

Weighted Lattice Polynomials

Jean-Luc Marichal

University of Luxembourg

Lattice polynomials

Let L be a lattice with lattice operations \wedge and \vee

We assume that L is

- bounded (with bottom 0 and top 1)
- distributive

Definition (Birkhoff 1967)

An n -ary *lattice polynomial* is a well-formed expression involving n variables $x_1, \dots, x_n \in L$ linked by the lattice operations \wedge and \vee in an arbitrary combination of parentheses

Example.

$$p(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee x_3$$

Lattice polynomial functions

Any lattice polynomial naturally defines a *lattice polynomial function* (l.p.f.) $p : L^n \rightarrow L$.

Example.

$$p(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee x_3$$

If p and q represent the same function, we say that p and q are equivalent and we write $p = q$

Example.

$$x_1 \vee (x_1 \wedge x_2) = x_1$$

Disjunctive and conjunctive forms of l.p.f.'s

Notation. $[n] := \{1, \dots, n\}$.

Proposition (Birkhoff 1967)

Let $p : L^n \rightarrow L$ be any l.p.f.

Then there are nonconstant set functions $v, w : 2^{[n]} \rightarrow \{0, 1\}$, with $v(\emptyset) = 0$ and $w(\emptyset) = 1$, such that

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ v(S)=1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ w(S)=0}} \bigvee_{i \in S} x_i.$$

Example.

$$(x_1 \wedge x_2) \vee x_3 = (x_1 \vee x_3) \wedge (x_2 \vee x_3)$$

$$v(\{3\}) = v(\{1, 2\}) = 1$$

$$w(\{1, 3\}) = w(\{2, 3\}) = 0$$

The set functions v and w , which generate p , are not unique :

$$x_1 \vee (x_1 \wedge x_2) = x_1 = x_1 \wedge (x_1 \vee x_2)$$

Notation. $\mathbf{1}_S :=$ characteristic vector of $S \subseteq [n]$ in $\{0, 1\}^n$.

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate the l.p.f. p , only one is isotone :

$$v(S) = p(\mathbf{1}_S)$$

From among all the set functions w that conjunctively generate the l.p.f. p , only one is antitone :

$$w(S) = p(\mathbf{1}_{[n] \setminus S})$$

Consequently, any n -ary l.p.f. can always be written as

$$p(x) = \bigvee_{\substack{S \subseteq [n] \\ p(\mathbf{1}_S) = 1}} \bigwedge_{i \in S} x_i = \bigwedge_{\substack{S \subseteq [n] \\ p(\mathbf{1}_{[n] \setminus S}) = 0}} \bigvee_{i \in S} x_i$$

Example. $p(x) = (x_1 \wedge x_2) \vee x_3$

S	$p(\mathbf{1}_S)$	$p(\mathbf{1}_{[n] \setminus S})$
\emptyset	0	1
$\{1\}$	0	1
$\{2\}$	0	1
$\{3\}$	1	1
$\{1, 2\}$	1	1
$\{1, 3\}$	1	0
$\{2, 3\}$	1	0
$\{1, 2, 3\}$	1	0

$$p(x) = x_3 \vee (x_1 \wedge x_2) \vee (x_1 \wedge x_3) \vee (x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$$

$$p(x) = (x_1 \vee x_3) \wedge (x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

Particular cases : order statistics

Denote by $x_{(1)}, \dots, x_{(n)}$ the *order statistics* resulting from reordering x_1, \dots, x_n in the nondecreasing order : $x_{(1)} \leq \dots \leq x_{(n)}$.

Proposition (Ovchinnikov 1996, Marichal 2002)

$$p \text{ is a symmetric l.p.f.} \iff p \text{ is an order statistic}$$

Notation. Denote by $os_k : L^n \rightarrow L$ the k th order statistic function.

$$os_k(x) := x_{(k)}$$

Then we have

$$os_k(\mathbf{1}_S) = 1 \iff |S| \geq n - k + 1$$

$$os_k(\mathbf{1}_{[n] \setminus S}) = 0 \iff |S| \geq k$$

Weighted lattice polynomials

We can generalize the concept of l.p.f. by regarding some variables as parameters.

Example. For $c \in L$, we consider

$$p(x_1, x_2) = (c \vee x_1) \wedge x_2$$

Definition

$p : L^n \rightarrow L$ is an n -ary *weighted lattice polynomial* function (w.l.p.f.) if there exist parameters $c_1, \dots, c_m \in L$ and a l.p.f. $q : L^{n+m} \rightarrow L$ such that

$$p(x_1, \dots, x_n) = q(x_1, \dots, x_n, c_1, \dots, c_m)$$

Disjunctive and conjunctive forms of w.l.p.f.'s

Proposition (Lausch & Nöbauer 1973)

Let $p : L^n \rightarrow L$ be any w.l.p.f.

Then there are set functions $v, w : 2^{[n]} \rightarrow L$ such that

$$p(x) = \bigvee_{S \subseteq [n]} \left[v(S) \wedge \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[w(S) \vee \bigvee_{i \in S} x_i \right].$$

Remarks.

- p is a l.p.f. if v and w range in $\{0, 1\}$, with $v(\emptyset) = 0$ and $w(\emptyset) = 1$.
- Any w.l.p.f. is entirely determined by 2^n parameters, even if more parameters have been considered to construct it.

Disjunctive and conjunctive forms of w.l.p.f.'s

Proposition (Marichal 2006)

From among all the set functions v that disjunctively generate the w.l.p.f. p , only one is isotone :

$$v(S) = p(\mathbf{1}_S)$$

From among all the set functions w that conjunctively generate the w.l.p.f. p , only one is antitone :

$$w(S) = p(\mathbf{1}_{[n] \setminus S})$$

Disjunctive and conjunctive forms of w.l.p.f.'s

Consequently, any n -ary w.l.p.f. can always be written as

$$p(x) = \bigvee_{S \subseteq [n]} \left[p(\mathbf{1}_S) \wedge \bigwedge_{i \in S} x_i \right] = \bigwedge_{S \subseteq [n]} \left[p(\mathbf{1}_{[n] \setminus S}) \vee \bigvee_{i \in S} x_i \right]$$

Example. $p(x) = (c \vee x_1) \wedge x_2$

S	$p(\mathbf{1}_S)$	$p(\mathbf{1}_{[n] \setminus S})$
\emptyset	0	1
$\{1\}$	0	c
$\{2\}$	c	0
$\{1, 2\}$	1	0

$$\begin{aligned} p(x) &= (0 \wedge 1) \vee (0 \wedge x_1) \vee (c \wedge x_2) \vee (1 \wedge x_1 \wedge x_2) \\ &= (c \wedge x_2) \vee (x_1 \wedge x_2) \\ p(x) &= (1 \vee 0) \wedge (c \vee x_1) \wedge (0 \vee x_2) \wedge (0 \vee x_1 \vee x_2) \\ &= (c \vee x_1) \wedge x_2 \end{aligned}$$

Particular case : the Sugeno integral

Let us generalize the concept of discrete Sugeno integral in the framework of bounded distributive lattices.

Definition (Sugeno 1974)

An L -valued *fuzzy measure* on $[n]$ is an isotone set function $\mu : 2^{[n]} \rightarrow L$ such that $\mu(\emptyset) = 0$ and $\mu([n]) = 1$.

The *Sugeno integral* of a function $x : [n] \rightarrow L$ with respect to μ is defined by

$$\mathcal{S}_\mu(x) := \bigvee_{S \subseteq [n]} \left[\mu(S) \wedge \bigwedge_{i \in S} x_i \right]$$

Remark. A function $f : L^n \rightarrow L$ is an n -ary Sugeno integral if and only if f is a w.l.p.f. fulfilling $f(\mathbf{1}_\emptyset) = 0$ and $f(\mathbf{1}_{[n]}) = 1$.

Particular case : the Sugeno integral

Notation. The median function is the function $os_2 : L^3 \rightarrow L$.

Proposition (Marichal 2006)

For any w.l.p.f. $p : L^n \rightarrow L$, there is a fuzzy measure $\mu : 2^{[n]} \rightarrow L$ such that

$$p(x) = \text{median}[p(\mathbf{1}_\emptyset), \mathcal{S}_\mu(x), p(\mathbf{1}_{[n]})]$$

Corollary (Marichal 2006)

Consider a function $f : L^n \rightarrow L$.

The following assertions are equivalent :

- f is a Sugeno integral
- f is an idempotent w.l.p.f., that is such that $f(x, \dots, x) = x$
- f is a w.l.p.f. fulfilling $f(\mathbf{1}_\emptyset) = 0$ and $f(\mathbf{1}_{[n]}) = 1$.

Inclusion properties

Weighted lattice polynomials

Sugeno integrals

Lattice polynomials

Order statistics

The median based decomposition formula

Let $f : L^n \rightarrow L$ and $k \in [n]$ and define $f_k^0, f_k^1 : L^n \rightarrow L$ as

$$f_k^0(x) := f(x_1, \dots, x_{k-1}, 0, x_{k+1}, \dots, x_n)$$

$$f_k^1(x) := f(x_1, \dots, x_{k-1}, 1, x_{k+1}, \dots, x_n)$$

Remark. If f is a w.l.p.f., so are f_k^0 and f_k^1

Consider the following system of n functional equations, called the *median based decomposition formula*

$$f(x) = \text{median}[f_k^0(x), x_k, f_k^1(x)] \quad (k = 1, \dots, n)$$

The median based decomposition formula

Any solution of the median based decomposition formula

$$f(x) = \text{median}[f_k^0(x), x_k, f_k^1(x)] \quad (k = 1, \dots, n)$$

is an n -ary w.l.p.f.

Example. For $n = 2$ we have

$$f(x_1, x_2) = \text{median}[f(x_1, 0), x_2, f(x_1, 1)]$$

with

$$f(x_1, 0) = \text{median}[f(0, 0), x_1, f(1, 0)] \quad (\text{w.l.p.f.})$$

$$f(x_1, 1) = \text{median}[f(0, 1), x_1, f(1, 1)] \quad (\text{w.l.p.f.})$$

The median based decomposition formula

The median based decomposition formula characterizes the w.l.p.f.'s

Theorem (Marichal 2006)

The solutions of the median based decomposition formula are exactly the n -ary w.l.p.f.'s

Thanks for your attention !