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ÀGGREGATION ON FINITE ORDINAL SCALES

Jean-Luc Marichal
Department of Mathematics, 292 TMCB

Brigham Young University, Provo, Utah 84602, USA.
marichal@math,byu,edu

This is a short version, without proofs, of the full pa- defined along Borne criterion; see e,g, [21], For exam-
per [13J written in collaboration with R, Mesiar, pIe, the sequences

Summary (1,2,3,4,5) and (-6,5, -1.2,8,7,205.6,750)

We give an interpretation of order invariant represent two equivalent versions of the scale defined
functions as scale independent functions for above.
the aggregation on finite ordinal scales, More The equivalence between these two definitions follows
precisely, we show how order invariant func- immediately from the fact that the order defined on

k, t~ons can ac~, through discrete represen~a- any finite chain (S,~) can always be numerically rep-
tlves, on ordmal scales represented by firnte resented in a real interval E ç n by means of an
chains, ln particular, this interpretation al- order-preserving utility function f : S --t E, which is
Iowa us to justify the continuity property for defined up to a strictly increasing bijection 1/> : E -t Ej
certain order invariant functions in a natural see e,g, [11],
way,

, , , .Now, suppose that we have n evaluations expressed in
Keywords: Aggregatlon functlons; Fmlte th d. l al (S -' ) of ca d . al . t k ISI' ",. e Salle or ma sc e , "" r m 1 y =

ordmal scales; Order mvanant functlons; d t t t th e al at . ons..., an suppose we wan 0 aggrega e ese v u 1

Smooth dlscrete functlons; Lattlce polynoml- d bt . t t , aIl e al atl'on l'n theal an 0 aln a represen a Ive over v u
s. salle scale" Of course, we can use a discrete aggrega-

] tion function G : Sn -t S, that is, a ranking function
; sorting kn n-tuples into k classes, Alternatively, we
; can use a univers al n-place aggregation function inde-
j pendent of the ordinal scale used, ln this latter case,

:1 1 INTRODUCTION s~nce no scale can be ,specified,. the aggregation func-
'1 tlon must be a numencal functlon M : En -t E, For
1 A finite ordinal scale can be defined in two equiva- instance, the classical median function, which gives the
i lent waYSj one is symbolical and the other is numeri- middle value of an odd-length sequence of ordered val-
') cal" Symbolically, a finite ordinal scale is a finite chain lies, is a scale independent function able to aggregate
'1 (S, ~), that is a totally ordered finite set, whose el- numerical values expressed on any ordinal scale.
,1 ements are ranked according to Borne criterion, For l th ' . t , t th t f al . de-r " n lS paper we myes 19a e ree ypes 0 sc e m
J' example [6, 7], a scale of evaluatlon of a commodlty d t fu t " ~ th t , fi 'te ordl"nalb h pen en nc lOng lor e aggrega lon on Dl

." Y a consumer suc as al F' "d h f t ., sc es. lrst, we canal er t e unc lOng mappmg n

i S = {B -< RB -< A -< M LG -< G} copies of the Salle ordinal scale into itself (see Defi-
c nition 3), then the functions mapping n copies of the

is a finite ordinal scale, whose elements B, RB, A, Salle ordinal scale into an ordinal scale (see Definition
MLG, G might refer to the following linguistic terms: 5), and finally, the functions mapping n independent
bad, rather bad, acceptable, more or less good, good. ordinal scales into an ordinal scale (see Definition 7),
Numerically, a finite ordinal scale is a finite and strictly It appears that these functions, known in the litera-
increasing sequence of real numbers defined up to or- ture as order invariant functions, have already been
der and representing the possible rating benchmarks investigated and described in a pure numerical setting
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[14] (see also [12, 16]). Our contribution here is to in- Throughout, we will assume that f is end point-

terpret them as scale independent functions, that is, preserving, that is, if eo E E (resp. el E E) then

numerical functions that always have symbolical rep- f(s*) = eo (resp. f(s*) = el) for ail ordinal scale

resentatives whenacting upon specified ordinal scales. (S, ~). This amounts to assuming that the ordinal

.scales ail have a common bottom element S* (resp. a
We also show that, even though at first glance lt seems

t 1 t * ) h .
al...common op e emen S w ose numenc represen-

unappropriate to ask any order mvarlant functlon to t t .. ( ) Th ' t .. ha Ion IS eo resp. el .IS assump Ion IS w y we

be contmuous, the contmulty property can be mter- . d . al t t .. b t E f 'T)
...consI er numenc represen a Ions m a su se 0 "-,

preted m a very natural way for those order mvarlant . bl th th 'T) . t If Y;\ 1.f h fi pOSSl y non-open, ra er an ,'- 1 se .ror examp e,

functlons 0 t e rst type. if E = [0,1], ail the ordinal scales we can consider have

The organization of the paper is as follows. ln 82 we fixed endpoints.

introduce the notation and the assumptions that we 'TI . d h t t .. 11 .
t ,I. ( ) d f( ).LO aVOI a eavy no a Ion, we Wl wn e '1' x an a

adopt in this work. ln 83 we recall the concept of .

t ad f.. b h . h . t d .b th ms e 0
mvanant su sets, w lC lS necessary 0 escn e e

scale independent functions. ln 84, we present sepa- (rI>(Xl)"'., rI>(xn)) and (f(al)'..., f(an)),

ratel y the three types of scale independent functions t . I UT .11al .t 7.( ) d f .. ( ) . t ad.'. respec Ive y. vve Wl so wn e '1' x an a ms e

mentioned above. Finally, m 85 we mvestlgate the of

continuity property for those functions.

(rI>l(Xl),...,rI>n(xn)) and (fl(al),...,fn(an)),

2 PRELIMIN ARlES AND respectively.

NOTATION Finally, the range of any function f will be denoted by

ran(f).

Let E be any real interval, bounded or not, and let

eo:= infE, el := stipE, and Eo:= E\ {eO,el}' We 3 BACKGROUND ON INVARIANT

denote by B(E) the set of included boundaries of E, SUBSETS

that is

B(E) := {eo, el} n E. ln this section we recall the concept of invariant sub-

The automorphism group of E, that is the group of set, which will be useful throughout this paper. For

aIl increasing bijections ri> of E onto itself, is denoted theoretical developments, see e.g. [1, 14, 16].

by A(E). For the sake of simplicity, we also denote Definition 1. A nonempty subset l ç En is said to

the index set {l, ..., n} by ln] and the minimum and be invariant if

maximum operations by 1\ and V, respectively. x E l ~ rI>(x) E l (ri> E A(E)).

For any k ~ 2, a k-point ordinal scale (S,~) will be An invariant set l is said to be minimal if it kas no

denoted by proper invariant subset.

S = {SI -< S2 -< < Bk} The family I(En) of ail minimal invariant subsets of

En provides a pa.rtition of En into equivalence classes,

where SI = S* (resp. Sk = s*) is the bottom element where x, y E En are equivalent if there exists ri> E A(E)

(resp. top element) of the scale and -< represents the such that y = rI>(x). A complete description of ele-

asymmetric part of ~. ments of I(En) is given in the following proposition

8ince the binary relation ~ is a total order on a finite [16]:

set S, it can always be numerically represented by a Proposition 1. We have l E I(En) if and only if

strictly increasing utility function f : S -t E such that there exista a permutation 7r on ln] and a sequence

{<li}i:o of symbols <Ii E {<, =}, not all equality if

.
{-<} . f( .) {< } f( . ) ( .. S) eo E E and el E E, Buck that

St -s,1 Ç} St -s,1 St, s,1 E ,

--1= {x E En 1 eo <10 X1T(l) <11... <ln-l X1T{n) <ln el},

see [11, Chapter 1]. 8uch a utility function is defined where <10 is < if eo ~ E and <ln is < if el ~ E.

up to an automorphism ri> E A(E)j that is, with f ail Example 1. The unit square [0,1]2 contains exactly

functions f = ri> 0 f (and only these) represent the eleven minimal invariant subsets, namely the open tri-

saille order on S. Thus, A(E) represents the set of angles {(x,y) 10 < x < y < 1} and {(x, y) 10 < y <

ail admissible scale transformations, i.e., transforma- x < 1}, the open diagonal {(x, y) 1 0 < x = y < 1}, the

tions of E that lead from one numerical scale to an four square vertices, and the four open line segments

equivalent one; see e.g. [21]. joining neighboring vertices.
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Now we introduce another type of invariantness: Definition 3. A function M : En -+ E is said to
Definition 2. A nonempty subset l C En is Baia to be unis cale independent if, for any finite ordinal scale
be strongly invariant if -(S, ~), there exists an aggregation function G : sn -+

S su ch that, for any endpoint-preserving numerical
xE l * I,/;'(x) E l (1,/;' E A(E)n). representation f : S -+ E of~, we have

A strongly invariant set l is Baia to be minimal if it M[f(a)] =f[G(a)] (a E sn). (1)
has no proper strongly invariant subset.

We then say that G represents M in (S, ~).
The family I*(En) of aIl minimal strongly invariant
subsets of En provides a partition of En into equiva- lt is informative to represent Eq. (1) by the following
lence classes, where x, y E En are equivalent if there commutativediagram:
exists 1,/;' E A(E)n suffi that y = I,/;'(x). A complete
description of elements of I*(En) is given in the fol- En t-.l- sn

lowing proposition [14]: 1 1Proposition 2. We have M G

n Et---S
I*(En) = [I(E)]n = {~l Ii 1 Ii E {EO} U B(E)}. f

.2. As any admissible scale transformation of the input
Example 2. The UnIt square [0, l]contalns exactly values must lead to the Saille transformation of the
nine minimal stro~glY invariant subsets,. namely the output values, it seems that the uniscale indepen-
open square (0,1) , the four square vertlces, and the dent functions are invariant functions in the following
four open line segments joining neighboring vertices. sense:

Observe that strong invariantness is linked to invari- Definition 4. M : En -+ E is Baia to be an invariant
antness as follows: Two minimal invariant subsets l function if

: and J are said to be equivalent, I"" J, if and only if M[c/J(x)] = c/J[M(x)]
1 for any x E l and any u E J there are y, z E l and
i v, w E J suffi that y ~ u ~ z and v ~ x ~ w; see [14]. for ail x E En and aU c/J E A(E).

Fàr a minimal invariant subset I, put
The invariant functions have been investigated exten-

I* = U J sively by several authors; see e.g. [12, 15, 16, 20].
JEZ(E") Moreover, the full description of those functions has

J~l been given very recently as follows [14, 16]:

Then (and only then) I* is a minimal strongly invari- Theorem 1. M : En -+ E is an invariant function if
ant subset. and only if, for any l E I(En) either Mil := cE B(E)

(if this constant exists) or there exists i E ln] such that
4 SCALES INDEPENDENT Mil = FijI is the ith coordinate projection.

FUNCTIONS Thus, an invariant function M : En -+ E reduces to a
constant or a coordinate projection on every minimal

ln the present section we investigate the three kinds invariant subset of En. ln particular we haveof sc ale independent functions we have mentioned in '

the introduction. Actually, we will see that these func- M(x) E {Xl,"" Xn} U B(E) (x E En). (2)
tions are nothing else than the so-called order invari-
ant functions, namely: invariant functions, compar- .ison meaningful functions, and strongly comparison We now have the followmg result:

meaningful functions. Proposition 3. The function M : En -+ E is unis-
cale independent if and only if it is invariant.

4.1 Uniscale independent functions According to Proposition 3, an invariant function M :
The first scale independent functions we investigate En -+ E can always be represented by a discrete ag-
are n-place numerical aggregation functions whose in- gregation function G : sn -+ S on any ordinal scale
put and output values are expressed in the Saille or- (S, ~), regardless of the cardinality ofthis scale. More-
dinal scale. We calI them unis cale independent func- over, it is clear from Eq. (1) that G is uniquely deter-
tions. mined and isomorphic to the "restriction" of M to sn.
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Example 3. Let n = 2 and let M(x) = Xl /\ X2. Eq. (3) can be graphically represented by the following
Then, the unique representative G of M is defined by commutative diagram:
G(a) = al /\ a2 for all a E s2.

En~sn
ln fact, for a given ordinal scale (S, ~), the set of func-
tions G : sn -+ S representing invariant functions in M l l G
(S,~) is described exactly as the discrete version of
Theorem 1, where E is replaced with S and the family n +-;- T
of "discrete" minimal invariant subsets of sn is simply 1

defined either as A ..s we have seen that the umscale mdependent func-
-1 III En tions are exactly the invariant functions, we will see

{1 () 1 E ( )}, in this subsection that the input-unis cale independent

functions are exactly the comparison meaningjul junc-
for any fixed 1, or independently of any 1, by means tions.

of Proposition 1. Clearly, to have a one-to-one corre-
spondence between M and G we need that 1-1 (1) ~ f2I Defi~ition 6. ~ : En -+ n is sai~ to be a co~parison
for all l E I(En), a condition that holds if and only if meamngjul juncuon (from an ordznal scale) if

ISI ~ n + IB(E)I. M(x) {:} M(x') :} M[4>(x)] {:} M[4>(X')]

ln this case, given l E I(En) and i E [~], we have for any x, x' E En and any 4> E A(E).
Mil = PilI (resp. Mil = eo, Mil = el) il and only
if G(a) = ai (resp. G(a) = s*, G(a) = s*) for all The comparison meaningful functions have been stud-
a E j-1(I), 1 being fixed. On the other hand, if ied by various authorsj see e.g. [12, 14, 18, 19, 22].
ISI < n + IB(E)I, several M's may lead to the Saille Moreover, the full description of those functions has
G. For example, if n = 2, ISI = 3, E = [0,1], and been given very recently as follows [14]:
l E I([O, 1]2) is either of the two open triangles, then Theore 2 M En --' 'T:I ." .

-1 m.: ~ ,'- zs a companson meamng-
1 (1) = el and, for a glven G, the mvanant functlon juljunct "o "f d l :ç ç l E 'T (E n) thM t k 1 . l z n z an on y ZJ, Jor any .L ,ere ex-

can a e on any va ue m .. t " d . [ ] d . lzs s an zn ex 21 E n an a constant or stnct y mono-
Remark 1. That every invariant function M : En -+ tonic junction gI : Pil (1) -+ n Buck that
E satisfies (2) is in accordance with the assumption
that the input and output values are expressed in the Mil = YI 0 PiIII,

same scale. Property (2) is also in agreement with the h "
fact that, sin ce no scale can be specified, the aggregated ~ ere, "for any l, J E I(En), ezt~er gI. = YJ and
value must necessarily be one of the input values (or 21 = zJ, or ran(gI) = ran(YJ) zs a szngleton, or
an endpoint of the scale if it is common to aU the scales ran(YI) < ran(gJ), or ran(YI) > ran(YJ).

considered). Th .. gf 1 f . M Eus, a comparlson meMm u unct1on : n -+ n
reduces to a constant or a transformed coordinate pro-

4.2 Input-uniscale independent functions jection on every minimal invariant subset of En.

We now investigate scale independent functions whose The ~ollowing result c~earl! sh?ws that comparison
input values are expressed in the Saille ordinal scale meamngfulness generallzes mvarlantness:
and the output values in an ordinal scale. We calI Proposition 4. M: En -+ n is a comparison mean-
these functions input-unis cale independent junctions. ingjul junction if and only if, for any 4> E A(E), there
Definition 5. A function M : En -+ n is Baia to is a strictly increasing mapping 1/J.p : n -+ n su ch that

be input-uniscale independent if, for any finite ordinal M[4>(x)] = 1/J [M()] (En) (4)
scale (S, ~s), there exists a finite ordinal scale (T, ~T) .p X xE.

and a surjective aggregation junction G : sn -+ T su ch
that, for any endpoint-preserving numerical represen- The previous result is in agreement with Definition 5
tation 1 : S -+ E of ~s, there is a numerical repre- since any admissible transformation of the input yal-
sentation YI : T -+ n of ~T Buck that lies may lead to an admissible transformation of the

output values. Moreover, it is clear from Eq. (4) that
M[I(a)] = YI[G(a)] (a E sn). (3) the res~riction of 1/J.p to the range of M is uniquely

determmed.

We then say that G represents M in (S, ~s). We now have the following result:
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Proposition 5. The function M : En -+ n is input- Example 5. LetM: [0,1]2 -+ n be defined by
unis cale independent if and only if it is comparison
meaningful. M(x) = Xl Â X2 + 2 Sign(X2 -Xl)'

According to Proposition 5 a comparison meaningful Then, given a 3-point ordinal scale (S, ~s) and an
function M : En -+ n can always be represented by endpoint-preserving numerical representation f" :
a discrete aggregation function G : sn -+ T on any S -+ E we have,
ordinal scale (S, ~s), regardless of the cardinality of
this scale. Moreover, the necessarysteps to determine R = {-2 < z -2 < 0 < z < 1 < 2 < z +2},
the output scale T and the functions G : sn -+ T and
gl : T -+ n are: where z = f"(S2)' Then we have ITI = 7 and the

function G : sn -+ T is given by
Step 1. Fix a particular endpoint-preserving numer-

ical representation f" : S -+ E of ~s. G(a) = a-1[f"(a1 Âa2)+2sign(a2 -al)] (a E s2),

Step 2. We have T = {t1 -< < tIRI}' where or equivalently by the following table
R:= {M[f"(a)] 1 a E sn}.

Step 3. We have G(a) = a-1(M[f"(a)]), where a2\a1 Sl S2 S3
a : T -+ R is defined as a(ti) = ri for aIl Sl t3 t1 t1
1 ~ i ~ [RI. S2 t6 t4 t2

S3 t6 t7 ts
Step 4. Determine the unique function 1/I,p :

ran(M) ~ ran(M) of Proposition 4. Finally, we have

Step 5. We have YI = 1/1/0/0-10 a. { <I>(X), ifx E [0,1],
.ol.", {X ) = "'(x -2 ) + 2 ifx e [2 3)We clearly observe that, glven M : En -+ n and 'l'Y' '1' '. "

(S, ~s), the scale T and the functions G : sn -+ T <I>(x + 2) -2, zfx E [-2, -1).
and YI : T -+ n are uniquely determined and do DOt
depend upon the choice of f". and

Example 4. Let M: E2 -+ n be defined by
{ (f 0 f"-l)[a(ti)], ~f~ = 3,4,5,

M{X)=g{X1ÂX2), gl(ti)= (fof"-1)[a(ti)-2]+2, zft=6,7,
...(f 0 f"-l )[a(ti) + 2] -2, ifi = 1,2.

where Y : E -+ n lS stnctly decreasmg. Then,
given a k-point ordinal scale (S, ~s) and an endpoint-
preserving numerical representation f" : S -+ E, we Notice that the relationship between M and G is not as
have clear as in the case of uniscale independent functions.

R = {g[f"(Sk)] < ...< y[f"(Sl)]}' Particularly, reconstructing M from G (or character-
.n .izing G arising from the M's) seems a difficult task.~hen Wbe have ITI = k and the funct1on G : S -+ T lS We then propose the following interesting problem:

glven y .
Open Problem 1. Describe aIl the compar1son mean-

G(a) = (a-log 0 f")(a1 Â a2) (a E s2), ingful functions having the Saille discrete representa-
tive.

or equivalently by the following table
Notice also that, from Eq. (3), we immediately have

a2 \a1 Sl S2 ...Sk the following result, which will be useful in the next
Sl tk tk ...tk section:
82 tk tk 1 ...tk 1

--Proposition 6. Let M : En -+ n be an input-
: ::: unis cale independent function, with discrete represen-

Sk tk tk-1 ...t1 tative G : sn -+ T. Then, for any strictly increasiny
(resp. strictly decreasing) function 9 : ran(M) -+ n,

Finally, we have 1/I,p = Y 0 <1> 0 g-l and the discrete representation of yoM is 1/ 0 G : sn -+ T',

"-1 -1 where T' is order isomoryhic to T and 1/ : T -+ T'j Y/{ti) = (y 0 f 0 f 0 9 0 a)(ti) = (y 0 f){Sk+1-i) is defined by 1/(ti) = ti (resp. 1/(ti) = tITI-i+1) for aIl

fori=I,...,k. i=I,...,ITI.

;

!
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4.3 Input-multiscale independent functions Thus, a strongly comparison meaningful function M :
En -t n reduces to a constant or a transformed COor-

The last functions we focus on are scale independent dinate projection on every minimal strongly invariant
functions whose input values are expressed in indepen- subset of En.
dent ordinal scales and the output values in an ordi- P .t ' 7 M . En --'" 'T) is a strongly com- roposi Ion. .~ ,~nal s~ale. ~e calI thlS thlrd. type of functlons Input- parison meaningful function if and only if, for any
multlscale Independent functlons. <Ï>' E A(E)n, there is a strictly increasing mapping

Definition 7. A function M : En -t n is said to be 'l/J -: n -t n Buck that
input-multiscale independent if, for any finite ordinal '"
scales (8(i), ~S(i)) (i E ln]), .the~e exists a ~nite OT'- M[<Ï>'(x)] = t/J~[M(x)] (x E En).
dinal scale (T, ~T) and a surJectIve aggregatlon func- '"
tion G: X ~=l 8(i) -t T su ch that, for any endpoint- Proposition 8. The function M : En -t n is input-
preserving numerical re~resentatio~s fi : 8(t) -t. E multiscale independent if and only if it is strongly com-
of ~S(i) (i E ln]), there IS a numencal representatlon paris on meaningful.
9 f~ : T -t n of ~T su ch that .

According to Proposition 8 a strongly companson
--G X 8(i») meaningful function M : En -t n can alwaysM[f(a)] = gA (a)] (a E i=l' be represented by a discrete aggregation function

G : X ~l 8(i) -t T on independent ordinal scales
We then say thatG represents M in X~1(8(i)'~S(i) {8(i),~;~)) (i E ln]), regardless of the cardinali-

). ties of these scales. Moreover, the necessary s~eps
to determine the output scale T and the functlons

Here the commutative diagram is represented by: (;: X ~=1 8(i) -t T and g/: T -t n are:

En L X n 8 (i) .. l d .. ,--- i=l Step 1. FIX a partlcu ar en pomt-preservmg numer-

M l la ical representation fi'" : 8(i) -t E of ~S(i) for aIl
i E ln].

1Rf-- T
9,- Step 2. We have T = {tl -< < tIRI}' where

..R:={M[f""'(a)]laE X~=18(i)}.We will see in this subsection that the mput-multlscale
independent functions are exactly the strongly compar- Step 3. We have G(a) = 0--1 (M[f--'" (a)]), where
ison meaningful functions. 0- : T -t R is defined as o-(ti) = ri for aIl

Definition 8. M : En -t n is said to be a strongly 1 ~ i ~ IRI.
comparison meaningful function (from independent or-
dinal scales) if Step 4. Determine the unique function t/J~ :

ran(M) -t ran(M) of Proposition 7.
M(x) {:} M(x') => M[<Ï>'(x)] {:} M[<Ï>'(x')] Step 5. We have gf~ = t/Jlof~.-l 00-.

for any x,x' E En and any <Ï>'E A(E)n. Example 6. Let M : E2 -t n be defined by M(x) =

...g(Xl), where 9 : E -t n is strictly decreasing. Then,The strongly comparlson meanmgful functlons have given ki-point ordinal scales (8(i), ~S(i)) (i E ln]) and
been studied by Borne ~ut?ors; see e.g. [8, .12, 14]. endpoint-preserving numerical representations fi'" :
Moreover, the full deSCrIption of those functlons has 8(i) -+ E (i E ln]), we have
been given as follows [14]:

Theorem 3. M : En -t n is a strongly comparison R = {gU:(Sil))] < ...< gU:(Sil»)]}.
meaningful function if and only if, for any l E Z'" (En), 1
there exists an index il E ln] and a constant or strictly Then we have ITI = k and G(a) = (0--1 0 9 0 fi)(al)
monotonic function gI : Pif (1) -t n Buck that for ail a E 8(1) x 8(2). Finally, t/J~ = go <1>1 0 g-l and

MII=gIoPirII, -1 -1
)( ) ( f)( )gf~(ti) = (goft of~ og 00- ti = go 1 Sk1+1-i

where, for any 1, J E l'"(En), either gI = gJ and.
iI=iJ, orran(gI) < ran(gJ) , orran(gI»ran(gJ). forl=1,...,k1.
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1 5 CONTINUOUS ORDER Theorem 5. M : En -t n is a continuous compar-
; INVARIANT FUNCTIONS ison meaningful function if and only if there exists

'Y E r n and a continuous strictly monotonic or con-

ln this final section we examine the case of continuous stant function 9 : E -t n such that M = 9 0 L'Y.

order invariant functions, namely: continuous invari- Theorem 6. M : En -t n is a continuous and

ant functions, continuous comparison meaningful func- strongly comparison meaningful function if and only if

tions, and continuous strongly comparison meaningful there exists kEN and a continuous strictly monotonic

functions. or constant function 9 : E -t n such that M = go Pk '

Until recently, it was thought that coupling continuity with any order invariance property was somewhat awk- 5.1 Order invarIant functlons wlth smooth

ward since the classical definition of continuity uses discrete representatives

distance between numerical values and hence makes ." , , ,
f th d ' al t , f th al h ' l We wIll now glve an mterpretatlon of the contmulty

use 0 e car m proper les 0 ese vues w 1 e any '" , .
d ' , . l , th t th d ' al ' f property for InVarIant functlons through thelr dlscrete

or er InvarIance lmp les a e car m propertles 0 ..

th ' 1 al h Id t b d representatlves. For thlS purpose we use the concept

e numenca vues s ou no e use. f th [5] E d . t fu t . 0 smoo ness lOf lscre e nc Ions.

ln fact, as we will now see, continuity makes sense L t (S ---') { } b k . t d '
al alE... ..e"", = SI -< ." -< Sk ea -palu or m sc e

lOf InvarIant functlons and can even be mterpreted m d 1 t S I d t 1 t '
s d fi' .an e a E .n or er 0 Dca e a m we e ne an

a very natural way. ln the first subsectlon, we Yleld ' d .. d . S {1 k}, ' f ..E' , f .m ex mappmgm , -t ,..., asan mterpretatlon 0 contmulty lOf InVarIant unctlons

by imposing a smoothness property on their discrete ind(a) = r {:? a = Sr (1 ~ r ~ k),

representatives, ln the second subsection, we pro-
vide another interpretationby imposing the admissible DefinÎtion 10. A discrete function G: X ~=1 S(i) -t

scale transformations to be nondecreasing (instead of T is said to be smooth if, for any a, b E X ~=l S(i), we

strictly increasing). have

We shall also see that such interpretations fail to ~

hold for comparison meaningful functions and strongly ~ 1 ind(ai) -ind(bi) 1 ~ 1

comparison meaningful functions and that continuity 1=1 , .

is a rather restrictive condition for these functions, :} 1 md[G(a)] -md[G(b)] 1 ~ 1.

First,. let us des~ribe the continuous or?er ,invariant The smoothness property, which was initially intro-

fun~tlons. A t~PICal example of whose IS glven by a duced only for nondecreasing discrete functions (see

latttce polynomtal [2]: [5]), clearly represents the discrete counterpart of con-

Definition 9. An n-place lattice polynomial is any ex- tinuity, Moreover, it can be proved (see [4, Theorem

pression involving n variables Xl, ., .,Xn linked by the 2] for a proof in a particular case) that this property

lattice operations 1\ = min and V = max in an arbi- is equivalent to the discrete counterpart of the inter-

trary combination of parentheses. mediate value theorem, The result is the following:

Proposition 9. The smoothness property for G :

It can be shawn (see e,g. [2, Chapter 2, 85]) that any X n S( i ) --' T .' l t t th ' Il .n d ;
, ., n' i=l --r tS equtva en 0 e Jo OWt 9 con .-

n-place lattlce polynomlal m n can be put m the, l:' ' [ ] d b X n
S (i)

dfE

Il ' d ". t , l ' uon: L'or any J E n an any a, E i-l t -
10 owmg tsJunc tve norma Jorm: " ,-,

fenng only on coordinate J, the element t E T hes

Loy(x) = V A Xi (X E Rn), between G(a) :nd G!(b) inclusive if and only if there

AC[n] iEA exists c E X i=l S(.) dijJering /rom a and b only on

'Y(.4)=1 coordinate j, such that Cj is an element between aj

and bj inclusive and t = G(c).
where'Y : 2{n] -t {a, 1} is a nonconstant nondecreasing

set function. We will denote by r n the family of those We also have the following resultj see [9, Chapter 7.3,

set functions. Proposition 7,25],

The complete description of continuous order invari- ~emma 1. G: X ~=1 S(i) -tT is smooth if and only

ant functions are given in the following three theorems if

[12, 14]: n

Theorem 4. M : En -t E is a continuous invariant 1 ind[G(a)] -ind[G(b)] 1 ~ ~ 1 ind(ai) -ind(bi) 1
function if and only if M == c E B(E) (if this constant i=l

exists) or there exists 'Y E r n such that M = L'Y' for aU a, b E X ~=l S< i) ,
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Observe that every lattice polynomial L'Y in En, be- not smooth. This is in accordance with the nonconti-
ing a composition of V, /\, and coordinate projections, nuit y of M.
fulfills the so-called kernel property [10], namely Notice that, contrary to the case of invariant functions,

M M -< .-.E En) the converse of Proposition Il is not true. There are
1 (x) -(y)1 "" mF Ix, y,1 (x, y , noncontinuous comparison meaningful functions hav-

ing smooth representatives. Indeed, starting from a
which is much stronger than slmp~e contmulty. ThIS strictly monotonic (but not necessarily continuous)
k~rnel property ?an be n~turally m~roduced also for g: R -t R, we can always transform a continuous
dlscrete aggregatlon functlons on ordmal scales as [17] invariant function M : En -t R into the (not nec-

,.
[G ( )] -.nd [G(b)] I -< max 1 ind(a.) -ind(b') 1 essarily c?ntinuous). c?mparison meaningful !unctionmd a 1 ~ i ' , go M, WhlCh bas a slmllar smooth representatlve as M

(cf. Proposition 6). More precisely, for any strictly in-
for ail a, b E X ~=l S(i), whiCh, according to Lemma 1, creasing (resp. strictly decreasing, constant) function
is a strengthening of the smoothness property. Evi- g: R -t 'R., the unique representative in (S, ~s) of
dently, each discrete representative L'Yls" of a lattice M = go L'Y is the smooth function G = 1J 0 L'Y' where
polynomial L'Y then necessarily satisfies this ordinal 1J : S -t T = ran(G) is index-preserving (resp. index-
kernel property. reversing, constant) and ITI = ISI (resp. ITI = ISI,
We will now see that any invariant function is contin- ITI = 1).

uous if and only if it is represented only by smooth The situation is similar for continuous strongly com-
discrete aggregation functions. This makes continu- parison meaningful functions, except that here the
ity sensible and even appealing for invariant functions. functions L'Y reduce to coordinate projections.
We will also see that this result does not hold for com- Proposition 12. A continuous strongly comparison
parison meaningful functions and strongly comparison meaningful function M : En -t 'R. is represented only
meaningful functions. More precisely, we will see that by smooth discrete aggregation functions.
continuity is only a sufficient condition for those func- C II 3 A t . tl . ..oro ary. con ~nuous s rong y companson

tlons to be represented only by smooth dlscrete func- ..l l fu t. M E n 'T)'
t d l.mean~ngJu nc ~on : -t I~ ~s represen e on ytlons. by kernel discrete aggregation functions.

Proposition 10. An invariant functionM : En -t E
is continuous if and only if it is represented only by Thus, we can see that the continuity property is very
smooth discrete aggregation functions. restrictive for order invariant functions and imposes

A ... M . En E not only the smoothness property to the discrete repre-
Corollary 1. n ~nvanant funct~on .-t .

b t al h k 1 t th t . t .

sentatlves u so t e erne proper y, us res nc mg

~s cont~nuous if and only if ~t ~s represented only by th d. al.
t f th t t al T t b t t...e car m 1 y 0 e ou pu sc e 0 e no grea er

kernel d~screte aggregat~on funct~ons. th th d. al.t f th ' t al San e car m 1 y 0 e mpu sc e .

Let us now examine the case of continuous compari- The following interesting problem naturally arises
son meaningful functions. By Proposition 6, we ob- from this analysis:
serve that any continuous invariant function of the Open Problem 2. Describe (or characterize) ail the
form L'Y and any nonconstant and continuous com- comparison meaningful functions and strongly com-
parison meaningful function of the form go L'Y' where parison meaningful functions that are represented only
gis strictly increasing (resp. strictly decreasing), bath by smooth discrete aggregation functions.
lead to the representatives L'Y : sn -t Sand 1] 0 L'Y :
sn -t T, respectively, where T is order isomorphic to 5.2 Order invariant functions with
S, and 1J : S -t T is the index-preserving(resp. index- nondecreasing admissible
reversing) mapping. This observation is the key point transformations
in proving the remaining results of this subsection.

Proposition 11.. A continuous comparison meaning- We ~o~ propose an alter~ativ~ interpret~tlon of ~he
fut function M : En -t R is represented only by contmulty property for mvarlant functlons, WhlCh
smooth discrete aggregation functions. makes not use of discrete representatives.

Corollary 2. A continuous comparison meaningful Let A'(E) be the set of continuous nondecreasing sur-
function M : En -t R is represented only by kernel jections cP : E -t E. The following three results,
discrete aggregation functions. inspired from [3, Proposition 2], show that the con-

junction of brder invariance and continuity is, in Borne
Back to Example 5, we can immediately see from the sense, equivalentto requiring that the admissible scale
table describing the function G that this function is transformationsbelong to A'(E).
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Proposition 13. M : En -+ E is a continuous in- 6 CONCLUDING REMARKS 1

variant function if and only if

M[</>(x)] = </>[M(x)] We have shed light on the meaning of invariant func-

tions by interpreting them as scale independent func-

for all x E En and aU </> E A'(E). tions, that is, functions that have discrete representa-

tives on any finite ordinal scale.
Proposition 14. Conszder the followzng four asser-

tions: ln particular, this interpretation shows that consider-

ing a discrete function G : 8n -+ 8, where (8,~) is

i) M : En -+ R. is a continuous comparison mean- a given ordinal scale, is not equivalent to considering

ingful function. an invariant function M : En -+ E. Indeed, the latter

form is much more restrictive since M is independent

ii) For any </> E A'(E), there is a continuous and of any scale. For instance, if n = 2 and E is open,

nondecreasing mapping 'l/Jt/> : R. -+ R. Buck that we see by Theorem 1 that there are only 4 invariant

M x = M x x En. functions (since E,2 bas only thre~ ~inimal invar.iant

[</>( )] 'l/Jt/>[ ()] (E) subsets and there lS only one posslblhty on the dIago-

nal) while the number of discrete functions G : 82 -+ 8

iii) For any </> E A'(E), there is a nondecreasing map- ' 1 1 1811812../. lS C ear y .
pzng 'l't/> : 'R. -+ R. Buck that

We have also interpreted the comparison meaning-

M[</>(x)] ='l/Jt/>[M(x)] (x E En), fuI functions and the strongly comparison meaningful

functions in a similar way, ln this case, describing ail

iv) We have the order invariant functions lej1ding to the same dis-

crete representative remains an interesting open prob-

M(x) {~} M(x') ~ M[</>(x)] {~} M[</>(x')] lem.

Finally, we have observed that these interpretations

for any x, x' E En and any </> E A'(E). make the continuity property very sensible for invari-

ant functions and, however, ratherrestrictive for com-

Then we have i) <=> ii), ii) ~ iii), iii) <=> iv), and parison meaningful functions and strongly comparison

iv) ~ i). meaningful functions.

Proposition 15. Consider the foUowing four asser- We believe that such interpretations can also be made

tions: on aggregation functions acting on other scale types,

such as nominal scales.

i) M : En -+ R. is a continuous strongly comparison

meaningful functiof:l.,
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