Associative and preassociative functions

Jean-Luc Marichal Bruno Teheux

University of Luxembourg

Let X be a nonempty set

 $G: X^2 \to X$ is *associative* if

$$G(x,G(y,z)) = G(G(x,y),z)$$

Example: G(x, y) = x + y on $X = \mathbb{R}$

Associative functions of multiple arities

Let

$$X^* = \bigcup_{n \in \mathbb{N}} X^n$$

 $F: X^* \to X$ is *associative* if

$$F(x_1,\ldots,x_p, y_1,\ldots,y_q, z_1,\ldots,z_r) = F(x_1,\ldots,x_p,F(y_1,\ldots,y_q),z_1,\ldots,z_r)$$

Example: $F(x_1, \ldots, x_n) = x_1 + \cdots + x_n$ on $X = \mathbb{R}$

We regard *n*-tuples **x** in X^n as *n*-strings over X

0-string: *ε* 1-strings: *x*, *y*, *z*, ... *n*-strings: **x**, **y**, **z**, ...

 X^* is endowed with concatenation

Example: $\mathbf{x} \in X^n$, $y \in X$, $\mathbf{z} \in X^m \Rightarrow \mathbf{x} \mathbf{y} \mathbf{z} \in X^{n+1+m}$

$$|\mathbf{x}| = \text{length of } \mathbf{x}$$

Functions of multiple arities

Components of F:

$$F_n \colon X^n \to X$$
$$F_n = F|_{X^n}$$

F is described by its components $F_1, F_2, F_3, \ldots, F_n, \ldots$

Associative functions of multiple arities

$F: X^* \to X$ is *associative* if

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \quad \forall \ \mathbf{xyz} \in X^*$$

Theorem (Couceiro and M.) $F: X^* \to X$ is associative if and only if $F(\mathbf{xy}) = F(F(\mathbf{x})F(\mathbf{y})) \quad \forall \ \mathbf{xy} \in X^*$

Associative functions of multiple arities

 $F: X^* \to X$ is *associative* if

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) \quad \forall \ \mathbf{xyz} \in X^*$$

Theorem

We can assume that $|\mathbf{x}\mathbf{z}| \leqslant 1$ in the definition above

That is, $F: X^* \to X$ is associative if and only if

$$F(\mathbf{y}) = F(F(\mathbf{y}))$$

$$F(\mathbf{x}\mathbf{y}) = F(\mathbf{x}F(\mathbf{y}))$$

$$F(\mathbf{y}z) = F(F(\mathbf{y})z)$$

Associative functions are completely determined by their unary and binary components

$$F_n(x_1\cdots x_n) = F_2(F_{n-1}(x_1\cdots x_{n-1})x_n) \qquad n \ge 3$$

Proposition

Let $F: X^* \to X$ and $G: X^* \to X$ be two associative functions such that $F_1 = G_1$ and $F_2 = G_2$. Then F = G.

Link with binary associative functions ?

Proposition

A binary function $G: X^2 \to X$ is associative if and only if there exists an associative function $F: X^* \to X$ such that $F_2 = G$.

Does F_1 really play a role ?

 $F_1(F(\mathbf{x})) = F(\mathbf{x})$ $F(\mathbf{x}y\mathbf{z}) = F(\mathbf{x}F_1(y)\mathbf{z})$

Associative functions of multiple arities

Theorem

$$\begin{aligned} F: X^* &\to X \text{ is associative if and only if} \\ \text{(i)} \ &F_1(F_1(x)) = F_1(x), \ &F_1(F_2(xy)) = F_2(xy) \\ \text{(ii)} \ &F_2(xy) = F_2(F_1(x)y) = F_2(xF_1(y)) \\ \text{(iii)} \ &F_2(F_2(xy)z) = F_2(xF_2(yz)) \\ \text{(iv)} \ &F_n(x_1 \cdots x_n) = F_2(F_{n-1}(x_1 \cdots x_{n-1})x_n) \qquad n \geq 3 \end{aligned}$$

Suppose F_2 satisfying (iii) is given. What could be F_1 ?

Example: $F_2(xy) = x + y$ By (i), we have

$$F_1(x+y) = F_1(F_2(xy)) = F_2(xy) = x+y$$

 \Rightarrow $F_1(x) = x$

$$\begin{aligned} F: X^* &\to X \text{ is associative if and only if} \\ (i) \ F_1(F_1(x)) &= F_1(x), \ F_1(F_2(xy)) = F_2(xy) \\ (ii) \ F_2(xy) &= F_2(F_1(x)y) = F_2(xF_1(y)) \\ (iii) \ F_2(F_2(xy)z) &= F_2(xF_2(yz)) \\ (iv) \ F_n(x_1 \cdots x_n) &= F_2(F_{n-1}(x_1 \cdots x_{n-1})x_n) \qquad n \ge 3 \end{aligned}$$

Example:
$$F_n(x_1 \cdots x_n) = (|x_1|^2 + \cdots + |x_n|^2)^{1/2}$$

 $F_1(x) = x$
 $F_1(x) = |x|$

Let Y be a nonempty set

Definition. We say that $F: X^* \to Y$ is *preassociative* if

$$F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{xyz}) = F(\mathbf{xy'z})$$

Example:
$$F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2$$
 $(X = Y = \mathbb{R})$

Proposition $F: X^* \to Y$ is preassociative if and only if $F(\mathbf{x}) = F(\mathbf{x}')$ and $F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{xy}) = F(\mathbf{x}'\mathbf{y}')$

Remark. If $F: X^* \to X$ is associative, then it is preassociative

Proof. Suppose
$$F(\mathbf{y}) = F(\mathbf{y}')$$

Then $F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) = F(\mathbf{x}F(\mathbf{y}')\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$

Proposition

 $F\colon X^*\to X$ is associative if and only if it is preassociative and $F_1(F(\mathbf{x}))=F(\mathbf{x})$

Proof. (Necessity) OK. (Sufficiency) We have $F(\mathbf{y}) = F(F(\mathbf{y}))$ Hence, by preassociativity, $F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z})$

Preassociative functions

Proposition

If $F: X^* \to Y$ is preassociative, then so is $F \circ (g, \ldots, g)$ for every function $g: X \to X$, where

 $F \circ (g, \ldots, g)$: $x_1 \cdots x_n \mapsto F_n(g(x_1) \cdots g(x_n))$

Example:
$$F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2$$
 $(X = Y = \mathbb{R})$

Proposition

If $F: X^* \to Y$ is preassociative, then so is $g \circ F$ for every function $g: Y \to Y$ such that $g|_{ran(F)}$ is constant or one-to-one

Example:
$$F_n(\mathbf{x}) = \exp(x_1^2 + \dots + x_n^2)$$
 $(X = Y = \mathbb{R})$

Preassociative functions

Proposition

Assume $F: X^* \to Y$ is preassociative If F_n is constant, then so is F_{n+1}

Proof. If $F_n(\mathbf{y}) = F_n(\mathbf{y}')$ for all $\mathbf{y}, \mathbf{y}' \in X^n$, then $F_{n+1}(x\mathbf{y}) = F_{n+1}(x\mathbf{y}')$ and hence F_{n+1} depends only on its first argument...

Proposition

Assume $F: X^* \to Y$ is preassociative If F_n and F_{n+1} are the same constant c, then $F_m = c$ for all $m \ge n$

Proof. If $c = F_n(\mathbf{x}) = F_{n+1}(\mathbf{x}y)$, then $c = F_{n+1}(\mathbf{x}z) = F_{n+2}(\mathbf{x}yz)$. So $F_{n+2} = c \dots$ We have seen that $F: X^* \to X$ is associative if and only if it is preassociative and $F_1(F(\mathbf{x})) = F(\mathbf{x})$

Relaxation of $F_1(F(\mathbf{x})) = F(\mathbf{x})$:

$$\operatorname{ran}(F_1) = \operatorname{ran}(F)$$

We now focus on preassociative functions $F: X^* \to Y$ satisfying $ran(F_1) = ran(F)$

Proposition

Let $F: X^* \to Y$ and $G: X^* \to Y$ be two preassociative functions such that $ran(F_1) = ran(F)$ and $ran(G_1) = ran(G)$. If $F_1 = G_1$ and $F_2 = G_2$, then F = G.

Let $F: X^* \to Y$ be a function. The following assertions are equivalent:

- (i) F is preassociative and satisfies $ran(F_1) = ran(F)$
- (ii) *F* can be factorized into $F = f \circ H$, where $H: X^* \to X$ is associative and $f: \operatorname{ran}(H) \to Y$ is one-to-one. In this case, we have $f = F_1|_{\operatorname{ran}(H)}$ and $F = F_1 \circ H$

Open problems

- (1) Suppress the condition $ran(F_1) = ran(F)$ in this theorem
- (2) Find necessary and sufficient conditions on F_1 for a function F of the form $F = F_1 \circ H$, where H is associative, to be preassociative.

Theorem (Aczél 1949)

 $H \colon \mathbb{R}^2 \to \mathbb{R}$ is continuous, one-to-one in each argument, and associative if and only if there exists a continuous and strictly monotone function $\varphi \colon \mathbb{R} \to \mathbb{R}$ such that

$$H(xy) = \varphi^{-1}(\varphi(x) + \varphi(y))$$

Let $F : \mathbb{R}^* \to \mathbb{R}$ be a function. The following assertions are equivalent:

- (i) F is preassociative and satisfies $ran(F_1) = ran(F)$, and F_1 and F_2 are continuous and one-to-one in each argument
- (ii) there exist continuous and strictly monotone functions $\varphi \colon \mathbb{R} \to \mathbb{R}$ and $\psi \colon \mathbb{R} \to \mathbb{R}$ such that

$$F_n(\mathbf{x}) = \psi(\varphi(x_1) + \cdots + \varphi(x_n))$$

Recall that a *triangular norm* is a function $T: [0,1]^2 \rightarrow [0,1]$ which is nondecreasing in each argument, symmetric, associative, and such that T(1x) = x

Theorem

Let $F: [0,1]^* \to \mathbb{R}$ be such that F_1 is strictly increasing. The following assertions are equivalent:

(i) F is preassociative and satisfies ran(F₁) = ran(F), and F₂ is symmetric, nondecreasing, and satisfies F₂(1x) = F₁(x)

(ii) there exists a strictly increasing function $f: [0,1] \to \mathbb{R}$ and a triangular norm $T: [0,1]^* \to [0,1]$ such that

$$F = f \circ T.$$

Let $H \colon \mathbb{R}^* \to \mathbb{R}$ be a function. The following assertions are equivalent:

(i) *H* is associative and satisfies *H*(*H*(*x*)*H*(*x*)) = *H*(*x*), and *H*₁ and *H*₂ are symmetric, continuous, and nondecreasing
(ii) there exist *a*, *b*, *c* ∈ ℝ, *a* ≤ *c* ≤ *b*, such that

$$H_n(\mathbf{x}) = \operatorname{med}\left(\mathbf{a}, \operatorname{med}\left(\bigwedge_{i=1}^n x_i, \mathbf{c}, \bigvee_{i=1}^n x_i\right), \mathbf{b}\right)$$

Let $F : \mathbb{R}^* \to \mathbb{R}$ be a function and let [a, b] be a closed interval. The following assertions are equivalent:

(i) F is preassociative and satisfies ran(F₁) = ran(F), there exists a continuous and strictly increasing function f: [a, b] → ℝ such that F₁(x) = (f ∘ med)(a, x, b), F₂ is continuous, nondecreasing and satisfies F₂(xx) = F₁(x)
(ii) there exist c ∈ [a, b] such that

$$F_n(\mathbf{x}) = (f \circ \operatorname{med}) \left(a, \operatorname{med} \left(\bigwedge_{i=1}^n x_i, c, \bigvee_{i=1}^n x_i \right), b \right)$$

Definition. We say that $F: X^* \to Y$ is *strongly preassociative* if

$$F(\mathbf{x}\mathbf{z}) = F(\mathbf{x}'\mathbf{z}') \Rightarrow F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}'\mathbf{y}\mathbf{z}')$$

Theorem

 $F: X^* \to Y$ is strongly preassociative if and only if it is preassociative and F_n is symmetric for every $n \in \mathbb{N}$

- Find new axiomatizations of classes of preassociative functions from existing axiomatizations of classes of associative functions
- (2) Find interpretations of preassociativity in fuzzy logic, artificial intelligence,...

Thank you for your attention !