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Bases mathématiques 

définition de la divisibilité 

Soient a et b des entiers. On dit que a 

divise b et on note a|b s’il existe un 

entier c tel que b = a ·c. 

On dit alors que a est un diviseur de b 

ou que b est divisible par a. 
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Bases mathématiques 

1er exemple de divisibilité  

24 = 2 ·12     et     24 = 3 ·8 

  2|24   12|24   3|24   8|24 

24 = (-2)(-12)  

   -2|24   -12|24 



Centre Universitaire de Luxembourg 

CRP Gabriel Lippmann 

 
Cryptology 

 & Security 

 Initiative 

16
-0

5-
20

02
 

Bases mathématiques 

2eme exemple de divisibilité 

Mais, 0 = 0 ·c, pour tout c 

Aucun entier non nul a n’est divisible par 0 

    0|0 

Sinon, il existerait c tel que a = c·0  
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Bases mathématiques 

3eme exemple de divisibilité 

Tout entier a divise 0. 

En effet, 0 ·a = 0. 
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Bases mathématiques 

4eme exemple de divisibilité 

Quels sont les diviseurs 

entiers de 5? 

Ce sont 1 et 5. 
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Bases mathématiques 

définition d’un nombre premier 

Un nombre entier positif p > 1 est 

appelé nombre premier si ses seuls 

diviseurs positifs sont 1 et p. 

Un nombre non premier est dit nombre 

composé. 
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Bases mathématiques 

division euclidienne 

Soient deux entiers a et b, avec b  0.  

Alors, il existe des entiers p et r uniques, tels que 

 a = bq + r  et 0 r < |b|. 

q est appelé le quotient de a par b  

et r le reste.  
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Bases mathématiques 

1er exemple de division euclidienne 

a = 37       b = 15 

37 = 2 ·15 + 7 

    q = 2  et r = 7 
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Bases mathématiques 

2eme exemple de division euclidienne 

a = 37       b = -15 

37 =(-2) (-15) + 7 

    q = -2  et r = 7 
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Bases mathématiques 

3eme exemple de division euclidienne 

a = -37       b = 15 

-37 = -2 ·15 - 7 

    q = -2  et r = -7 
Faux !, car r>0 
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Bases mathématiques 

3eme exemple de division euclidienne 

a = -37       b = 15 

-37 = -3 ·15 + 8 

    q = -3  et r = 8 
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Bases mathématiques 

le pgcd 

On appelle plus grand commun diviseur des 

entiers a et de b et on note pgcd(a,b), le plus 

grand entier positif qui est à la fois diviseur 

de a et de b. 

Exemple : a = 12       b = 15 

Diviseurs de 12: {1, 2, 3, 4, 6, 12} 

Diviseurs de 15: {1, 3, 5, 15} 

    pgcd(12,15) = 3 
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Bases mathématiques 

entiers premiers entre eux 

On dit que deux entiers a et b sont premiers 

entre eux si et seulement si pgcd(a,b) =1 

Exemple : a = 7       b = 12 

Diviseurs de 12: {1, 2, 3, 4, 6, 12} 

Diviseurs de 7: {1, 7} 

    7 et 12 sont premiers entre eux.  
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Bases mathématiques 

théorème de Bezout 

Deux entiers a et b sont premiers entre eux  

si et seulement s’il existe deux entiers u et v 

tels que  

ua + vb = 1 



Centre Universitaire de Luxembourg 

CRP Gabriel Lippmann 

 
Cryptology 

 & Security 

 Initiative 

16
-0

5-
20

02
 

Bases mathématiques 

chapitre 2 

Arithmétique modulaire 

Le RSA 

Comment 

calculer 

modulo n? 

Théorèmes fondamentaux 

Le problème de la factorisation 

Divisibilité 
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Bases mathématiques 

définition de la congruence 

Si a, b et n sont des entiers, on dit que 

a est congru à b modulo n et on note  

a = b (mod n), si n | a-b 

On dit aussi que b est un résidu de a 

modulo n, ou un reste de a modulo n. 
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Bases mathématiques 

1er exemple de congruence 

9 = 23 - 14 

    23 = 14 (mod 9) 

N’importe quels deux nombres de l’ensemble  

{…, -4, 5, 14, 23, …} sont congrus modulo 9. 
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Bases mathématiques 

2eme exemple de congruence 

Pour tous entiers a et b, il existe c tel que 

b - a = c·1 

    a = b (mod 1) 
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Bases mathématiques 

remarque sur les congruences 

a = b (mod n) si et seulement si 

a = b (mod -n). 

 

Pour cette raison, on ne considère que 

 des modules positifs.  
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Bases mathématiques 

relation d’équivalence 

Soient a, b, c et n des entiers.  

Si a = b (mod n) et b = c (mod n), 

alors a = c (mod n) 

 a = b (mod n) ssi b = a (mod n) 

a = a (mod n)  

La congruence est une relation d’équivalence 



Centre Universitaire de Luxembourg 

CRP Gabriel Lippmann 

 
Cryptology 

 & Security 

 Initiative 

16
-0

5-
20

02
 

Bases mathématiques 

remarque sur la relation d’équivalence 

Les classes d’équivalence de cette  

relation (classes de reste modulo n)  

                   sont sddadfafasf 

assfsafasf / {0,1,..., 1}n n 
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Bases mathématiques 

calcul avec les congruences 

Soient a, b, c, d et n des entiers.  

 Si a = b (mod n) et c = d (mod n), 

alors a + c = b + d (mod n) 

Si a = b (mod n), alors ac = bc (mod n)  

Si a = b (mod n), alors ak = bk (mod n) 

 Si a = b (mod n) et c = d (mod n), 

alors ac = bd (mod n) 
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Bases mathématiques 

1er exemple de calcul 

16 = -1 (mod 17) 

 162 (=256) = 1 (mod 17) 
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Bases mathématiques 

2eme exemple de calcul 

24 = 16 = 1 (mod 5) 

 28 = (24)2 = 1 (mod 5) 

 212 = 28 24 = 1 (mod 5) 

24k = 1 (mod 5), pour tout k.  
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Bases mathématiques 

3eme exemple de calcul 

Comment 

calculer 232 

? 

 232 = 230 22 = 13 ·4 = 52 = 1 (mod 17) 

23 = 8 (mod 17) 

24 = 16 (mod 17) 

25 = 32 = 15 (mod 17) 

210 = (25)2 = 152 = 4 (mod 17) 

230 = (210)3 = 43 = 64 = 13 (mod 17) 
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Bases mathématiques 

plus de calcul 

Soient a, b, c, d et n des entiers.  

 Si a = b (mod n) et d|n, 

alors a = b (mod d) 

 Si ac = bc (mod n), 

alors a = b (mod n/pgcd(c,n) 
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Bases mathématiques 

exemple 

Montrons que 3|n3 - n 

Il faut montrer que 

n3 - n = 0 (mod 3). Or, 

 
 

/3 {0,1,2}

23-2= 0 (mod 3) 03-0 = 0 (mod 3) 13-1= 0 (mod 3) 

 3|n3 - n 
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Bases mathématiques 

équivalence 

 Si pgcd (m,n) = 1, alors 

 [a = b (mod m) et a = b (mod n)] 

  a = b (mod mn) 

Si p et q sont des nombres premiers, alors 

a2 = 1 (mod pq) ssi  

a2 = 1 (mod p) et a2 = 1 (mod q)  
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Bases mathématiques 

définition de l’inverse modulo n 

Soient a et n des entiers. Un entier a’ 

est dit inverse de a modulo n si et 

seulement si aa’ = a’a = 1 (mod n). 

On dit que a est inversible modulo n, 

si a admet un inverse modulo n. 

Si a admet un inverse modulo n, alors 

cet inverse est unique. 
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Bases mathématiques 

1er exemple d’inverse  

2 ·6 = 1 (mod 11) 

  l’inverse de 2 modulo 11 est 6  

  l’inverse de 6 modulo 11 est 2  
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Bases mathématiques 

2eme exemple d’inverse  

3 ·3 = 1 (mod 8) 

  l’inverse de 3 modulo 8 est 3  
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Bases mathématiques 

3eme exemple d’inverse  

2x = 1 (mod 8)  8|2x-1 

  2 n’admet pas d’inverse modulo 8  

Or, 2x-1 est impair et 8 est pair  
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Bases mathématiques 

éléments inversibles 

 Les éléments inversibles de          

sont les entiers premiers avec n et 

forment un groupe pour la multiplication 

noté        

/ n

 
*

/ .n

 Si p est un nombre premier, alors 

                 est un corps. / p
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Bases mathématiques 

calcul de l’inverse modulo n 

Comment calcule-

t-on l’inverse x 

d’un entier u 

modulo n? 

ux = 1 (mod n)  il existe v tel que  

ux - 1 = vn 

Théorème de Bezout  existence de x et v, 

si u et n sont premiers entre eux.  

Calcul pratique : algorithme d’Euclide étendu 
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Bases mathématiques 

chapitre 3 

Théorèmes  

fondamentaux 

Le RSA 

Ce qu’il faut 

savoir pour 

comprendre les 

détails Arithmétique modulaire 

Le problème de la factorisation 

Divisibilité  
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Bases mathématiques 

le théorème chinois 

1 2

1 2

Si , ,...,  sont des entiers deux

à deux disjoints entre eux et si , ,...,

sont des entiers quelconques, il existe un 

entier  tel que, pour tout 1,...,

           (mod )

k

k

i i

m m m

a a a

x i k

x a m




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Bases mathématiques 

corollaire 

1

1

Si ,  alors

/ / .

i

i

k

i

i

k

i

i

n p

n p












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Bases mathématiques 

théorème de Fermat 

Si p est un nombre premier, alors 

 

ap  = a (mod p), pour tout a. 

Si pgcd(a,p)=1, 

 

ap-1  = 1 (mod p). 
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Bases mathématiques 

exemple 1 

Montrons que 250  + 350  est divisible par 13 

Fermat  212 = 1 (mod 13) 

50 = 4·12+2 

 250 = (212)4 22 = 1·4 = 4 (mod 13)  

Fermat  312 = 1 (mod 13) 

 350 = (312)4 32 = 1·9 = 9 (mod 13)  

 250 + 350 = 4 + 9 = 13 = 0 (mod 13)  
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Bases mathématiques 

exemple 2 

Cherchons le reste de 3372 par 37 

Fermat  336 = 1 (mod 37) 

372 = 10 ·36 +12 

 3372 = (336) 10 312 = 1·10 = 10 (mod 37)  

34 = 81 = 7 (mod 37)  312 = 73 = 7·49 = 7·12 = 10 (mod 37) 

 3372 = 10  (mod 37)  
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Bases mathématiques 

l’indicateur d’Euler 

Exemple : n = 8 

Les éléments inversibles modulo 8 dans 

{0,1,2,…,7} sont {1, 3, 5, 7} 

 (8) = 4 

On note (n) le nombre d ’éléments 

inversibles de             . 

La fonction  est appelée l’indicateur 

d ’Euler. 

/ n
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Bases mathématiques 

autres exemples 

p premier  pgcd(p,a) = 1, a {1,…,p-1} 

 (p) = p-1  

 (pr) = pr - pr-1 = pr (1-1/p) 

p premier, r entier 
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Bases mathématiques 

propriétés de l’indicateur d’Euler 

Si pgcd(m,n) = 1, 

alors (mn) = (m)(n). 

1

i-1

1

n

i

k=1

1

Si , alors

(n)= p ( 1)

1
      1 .

k

k

i

k

i i

n p p

p

n
p











 
  

 




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Bases mathématiques 

exemple d’application 

(29 ·52 ) = (29)(52 ) 

= 28 · 52(1-1/5) 

= 28 ·20 

= 560 

Si a et n sont des entiers premiers entre eux, 

alors                             
( ) 1(mod ).na n 

Théorème d’Euler 
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Bases mathématiques 

chapitre 4 

Le RSA 

Théorèmes fondamentaux 

Description 

élémentaire du 

cryptosystème Arithmétique modulaire 

Le problème de la factorisation 

Divisibilité 
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Bases mathématiques 

génération des clés 

n = p·q 

p q Nombres premiers aléatoires 

On choisit e tel que  

1 < e < (n)  et pgcd(e,(n)) = 1 

 (n) = (p-1)(q-1) 

On calcule d tel que ed = 1 (mod (n))  

paire de clés 

Clé publique (n,e) Clé privée d 
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Bases mathématiques 

exemple de clés 

p = 11 et q = 23 

    d = 147 

 n = 253 et (p-1)(q-1) = 10 ·22 = 22 ·5 ·11 

Le plus petit choix pour e est e = 3 

Remarque : Parfois, on remplace la 

fonction(n) par (n) = (p-1)(q-1)/2 

 accélération du déchiffrage 
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Bases mathématiques 

procédure de chiffrage 

Message m 

0  m < n 

Texte chiffré 

c = me (mod n) 

n = 253 et e = 3 

Exemple: 

m = 165  c = 1653 (mod 253) 

 c = 110  
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Bases mathématiques 

procédure de déchiffrage 

Texte chiffré c 
Message original 

m = cd (mod n) 

n = 253, e = 3, d = 147 

Exemple: 

c = 110  m = 110147 (mod 253) 

 m = 165  
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Bases mathématiques 

preuve de la procédure de déchiffrage 

ed = 1 (mod (p-1)(q-1)) 

 k tel que ed = 1+k(p-1)(q-1) 

(me)d = med = m1+k(p-1)(q-1) = m(mk(p-1)(q-1)) 

1. Si p|m, (me)d = 0 (mod p) et m(mk(p-1)(q-1)) = 0 (mod p) 

2. Sinon  Fermat  mp-1 = 1 (mod p) 

et (me)d = m(m(p-1))k(q-1) = m (mod p) 

Finalement (me)d = cd = m (mod p) 

De même, cd = m (mod q)  

Théorème d’équivalence  cd = m (mod n)  

• 
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Bases mathématiques 

remarque sur le déchiffrage 

On peut réduire considérablement le temps de calcul 

 du déchiffrage en utilisant le thèorème chinois. 

m = cd (mod n) 
(mod )

(mod )

d

p

d

q

m c p

m c q





Théorème des 

restes chinois 

(mod )

(mod )

p

q

m m p

m m q




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Bases mathématiques 

chapitre 5 

Le problème de 

 la factorisation 

Théorèmes fondamentaux 

Quelques idées 

de base 
Arithmétique modulaire 

Le RSA 

Divisibilité 
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Bases mathématiques 

théorèmes 

Théorème d’Euclide : 

Il existe une infinité de nombres premiers. 

Théorème arithmétique fondamental: 

Tout nombre entier peut être décomposé de 

 façon unique comme produit de nombres 

premiers. 
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Bases mathématiques 

méthodes de factorisation 

Méthode de Pierre de Fermat (1601-1665) : 

Si n =  a2 - b2 , alors n = (a-b)(a+b). 

En pratique, on calcule  a2 - n, ou  a2 est le plus petit carré > n. 

Si c’est un carré, on a trouvé. 

Sinon, on essaie le carré prochain.  

Méthode exhaustive : 

On divise n par tous les entiers entre 1 et 

jusqu’à trouver un diviseur d. Puis, on recommence  

avec n/d.   

n


