On Order Invariant Synthesizing Functions

Jean-Luc Marichal
Department of Mathematics
Brigham Young University, Provo, Utah 84602, USA.
Email: marichal@math.byu.edu

Abstract

We give a description of the class of
continuous functions that are com-
parison meaningful in the sense of
measurement theory. When idempo-
tency is assumed, this class reduces
to the Boolean max-min functions
(lattice polynomials). In that case,
continuity can be replaced by in-
creasing monotonicity, provided that
the domain of definition is open.
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1 Introduction

Consider a set of real numbers defining an or-
dinal scale, i.e., a scale where only order mat-
ters, and not numbers. For example, a scale
of evaluation of a scientific paper by a referee
such as

1=Poor, 2=Below Average, 3=Average,
4=Very Good, 5=Excellent

is a (finite) ordinal scale, despite the coding
by numbers 1 to 5. These numbers are actu-
ally meaningless since any other numbers that
preserve the order could have been used. For
instance,

-6.5=Poor, -1.2=Below Average, 8.7=Average,
205.6=Very Good, 750=Excellent.

Thus, the numbers that are assigned to that
scale are defined up to a (continuous) increas-
ing bijection ¢ : IR — IR. For a general dis-
cussion of ordinal scales and for definitions of
other scale types; see for instance Roberts [17]
and Luce et al. [7].

Now, let x1,...,x, be real numbers given ac-
cording to an ordinal scale. It is clear that any
aggregation of these numbers cannot be made
by means of usual arithmetic operations, un-
less these operations involve only order. For
example, computing the arithmetic mean is
forbidden, but the median or any order statis-
tic is permitted. More precisely, the aggre-
gated value can be calculated only by a syn-
thesizing function M : IR™ — IR satisfying the
following condition:

M(xy,...,2n) {S} M(24,... 1))
I
M(¢(x1), ..., ¢(xn)) {2} M((2h),. .., o(a7,))

for any z,2’ € IR"™ and any continuous in-
creasing bijection ¢ : IR — IR. Such an or-
der invariant function is said to be compar-
ison meaningful (from an ordinal scale); see
Orlov [12].

A typical example of comparison meaning-
ful function is given by the Boolean maz-min
functions [8, 9, 10], also called lattice polyno-
mials [3, 14, 15]. These functions are of the
form

TeT ieT

where 7 is a non-empty family of non-empty
subsets of {1,...,n}. Moreover, symbols V



and A denote maximum and minimum, re-
spectively.

In this paper we described the family of con-
tinuous and comparison meaningful functions
M : E™ — IR, where F is any real interval,
possibly unbounded. When idempotency is
assumed (that is, M(z,...,z) = z), these
functions are exactly the Boolean max-min
functions. In this case, increasing monotonic-
ity can be substituted to continuity without
change.

Note that similar studies have been done for
ratio scales and interval scales by Aczél and
Roberts [1] and Aczél, Roberts, and Rosen-
baum [2].

2 Boolean max-min functions

In this section we investigate the Boolean
max-min functions, which play a central role
in this paper. The word ‘Boolean’ refers
to the fact that these functions are gener-
ated by {0, 1}-valued set functions. They are
also order invariant extensions on IR™ of non-
constant and increasing (monotone) Boolean
functions.

To simplify the notation, we set N :=

{1,...,n}.

Definition 2.1 For any non-constant set
function ¢ : 2NV — {0,1} such that c(})) = 0,
the Boolean maz-min function BY" : R" — IR
associated to ¢ is defined by

B/MN(x) := \/ /\ x; (x € R").
TCN €T
c(T)=1

It can be proved [3, Chap. 2, Sect. 5] that
any expression constructed from the real vari-
ables z1,...,x, and the symbols A, V (and,
of course, parentheses) is a Boolean max-min
This shows that the concept of
Boolean max-min function is very natural de-
spite its rather strange definition.

function.

Now, we can readily see that any Boolean
max-min function BY” fulfills the following

property:

B/MN(x) € {z1,..., 20} (x € R"™).

Actually, we can point out a stronger prop-
erty. Let II denote the set of all permutations
on N, and let us introduce the following sets
which cover IR™:

OWZ{QZEIRn‘xﬂ.(l)S---Sxﬂ.(n)}, w e 1L

Clearly, any Boolean max-min function M =
BY/ fulfills the following property:

Vrmell, 3k € N st. M(z) =z, Vo € O;.
More precisely, we have the following result:
Proposition 2.1 For any 7 € I, we have

B/Nx) = zr;y  (x € Ox),

with
=V A
TCN  r(i)eT
c(T)=1
The set function ¢ that defines BY" is not
unique. For example, we have

.’El\/(.’El/\.’Eg) = (l‘l,I‘Q GIR)

It can be shown [9], however, that there is a
unique increasing (monotone) set function ¢
that defines BY”, which is given by

o(T) =B er) (T SN),
where, for any T' C N, er is the characteristic
vector of T in {0, 1}".

Using classical distributivity of V and A, we
can see that any Boolean max-min function
can also be put in the form:

A Vi

TCN €T
d(T)=0

with an appropriate set function d : 2V —

{0,1}, see [9].

Let f : {0,1}" — {0,1} be a non-constant
and increasing Boolean function. Then the
function BY”, defined with ¢(T) = f(er)
(T' € N), is an extension on IR" of f since
fler) =¢(T) = BY(er) for all T C N. Con-
sequently, any Boolean max-min function is
an order invariant extension on IR" of a non-
constant and increasing Boolean function.



Consider now the case of symmetric Boolean
max-min functions. For this purpose we re-
call the concept of order statistic (cf. van der
Waerden [18, Sect. 17]).

Definition 2.2 For any k € N, the order
statistic function OSg : IR™ — IR associated
to the kth argument is defined by

OSk(w) = T(k) (.’L‘ S IRn),
where () indicates a permutation on N such
that w(l) <. < x(n)

By Proposition 2.1, we immediately see that
any symmetric Boolean max-min function is
an order statistic. ~Conversely, any order
statistic is a symmetric Boolean max-min
function.

Note that when n is odd, n = 2k — 1, the par-
ticular order statistic z(y) is the well-known
median function:
median(x1, ..., Tok—1) = (k).
Another particular case of Boolean max-min
functions is given by the projection functions.

Definition 2.3 For any k € N, the projec-
tion function Pr : IR™ — IR associated to the
kth argument is defined by

Pi(z) = =i (x € R").
The projection function Pj consists in pro-
jecting x € IR™ onto the kth axis. As a par-

ticular synthesizing function, it corresponds
to a dictatorial aggregation.

3 Aggregation properties

Let E be any real interval, bounded or not.
Its interior is denoted E°. The automorphism
group of F/, that is the group of all increasing
bijections ¢ : E — E is denoted by ®(FE).
For the sake of simplicity, we also denote the

vector (p(x1),...,¢(zy)) by ¢(x).

In this section we present some aggregation
properties that we will use to characterize the
set of Boolean max-min functions. The main

one is the comparison meaningfulness prop-
erty, introduced by Orlov [12]. Let us recall
its definition.

Definition 3.1 A function M : E™ — R is
O -comparison meaningful (®-CM) if, for any
¢ € ®(E) and any x,x’ € E™, we have

M(z) {Z} M(2') = M(é(x)) {Z} M(d(2)).

A stronger requirement is the &-ordinal
stability, = proposed by Marichal and
Roubens [11].

Definition 3.2 A function M : E" — E
is ®-ordinally stable (®-O8S) if, for any ¢ €
®(E) and any x € E™, we have

The following proposition was proved by
Ovchinnikov [13, Theorem 4.1] in the partic-
ular case of means; see also [5, 11, 14].

Proposition 3.1 Let the function M : E™ —
FE fulfill -OS. Then

M(z) € {z1,...,zn}U{inf E,sup E} (z € E").

Furthermore, if E is open then

M(z) € {x1,...,xn} (z € E™).

In the second part of Proposition 3.1, the as-
sumption that E is open is necessary. In-
deed, if a := inf E € E for example, then
any ¢ € ®(F) is such that ¢(a) = a and thus
the constant function M = a fulfills -OS.

The most often encountered synthesizing
functions in the literature on aggregation
are means or averaging functions, such as
the weighted arithmetic means. Cauchy [4]
considered in 1821 the mean of n inde-
pendent variables z1,...,z, as a function
M(x1,...,x,) which should be internal to the
set of x; values.

Definition 3.3 A function M : E™ — R is
internal (Int) if

minz; < M(z1,...,2,) < maxz, (x € E™).



Such means satisfy trivially the property of
idempotency, i.e., if all x; are identical, M (x)
restitutes the common value.

Definition 3.4 A function M : E" — 1R is
idempotent (Id) if
M(z,...

,T) =T (x € E).

The characterizations we will present in the
next section are mainly devoted to idempo-
tent functions. We shall also use two other ag-
gregation properties: continuity (Co) and in-
creasing monotonicity in each argument (In).

The Id property seems natural enough, even
when values to be aggregated are defined on
an ordinal scale. Besides, one can readily see
that, for functions fulfilling In, it is equiva-
lent to Cauchy’s internality Int, and both are
accepted by all statisticians as requisites for
means and typical values.

The following result, adapted from Lemma
2.2 in [13], shows that ordinal stability and
comparison meaningfulness are closely related
properties.

Proposition 3.2 Consider a function
M:E"— E.
i) If M fulfills Id and ®-CM then it
fulfills ®-OS.
it)  If M fulfills ®-OS then it fulfills
d-CM.
iti) If E is open then M fulfills Id and
®-CM if and only if it fulfills -OS.

4 Main results

In the present section we give the axiomatic
characterizations stated in the introduction.

Theorem 4.1 The function M : E" — IR
fulfills Co and ®-CM if and only if

e cither M is constant,

e or there exists a set function ¢ and a
continuous and strictly monotonic
function g : E — IR such that
M = goBJ".

The following two characterizations follow im-
mediately from Theorem 4.1; see also [10].

Corollary 4.1 The function M : E" — R
fulfills Co, Id, and ®-CM if and only if there
exists a set function ¢ such that M = BY".

Corollary 4.2 Assume that E is open. Then
the function M : E"™ — E fulfills Co and ®-
OS if and only if there exists a set function c
such that M = BY".

Note that Corollary 4.2 was stated and proved
by Ovchinnikov [14, Theorem 5.3] in the more
general setting where the range of variables is
a doubly homogeneous linear order (i.e., a set
X fulfilling the following property: for any
T1,T2,Y1,y2 € X, with 1 < 29 and y; < yo,
there is an automorphism ¢ : X — X such
that ¢(z1) = y1 and ¢(x2) = y2).

We have already observed in the remark re-
garding Proposition 3.1 that, when E' is not
open, there exist functions M : E™ — E ful-
filling Co and ®-OS other than BY". The
complete description of that family is given
in the following result.

Corollary 4.3 The function M : E" — E
fulfills Co and ®-O8S if and only if
e cither M =inf E (unless inf E ¢ E),
o or M =supE (unlesssupE ¢ E),
e or there exists a set function c such that
M =BYM.

It follows from Corollary 4.3 that the func-
tions M : E™ — FE that fulfill Co, Id, and
®-0S are exactly the Boolean max-min func-
tions. The extension of this latter result to
the case of functional operators can be found
in Ovchinnikov and Dukhovny [16].

Now, let us turn to the case of increasing func-
tions. We have the following result; see also
[10].

Theorem 4.2 Assume that E is open. Then
the function M : E™ — R fulfills In, Id, and
®-CM if and only if there exists a set function
¢ such that M = BY".

If F is not open, the set of Boolean max-min
functions on E™ cannot be characterized by
the properties In, Id, and ®-CM. For exam-
ple, the function M* : [a,b]" — IR, defined



by

b, if max; x; = b,
min; z;, else,

() = { (1)
fulfills these three properties, but is not a
Boolean max-min function on [a, b]"™.

Theorem 4.2 shows that the discontinuities as
in (1) occur only on the border of E™. Thus,
any function M : E™ — IR fulfilling In, Id,
and ®-CM is a Boolean max-min function on
(E°)".

Corollary 4.4 Assume that E is open. Then
the function M : E™ — FE fulfills In and -
OS if and only if there exists a set function c
such that M = BY".

5 Order statistics and projection
functions

We now intend to characterize the order
statistics and the projection functions, which
are particular Boolean max-min functions.

Since the order statistics are exactly the sym-
metric Boolean max-min functions, we imme-
diately have the following three characteriza-
tions. The notation Sy stands for the sym-
metry property.

Corollary 5.1 The function M : E" — R
fulfills Sy, Co, and ®-CM if and only if
e cither M is constant,
e or there exists k € N and a continuous
and strictly monotonic function
g: E — R such that M = g o OSy.

Corollary 5.2 The function M : E" — R
fulfills Sy, Co, Id, and ®-CM if and only if
there exists k € N such that M = OS,.

Corollary 5.3 Assume that E is open. Then
the function M : E™ — IR fulfills Sy, In, 1d,
and ®-CM if and only if there exists k € N
such that M = OS;,.

Note that the second characterization, when
Int replaces Id, was proved first by Orlov [12]
on IR", then by Marichal and Roubens [11,
Theorem 1] on E™, and finally by Ovchin-
nikov [13, Theorem 4.3] in the more general

framework of ordered sets. The two other
characterizations were previously unknown.

Now, let us characterize the median function,
which is a particular order statistic. For that
purpose we introduce the following property.

Definition 5.1 Let vy : E — E be a decreas-
ing bijection. A function M : E™ — IR is
stable with respect to a W-reversal of the scale

(-SR) if for any x,x’ € E™, we have

M(z)=M(a") = M) =MW()),
where  the  notation  (x) means
(¢($1)a tet 7,¢(xn))

We then have the following results.

Corollary 5.4 Assume that n is odd. There
exists a decreasing bijection ¢ : E — E such
that the function M : E" — IR fulfills Sy,
Co, ¢-CM, and ¥-SR. if and only if
e cither M 1is constant,
e o1 there exists a continuous and strictly
monotonic function g : E — IR such
that M = g o median.

Corollary 5.5 Assume that n is odd. There
exists a decreasing bijection ¢ : E — E such
that the function M : E™ — IR fulfills Sy,
Co, Id, ®-CM, and ¥-SR. if and only if M =

median.

Corollary 5.6 Assume that E is open and
that n is odd. There exists a decreasing bi-
jection ¢ : E — E such that the function
M : E" - IR fulfills Sy, In, 1d, ®-CM, and
Y-SR if and only if M = median.

Now, let us turn to the case of projection func-
tions. As we can easily see, the projection
functions fulfill the following property [1, 6].

Definition 5.2 A function M : E" — IR
1s ®-comparison meaningful from indepen-
dent ordinal scales (®-CMI) if, for any
Oty On € ®(E) and any z,2' € E™, we
have

M(x) {2} M(2') = M(é(2)) {Z} M(6(2)),

where the

(¢1(21), - .

notation  ¢(x)

s &n(n)).

means



It can be shown that the projection functions
are exactly those Boolean max-min functions
which fulfill &-CMI. We then have the fol-
lowing results.

Corollary 5.7 The function M : E" — IR
fulfills Co and ®-CMI if and only if

e cither M is constant,

e or there exists k € N and a continuous

and strictly monotonic function
g: E — IR such that M = g o Py,.

Corollary 5.8 The function M : E" — IR
fulfills Co, Id, and ®-CMI if and only if
there exists k € N such that M = Py,.

Corollary 5.9 Assume that E is open. Then
the function M : E™ — R fulfills In, Id, and
®-CMLI if and only if there exists kK € N such
that M = Py,.
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