangular norm is a function $T:[0,1]^{2} \rightarrow[0,1]$ which is nondecreasing in each argument, symmetric, associative, and such that $T(1 x)=x$

Theorem

Let $F:[0,1]^{*} \rightarrow \mathbb{R}$ be such that F_{1} is strictly increasing. The following assertions are equivalent:
(i) F is preassociative and satisfies $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$, and F_{2} is symmetric, nondecreasing, and satisfies $F_{2}(1 x)=F_{1}(x)$
(ii) there exists a strictly increasing function $f:[0,1] \rightarrow \mathbb{R}$ and a triangular norm $T:[0,1]^{*} \rightarrow[0,1]$ such that

$$
F=f \circ T .
$$

Axiomatizations of function classes

Theorem

Let $H: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be a function. The following assertions are equivalent:
(i) H is associative and satisfies $H(H(x) H(x))=H(x)$, and H_{1} and H_{2} are symmetric, continuous, and nondecreasing
(ii) there exist $a, b, c \in \mathbb{R}, a \leqslant c \leqslant b$, such that

$$
H_{n}(\mathbf{x})=\operatorname{med}\left(a, \operatorname{med}\left(\bigwedge_{i=1}^{n} x_{i}, c, \bigvee_{i=1}^{n} x_{i}\right), b\right)
$$

Axiomatizations of function classes

Theorem

Let $F: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be a function and let $[a, b]$ be a closed interval. The following assertions are equivalent:
(i) F is preassociative and satisfies $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}(F)$, there exists a continuous and strictly increasing function $f:[a, b] \rightarrow \mathbb{R}$ such that $F_{1}(x)=(f \circ$ med $)(a, x, b)$,
F_{2} is continuous, nondecreasing and satisfies $F_{2}(x x)=F_{1}(x)$
(ii) there exist $c \in[a, b]$ such that

$$
F_{n}(\mathbf{x})=(f \circ \operatorname{med})\left(a, \operatorname{med}\left(\bigwedge_{i=1}^{n} x_{i}, c, \bigvee_{i=1}^{n} x_{i}\right), b\right)
$$

Strongly preassociative functions

Definition. We say that $F: X^{*} \rightarrow Y$ is strongly preassociative if

$$
F(x z)=F\left(x^{\prime} z^{\prime}\right) \Rightarrow F(x y z)=F\left(x^{\prime} y^{\prime}\right)
$$

Theorem

$F: X^{*} \rightarrow Y$ is strongly preassociative if and only if it is preassociative and F_{n} is symmetric for every $n \in \mathbb{N}$

Open problems

(1) Find new axiomatizations of classes of preassociative functions from existing axiomatizations of classes of associative functions
(2) Find interpretations of preassociativity in fuzzy logic, artificial intelligence,...

Thank you for your attention !

