
Value at Risk 
a practical introduction 

Jang Schiltz 

University of Luxemburg 

jang.schiltz@uni.lu 



Outline of the talk 

 

• Some mathematical background 

• Value at Risk 

• Backtesting 

• Stresstesting 

 

 



Some mathematical 

background 



Random Variables 

Dummy Definition: 

A probability is a non deterministic [0,1] valued function which is additif on disjoint sets. 

Dummy Definition: 

A random variable X is a real valued non deterministic function. If its image (the set of 

all possible values) ΩX is finite or countable X is called a discrete random variable, 

otherwise X is called a continuous random variable.  

Definition: 

The law or distribution of a random variable X is the probabiltity PX defined for all 

subset A of ΩX by  
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Cumulative density function 

Definition: 

The cumulative distribution function of a real-valued random variable X is defined for 

every real number x by  

                                                       F(x)= P(X ≤ x). 

Examples 
As an example, suppose X is uniformly distributed on the unit interval [0, 1]. 

Then the CDF of X is given by 

 

Take another example, suppose X takes only the discrete values 0 and 1, with equal probability. Then 

the CDF of X is given by 

 

http://en.wikipedia.org/wiki/Image:Discrete_probability_distribution_illustration.png


Quantile function 

 

 

 

If the cdf F is strictly increasing and continuous then F-1(y) is the unique real number x 

such that F(x) = y. 

Unfortunately, the distribution does not, in general, have an inverse. One may define  

 

 

Example 1: The median is F − 1(0.5). 

 

Example 2: Put τ = F − 1(0,95). Then we call τ the 95% quantile. 

 

The inverse of the cdf is called the quantile function. 



Density function 

Definition: 

 A random variable X admits a density function f (with respect to Lebesgue measure) if 

there exists a measurable function f such that 
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Property: 

If X is a continuous random variable with density f and cdf F, then 



Expectation 

Definition: 

If X denotes a discrete random variable taking the values xi with probabilities pi its 

expectation or mean value is the real number E(X) defined by 

Proposition: For any continuous function g, 
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Example: Let X be the result of throwing a dice. 
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Expectation 

Definition: 

If X denotes a continuous random variable with density function f its expectation or mean 

value is the real number E(X) defined by 

Proposition: For any continuous function g, 

Proposition: If X and Y are two random variables and a and b two real numbers,  
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Variance 

Definition: 

If X denotes a random variable its variance is the real number V(X) defined by 

The standard deviation σ(X) of X is the square root of its variance. 

Proposition: If X and Y are two random variables and a and b two real numbers,  
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Definition: 

If X and Y are two random variables the quantity E(XY) - E(X)E(Y) is called the 

covariance of X and Y and denotes by Cov (X,Y).  



Normal distribution 

Definition: 

The normal distribution of mean m and standard deviation σ is the continuous random 

variable X defined by the density function 
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Density functions of different 

normal random variables. 

http://upload.wikimedia.org/wikipedia/commons/1/1b/Normal_distribution_pdf.png


Normal distribution 

Cumulative distribution functions 

of different normal random 

variables. 

http://upload.wikimedia.org/wikipedia/commons/1/19/Normal_distribution_cdf.png


The central limit theorem 
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Theorem: 

Consider an n-dimensional random vector with independent and identically distributed 

components Xi of mean m and standard deviation σ. Then, 

Plot of the pdf of a normal distribution with 

μ = 12 and σ = 3, approximating the pdf of 

a binomial distribution with n = 48 and p = 

1/4 

http://en.wikipedia.org/wiki/Image:Normal_approximation_to_binomial.svg


Standard deviation and confidence intervals 

http://en.wikipedia.org/wiki/Image:Standard_deviation_diagram.svg


Estimators 

Definition: 

An estimator is a function of the observable sample data that is used to estimate an 

unknown population parameter. 

Example: 

Let {x1, …,xn} be a sample of n independent realizations of a random variable X. 

The mean of X is estimated by the random variable  
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The variance of X is estimated by the random variable 
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Monte Carlo Methods 

 

 

 

Technique of numerical integration which allows 

high dimensionality 

Simulation method relying on repeated random 

sampling 



Monte Carlo Methods 

 

 

 

Example : Approximating a standard deviation 

Let X be a standard normal distributed and  
2
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Consider Y = f(X). What is the variance of Y? 

Define a sample 

{X[1], X[2], …, X[100]} for X 

and construct a realization 

{x[1], x[2], …, x[100]}. 



Monte Carlo Methods 

Compute y[k] = f(x[k]) for each k to get a 

realization {y[1], y[2], …, y[100]}. 

Example : Approximating a standard deviation 

Apply sample estimator 
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to get an estimation of the variance 

of Y. 



Monte Carlo Methods 

Realizations of samples 

Conditions :  

• the sample mean of {x[1], x[2], …, x[n]} should be close to the mean of X. 

• the sample covariance matrix of {x[1], x[2], …, x[n]} should be close to the covariance 

matrix of X. 

• to satisfy the independent identically distributed condition, sample autocorrelations 

between lagged values x[i] and x[j] should be approximately 0. 

 use of a good pseudorandom generator 



Monte Carlo Methods 

Monte Carlo estimator 

A Monte Carlo method can always be seen as a statistical estimator H(X[1], X[2], …, X[n]} 

of an (not necessarly probabilistic) integral 

( ) .f u du  

We write as Ψ = E[f(X)] for some random variable X  and estimate it by  
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with standard error σ.  

If we take a larger sample {X[1], X[2], …, X[n]},  
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Monte Carlo Methods 

Variance reduction 

Consider a Monto Carlo estimator 
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  for some quantity Ψ = E[f(X)]. 

Let ξ be function for which the mean E[ξ(X)] is known. ξ(X) is called a control variate. 

Consider the random function f*(X) = f(X) – c [ξ(X) – E[ξ(X)]] for some constant c. 

f*(X) is then an unbiased estimator of Ψ since E[f*(X) ]= Ψ. 

We can estimate it with the Monte Carlo estimator 
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It has a lower standard error which can be minimized by a clever choice of 

the constant c. 



Value at Risk 



Definition 

 

 

 

( VAR) 1tP L c  

Value at risk (VAR) summarizes the worst loss over a target horizon 

that will not be exceeded with a given level of confidence under 

normal market conditions. 

 

Mathematically, if c denotes the confidence level, t the target 

horizon and     the loss at time t, VAR is defined by tL



Example 

 

 

 

10% Value at Risk with normally distibuted portfoliovalue 

 



Steps in computing VAR 

 

 

 

• Mark to market the current portfolio  

• Set the time horizon 

• Set the confidence level 

• Measure the variability of the risk factor 

• Compute the probability 

 

Example : VAR of a $100 million equity portfolio over 10 days at the 

99 % confidence level. 

 

 

 



Quantile of the confidence level 



Quantile of the confidence level 



Quantile of the confidence level 

 

 

 



Time adjustment 

 

 

 

Suppose that the portfolio has an annual variability of 15 %.  

We are interested in a 10 days VaR. Since the trading year is constituted of 250 

days, we have to adjust the volatility to ten days. 

The central limit theorem tells us that for independent and identically distributed 

random variables, variances are additif over time, which implies that volatility 

grows with the square root of time. 

Finally we get : 

$100 15% 10/ 250 2,33 $7 .VaR MM MM 



Example 2 

 

 

 

Compute a portfolio’s 90 % 1 week USD VaR. We need to compute the value at time one 

(after a week) of the portfolio. Define 
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Example 2 

 

 

 

The portfolio holdings ω are reprsented as a row vector.  

Suppose ω = (1000, 2000, 500, 250, 1000, 100). 

The current portfolio value is 0P = ω 0S = 13,011 MM USD. 

It’s value at time one 1P is random: 

                                                                                              1P = ω 1S. 

Let 1¦0σ and 1¦0Σ be the standard deviation of 1P and the covariance matrix of 1S. 

We have : 

1¦0 '.   

How do we compute the value of 1¦0Σ ? 



Example 2 

 

 

 

1709 1227 8 3557 774 275

1227 1746 65 6274 574 469

8 65 128 270 49 69
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Time series analysis gives us 



Example 2 

 
 

1¦0 ' 271.400 USD    

Conditional standard deviation of 1P: 

To conclude we need a modelization for the probability law of 1P.  

Suppose that 1P follows a normal law with mean 0P and standard deviation 1¦0σ. The loss 

at time 1 denoted by L1, then follows a centered normal law with the same standard 

deviation.  

Denote the cumulative distribution function of L1 by FL1. 

Then the 90 % VaR of our portfolio after one week can be computed by 
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Example 3 

Compute a portfolio’s 95 % 1 day GBP VaR if the historical prices are in another 

currency. We need to compute the value at time one (after a day) of the portfolio. Define 
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The portfolio holdings ω are represented as a row vector.  

Suppose ω = (10.000, 30.000, -15.000). 

The current portfolio value is 0P = ω 0S = 198.000 GPB 

It’s value at time one 1P is random: 

                                                                                              1P = ω 1S. 

 

Problem : The historical data of the stock prices are in Australian dollars.  



Example 3 

 

 

 

We introduce a change of variables 1S = φ(1R), where 
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Hence, 1P = θ(1R) = 1R4(10.000 1R1+ 30.000 1R2 – 15.000 1R3) 

 

This is not a linear function of 1R !!! 



Example 3 

 

 

 

0,156644 0,030382 0,00135 0,000213

0,030382 0,029574 0,000157 0,000053
.

0,000135 0,000157 0,000739 0,000010
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Time series analysis gives us 

Let 1¦0σ and 1¦0Σ be the standard deviation of 1P and the covariance matrix of 1R. 



Example 3 

• apply the Monte Carlo method to approximate the desired 

quantile 

• approximate the quadratic polynomial θ with a linear polynomial  

• assume 1R is conditionally joint-normal and apply probabilistic 

techniques 

Solutions in case of a nonlinear portfolio mapping: 



Example 3 

Use of the Monte Carlo method 

Compute   1p[k]=θ(1r[k]) for all k. 



Example 3 

 
 Use of the Monte Carlo method 

The sample 5% - quantile of our realizations is GPB 191.614. 

The loss at time 1 L1 is the difference of the initial portfolio value and the portfolio 

value at time 1.  

0 1
1
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( ) ( ) 0,05

197.539 191.614

5.925 GPB.
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Luxemburgish definition 

 

 

 

CSSF criteria : c = 1 % 

                        t = 20 days (1 month) 

20( VAR) 99 %P L  

Moreover the observation of the risk factors used in the 

computations have to be done on a time horizon of at least a 

year (250 days) and the VaR computations have to be done 

every day. 



Backtesting 



Example 

 

 

 



Model verification based on failure rates 

Define N as the number of exceptions for a total of T days and N/T as the failure rate. 

This rate should converge to p = 1- c as the sample size increases. 

If the  model is correctly calibrated, the number of exceptions N follows a binomial 

probability distribution of parameters T and p. This means   

( ) (1 ) .k k T k

TP N K C p p   

When T is large, we can approximate the binomial distribution by a normal 

distribution of mean pT and variance p(1-p)T. 

 

Standard test theory then gives adecision rule for any given confidence level. 



Model verification based on failure rates 



Model verification based on failure rates 



Stresstesting 



Why stress testing? 



Scenario analysis 


