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1 Finite fields

1.1 Generalities

Definition 1.1 A finite field is an algebraic system consisting of a finite set F together
with two binary operations + and ×, defined on F , satisfying the following axioms:

• F is an abelian group with respect to “+”
• F\{0} is an abelian group with respect to “×”
• distributive: for all x, y and z in F we have:

x× (y + z) = (x× y) + (x× z)

(x+ y)× z = (x× z) + (y × z).

Definition 1.2 The order of a finite field F is the number of elements in F . Is is denoted
by |F |.

Theorem 1.3 There exists a finite field of order q if and only if q is a prime power. In
addition, if q is a prime power, then there is essentially only one finite field of order q;
this field is denoted by Fq.

Definition 1.4 If q = pm, where p is a prime and m a positive integer, then p is called
the characteristic of Fq and m is called the extension degree of Fq.
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1.2 The finite field Fpm

Let p be a prime number. The finite field Fq, with q = pm, called a characteristic p finite
field, can be viewed as a vector space of dimension m over Fp. That is, there exists a set
of m elements {α0, α1, ..., αm−1} in Fpm such that each a ∈ Fpm can be written uniquely
in the form

a =
m−1∑
i=0

aiαi, where αi ∈ 0, 1, ..., p− 1.

The set {α0, α1, ..., αm−1} is called a basis of Fpm over Fp. We can then represent a as the
bit string [am−1am−2...a0]. Addition of field elements is performed by bitwise XOR-ing
the vector representations. The multiplication rule depends on the basis selected.

There are many different bases of Fpm over Fp. Some bases lead to more efficient
software or hardware implementations of the arithmetic in Fpm than other bases. The two
most commonly used kinds of bases are polynomial bases and normal bases.

1.2.1 Polynomial basis representation

Definition 1.5 Let f(x) = xm +
∑m−1

i=0 fix
i (where fi ∈ 0, 1, ..., p− 1) be an irreducible

polynomial of degree m over Fp, that is, f(x) cannot be factored as a product of two
polynomials over Fp, each of degree lesser than m; f(x) is called the reduction polynomial.
For each reduction polynomial there exists a polynomial basis representation.

Field elements. The finite field Fpm is comprised of all polynomials over Fp of degree
less than m:

Fpm =
{
am−1x

m−1 + ...+ a1x+ a0 : ai ∈ {0, 1, ..., p− 1}
}
.

The field element am−1x
m−1+...+a1x+a0 is usually denoted by the bit string [am−1...a1 a0]

of length m, so that

Fpm = {[am−1...a1 a0] : ai ∈ {0, 1, ..., p− 1}} .

Definition 1.6 The following operations are defined on the elements of Fpm when using a
polynomial representation with reduction polynomial f(x). Assume that a = [am−1...a1a0]
and b = [bm−1...b1b0].

• Addition: a+ b = c = [cm−1...c1c0], where ci ≡ ai + bi(mod p).

• Multiplication: a · b = c = [cm−1...c1c0], where c(x) =
∑m−1

i=0 cix
i is the remainder of

the division of the polynomial (
∑m−1

i=0 aix
i)(

∑m−1
i=0 bix

i) by f(x) over Fp.

• Inversion: if a is a non-zero element in Fpm, the inverse of a, denoted by a−1, is
the unique element c ∈ Fpm for which a · c = 1.
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Example 1.7 Let p = 2, i.e. F = F2m is a binary finite field and f(x) = x3+x+1. This
polynomial is irreducible. Indeed, f(0) = f(1) = 0, hence f has no zero’s on F2. Since
f(x) is a polynomial of degree 3, the elements of F23 can be written as a2x

2 + a1x + a0,
with ai ∈ F2 for i = 1, 2, 3.

Moreover,

(a2x
2 + a1x+ a0)(b2x

2 + b1x+ b0)

= a2b2x
4 + (a2b1 + a1b2)x

3 + (a2b0 + a1b1 + a0b2)x
2 + (a1b0 + a0b1)x+ a0b0

= (a2b2 + a2b0 + a1b1 + a0b2)x
2 + (a2b2 + a2b1 + a1b2 + a1b0 + a0b1)x

+a2b1 + a1b2 + a0b0,

since
x3 ≡ x+ 1 (mod x3 + x+ 1)

and consequently
x4 ≡ x2 + x (mod x3 + x+ 1)

Hence,

[a2a1a0] · [b2b1b0] = [a2b2 + a2b0 + a1b1 + a0b2

a2b2 + a2b1 + a1b2 + a1b0 + a0b1 a2b1 + a1b2 + a0b0].

Example 1.8 (A polynomial basis representation of the finite field F24) Let f(x) =
x4 + x+ 1 be the reduction polynomial. Then the 16 elements of F24 are:

0 [0000] x3 [1000]
1 [0001] x3 + 1 [1001]
x [0010] x3 + x [1010]

x+ 1 [0011] x3 + x+ 1 [1011]

x2 [0100] x3 + x2 [1100]
x2 + 1 [0101] x3 + x2 + 1 [1101]
x2 + x [0110] x3 + x2 + x [1110]

x2 + x+ 1 [0111] x3 + x2 + x+ 1 [1111]

Examples of the arithmetic operations in F24 are:
[1101] + [1001] = [0100].
[1101] · [1001] = [1111], since (x3 + x2 + 1) · (x3 + 1) = x6 + x5 + x2 + 1 ≡ x3 + x2 + x+ 1
mod (x4 + x+ 1).
[1101]−1 = [0100].

The element α = [0100] is a generator of F∗
24 since its order is 15 as the following
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calculations show:

α1 = [0010] α2 = [0100] α3 = [1000]
α4 = [0011] α5 = [0110] α6 = [1100]
α7 = [1011] α8 = [0101] α9 = [1010]
α10 = [0111] α11 = [1110] α12 = [1111]
α13 = [1101] α14 = [1001] α15 = [0001]

Selecting a reduction polynomial. The following procedure is commonly used to choose a
reduction polynomial: if an irreducible trinomial xm+xk +1, where 1 ≤ k ≤ m− 1 exists
over F2, then the reduction polynomial f(x) is chosen to be the irreducible trinomial with
the lowest-degree middle term xk. If no irreducible trinomial exists, then select instead a
pentanomial xm + xk3 + xk2 + xk1 + 1, where 1 ≤ k1 < k2 < k3 ≤ m− 1, such that k3 has
the minimal value, the value of k2 is minimal for the given k3 and k1 is minimal for the
given k3 and k2.

1.2.2 The finite field Fp

Definition 1.9 Let p be a prime number. The finite field Fp, called a prime field consists
of the set of integers

{0, 1, ..., p− 1}
with the following arithmetic operations:

• addition: if a, b ∈ Fp, then a · b = r, where r is the remainder of the division of a+ b
by p and 0 ≤ r ≤ p− 1. This operation is called addition modulo p.

• multiplication: if a, b ∈ Fp, then a · b = s, where s is the remainder of the division
of a · b by p and 0 ≤ r ≤ p− 1. This operation is called multiplication modulo p.

• inversion: if a is a non-zero element in Fp, the inverse of a modulo p, denoted a−1,
is the unique integer c ∈ Fp for which a · c = 1.

Example 1.10 (The finite field F23) The elements of F23 are 1, 2, ..., 22. Examples of the
arithmetic operations in F23 are: (1) 12 + 20 = 9; (2) 8 · 9 = 3; (3) 8−1 = 3.

There are certain primes p for which the modular reduction can be computed very effi-
ciently. For example, let p be the prime 2192−264−1. To reduce a positive integer n < p2,
write

n =
5∑

j=0

Aj · 264j.

Then,
n ≡ T + S1 + S2 + S3 (mod p),
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where
T = A2 · 2128 + A1 · 264 + A0

S1 = A3 · 264 + A3

S2 = A4 · 2128 + A4 · 264
S3 = A5 · 2128 + A5 · 264 + A5.

2 Elliptic curves

2.1 Elliptic curves over Fp

Definition 2.1 Let p > 3 be an odd prime and let a, b ∈ Fp satisfy 4a3 + 27b2 ̸≡ 0 (mod
p). Then an elliptic curve E(Fp) over Fp defined by the parameters a, b ∈ Fp consists of
the set of solutions or points P = (x, y) for x, y ∈ Fp to the equation:

y2 = x3 + ax+ b

together with a special point O called the point at infinity. For a given point P = (xP , yP ),
xp is called the x-coordinate of P and yP is called the y-coordinate of P . Fp is called a
prime finite field.

On an elliptic curve E(Fp) over a field Fp can be defined a binary operation + as
follows:

1. P +O = O + P = P , for all P ∈ E(Fp).

2. If P = (x, y) ∈ E(Fp), then (x, y) + (x,−y) = O. The point (x,−y) ∈ E(Fp) is
denoted −P and is called the negative of P .

3. Let P = (x1, y1) ∈ E(Fp) and Q = (x2, y2) ∈ E(Fp), where P ̸= ±Q. Then
P +Q = (x3, y3), where

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1, and λ =
y2 − y1
x2 − x1

.

4. Let P = (x1, y1) ∈ E(Fp). Then P + P = 2P = (x3, y3), where

x3 = λ2 − 2x1, y3 = λ(x1 − x3)− y1, and λ =
3x2

1 + a

2y1
.

This operation is called the doubling of a point.

Thus
(
E(Fp),+

)
forms an abelian group.
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2.2 Elliptic curves over F2m

Definition 2.2 A (non-supersingular) elliptic curve E(F2m) over F2m defined by the pa-
rameters a, b ∈ F2m , b ̸= 0 consists of the set of solutions or points P = (x, y) for
x, y ∈ F2m to the equation:

y2 + xy = x3 + ax2 + b

together with a special point O called the point at infinity. For a given point P = (xP , yP ),
xp is called the x-coordinate of P and yP is called the y-coordinate of P . F2m is called a
characteristic 2 finite field.

On an elliptic curve E(Fp) over a field Fp can be defined a binary operation + as
follows:

1. P +O = O + P = P , for all P ∈ E(F2m).

2. If P = (x, y) ∈ E(F2m), then (x, y) + (x,−y) = O. The point (x,−y) ∈ E(F2m) is
denoted −P and is called the negative of P .

3. Let P = (x1, y1) ∈ E(F2m) and Q = (x2, y2) ∈ E(F2m), where P ̸= ±Q. Then
P +Q = (x3, y3), where

x3 = λ2 + λ+ x1 + x2 + a, y3 = λ(x1 + x3) + x3 + y1, and λ =
y2 + y1
x2 + x1

.

4. Let P = (x1, y1) ∈ E(F2m). Then P + P = 2P = (x3, y3), where

x3 = λ2 + λ+ a, y3 = λ(x1 + x3) + x3 + y1, and λ = x1 +
x1

y1
.

This operation is called the doubling of a point.

Thus
(
E(Fp),+

)
forms an abelian group.

2.2.1 Properties

The central operation of cryptographic schemes based on elliptic curve cryptography
(ECC) is the elliptic scalar multiplication (operation analogue of the exponentiation in
multiplicative groups)

Definition 2.3 Given an integer k and a point P in a finite field F, the elliptic scalar
multiplication kP is the result of adding P to itself k times.

Definition 2.4 The order of a point P on an elliptic curve is the smallest positive integer
r such that rP = O. If k and l are integers, then kP = lP if and only if k ≡ l(mod r).
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Definition 2.5 The number of points of E(F), denoted by #E(F) is called the curve
order of the curve E(F).

Definition 2.6 The trace Tr(·) is the linear map from F2m to F2 defined by

Tr(a) =
m−1∑
i=0

a2
i

.

Proposition 2.7 Let E be an elliptic curve ofer a finite field Fq. Then:

• Hasse’s theorem states that #E(Fq) = q + 1 − t, where |t| ≤ 2
√
q. That is, the

number of points in E(Fq) is approximately q.

• If q is a power of 2, then #E(Fq) is even. More specifically, #E(Fq) ≡ 0(mod 4) if
Tr(a) = 0, and #E(Fq) ≡ 2(mod 4) if Tr(a) = 1.

• E(Fq) is an abelian group of rank 1 or 2. That is, E(Fq) is isomorphic to Zn1 ×Zn2,
where n2 divides n1 and q − 1.

• If q is a power of two and P = (x, y) ∈ E(Fq) is a point of odd order, then the trace
of the x-coordinate of all multiples of P is equal to the trace of the parameter a.
That is, Tr

(
x(kP )

)
= Tr(a) for each integer k.

2.2.2 Koblitz curves

These curves, also known as binary anomalous curves, are elliptic curves over F2m with
coefficients a and b either 0 or 1. Since it is required that b ̸= 0, they are defined by the
equations

E0 : y
2 + xy = x3 + 1 and E1 : y

2 + xy = x3 + x2 + 1.

Proposition 2.8 If (x, y) is a point on Ea, a = 0 or 1, so is the point (x2, y2). Moreover,
every point P = (x, y) ∈ Ea satisfies the relation

(x4, y4) + 2P = µ · (x2, y2),

where µ = (−1)1−a.

By using the Frobenius map over F2 : τ(x, y) = (x2, y2), this can be written as

τ(τP ) + 2P = µτP, for all P ∈ Ea.
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2.3 Elliptic curve cryptography

Unlike the ordinary discrete logarithm problem and the integer factorization problem, no
subexponential-time algorithm is known for the elliptic curve discrete logarithm problem.
For this reason, the strength-per-key-bit is substantially greater in an algorithm that uses
elliptic curves. Thus, smaller parameters, but with equivalent levels of security, can be
used with elliptic curve cryptosystems than with discrete logarithm systems.

2.4 Digital signature schemes

2.4.1 Generalities

Digital signature schemes are designed to provide the digital counterpart to handwritten
signatures (and more). A digital signature is a number dependent on some secret known
only to the signer (the signer’s private key), and, additionnaly, on the contents of the
message being signed. Signatures must be verifiable - if a dispute arises as to whether an
entity signed a document, an unbiased third party should be able to resolve the matter
equitably, without requiring access to the signer’s private key. disputes may arise when
a signer tries to repudiate a signature it did create, or when a forger makes a fraudulent
claim.

We speak here about asymmetric digital signature schemes with an appendix. “Asym-
metric” means that each entity selects a key pair consisting of a private key and a related
public key. The entity maintains the secrecy of the private key that it uses for signing
messages, and makes authentic copies of its public key available to other entities which
use it to verify signatures. “Appendix” means that a cryptographic hash function is used
to create a message digest of the message, and the signing transformation is applied to
the message digest rather than to the message itelf.

Security. Ideally, a digital signature scheme should be existentially unforgeable under
chosen-message attack. This notion of security asserts that an adversery who is able to
obtain entity A’s signatures for any message of its choice is unable to successfully forge
A’s signature on a single other message.

Applications. Digital signature schemes can be used to provide the following basic cryp-
tographic services: data integrity (the assurance that data has not been altered by uau-
thorized or unknown means), data origin authentication (the assurance that the source of
data is as claimed), and non-repudiation (the assurance that an entity cannot deny previ-
ous actions or commitments). Digital signature schemes are commonly used as primitives
in cryptographic protocols that provide other services including entity authentication,
authenticated key-transport and authenticated key agreement.

Classification. The digital signature schemes in use today can be classified according to
the hard underlying mathematical problem which provides the basis for their security:
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1. Integer factorization (IF) schemes, which base their security on the intracibility of
the integer factorization problem. Examples of these include the RSA and Rabin
signature schemes.

2. Discrete logarithm (DL) schemes, which base their security on the intractability of
the (ordinary)discrete logarithm problem in a finite field. Examples of these include
the ELGamal, Schnorr, DSA, and Nyberg-Ryppel signature schemes.

3. Elliptic curve (EC)schemes, which base their security on the intractability of the
elliptic curve discrete logarithm problem.

2.4.2 The Digital Signature Algortihm (DSA)

The DSA was proposed in August 1991 by the U.S. National Institute of Standards
and Technology (NIST) and was specified in a U.S. Governement Federal Information
Processing Standard (FIPS 186) called the Digital Signature Standard (DSS). The DSA
can be viewed as a variant of the ElGamal signature scheme. Its security is based on the
intractability of the discrete logarithm problem in prime-order subgriuops of Z∗

p.

DSA domain parameter generation. Domain parameters are generated for each entity
in a particular security domain.

1. Select a 160-bit prime q and a 1024-bit prime p with the property that q|p− 1.

2. (Select a generator g of the unique cyclic group of order q in Z∗
p)

Select an element h ∈ Z∗
p and compute g = h(p−1)/q mod p. (Repeat until g ̸= 1.)

3. Domain parameters are p, q and g.

DSA key pair generation. Each entity A in the domain with domain parameters (p, q, g)
does the following:

1. Select a random or pseudorandom integer x such that 1 ≤ x ≤ q − 1.

2. Compute y = gx mod p.

3. A’s public key is y; A’s private key is x.

DSA signature generation. To sign a message m, A does the following:

1. Select a random or pseudorandom integer k, 1 ≤ k ≤ q − 1.

2. Compute X = gk mod p and r = X mod q. If r = 0 then go to step 1.

3. Compute k−1 mod q.
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4. compute e =SHA-1(m).

5. Compute s = k−1{e+ xr} mod q. If s = 0 then go to step 1.

6. A’s signature for the message m is (r, s).

DSA signature verification. To verify A’s signature (r, s) on m, B obtains authentic copies
of A’s domain parameters (p, q, g) and a public key y and does the following:

1. Verify that r and s are integers in the interval [1, q − 1].

2. Compute e =SHA-1(m).

3. Compute w = s−1 mod q.

4. Compute u1 = ew mod q and u2 = rw mod q.

5. Compute X = gu1yu2 mod q and v = X mod q.

6. Accept the signature if and only if v = r.

Security analysis. Since r and s are each integers less than q, DSA signatures are 320
bits in size. The security of the DSA relies on two distinct but related discrete logarithm
problems. One is the discrete logarithm problem in Z∗

p where the number field sieve
algorithm applies; this algorithm has a subexponential running time. More precisely, the
expected running time of the algorithm is

O
(
exp

((
c+ o(1)

)
(ln p)1/3(ln ln p)2/3

))
, (1)

where c ≈ 1, 923 and lnn denotes the natural logarithm function. If p is a 1024-bit prime,
then the expression (1) represents an infeasible amount of computation; thus the DSA
using a 1024-bit prime p is currently not vulnerable to this attack. The second discrete
logarithm problem works to the base g in the subgroup of order q in Z∗

p: given p, q, g and
y, find x such that y ≡ gx( mod p). For large p (e.g., 1024 bits), the best algorithm
known for this problem is Pollard’s rho method and takes about√

πq/2 (2)

steps. If q ≡ 2160, then the expression (2) represents an infeasible amount of computation;
thus the DSA is not vulnerable to this attack. However, note that there are two primary
security parameters for DSA: the size of p and the size of q. Increasing one without a
corresponding increase in the other will not result in an effective increase in security. Fur-
thermore, an advance in algorithms for either one of the two discrete logarithm problems
could weaken RSA.
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Secure generation of parameters. In response to some criticisms received on the first
draft, FIPS 186 specified a method for generating primes p and q “verifiably at random”.
This feature prevents an entity (e.g., a central authority generating domain parameters to
be shared by a network of entities) from intentionally constructing “weak” primes p and
q for which the discrete logarithm problem is relatively easy. FIPS 186 also specifies two
methods, based on DES and SHA-1, for pseudorandomly generating private keys x and
per-message secrets k.
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