Applications of elliptic curves to cryptology

Jang SCHILTZ

Centre Universitaire de Luxembourg
Séminaire de Mathématiques
162A, avenue de la Faiencerie

L-1511 Luxembourg
Luxembourg

E-mail:schiltzj@Qcu.lu

1 Properties of elliptic curves

The central operation of cryptographic schemes based on elliptic curve cryptography
(ECC) is the elliptic scalar multiplication (operation analogue of the exponentiation in
multiplicative groups)

Definition 1.1 Given an integer k and a point P in a finite field F, the elliptic scalar
multiplication kP is the result of adding P to itself k times.

Definition 1.2 The order of a point P on an elliptic curve is the smallest positive integer
r such that rP = O. If k and | are integers, then kP = P if and only if k = [(mod r).

Definition 1.3 The number of points of E(F), denoted by #E(F) is called the curve
order of the curve E(F).

Definition 1.4 The trace Tr(-) is the linear map from Fom to Fy defined by

Proposition 1.5 Let E be an elliptic curve ofer a finite field F,. Then:

o Hasse’s theorem states that #E(F,) = q+ 1 —t, where [t| < 2,/q. That is, the
number of points in E(F,) is approzimately q.

1

o If q is a power of 2, then #E(F,) is even. More specifically, #E(F,) = 0(mod 4) if
Tr(a) =0, and #E(F,) = 2(mod 4) if Tr(a) = 1.

o E(F,) is an abelian group of rank 1 or 2. That is, E(F,) is isomorphic to Zy, X Zn,,
where ny divides nq and q — 1.

e If q is a power of two and P = (x,y) € E(F,) is a point of odd order, then the trace
of the x-coordinate of all multiples of P is equal to the trace of the parameter a.
That is, Tr(z(kP)) = Tr(a) for each integer k.

2 Elliptic curve cryptography

Unlike the ordinary discrete logarithm problem and the integer factorization problem, no
subexponential-time algorithm is known for the elliptic curve discrete logarithm problem.
For this reason, the strength-per-key-bit is substantially greater in an algorithm that uses
elliptic curves. Thus, smaller parameters, but with equivalent levels of security, can be
used with elliptic curve cryptosystems than with discrete logarithm systems.

2.1 Digital signature schemes

Digital signature schemes are designed to provide the digital counterpart to handwritten
signatures (and more). A digital signature is a number dependent on some secret known
only to the signer (the signer’s private key), and, additionnaly, on the contents of the
message being signed. Signatures must be verifiable - if a dispute arises as to whether an
entity signed a document, an unbiased third party should be able to resolve the matter
equitably, without requiring access to the signer’s private key. disputes may arise when
a signer tries to repudiate a signature it did create, or when a forger makes a fraudulent
claim.

We speak here about asymmetric digital signature schemes with an appendix. “Asym-
metric” means that each entity selects a key pair consisting of a private key and a related
public key. The entity maintains the secrecy of the private key that it uses for signing
messages, and makes authentic copies of its public key available to other entities which
use it to verify signatures. “Appendix” means that a cryptographic hash function is used
to create a message digest of the message, and the signing transformation is applied to
the message digest rather than to the message itelf.

Security. Ideally, a digital signature scheme should be existentially unforgeable under
chosen-message attack. This notion of security asserts that an adversery who is able to
obtain entity A’s signatures for any message of its choice is unable to successfully forge
A’s signature on a single other message.

Applications. Digital signature schemes can be used to provide the following basic cryp-
tographic services: data integrity (the assurance that data has not been altered by uau-
thorized or unknown means), data origin authentication (the assurance that the source of
data is as claimed), and non-repudiation (the assurance that an entity cannot deny previ-
ous actions or commitments). Digital signature schemes are commonly used as primitives
in cryptographic protocols that provide other services including entity authentication,
authenticated key-transport and authenticated key agreement.

Classification. The digital signature schemes in use today can be classified according to
the hard underlying mathematical problem which provides the basis for their security:

1. Integer factorization (IF) schemes, which base their security on the intracibility of
the integer factorization problem. Examples of these include the RSA and Rabin
signature schemes.

2. Discrete logarithm (DL) schemes, which base their security on the intractability of
the (ordinary)discrete logarithm problem in a finite field. Examples of these include
the ELGamal, Schnorr, DSA, and Nyberg-Ryppel signature schemes.

3. Elliptic curve (EC)schemes, which base their security on the intractability of the
elliptic curve discrete logarithm problem.

2.2 The Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic curve requirements. In order to avoid Pollard’s rho and the Pohlig-Hellman attacks
on the elliptic curve discrete logarithm problem, it is necessary that the number of [F -
rational points on E be divisible by a sufficiently large prime n > 2'%°. Having fixed an
underlying field IF,, n should be selected to be as large as possible, i.e. one should have
n ~ ¢, so #E(F,) is almost prime. Usually one selects n > 4,/q. The co-factor is defined
to be h = #E(F,)/n.

Some further precautions should be exercised when selecting the elliptic curve. To
avoid the reduction algorithm of Menezes, respectively Frey and Riick, the curve should
be non-supersingular (i.e. p should not divide (q +1—#F (Fq))) More generally, one
should verify that n does not divide ¢* — 1 for all 1 < k < C, where C is a large enough
so that is computationally infeasible to, find discrete logarithms in F,c (C' = 20 suffices
in practice). Finally, to avoid the attack of Semaev, Smart and Satoh and Araki on
[F,~anomalous curves, the curve should not be F,-anomalous i.e. #E(F,) # q.

A prudent way to guard against these attacks and similar attacks against special
classes of curves that may be discovered in the future, is to select the elliptic curve at
random subject to the condition that#E(F,) is divisible by a large prime. Indeed, the
probability that a random curve succombs to these special-purpose attacks is negligible.
A curve can be selected verifiably at random by choosing the coefficients of the defining

elliptic curve equation as the outpouts of a one-way function such as SHA-1 according to
some pre-specified procedure.

Domain parameters. ECDSA domain parameters D = (¢, FR, seedE, a, b, G, n, h)are com-

prised of

1. A field size ¢, where either ¢ = p, an odd prime, or ¢ = 2™.

2. An indication FR (field representation) of the representation used ofr the elements
in [Fy.

3. A bit string seedE of lenght at least 160 bits, if the elliptic curve was generated
randomly (ptional).

4. Two field elements a and b in IF, which define the equation of the elliptic curve £
over F, (i.e y* + xy = 2> + ax® + b in a field of caracteristics 2 and y* = 2° + azx + b
otherwhise).

5. Two field elements z¢ and y¢ in F, which define a finite point G = (x¢, y¢) of prime
order in E(F,).

6. The order n of the point G, with n > 2% and n > 4,/7.

7. The cofactor h = #E(F,)/n.

Key pair generation. An entity A’s key pair is associated with a particular set of ECDSA
domain parameters D = (g, FR, seedE, a, b, G, n, h). This association can be assured cryp-
tographically (e.g. with certificates) or by context (e.g. all entities use the same domain
parameters). The entity A must have the assurance that the domain parameters are valid
prior to key generation.

To generate a key pair, each entity A does the following:

1.
2.

3.

Select a random or pseudorandom integer d in the interval [1,n — 1].
Compute Q) = dG.

A’s public key is @); A’s private key is d.

ECDSA signature generation. To sign a message m, an entity A with domain parameters
D = (q,FR,seedE, a,b,G,n, h) and associated key pair (d, Q) does the following:

1.
2.
3.

Select a random or pseudorandom integer k, 1 < k <n — 1.
Compute kG = (z1,y1) and convert 1 to an integer 7.

Compute r = z; mod n. If r = 0 then go to step 1.

4

4.
d.
6.
7.

Compute £~! mod n.
Compute SHA-1(m) and convert this bit string to an integer e.
Compute s = k(e +dr) mod n. If s = 0 then go to step 1.

A’s signature for the message m is (7, s).

ECDSA signature verification. To verify A’s signature (r, s) on m, B obtains an authentic
copy of A’s domain parameters D = (q, FR, seedE, a, b, G,n, h) and associated public key
. B then does the following:

1.
2.

7.

Verify that r and s are integers in the interval [1,n — 1].
Compute SHA-1(m) and convert this bit string to an integer e.

L' mod n.

Compute w = s~
Compute u; = ew mod n and uy = rw mod n.

Compute X = u;G + usQ.

. If X = O, then reject the signature. Otherwise, convert the x coordinate z; of X

to an integer Ty, and compute v = Z; mod n.

Accept the signature if and only if v = r.

Proof: If a signature (r, s) on a message m was indeed generated by A, then s = k=1 (e+dr)
mod n. Rearranging gives

k=s"t(e+dr)
=ste+slrd
= we +wrd
=uj + ugd(mod n).

