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Summary

We give an interpretation of order invariant
functions as scale independent functions for
the aggregation on finite ordinal scales. More
precisely, we show how order invariant func-
tions can act, through discrete representa-
tives, on ordinal scales represented by finite
chains. In particular, this interpretation al-
lows us to justify the continuity property for
certain order invariant functions in a natural
way.
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1 Introduction

A finite ordinal scale can be defined in two equiva-
lent ways; one is symbolical and the other is numeri-
cal. Symbolically, a finite ordinal scale is a finite chain
(S,=), that is a totally ordered finite set, whose el-
ements are ranked according to some criterion. For
example [6, 7], a scale of evaluation of a commodity
by a consumer such as

S={B<RB<A<MLG <G}

is a finite ordinal scale, whose elements B, RB, A,
MLG, G might refer to the following linguistic terms:
bad, rather bad, acceptable, more or less good, good.
Numerically, a finite ordinal scale is a finite and strictly
increasing sequence of real numbers defined up to or-
der and representing the possible rating benchmarks

*This is a short version, without proofs, of the full
paper [13] written in collaboration with R. Mesiar.

defined along some criterion; see e.g. [21]. For exam-
ple, the sequences

(1,2,3,4,5) and (—6.5,—1.2,8.7,205.6, 750)

represent two equivalent versions of the scale defined
above.

The equivalence between these two definitions follows
immediately from the fact that the order defined on
any finite chain (5, %) can always be numerically rep-
resented in a real interval £ C R by means of an order-
preserving utility function f : S — E, which is defined
up to a strictly increasing bijection ¢ : E — FE; see
e.g. [11].

Now, suppose that we have n evaluations expressed in
the same ordinal scale (S, <) of cardinality k = |5]|
and suppose we want to aggregate these evaluations
and obtain a representative overall evaluation in the
same scale. Of course, we can use a discrete aggrega-
tion function G : S™ — S, that is, a ranking function
sorting k™ n-tuples into k classes. Alternatively, we
can use a universal n-place aggregation function inde-
pendent of the ordinal scale used. In this latter case,
since no scale can be specified, the aggregation func-
tion must be a numerical function M : E™ — E. For
instance, the classical median function, which gives the
middle value of an odd-length sequence of ordered val-
ues, is a scale independent function able to aggregate
numerical values expressed on any ordinal scale.

In this paper we investigate three types of scale inde-
pendent functions for the aggregation on finite ordinal
scales. First, we consider the functions mapping n
copies of the same ordinal scale into itself (see Defini-
tion 4.1), then the functions mapping n copies of the
same ordinal scale into an ordinal scale (see Definition
4.3), and finally, the functions mapping n independent
ordinal scales into an ordinal scale (see Definition 4.5).
It appears that these functions, known in the literature
as order invariant functions, have already been inves-
tigated and described in a pure numerical setting [14]
(see also [12, 16]). Our contribution here is to interpret



them as scale independent functions, that is, numerical
functions that always have symbolical representatives
when acting upon specified ordinal scales.

We also show that, even though at first glance it seems
unappropriate to ask any order invariant function to
be continuous, the continuity property can be inter-
preted in a very natural way for those order invariant
functions of the first type.

The organization of the paper is as follows. In §2 we
introduce the notation and the assumptions that we
adopt in this work. In §3 we recall the concept of
invariant subsets, which is necessary to describe the
scale independent functions. In §4, we present sepa-
rately the three types of scale independent functions
mentioned above. Finally, in §5 we investigate the
continuity property for those functions.

2 Preliminaries and notation

Let E be any real interval, bounded or not, and let
eo :=Inf E, e; :=supF, and E° := FE \ {ep,e1}. We
denote by B(E) the set of included boundaries of E,
that is

B(E) :={ep,e1} N E.

The automorphism group of F, that is the group of
all increasing bijections ¢ of E onto itself, is denoted
by A(E). For the sake of simplicity, we also denote
the index set {1,...,n} by [n] and the minimum and
maximum operations by A and V, respectively.

For any k > 2, a k-point ordinal scale (5, <) will be
denoted by

S:{Sl—<SQ-<"'-<Sk}

where s1 = s, (resp. s = s*) is the bottom element
(resp. top element) of the scale and < represents the
asymmetric part of <.

Since the binary relation < is a total order on a finite
set S, it can always be numerically represented by a
strictly increasing utility function f : S — E such that

si{_}si e s {2} )

see [11, Chapter 1]. Such a utility function is defined
up to an automorphism ¢ € A(FE); that is, with f all
functions f* = ¢ o f (and only these) represent the
same order on S. Thus, A(E) represents the set of
all admissible scale transformations, i.e., transforma-
tions of F that lead from one numerical scale to an
equivalent one; see e.g. [21].

(Si, S; S S),

Throughout, we will assume that f is endpoint-
preserving, that is, if eg € E (resp. ey € E) then
f(ss) = ep (resp. f(s*) = e;) for all ordinal scale

(S,<). This amounts to assuming that the ordinal
scales all have a common bottom element s, (resp. a
common top element s*) whose numerical represen-
tation is ep (resp. e1). This assumption is why we
consider numerical representations in a subset E of R,
possibly non-open, rather than R itself. For example,
if E = [0, 1], all the ordinal scales we can consider have
fixed endpoints.

To avoid a heavy notation, we will write ¢(z) and f(a)
instead of

(@(x1), .-, d(wn)) and (f(ar),. .., f(an)),

— —

respectively. We will also write ¢(z) and f(a) instead
of

(¢1(.T1),... 7fn(an))a

respectively.

7¢n($n)) and (fl (01)7 .

Finally, the range of any function f will be denoted by
ran(f).

3 Background on invariant subsets

In this section we recall the concept of invariant sub-
set, which will be useful throughout this paper. For
theoretical developments, see e.g. [1, 14, 16].

Definition 3.1. A nonempty subset I C E™ is said
to be invariant if

xel = ¢x)el (¢ € A(E)).
An invariant set I is said to be minimal if it has no
proper invariant subset.

The family Z(E™) of all minimal invariant subsets of
E™ provides a partition of E” into equivalence classes,
where x,y € E" are equivalent if there exists ¢ €
A(F) such that y = ¢(x). A complete description of
elements of Z(E™) is given in the following proposition
[16]):

Proposition 3.1. We have I € Z(E™) if and only
if there exists a permutation m on [n| and a sequence
{<i}y of symbols <; € {<,=}, not all equality if
eg € F and ey € E, such that

I'={zxe€E"|eo <o Tr1) <1~ Tn—1 Ta(n) In €1},

where <o is < if eg ¢ E and <, is < ife1 ¢ E.

Example 3.1. The unit square [0, 1] contains exactly
eleven minimal invariant subsets, namely the open tri-
angles {(z,y) |0 <z <y <1} and {(z,y) |0 <y <
x < 1}, the open diagonal {(z,y) | 0 < x = y < 1}, the
four square vertices, and the four open line segments
joining neighboring vertices.



Now we introduce another type of invariantness:

Definition 3.2. A nonempty subset I C E" is said

to be strongly invariant if
el = ¢x)el (¢eAE)").

A strongly invariant set I is said to be minimal if it

has no proper strongly invariant subset.

The family Z*(E™) of all minimal strongly invariant
subsets of E™ provides a partition of E™ into equiva-
lence classes, where x,y € E™ are equivalent if there
exists ¢ € A(E)™ such that y = ¢(z). A complete
description of elements of Z*(E™) is given in the fol-
lowing proposition [14]:

Proposition 3.2. We have

THE") = [Z(B)]" = { ‘>j<1 I |1 e {(E°} U B(E)}.

Example 3.2. The unit square [0, 1] contains exactly
nine minimal strongly invariant subsets, namely the
open square (0,1)?, the four square vertices, and the
four open line segments joining neighboring vertices.

Observe that strong invariantness is linked to invari-
antness as follows: Two minimal invariant subsets [
and J are said to be equivalent, I ~ J, if and only if
for any x € I and any u € J there are y,z € I and
v,w € J such that y < u < z and v < z < w; see [14].
For a minimal invariant subset I, put

I* = U J
JEI(E™)
J~T

Then (and only then) I'* is a minimal strongly invari-
ant subset.

4 Scale independent functions

In the present section we investigate the three kinds
of scale independent functions we have mentioned in
the introduction. Actually, we will see that these func-
tions are nothing else than the so-called order invari-
ant functions, namely: invariant functions, compar-
ison meaningful functions, and strongly comparison
meaningful functions.

4.1 Uniscale independent functions

The first scale independent functions we investigate
are n-place numerical aggregation functions whose in-
put and output values are expressed in the same or-
dinal scale. We call them uniscale independent func-
tions.

Definition 4.1. A function M : E" — FE is said
to be uniscale independent if, for any finite ordi-
nal scale (5, <), there exists an aggregation function
G : S™ — S such that, for any endpoint-preserving
numerical representation f : S — FE of <, we have

M{[f(a)] = f[G(a)]
We then say that G represents M in (S, x).

(a € S™). (1)

It is informative to represent Eq. (1) by the following
commutative diagram:

Er L gn

M| le

f

As any admissible scale transformation of the input
values must lead to the same transformation of the
output values, it seems that the uniscale indepen-
dent functions are invariant functions in the following
sense:

Definition 4.2. M : E™ — F is said to be an invari-
ant function if

for all x € E™ and all ¢ € A(E).

The invariant functions have been investigated exten-
sively by several authors; see e.g. [12, 15, 16, 20].
Moreover, the full description of those functions has
been given very recently as follows [14, 16]:

Theorem 4.1. M : E™ — E is an invariant function
if and only if, for any I € Z(E™) either M|} = ¢ €
B(E) (if this constant exists) or there exists i € [n]
such that M|; = P;|1 is the ith coordinate projection.

Thus, an invariant function M : E™ — FE reduces to a
constant or a coordinate projection on every minimal
invariant subset of E™. In particular, we have

M(z) € {z1,...,2,} UB(E) (x€e E™). (2

We now have the following result:

Proposition 4.1. The function M : E™ — E is unis-
cale independent if and only if it is invariant.

According to Proposition 4.1, an invariant function
M : E™ — FE can always be represented by a dis-
crete aggregation function G : S™ — S on any ordinal
scale (9, %), regardless of the cardinality of this scale.
Moreover, it is clear from Eq. (1) that G is uniquely
determined and isomorphic to the “restriction” of M
to S™.



Example 4.1. Let n = 2 and let M(z) = 1 A 2.
Then, the unique representative G of M is defined by
G(a) = ai Aasy for all a € S2.

In fact, for a given ordinal scale (S, %), the set of func-
tions G : S™ — S representing invariant functions
in (5, =) is described exactly as the discrete version
of Theorem 4.1, where E is replaced with S and the
family of “discrete” minimal invariant subsets of S™ is
simply defined either as

{7 [ TeZ(E)},

for any fixed f, or independently of any f, by means
of Proposition 3.1. Clearly, to have a one-to-one corre-
spondence between M and G we need that f~1(I) # @
for all I € Z(E™), a condition that holds if and only if

S| > n+ |B(B)|

In this case, given I € Z(E™) and i € [n], we have
M|; = Pi|; (resp. M|r = eg, M|; = e;) if and only
if G(a) = a; (resp. G(a) = s«, G(a) = s*) for all
a € f~I(I), f being fixed. On the other hand, if
|S] < n+ |B(E)|, several M’s may lead to the same
G. For example, if n = 2, |S| = 3, E = [0,1], and
I € 7([0,1]?) is either of the two open triangles, then
f71(I) = @ and, for a given G, the invariant function
M can take on any value in I.

Remark. That every invariant function M : E" — FE
satisfies (2) is in accordance with the assumption that
the input and output values are expressed in the same
scale. Property (2) is also in agreement with the fact
that, since no scale can be specified, the aggregated
value must necessarily be one of the input values (or
an endpoint of the scale if it is common to all the scales
considered).

4.2 Input-uniscale independent functions

We now investigate scale independent functions whose
input values are expressed in the same ordinal scale
and the output values in an ordinal scale. We call
these functions input-uniscale independent functions.

Definition 4.3. A function M : E™ — R is said to
be input-uniscale independent if, for any finite ordinal
scale (S, <g), there exists a finite ordinal scale (T, <)
and a surjective aggregation function G : S™ — T such
that, for any endpoint-preserving numerical represen-
tation f: S — E of <g, there is a numerical represen-
tation gy : T'— R of <7 such that

(a € S). (3)

We then say that G represents M in (5, <g).

Eq. (3) can be graphically represented by the following
commutative diagram:

Er L gn

W e

R «—«—— T
9gf

As we have seen that the uniscale independent func-
tions are exactly the invariant functions, we will see
in this subsection that the input-uniscale independent
functions are exactly the comparison meaningful func-
tions.

Definition 4.4. M : E™ — R is said to be a compar-
ison meaningful function (from an ordinal scale) if

< <

M@ {Z}Me) = Ms@){Z} Mlew)]

for any x,2’ € E™ and any ¢ € A(E).

The comparison meaningful functions have been stud-
ied by various authors; see e.g. [12, 14, 18, 19, 22].
Moreover, the full description of those functions has
been given very recently as follows [14]:

Theorem 4.2. M : E™ — R is a comparison mean-
ingful function if and only if, for any I € T(E™), there
exists an index iy € [n] and a constant or strictly
monotonic function gr : P, (I) — R such that

M|I:gIOPi1‘I7

where, for any I,J € T(E™), either gr = g5 and iy =
iy, orran(gr) = ran(gy) is a singleton, or ran(g;) <
ran(gy), or ran(gy) > ran(gy).

Thus, a comparison meaningful function M : E™ —
R reduces to a constant or a transformed coordinate
projection on every minimal invariant subset of E™.

The following result clearly shows that comparison
meaningfulness generalizes invariantness:

Proposition 4.2. M : E" — R is a comparison
meaningful function if and only if, for any ¢ € A(E),
there is a strictly increasing mapping V¢ : R — R such
that

Mlg(@)] = ¥o[M(z)] (e E). (&)
The previous result is in agreement with Definition 4.3
since any admissible transformation of the input val-
ues may lead to an admissible transformation of the
output values. Moreover, it is clear from Eq. (4) that
the restriction of ¥, to the range of M is uniquely
determined.

We now have the following result:



Proposition 4.3. The function M : E™ — R is input-
uniscale independent if and only if it is comparison
meaningful.

According to Proposition 4.3 a comparison meaningful
function M : E™ — R can always be represented by
a discrete aggregation function G : S™ — T on any
ordinal scale (S, <g), regardless of the cardinality of
this scale. Moreover, the necessary steps to determine
the output scale T' and the functions G : S™ — T and
g : T — R are:

Step 1. Fix a particular endpoint-preserving numer-
ical representation f*: S — FE of <g.

Step 2. We have T' = {t; < ---
Ri= {M[f*(a)] | a € S"}.

Step 3. We have G(a) = o~ (M[f*(a)]), where o :
T — R is defined as o(t;) = r; for all 1 < i < |R).

< tg|}, where

Step 4. Determine the unique function g
ran(M) — ran(M) of Proposition 4.2.

Step 5. We have gy = ¢so4+-100.

We clearly observe that, given M : E” — R and (S, %g
), the scale T' and the functions G : S — T and gy :
T — R are uniquely determined and do not depend
upon the choice of f*.

Example 4.2. Let M : E2 — R be defined by
M(z) = g(x1 A x2),

where g : E — R is strictly decreasing. Then,
given a k-point ordinal scale (5, <g) and an endpoint-
preserving numerical representation f* : S — E, we
have

R=A{glf*(se)]l <--- <glf (s}

Then we have |T'| = k and the function G : S™ — T is
given by

Gla) = (0" ogo f)(anas)  (a€S?),
or equivalently by the following table
az\aq ‘ $1 89 -+ Sk
S1 tk tk s tk
S te tp—1 -tk
Sk tk tk—l e tl

1

Finally, we have 14 = go¢og™ " and

gr(ti) =(go fo f*Fog too)(t:) = (g0 f)(Skt1-s)

fori=1,...,k.

Example 4.3. Let M : [0,1]> — R be defined by
M(z) = 21 A xo + 2sign(ze — x7).

Then, given a 3-point ordinal scale (S,<s) and an
endpoint-preserving numerical representation f*
S — FE, we have

R={-2<2z-2<0<z<1<2<2z+2}

where z = f*(s2). Then we have |T| = 7 and the
function G : S™ — T is given by

G(a) = o7 f*(ay Aay) +2sign(as —ay)) (a € 5§?),

or equivalently by the following table

az\ay | 51 sy s3
S1 t3 t1 11
52 g tg to
83 te t7 s

Finally, we have

o(x), if x € [0,1],
Ye(x) =< oz —2)+2, ifzxel2,3),
olx+2)—2, ifxe[-2-1).
and
(fo f*Hlat:)], ifi =3,4,5,
gr(t) =4 (fo [ Ho(t) =2/ +2, ifi=6,7,
(fof*Vo(t;)+2 -2, ifi=1,2.

Notice that the relationship between M and G is not as
clear as in the case of uniscale independent functions.
Particularly, reconstructing M from G (or character-
izing G arising from the M’s) seems a difficult task.
We then propose the following interesting problem:
Open Problem 1. Describe all the comparison mean-
ingful functions having the same discrete representa-
tive.

Notice also that, from Eq. (3), we immediately have
the following result, which will be useful in the next
section:

Proposition 4.4. Let M : E™ — R be an input-
uniscale independent function, with discrete represen-
tative G : S™ — T. Then, for any strictly increasing
(resp. strictly decreasing) function g : ran(M) — R,
the discrete representation of goM isnoG : S™ — T,
where T is order isomorphic to T and n : T — T’
is defined by n(t;) = t; (resp. n(ti) = t{p|_;4,) for all
i=1,...,|T).

4.3 Input-multiscale independent functions

The last functions we focus on are scale independent
functions whose input values are expressed in indepen-
dent ordinal scales and the output values in an ordi-
nal scale. We call this third type of functions input-
multiscale independent functions.



Definition 4.5. A function M : E™ — R is said to be
input-multiscale independent if, for any finite ordinal
scales (S, <s) (i € [n]), there exists a finite ordinal
scale (T, <) and a surjective aggregation function G :
X ?:1 S — T such that, for any endpoint-preserving
numerical representations f; : S — E of <gw (i €
[n]), there is a numerical representation gz: T' — R of
<7 such that

—

M{f(@)] = g/G(@)]  (ae X 59).

i=1
We then say that G represents M in X ?:1 (8D, <5).

Here the commutative diagram is represented by:

E™ < ! ><?:1S(i)

M| |e

R —— T
95

We will see in this subsection that the input-multiscale
independent functions are exactly the strongly compar-
ison meaningful functions.

Definition 4.6. M : E™ — R is said to be a strongly
comparison meaningful function (from independent or-
dinal scales) if

<

M@ {Z}M@a) = ME@){Z} Mea)]

for any z,2’ € E™ and any ¢ € A(E)™.

The strongly comparison meaningful functions have
been studied by some authors; see e.g. [8, 12, 14].
Moreover, the full description of those functions has
been given as follows [14]:

Theorem 4.3. M : E™ — R is a strongly comparison
meaningful function if and only if, for any I € T*(E™),
there ezists an index iy € [n] and a constant or strictly
monotonic function gr : P;, (I) — R such that

M|;r =gro Py,

where, for any I1,J € I*(E™), either gy = g5 and
ir =iy, orran(gy) < ran(gy), or ran(gr) > ran(gy).

Thus, a strongly comparison meaningful function M :
E™ — R reduces to a constant or a transformed coor-
dinate projection on every minimal strongly invariant
subset of E™.

Proposition 4.5. M : E™ — R is a strongly com-
parison meaningful function if and only if, for any
¢ € A(E)"™, there is a strictly increasing mapping
1/}(5 : R — R such that

M[g(x)] = ¢g[M(x)]  (x€E").

Proposition 4.6. The function M : E™ — R is input-
multiscale independent if and only if it is strongly com-
parison meaningful.

According to Proposition 4.6 a strongly compari-
son meaningful function M : E™ — R can al-
ways be represented by a discrete aggregation func-
tion G : X?Zl S(@) - T on independent ordinal
scales (S, <) (i € [n]), regardless of the cardi-
nalities of these scales. Moreover, the necessary steps
to determine the output scale T and the functions

G: X?:IS(")HTandgf:TaRare:

Step 1. Fix a particular endpoint-preserving numer-
ical representation f* : SO — F of <gw for all
i € [n].

Step 2. We have T' = {t; < ---
R:={M[f*(a)] |ac X_, SO},

< t|gr|}, where

Step 3. We have G(a) = o~ Y(M[f*(a)]), where o :
T — R is defined as o(t;) = r; for all 1 < ¢ < |R|.

Step 4. Determine the unique function by
ran(M) — ran(M) of Proposition 4.5.

Step 5. We have 95 = 1/1fof*,1 oo.

Example 4.4. Let M : E? — R be defined by
M(zx) = g(x1), where g : E — R is strictly decreas-
ing. Then, given k;-point ordinal scales (S, <q)
(¢ € [n]) and endpoint-preserving numerical represen-
tations f : S — E (i € [n]), we have

R={glfi(s\))] < -+ < glf (i)}

Then we have |T| = k and G(a) = (6" o go f{)(a)
for all a € S x §@. Finally, 7 = go ¢y 09~ and

g(t:) = (go fio fi tog toa)(ti) = (g0 f1)(sk+1-4)

fori=1,... k.

5 Continuous order invariant
functions

In this final section we examine the case of continuous
order invariant functions, namely: continuous invari-
ant functions, continuous comparison meaningful func-
tions, and continuous strongly comparison meaningful
functions.

Until recently, it was thought that coupling continuity
with any order invariance property was somewhat awk-
ward since the classical definition of continuity uses
distance between numerical values and hence makes
use of the cardinal properties of these values while any



order invariance implies that the cardinal properties of
the numerical values should not be used.

In fact, as we will now see, continuity makes sense
for invariant functions and can even be interpreted in
a very natural way. In the first subsection, we yield
an interpretation of continuity for invariant functions
by imposing a smoothness property on their discrete
representatives. In the second subsection, we pro-
vide another interpretation by imposing the admissible
scale transformations to be nondecreasing (instead of
strictly increasing).

We shall also see that such interpretations fail to
hold for comparison meaningful functions and strongly
comparison meaningful functions and that continuity
is a rather restrictive condition for these functions.

First, let us describe the continuous order invariant
functions. A typical example of whose is given by a
lattice polynomial [2]:

Definition 5.1. An n-place lattice polynomial is any
expression involving n variables x1,...,z, linked by
the lattice operations A = min and V = max in an
arbitrary combination of parentheses.

It can be shown (see e.g. [2, Chapter 2, §5]) that any
n-place lattice polynomial in R™ can be put in the
following disjunctive normal form:

L,(xz)= \/ /\,TZ (x € R™),
AC[n] i€A
v(A)=1

where v : 2") — {0, 1} is a nonconstant nondecreasing

set function. We will denote by I';, the family of those
set functions.

The complete description of continuous order invariant
functions are given in the following three theorems [12,
14]:

Theorem 5.1. M : E™ — FE is a continuous invariant
function if and only if M = ¢ € B(E) (if this constant
exists) or there exists v € I, such that M = L.

Theorem 5.2. M : E" — R is a continuous com-
parison meaningful function if and only if there exists
v € I'y, and a continuous strictly monotonic or con-
stant function g : £ — R such that M = go L,.

Theorem 5.3. M : E" — R is a continuous and
strongly comparison meaningful function if and only if
there exists k € N and a continuous strictly monotonic
or constant function g : E — R such that M = go P.

5.1 Order invariant functions with smooth
discrete representatives

We will now give an interpretation of the continuity
property for invariant functions through their discrete

representatives. For this purpose we use the concept
of smoothness [5] for discrete functions.

Let (S, <) = {s1 < -++ < s} be a k-point ordinal scale
and let @ € S. In order to locate a in S we define an
index mapping ind : S — {1,...,k} as

ind(a) =r & a=s, (1<r<k).

Definition 5.2. A discrete function G : X 7:1 S —
T is said to be smooth if, for any a,b € X lel S we
have

> Jind(a;) — ind(b;)| < 1
=1

= |ind[G(a)] — ind[G(B)]| < 1.

The smoothness property, which was initially intro-
duced only for nondecreasing discrete functions (see
[5]), clearly represents the discrete counterpart of con-
tinuity. Moreover, it can be proved (see [4, Theorem
2] for a proof in a particular case) that this property
is equivalent to the discrete counterpart of the inter-
mediate value theorem. The result is the following:

Proposition 5.1. The smoothness property for G :
X?Zl SG@) — T is equivalent to the following condi-
tion: For any j € [n] and any a,b € X?Zl SO dif-
fering only on coordinate j, the element t € T lies
between G(a) and G(b) inclusive if and only if there
exists ¢ € X?:1 SG) differing from a and b only on
coordinate j, such that c; is an element between a;
and b; inclusive and t = G(c).

We also have the following result; see [9, Chapter 7.3,
Proposition 7.25].

Lemma 5.1. G : X?=1 S@) = T is smooth if and
only if

|ind[G(a)] — ind[G(b)]| < Z |ind(a;) — ind(b;)|

for all a,be X, 8D,

Observe that every lattice polynomial L. in E", be-
ing a composition of V, A, and coordinate projections,
fulfills the so-called kernel property [10], namely
[M(z) = M(y)| < max|z; —yi|  (z,y € E"),
which is much stronger than simple continuity. This

kernel property can be naturally introduced also for
discrete aggregation functions on ordinal scales as [17]

’ind[G(a)] - ind[G(b)H < max ’ind(ai) - ind(bi)’



for all a,b € X ?:1 S which, according to
Lemma 5.1, is a strengthening of the smoothness prop-
erty. Evidently, each discrete representative L, |s» of
a lattice polynomial L. then necessarily satisfies this
ordinal kernel property.

We will now see that any invariant function is contin-
uous if and only if it is represented only by smooth
discrete aggregation functions. This makes continu-
ity sensible and even appealing for invariant functions.
We will also see that this result does not hold for com-
parison meaningful functions and strongly comparison
meaningful functions. More precisely, we will see that
continuity is only a sufficient condition for those func-
tions to be represented only by smooth discrete func-
tions.

Proposition 5.2. An invariant function M : E" —
FE is continuous if and only if it is represented only by
smooth discrete aggregation functions.

Corollary 5.1. An invariant function M : E™ — E
s continuous if and only if it is represented only by
kernel discrete aggregation functions.

Let us now examine the case of continuous compar-
ison meaningful functions. By Proposition 4.4, we
observe that any continuous invariant function of the
form L. and any nonconstant and continuous compar-
ison meaningful function of the form g o L., where g
is strictly increasing (resp. strictly decreasing), both
lead to the representatives L, : ™ — S and no L, :
S™ — T, respectively, where T is order isomorphic to
S, and n: S — T is the index-preserving (resp. index-
reversing) mapping. This observation is the key point
in proving the remaining results of this subsection.

Proposition 5.3. A continuous comparison meaning-
ful function M : E™ — R is represented only by smooth
discrete aggregation functions.

Corollary 5.2. A continuous comparison meaningful
function M : E™ — R is represented only by kernel
discrete aggregation functions.

Back to Example 4.3, we can immediately see from the
table describing the function G that this function is not
smooth. This is in accordance with the noncontinuity
of M.

Notice that, contrary to the case of invariant functions,
the converse of Proposition 5.3 is not true. There are
noncontinuous comparison meaningful functions hav-
ing smooth representatives. Indeed, starting from a
strictly monotonic (but not necessarily continuous)
g : R — R, we can always transform a continuous
invariant function M : E™ — R into the (not necessar-
ily continuous) comparison meaningful function go M,
which has a similar smooth representative as M (cf.
Proposition 4.4). More precisely, for any strictly in-
creasing (resp. strictly decreasing, constant) function

g : R — R, the unique representative in (S, =<g) of
M = g o L, is the smooth function G = no L., where
n:S — T = ran(G) is index-preserving (resp. index-
reversing, constant) and |T'| = |S| (resp. |T| = |S|,
IT|=1).

The situation is similar for continuous strongly com-
parison meaningful functions, except that here the
functions L. reduce to coordinate projections.

Proposition 5.4. A continuous strongly comparison
meaningful function M : E™ — R is represented only
by smooth discrete aggregation functions.

Corollary 5.3. A continuous strongly comparison
meaningful function M : E™ — R is represented only
by kernel discrete aggregation functions.

Thus, we can see that the continuity property is very
restrictive for order invariant functions and imposes
not only the smoothness property to the discrete repre-
sentatives but also the kernel property, thus restricting
the cardinality of the output scale T' to be not greater
than the cardinality of the input scale S.

The following interesting problem naturally arises
from this analysis:

Open Problem 2. Describe (or characterize) all the
comparison meaningful functions and strongly com-
parison meaningful functions that are represented only
by smooth discrete aggregation functions.

5.2 Order invariant functions with
nondecreasing admissible
transformations

We now propose an alternative interpretation of the
continuity property for invariant functions, which
makes not use of discrete representatives.

Let A’(E) be the set of continuous nondecreasing sur-
jections ¢ : E — E. The following three results,
inspired from [3, Proposition 2], show that the con-
junction of order invariance and continuity is, in some
sense, equivalent to requiring that the admissible scale
transformations belong to A'(E).

Proposition 5.5. M : E™ — E is a continuous in-
variant function if and only if

for all x € E™ and all ¢ € A'(E).

Proposition 5.6. Consider the following four asser-
tions:

i) M : E™ — R is a continuous comparison meaning-
ful function.



ii) For any ¢ € A'(E), there is a continuous and
nondecreasing mapping g : R — R such that

M[p(x)] = pg[M(2)]  (x € E").

iii) For any ¢ € A'(E), there is a nondecreasing map-
ping Yy : R — R such that

M[p(@)] = velM (@) (z€B").
i) We have
M@) { S} M) = Mg { S} o)

for any x,x’ € E"™ and any ¢ € A'(E).

Then we have i) < i), i) = 4ii), i) < W), and
) & 1).

Proposition 5.7. Consider the following four asser-
tions:

i) M : E™ — R is a continuous strongly comparison
meaningful function.

ii) For any ¢ € A'/(E)", there is a continuous and
nondecreasing mapping 7721(5 : R — R such that

M[g(x)] = ¥glM(x)]  (x€E").

iii) For any ¢ € A'(E)", there is a nondecreasing
mapping 7,/}(5 : R — R such that

M[F(@)] = vM@)]  (z€B).
i) We have
M) { S} M) = Mg { S} MidE)

for any z,x' € E™ and any ¢ € A'(E)™.

Then we have i) < i), i) = 4ii), i) < W), and
) # 1).

6 Concluding remarks

We have shed light on the meaning of invariant func-
tions by interpreting them as scale independent func-
tions, that is, functions that have discrete representa-
tives on any finite ordinal scale.

In particular, this interpretation shows that consider-
ing a discrete function G : S™ — S, where (9, <) is
a given ordinal scale, is not equivalent to considering
an invariant function M : E™ — E. Indeed, the latter

form is much more restrictive since M is independent
of any scale. For instance, if n = 2 and F is open,
we see by Theorem 4.1 that there are only 4 invariant
functions (since E? has only three minimal invariant
subsets and there is only one possibility on the diago-
nal) while the number of discrete functions G : % — §
is clearly |S|‘S|2.

We have also interpreted the comparison meaning-
ful functions and the strongly comparison meaningful
functions in a similar way. In this case, describing all
the order invariant functions leading to the same dis-
crete representative remains an interesting open prob-
lem.

Finally, we have observed that these interpretations
make the continuity property very sensible for invari-
ant functions and, however, rather restrictive for com-
parison meaningful functions and strongly comparison
meaningful functions.

We believe that such interpretations can also be made
on aggregation functions acting on other scale types,
such as nominal scales.
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