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Abstract

By using some basic calculus of multiple inte-
gration, we provide an alternative expression
of the integral

∫

]a,b[n
f(x,min xi, maxxi) dx,

in which the minimum and the maximum
are replaced with two single variables. We
demonstrate the usefulness of that expression
in the computation of orness and andness
average values of certain aggregation func-
tions. By generalizing our result to Riemann-
Stieltjes integrals, we also provide a method
for the calculation of certain expected values
and distribution functions.
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1 Introduction

Let a, b ∈ R ∪ {−∞, +∞}, with a < b, and consider
an integral over ]a, b[n whose integrand displays an ex-
plicit dependence on the minimum and/or the maxi-
mum of the variables, that is, an integral of the form

∫

]a,b[n
f(x,min xi, maxxi) dx. (1)

In this note we provide an alternative expression of
this integral, in which the minimum and the maxi-
mum are replaced with two single variables. When
the integral is tractable, that alternative expression
generally makes the integral much easier to evaluate.
For instance, when the integrand depends only on the
minimum and the maximum of the variables, we ob-

tain the following identity

∫

]a,b[n
f(minxi,max xi) dx

= n(n− 1)
∫ b

a

dv

∫ v

a

f(u, v)(v − u)n−2 du, (2)

and hence, for certain functions f , the integral be-
comes very easy to evaluate.

The alternative expression we present for integral (1)
is given in the next section (see Theorem 2.1). The
method we employ to obtain that expression merely
consists in dividing the domain ]a, b[n into n polyhedra
chosen in such a way that the minimum and maximum
functions simply become single variables.

This method can be very efficient in the evaluation of
many integrals that would normally require difficult
and tedious computations. As an example, consider
the variance of a sample x ∈ [a, b]n from a given pop-
ulation, namely

s2(x) =
1

n− 1

n∑

i=1

(
xi − 1

n

n∑

j=1

xj

)2

.

The average value over [a, b]n of the variance-to-range
ratio function can be easily calculated by using our
method. We merely obtain

1
(b− a)n

∫

[a,b]n

s2(x)
max xi −min xi

dx =
n + 2
12n

(b− a).

(3)

This note is set out as follows. In Section 2 we state
and prove the main result. In Section 3 we provide
an application of our result to internal functions, also
called Cauchy means, which can be classified accord-
ing to their location within the range of the variables.
A similar application to conjunctive and disjunctive
functions is also investigated. In Section 4 we show



how the direct generalization of our result to Riemann-
Stieltjes integrals enables us to consider the evaluation
of certain expected values from various distributions.

We will use the following notation throughout. For
any n-tuple x, we denote by (x | xj = u) the n-tuple
whose ith coordinate is u if i = j, and xi otherwise.
Also, for any integer n > 1, we set [n] := {1, . . . , n}.

2 Main result

In this section we present our main result which con-
sists of an alternative expression of integral (1). We
start with a preliminary lemma, which concerns the
particular cases of functions involving either the min-
imum or the maximum of the variables.
Lemma 2.1. Let f : ]a, b[n+1 → R be an integrable
function. Then we have
∫

]a,b[n
f(x, min xi) dx

=
n∑

j=1

∫ b

a

du

∫

]u,b[n−1
f(x, u | xj = u)

∏

i∈[n]\{j}
dxi,

∫

]a,b[n
f(x, maxxi) dx

=
n∑

j=1

∫ b

a

dv

∫

]a,v[n−1
f(x, v | xj = v)

∏

i∈[n]\{j}
dxi.

Proof. Consider the following n-dimensional open
polyhedra

Pj := {x ∈ ]a, b[n : xi > xj ∀i 6= j} (j ∈ [n]).

They are pairwise disjoint. Indeed, if x ∈ Pj ∩ Pk,
with j 6= k, then xk > xj and xj > xk, which is a
contradiction. Moreover, the union of their set closures
covers ]a, b[n. Indeed, for any x ∈ ]a, b[n there is always
j ∈ [n] such that xi > xj for all i 6= j.

Therefore, for any integrable function f : ]a, b[n+1 →
R, we have

∫

]a,b[n
f(x,min xi) dx

=
n∑

j=1

∫

Pj

f(x,min xi) dx

=
n∑

j=1

∫ b

a

dxj

∫

]xj ,b[n−1
f(x, xj)

∏

i∈[n]\{j}
dxi,

which proves the first formula. The second formula can
be established similarly by considering the polyhedra

Qj := {x ∈ ]a, b[n : xi < xj ∀i 6= j} (j ∈ [n]).

Lemma 2.1 is interesting in its own right since it pro-
vides special cases of the main result. For instance,
by applying the first formula, we immediately obtain
the following identity, which will be used in the next
section (see Example 3.2). For any S ⊆ [n], we have

∫

]a,b[n
f
(
min
i∈S

xi

)
dx

= (b− a)n−|S| |S|
∫ b

a

f(u)(b− u)|S|−1 du. (4)

Let us now state our main result, which follows imme-
diately from two applications of Lemma 2.1.

Theorem 2.1. Let n > 2 and let f : ]a, b[n+2 → R be
an integrable function. Then we have
∫

]a,b[n
f(x,min xi, maxxi) dx

=
n∑

j,k=1
j 6=k

∫ b

a

dv

∫ v

a

du×

∫

]u,v[n−2
f(x, u, v | xj = u, xk = v)

∏

i∈[n]\{j,k}
dxi.

A direct use of this result leads to formula (3). In-
deed, as the integrand is symmetric in its variables,
we simply need to consider

f(x, u, v | xj = u, xk = v)

=
1

v − u
s2(x1, . . . , xn−2, u, v), (5)

where, for any fixed a < u < v < b, the right-hand
side is a quadratic polynomial in x1, . . . , xn−2.

3 Application to aggregation function
theory

We now apply our main result to the computation of
orness and andness average values of internal functions
and to the computation of idempotency average values
of conjunctive and disjunctive functions.

3.1 Internal functions

We recall the concept of internal functions, which was
introduced in the theory of means and aggregation
functions.

Definition 3.1. A function F : ]a, b[n → R is said to
be internal if

min xi 6 F (x) 6 maxxi (x ∈ ]a, b[n).



Internality is a property introduced by Cauchy [3]
who considered in 1821 the mean of n independent
variables x1, . . . , xn as a function F (x1, . . . , xn) which
should be internal to the set of xi values. Internal func-
tions, also called Cauchy means, are very often encoun-
tered in the literature on aggregation functions. Most
of the classical means, such as the arithmetic mean,
the geometric mean, and their weighted versions, are
Cauchy means. For an overview on means and aggre-
gation functions, see the edited book [2].

It is straightforward to see that a function F : ]a, b[n →
R is internal if and only if there is a function f from
]a, b[n \ diag(]a, b[n) to [0, 1] such that

F (x) = min xi + f(x) (max xi −min xi),

where diag(]a, b[n) := {(x, . . . , x) ∈ ]a, b[n : x ∈ ]a, b[}.
Starting from this observation, Dujmović [4] (see also
[6]) introduced the following concepts of local orness
and andness functions, rediscovered independently by
Fernández Salido and Murakami [8] as orness and and-
ness distribution functions.
Definition 3.2. The orness distribution function
(resp. andness distribution function) associated with
an internal function F : ]a, b[n → R is a function odfF

(resp. adfF ), from ]a, b[n \diag(]a, b[n) to [0, 1], defined
as

odfF (x) =
F (x)−min xi

max xi −min xi

(resp. adfF (x) =
maxxi − F (x)
max xi −min xi

).

Thus defined, the orness distribution function (resp.
andness distribution function) associated with an in-
ternal function F : ]a, b[n → R measures, at each
x ∈ ]a, b[n, the extent to which F (x) is close to max xi

(resp. min xi), that is, the extent to which F (x) has a
disjunctive (resp. conjunctive) or orlike (resp. andlike)
behavior.

To measure the average orness or andness quality of
an internal function over its domain, Dujmović [4] also
introduced the concepts of mean local orness and and-
ness, later called orness and andness average values by
Fernández Salido and Murakami [8].
Definition 3.3. The orness average value (resp. and-
ness average value) of an internal and integrable func-
tion F : ]a, b[n → R is defined as

odfF =
1

(b− a)n

∫

]a,b[n
odfF (x) dx

(resp. adfF =
1

(b− a)n

∫

]a,b[n
adfF (x) dx).

As an immediate property, we note that

odfF (x) + adfF (x) = 1,

which entails odfF + adfF = 1. Thus, as expected,
both odfF and adfF render the same information and
hence we can restrict ourselves to the computation of
odfF .

Even though the computation of odfF remains very
difficult in most of the cases, Theorem 2.1 enables us to
rewrite this integral in a more practical form, namely

odfF

=
1

(b− a)n

n∑

j,k=1
j 6=k

∫ b

a

dv

∫ v

a

du×

∫

]u,v[n−2

F (x | xj = u, xk = v)− u

v − u

∏

i∈[n]\{j,k}
dxi.

The following two examples demonstrate the power of
this formula:

Example 3.1. The orness average value over [0, 1]n

of the geometric mean

G(n)(x) =
n∏

i=1

x
1/n
i

is given for n = 2 by

odfG(2) = ln 4− 1

and for n > 2 by

odfG(n)

= n(n− 1)
( n

n + 1

)n−2
∫ 1

0

xn(1− xn+1)n−2

1− xn
dx

− 1
n− 2

.

Example 3.2. Consider a function of the form

C(n)
a (x) =

∑

S⊆[n]

a(S)min
i∈S

xi,

where the set function a : 2[n] → R fulfills

a(∅) = 0 and
∑

S⊆[n]

a(S) = 1

and is chosen so that the function C
(n)
a is nondecreas-

ing in each variable. Such a function is known in
aggregation function theory as a Lovász extension or
a discrete Choquet integral (see for instance [9, 11]).
As particular cases, we can consider weighted means



∑
i wixi and convex combinations

∑
i wix(i) of order

statistics, also known as “ordered weighted averaging”
functions (see [13]).

The orness average value over [0, 1]n of C
(n)
a is given

by

odf
C

(n)
a

=
1

n− 1

∑

S⊆[n]

a(S)
n− |S|
|S|+ 1

.

To overcome the difficulty of calculating intractable or-
ness average values, Dujmović [5] introduced the next
concept of global orness and andness measures (see
also [6, 8]). Denote by F the average value of any in-
ternal and integrable function F : ]a, b[n → R over its
domain, that is,

F :=
1

(b− a)n

∫

]a,b[n
F (x) dx.

Definition 3.4. The global orness value (resp. global
andness value) of an internal and integrable function
F : ]a, b[n → R is defined as

ornessF =
F −Min

Max−Min

(resp. andnessF =
Max− F

Max−Min
),

where Min and Max are, respectively, the minimum
and maximum functions defined in ]a, b[n.

For example, considering the geometric mean
G(n)(x) =

∏n
i=1 x

1/n
i in [0, 1]n, we simply obtain

ornessG(n) = − 1
n− 1

+
n + 1
n− 1

( n

n + 1

)n

.

Considering the discrete Choquet integral C
(n)
a in

[0, 1]n, as defined in Example 3.2, we get

orness
C

(n)
a

=
1

n− 1

∑

S⊆[n]

a(S)
n− |S|
|S|+ 1

.

Surprisingly enough, in [0, 1]n we have

orness
C

(n)
a

= odf
C

(n)
a

,

that is, for any discrete Choquet integral, the global
orness value identifies with the orness average value,
a result already reached by Fernández Salido and Mu-
rakami [8] for the special case of symmetric Choquet
integrals, that is, convex combinations of order statis-
tics.

The interesting question of determining those inter-
nal functions F : ]a, b[n → R fulfilling the equation
ornessF = odfF remains open.

3.2 Conjunctive and disjunctive functions

Let us now consider conjunctive and disjunctive func-
tions.

Definition 3.5. A function F : ]a, b[n → R is said to
be conjunctive (resp. disjunctive) if

a 6 F (x) 6 minxi

(
resp. max xi 6 F (x) 6 b

)
.

Prominent examples of conjunctive (resp. disjunc-
tive) functions in the literature are t-norms (resp. t-
conorms), which are symmetric, associative, and non-
decreasing functions, from [0, 1]2 to [0, 1], with 0 (resp.
1) as the neutral element. For an account on t-norms
and t-conorms, see for instance the book by Alsina et
al. [1].

Clearly, a function F : ]a, b[n → R is conjunctive
(resp. disjunctive) if and only if there is a function
f : ]a, b[n → [0, 1] such that

F (x) = a + f(x)(min xi − a)(
resp. F (x) = b− f(x)(b−max xi)

)
.

Just as for the orness and andness distribution func-
tions, we can naturally define the concept of idempo-
tency distribution function associated with a conjunc-
tive (resp. disjunctive) function F : ]a, b[n → R as a
measure, at each x ∈ ]a, b[n, of the extent to which F
is idempotent (i.e., such that F (x, . . . , x) = x), that is,
the extent to which F is close to min xi (resp. max xi).

Definition 3.6. The idempotency distribution func-
tion associated with a conjunctive (resp. disjunctive)
function F : ]a, b[n → R is a function idfF : ]a, b[n →
[0, 1], defined as

idfF (x) =
F (x)− a

min xi − a

(resp. idfF (x) =
b− F (x)

b−max xi
).

We can now introduce the concept of idempotency av-
erage value as follows.

Definition 3.7. The idempotency average value of a
conjunctive or disjunctive function F : ]a, b[n → R is
defined as

idfF =
1

(b− a)n

∫

]a,b[n
idfF (x) dx.

According to Lemma 2.1, for any conjunctive function



F : ]a, b[n → R for instance, we can write

idfF =
1

(b− a)n

n∑

j=1

∫ b

a

du×
∫

]u,b[n−1

F (x | xj = u)− a

u− a

∏

i∈[n]\{j}
dxi.

The following concept of global idempotency value was
introduced by Kolesárová [10] for t-norms as an idem-
potency measure:

Definition 3.8. The global idempotency value of a
conjunctive (resp. disjunctive) function F : ]a, b[n → R
is defined by

idempF =
F − a

Min− a
(resp. idempF =

b− F

b−Max
).

Example 3.3. The idempotency average value and
the global idempotency value over [0, 1]n of the prod-
uct

P (n)(x) =
n∏

i=1

xi,

which is a conjunctive function, is given by

idfP (n) =
2n−1

(
2n−1

n

)

while its global idempotency value is given by

idempP (n) =
n + 1
2n

.

4 Application to probability theory

Since the idea behind our results merely consists in
breaking the integration domain into smaller regions,
Lemma 2.1 and Theorem 2.1 can be straightforwardly
extended to Riemann-Stieltjes integrals, thus making
it possible to consider average values from various
probability distributions.

Consider a measurable function g : Rn+2 → R and n
independent random variables X1, . . . , Xn, Xi (i ∈ [n])
having distribution function Fi(x). Define the random
variable Yg as

Yg := g(X, min Xi,max Xi),

where X denotes the vector (X1, . . . , Xn).

The direct generalization of Theorem 2.1 to Riemann-
Stieltjes integrals can be used to evaluate the expected
value of Yg, namely

E[Yg] =
∫

Rn

g(x,min xi, max xi) dF1(x1) · · · dFn(xn).

It can also be used in the evaluation of the distribution
function of Yg, which is defined as

Fg(z) = E[H(z − Yg)]

=
∫

Rn

H
(
z − g(x, min xi,max xi)

)×
dF1(x1) · · · dFn(xn),

where H : R → {0, 1} is the Heaviside step function,
defined by H(x) = 1 if x > 0, and 0 otherwise. Note
that the case where Yg is a lattice polynomial (max-
min combination) of the variables X1, . . . , Xn has been
thoroughly investigated by the author in [12].

To keep our exposition simple, let us examine the spe-
cial case where Yg depends only on min Xi and max Xi,
that is,

Yg := g(min Xi, max Xi),

where g : R2 → R is a measurable function. In this
case, our method immediately leads to

E[Yg] =
n∑

j,k=1
j 6=k

∫ ∞

−∞
dFk(v)×

∫ v

−∞
g(u, v) dFj(u)

∫

]u,v[n−2

∏

i∈[n]\{j,k}
dFi(xi)

=
n∑

j,k=1
j 6=k

∫ ∞

−∞
dFk(v)×

∫ v

−∞
g(u, v)

∏

i∈[n]\{j,k}

(
Fi(v)− Fi(u)

)
dFj(u).

In the particular case where the random vari-
ables X1, . . . , Xn are independent and identically dis-
tributed, each with distribution function F (x), the ex-
pected value clearly reduces to

E[Yg] = n(n− 1)
∫ ∞

−∞
dF (v)×

∫ v

−∞
g(u, v)

(
F (v)− F (u)

)n−2
dF (u), (6)

which generalizes formula (2).

Example 4.1. For exponential variables X1, . . . , Xn,
each with distribution function F (x) = 1− e−λx (x >
0), we simply have

E[Yg] = n(n− 1)
∫ ∞

0

λ e−λv dv×
∫ v

0

g(u, v)
(
e−λu − e−λv

)n−2
λ e−λu du.



Using the change of variables x = e−λu and y = e−λu−
e−λv, this integral can be easily rewritten as

E[Yg] = n(n− 1)
∫ 1

0

dx×
∫ x

0

yn−2 g
(− 1

λ
ln(x),− 1

λ
ln(x− y)

)
dy.

Example 4.2. Let us calculate the distribution func-
tion and the raw moments of the random variable

Y =
maxXi −minXi

maxXi

from the uniform distribution over ]0, 1]n.

The raw moments can be calculated very easily from
(6). For any integer r > 0, we have

E[Y r] = n(n− 1)
∫ 1

0

dv×
∫ v

0

(v − u

v

)r

(v − u)n−2 du =
n− 1

n + r − 1
.

On the other hand, the distribution of Y is simply
given by

F (z) = n(n−1)
∫ 1

0

dv

∫ v

0

H
(
z− v − u

v

)
(v−u)n−2 du,

that is,

F (z) =





0, if z 6 0,
zn−1, if 0 6 z 6 1,
1, if 1 6 z.
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