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Aggregation in multicriteria decision aid

• Alternatives A = {a, b, c, . . .}

• Criteria N = {1, 2, . . . , n}

• Profile a ∈ A −→ (xa
1 , . . . , x

a
n) ∈ [0, 1]n

• Aggregation function

F : [0, 1]n → [0, 1]

(x1, . . . , xn) 7→ F (x1, . . . , xn)
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Tolerant and intolerant character of F

F (x) = mini xi → intolerant behavior

F (x) = maxi xi → tolerant behavior

F (x) = x(k) → intermediate behavior

F (x) =
( n

∏

i=1

xi

)1/n

→ ?
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Tolerant and intolerant character of F

Position of E(F ) within the interval [E(min), E(max)]

0 1

0 1

E(F)

orness(F)

orness(F ) :=
E(F ) − E(min)

E(max) − E(min)

andness(F ) :=
E(max) − E(F )

E(max) − E(min)

(Dujmović, 1974)

andness(F ) + orness(F ) = 1

k-intolerant capacities and Choquet integrals – p.5/18



Intolerant behavior : application

k-intolerant capacities and Choquet integrals – p.6/18



Intolerant behavior : application

Selection of candidates for a university permanent position

k-intolerant capacities and Choquet integrals – p.6/18



Intolerant behavior : application

Selection of candidates for a university permanent position

Academic selection criteria

k-intolerant capacities and Choquet integrals – p.6/18



Intolerant behavior : application

Selection of candidates for a university permanent position

Academic selection criteria

1. Scientific value of curriculum vitae

k-intolerant capacities and Choquet integrals – p.6/18



Intolerant behavior : application

Selection of candidates for a university permanent position

Academic selection criteria

1. Scientific value of curriculum vitae

2. Teaching effectiveness

k-intolerant capacities and Choquet integrals – p.6/18



Intolerant behavior : application

Selection of candidates for a university permanent position

Academic selection criteria

1. Scientific value of curriculum vitae

2. Teaching effectiveness

3. Ability to supervise staff and work in a team environment

k-intolerant capacities and Choquet integrals – p.6/18



Intolerant behavior : application

Selection of candidates for a university permanent position

Academic selection criteria

1. Scientific value of curriculum vitae

2. Teaching effectiveness

3. Ability to supervise staff and work in a team environment

4. Ability to communicate easily in English

k-intolerant capacities and Choquet integrals – p.6/18



Intolerant behavior : application

Selection of candidates for a university permanent position

Academic selection criteria

1. Scientific value of curriculum vitae

2. Teaching effectiveness

3. Ability to supervise staff and work in a team environment

4. Ability to communicate easily in English

5. Work experience in the industry

k-intolerant capacities and Choquet integrals – p.6/18



Intolerant behavior : application

Selection of candidates for a university permanent position

Academic selection criteria

1. Scientific value of curriculum vitae

2. Teaching effectiveness

3. Ability to supervise staff and work in a team environment

4. Ability to communicate easily in English

5. Work experience in the industry

6. Recommendations by faculty and other individuals

k-intolerant capacities and Choquet integrals – p.6/18



Intolerant behavior : application

Selection of candidates for a university permanent position

Academic selection criteria

1. Scientific value of curriculum vitae

2. Teaching effectiveness

3. Ability to supervise staff and work in a team environment

4. Ability to communicate easily in English

5. Work experience in the industry

6. Recommendations by faculty and other individuals

Example of procedure rules

The complete failure of any two of these criteria results in automatic
rejection of the applicant

k-intolerant capacities and Choquet integrals – p.6/18



Intolerant behavior : application

Selection of candidates for a university permanent position

Academic selection criteria

1. Scientific value of curriculum vitae

2. Teaching effectiveness

3. Ability to supervise staff and work in a team environment

4. Ability to communicate easily in English

5. Work experience in the industry

6. Recommendations by faculty and other individuals

Example of procedure rules

The complete failure of any two of these criteria results in automatic
rejection of the applicant
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For any fixed k ∈ {1, . . . , n}, consider the condition

xi = 0 for any k criteria i ∈ N ⇒ F (x) = 0

This is equivalent to

x(k) = 0 ⇒ F (x) = 0

When F ≡ Cv is the Choquet integral then this condition is
equivalent to

F (x) 6 x(k) (x ∈ [0, 1]n)

k-intolerant capacities and Choquet integrals – p.7/18



Choquet integral

k-intolerant capacities and Choquet integrals – p.8/18



Choquet integral

Capacity on N

v : 2N → [0, 1], monotone, v(∅) = 0, and v(N) = 1

Fn := {capacities on N}

k-intolerant capacities and Choquet integrals – p.8/18



Choquet integral

Capacity on N

v : 2N → [0, 1], monotone, v(∅) = 0, and v(N) = 1

Fn := {capacities on N}

Choquet integral of x ∈ [0, 1]n w.r.t. v

Cv(x) :=
n

∑

i=1

x(i)

[

v
[

(i), . . . , (n)
]

− v
[

(i + 1), . . . , (n)
]

]

with the convention that x(1) 6 · · · 6 x(n).
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Choquet integral

Capacity on N

v : 2N → [0, 1], monotone, v(∅) = 0, and v(N) = 1

Fn := {capacities on N}

Choquet integral of x ∈ [0, 1]n w.r.t. v

Cv(x) :=
n

∑

i=1

x(i)

[

v
[

(i), . . . , (n)
]

− v
[

(i + 1), . . . , (n)
]

]

with the convention that x(1) 6 · · · 6 x(n).

Example

If x3 6 x1 6 x2, we have

Cv(x1, x2, x3) = x3[v(3, 1, 2) − v(1, 2)] + x1[v(1, 2) − v(2)] + x2v(2)
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Proposition

Let k ∈ {1, . . . , n} and v ∈ Fn.

Then the following assertions are equivalent:

i) Cv(x) 6 x(k) ∀x ∈ [0, 1]n,

ii) ∀x ∈ [0, 1]n : x(k) = 0 ⇒ Cv(x) = 0,

iii) Cv(x) is independent of x(k+1), . . . , x(n),

Recruiting problem

The global evaluation depends only on x(1) and x(2)

k-intolerant capacities and Choquet integrals – p.9/18



k-intolerant capacities and Choquet integrals

Definition

Let k ∈ {1, . . . , n}.
F : [0, 1]n → [0, 1] is k-intolerant if F 6 OSk and F  OSk−1.

Proposition

Let k ∈ {1, . . . , n} and v ∈ Fn.

Then the following assertions are equivalent:

i) Cv(x) 6 x(k) ∀x ∈ [0, 1]n,

ii) ∀x ∈ [0, 1]n : x(k) = 0 ⇒ Cv(x) = 0,

iii) Cv(x) is independent of x(k+1), . . . , x(n),

iv) v(T ) = 0 ∀T ⊆ N such that |T | 6 n − k
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Definition

Let k ∈ {1, . . . , n}.
F : [0, 1]n → [0, 1] is k-intolerant if F 6 OSk and F  OSk−1.

Proposition

Let k ∈ {1, . . . , n} and v ∈ Fn.

Then the following assertions are equivalent:

i) Cv(x) 6 x(k) ∀x ∈ [0, 1]n,

ii) ∀x ∈ [0, 1]n : x(k) = 0 ⇒ Cv(x) = 0,

iii) Cv(x) is independent of x(k+1), . . . , x(n),

iv) v(T ) = 0 ∀T ⊆ N such that |T | 6 n − k

Definition

v ∈ Fn is k-intolerant if iv) holds for k and not for k − 1.
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k-tolerant aggregation functions

For any fixed k ∈ {1, . . . , n}, consider the condition

xi = 1 for any k criteria i ∈ N ⇒ F (x) = 1

This is equivalent to

x(n−k+1) = 1 ⇒ F (x) = 1

When F ≡ Cv is the Choquet integral then this condition is
equivalent to

F (x) > x(n−k+1) (x ∈ [0, 1]n)
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Definition

Let k ∈ {1, . . . , n}.
F : [0, 1]n → [0, 1] is k-tolerant if F > OSn−k+1 and F ® OSn−k+2.
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k-tolerant capacities and Choquet integrals

Definition

Let k ∈ {1, . . . , n}.
F : [0, 1]n → [0, 1] is k-tolerant if F > OSn−k+1 and F ® OSn−k+2.

When F ≡ Cv

we have a similar proposition as for intolerance...
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How can we measure the degree to which the inequality
Cv 6 OSk holds ?

Recall that:

Cv 6 OSk ⇐⇒
[

x(k) = 0 ⇒ Cv(x) = 0
]

⇐⇒
[

x(k) = 0 ⇒ Cv(x) = minixi

]

Definition

For any k ∈ {1, . . . , n − 1} and any v ∈ Fn, we define
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Intolerance and tolerance indices

Given a Choquet integral Cv

How can we measure the degree to which the inequality
Cv 6 OSk holds ?

Recall that:

Cv 6 OSk ⇐⇒
[

x(k) = 0 ⇒ Cv(x) = 0
]

⇐⇒
[

x(k) = 0 ⇒ Cv(x) = minixi

]

Definition

For any k ∈ {1, . . . , n − 1} and any v ∈ Fn, we define

intolk(Cv) := andness(Cv | x(k) = 0)

Idea : defined from the conditional expectation E(Cv | x(k) = 0)
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Intolerance and tolerance indices

intolk(Cv) := andness(Cv | x(k) = 0)

In terms of v, this index reads

intolk(Cv) = 1 −
1

n − k

n−k
∑

t=0

1
(

n
t

)

∑

T⊆N
|T |=t

v(T )
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Intolerance and tolerance indices
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Some properties
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1. intolk(Cv) = 1 if and only if Cv 6 OSk
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3. Graph of intolk(OSj) for fixed k:

1 j

1
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<k

nk
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Intolerance and tolerance indices

intolk(Cv) := andness(Cv | x(k) = 0)

Some properties

1. intolk(Cv) = 1 if and only if Cv 6 OSk

2. intolk(Cv) is nondecreasing as k increases

3. Graph of intolk(OSj) for fixed k:

1 j

1

intol  (OS )
<k

nk

j

OSj 6 OSk ⇐⇒ j 6 k
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Theorem

Let k ∈ {1, . . . , n − 1}
and consider a family of real numbers {ψk(Cv) | v ∈ Fn}

These numbers are
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Intolerance indices : characterization

Theorem

Let k ∈ {1, . . . , n − 1}
and consider a family of real numbers {ψk(Cv) | v ∈ Fn}

These numbers are

1. linear with respect to the capacity

2. independent of the numbering of criteria (symmetry)

3. such that intolk(OSj) has the graph showed above

if and only if ψk(Cv) = intolk(Cv) for all v ∈ Fn.
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The recruiting problem

k-intolerant capacities and Choquet integrals – p.16/18



The recruiting problem

3-intolerant solution learnt from prototypic applicants :

v(T ) = 0 for all T ⊆ {1, . . . , 6} except

v({1, 2, 4, 5}) = v({1, 2, 3, 4, 5}) = v({1, 3, 4, 5, 6}) = 1/3
v({1, 2, 3, 4, 6}) = 2/3
v({1, 2, 4, 5, 6}) = v({1, 2, 3, 4, 5, 6}) = 1
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The recruiting problem

3-intolerant solution learnt from prototypic applicants :

v(T ) = 0 for all T ⊆ {1, . . . , 6} except

v({1, 2, 4, 5}) = v({1, 2, 3, 4, 5}) = v({1, 3, 4, 5, 6}) = 1/3
v({1, 2, 3, 4, 6}) = 2/3
v({1, 2, 4, 5, 6}) = v({1, 2, 3, 4, 5, 6}) = 1

Sequence intolk(Cv) for k = 1, . . . , 5
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Intolerance and tolerance indices

Similarly, we can define k-tolerant indices
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Intolerance and tolerance indices

Similarly, we can define k-tolerant indices

tolk(Cv) := orness(Cv | x(n−k+1) = 1)
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Intolerance and tolerance indices

Similarly, we can define k-tolerant indices

tolk(Cv) := orness(Cv | x(n−k+1) = 1)

...with similar motivation, characterization, properties.
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Conclusion
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Conclusion

• We have defined
• k-intolerant and k-tolerant capacities and Choquet

integrals
• k-intolerance and k-tolerance indices
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Conclusion

• We have defined
• k-intolerant and k-tolerant capacities and Choquet

integrals
• k-intolerance and k-tolerance indices

• Behavioral parameters :
• importance
• interaction
• dispersion
• tolerance (veto, favor, andness, orness, intol, tol...)
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Conclusion

• We have defined
• k-intolerant and k-tolerant capacities and Choquet

integrals
• k-intolerance and k-tolerance indices

• Behavioral parameters :
• importance
• interaction
• dispersion
• tolerance (veto, favor, andness, orness, intol, tol...)

• Identification of capacities :
• by optimization
• learning data
• constraints on behavioral parameters...
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