Le calcul des variations stochastique

3. Différentiation sur les espaces de Sobolev généralisés

Soit 2=C,([0,T]) I’espace des fonctions réelles continues @ sur [0,T] telles que

®(0) =0. Muni de la norme uniforme

|].. = sup |o(t)

te[0,T]
cet espace est un espace de Banach dont le dual 2" peut étre identifié a 1’espace

M ([0, T]) des mesures avec signe v sur [0,T], muni de la norme

i =sup [ f@®dv() =p[.TD.

Définition 3.1 L’espace Q2=C([0,T]) est appelé espace de Wiener, parce qu’on

peut considérer chaque trajectoire
to>W(t,w)

du processus de Wiener comme un elément » de C,([0,T]). Ainsi, on peut identifier
W (t,w) avec la valeur @ (t) au temps t d'un élément @ € C,([0,T]):
W (t,w) = o(t).
De cette facon, le processus de Wiener devient I’espace £2=C,([0,T]) et sa loi de
probabilité P devient la mesure u définie sur les ensembles cylindrés de 2 par
t{o;ot)ehR, ... ot)eFR}=PW, eFR,. W eR]
= [ p(t,0,x) Pt =t X0, %)l — by, X, 1, X )l -+,

Fyx--xF

ouF cR,0<t <t, <---<t, et
pltxy)=(@2at) Fexp(-4[x-y[);  t>0;xyeR.

On appelle la mesure u la mesure de Wiener sur (2.



Définition 3.2 Soit L*([0,T]) [’espace des fonctions déterministes, définies sur

l'intervalle [0,T] et de carré intégrable par rapport a la mesure de Lebesgue. Soit

F : 2 — R une variable aléatoire, g € L*([0,T]) et

t
7(t) = jo g(s)ds 2. (3.1)
La dérivée directionnelle de F dans la direction y € €2 au point @ € 2 est alors la

variable aléatoire D F définie par
d
D,F(w) = E[F(w"'g?/)]g:o’ (3.2)
si cette quantité existe.

Remarquons qu’on considére seulement la dérivée dans des directions du type (3.1).

L’espace des éléments y € (2 qui peuvent étre écrits sous la forme (1.10) pour une

fonction g € L*([0,T]) est appelée espace de Cameron-Martin. On le note H.

Définition 3.3 Supposons qu’une variable aléatoire F €2 — R admet une dérivée

directionnelle dans toutes les directions y € H dans le sens fort ou la limite
D,F(w):= Iingl[F(a)+gy)— F(w)] (3.3)
Poad g

existe dans L°(Q). Supposons de plus, qu’il existe une fonction

w(t,x) e ([0, T]x Q) telle que

.
D,F(w) = jo w(t, @) g(t)dt. (3.4)

On dit alors que F est différentiable et on pose
D.F () =y (t, o). (3.5)

On appelle D,F(w) e L*([0,T]x£2) la dérivée de F et on note D,, /’ensemble de

toutes les variables aléatoires différentiables.

Exemple 3.4  Soit F(w)=[ f(s)dW, =] f(s)da(s), avec f(s)eLl*([0.T]).

Alors, pour y(t) = J';g(s) ds,ona



Flo+er)=[ 1(s)(do(s)+2dy(s))
= [ t(9)da(s)+£[. f(s)g(s)ds
et par consequent 1[F(w+¢cy)—F(w)] =I0T f(s)g(s)ds pour tout &>0.D’apres la
definition 3.3, F € D,, et pour tout t dans [0,T] et tout » dans (2,
D.F(w) = f(t). (3.6)
En particulier, si on choisit f (t) = y;,,,(t), alors F(®) = IOT Xiog (S) AW, =W (1, @) et

on obtient donc

D) (W (t, a))) = Z[o,tl](t)- (3.7)

Notons P la famille de variables aléatoires F : 2 — R de la forme
F(o)=¢,...,0,),

ou qp(xl,...,xn):Zaax“ est un polyndbme aux n variables x;,..,x, et
o

n

6, =I0T f.(t)dw, pour une fonction déterministe f, € L*([0,T]). De telles variables

aléatoires sont appelées des polyndmes de Wiener. P est dense dans L?(£2) et on a

le lemme suivant :

Lemme 3.5 Soit F(w) =¢(4,,...,6,) P . Alors, F e D, et

D,F (o) :ig—f(ep...,eﬂ) f.(t). (3.8)

i=1 i

Preuve : Notons y/(t,w) le membre droit de 1’égalité (3.8). Comme,

sup E[W,|' 1<+, pourtoutN eN,

se[0,T]

il est facile a voir que
HF(o+ey)-F(o)]l=1lp(0 +e(1,9),...6, +&(f,,9)) - p(8,,....6,)]

"0
— ;a—i’(e 16,) D, (6,) dans L*(¢2) quand & — 0.



Donc F admet une dérivee directionnelle dans la direction y au sens fort et (3.6)

implique que

QF@»=ﬂw@wmamt

Introduisons une norme sur D,, . Soit pour toute variable aléatoire F dans D,, la

norme définie par

”F”l,z = ||F||L2(.Q) +|| DtF” (3-9)

L2([0,T]xe2) *
Malheureusement, on ne sait pas si I’espace D,, est fermé pour cette norme. Pour

éviter les difficultés on travaille alors sur un espace légérement différent.

Définition 3.6 On note D,, la fermeture de la famille P par rapport a la norme

[,

Ainsi D,, est formé de toutes les variables aléatoires F L?(£2) telles qu’il existe
F, e P vérifiant
F, — F dans L*(£2) quand n — +w (3.10)

et

(D,F,),s, converge dans L*([0,T]x £2) (3.11)

n>1

Il est bien sir tentant de définir la dérivée d’une variable aléatoire dans D,, par

D,F := lim D,F,.

N—>+o0
Pour pouvoir le faire, il faut cependant s’assurer que cette relation définit la dérivée de

facon unique. En d’autres mots, si G, désigne une autre suite qui converge vers F, est-

ce qu’on a nécessairement

lim D,F, = lim DG, ?

N—+00 nN—+o0

En considérant la différence H, =F,—-G,, le théoréme suivant répond

affirmativement a cette question.



Theoréeme 3.7  Supposons qu’une suite (H,)

propriétes

(DH,)

Alors,

d’éléments de P  vérifie les

n>1

H, — 0 dans L*(£2) quand n — +w (3.12)
., converge dans L*([0,T]x£2) quand n — +oo. (3.13)
lim D,H, =0.

N—-+o0

La démonstration est basée sur la proposition suivante :

Proposition 3.8 (Formule d’intégration par parties) Soient FeD,,,peD,, et

y(t) = J: g(s)ds, avec

g € L*([0, T]). Alors,

E[DyF-¢]:E[F-¢Igg(s)dws}—E[F-Dygo]. (3.14)

Preuve : D’apres le théoreme de Girsanov,

E[F(0+c7) ()] = E[F(a))go(a)—gy)-exp(gﬂ g(s)dw, —%gzj; gz(s)dsﬂ.

Par conséquent,

E[D,F (@) -p(w)]=E
=
=

=E

_Iimi[F(ww)—F(w)]-w(w)}
eaOg

im 2 [F 0+ 27)0(0) - F@) ()]

im 2 F (@)oo - e of] a(s —leijgZ(s)dsj—qo(vv)]}
|0 g 0 27 Jo

F(w)-(f—g[(p(w—ey) exp (ej; g(s)dw, —%szﬂ g*(s)ds j]g_o}

= E[F (@) p(®) [, 9(5)dW,] - E[F () D, p(e)]

Preuve du théoreme 3.7 : La proposition 3.8 implique que

E[D,H, ¢]=E[H, ¢ [ 9(s)dW,]-E[H, D,¢]

— 0 quand n — +oo pour tout p € P .



Comme (D,H,),, converge dans L(«2) et que P est dense dans L?(£2),

D,H, — 0 dans L?(£2) quand n — +oo. Comme ceci est vrai pour toute direction de

la forme y:J;g(s)ds, ona DH, —0dans L*([0,T]x£2).

Ceci nous permet d’énoncer la définition suivante :

Définition 3.9 Soit F € D, ,, c’est-a-dire tel qu’il existe une suite (F,) ., d’éléments
de P verifiant
F, —F dans L*(2)
et
(DF,),., est convergent dans L* ([0, T]x £2).

Alors on appelle dérivée de Malliavin de F la variable aléatoire définie par
D,F = lim DF,. (3.15)

N—-+o0

La dérivée directionnelle de F dans la direction y est donnée par
T
D,F =j0 D,F g(t)dt,

pour tout y = j;g(s)ds, avec g € L*([0,T]).

Remarque 3.10 On dispose maintenant de deux définitions a priori différentes de la
dérivée d’une variable aléatoire :

1) Ladérivée D,F de F € D,, donnée par la définition 3.3.
2) Ladérivée de Malliavin D,F de F € D,, donnée par la définition 3.9.

Le résultat suivant montre cependant que ces deux dérivées coincident, si
FeD,ND,,.

Lemme 3.11 Soit F € D,, (D, ,. Supposons qu il existe une suite (F,),., d’éléments

de P vérifiant
F — F dans L*(£2) et (D,F,),., est convergent dans L*([0,T]x £2).

Alors,



D,F = lim DF,. (3.16)

n—-+o0

Donc

D,F = D,F pour F € D,, D, ,. (3.17)

Preuve : Les hypotheses du lemme assurent que D F, converge dans L?(£2) pour

tout y(t) = I; g(s)ds, avec g € L*([0,T]). La proposition 3.8 implique alors que
E[(D,F, ~D,F)-¢] =EL(F, ~F)¢ [ 9(s)dW,]-E[(F, ~F)-D,¢]
— 0 pour tout p € P .
Donc, D,F, — D, F dans L?(£2) ce qui implique (3.16).
U
Remarque 3.12 Remarquons que la définition de ’espace D,, implique que si
F,eD,, pour n>1 et F, > F dans L*(£2) et si (D,F,),, est convergent dans

L*([0,T]x£2), alors F eD,, et D;F = lim DF,.

N—+c0

Comme toute variable aléatoire F dans L?(£2) peut étre représenté par sa

décomposition en chaos de Wiener

F(o) = +f|n(fn) avec f e ([0, TT"),

n=0
il est naturel de se demander si on peut exprimer la dérivée de Malliavin de F en

fonction de cette décomposition. Considérons d’abord un cas particulier.

Lemme 3.13 Soit F(w) =1,(f,) pour quelque f e 2([0,T]"). Alors, F e D,, et
DF(w)=nl,,(f,(.1), (3.18)
ou la notation 1 ,(f (-,t)) veut dire qu’on considere l’intégrale d’Ité de dimension

n—1 par rapport aux n—1 premieres variables t,...,t. , de f(t,....,t, ;).

Preuve : Considérons d’abord le cas particulier ou f, = f®" pour une fonction

f eL2([0,T])i.e ou



f.(t,....t,)=f(t)---f(t,) pour (t,..,t,) [0, T]"

Alors,
I,(f, )—||f|| h, (|| " (3.19)
ou = IOT f(s)dW, et h, est le polyndme de Hermite d’ordre n. Par conséquent,
f(t
D, (£) =1 (2 -
HER
Rappelons qu’une propriété de base des polyndmes de Hermite est que
h(x)=nh,_,(x). (3.20)
Cela implique que
DI, (f)=n[f[" ] ”)fa) N (FEOD)E ) =n 1, (f,¢.1).
Puis, supposons que f. est de la forme
f =" @r™ ®..-®n™ avec n, +---n =n (3.21)

ol ®désigne le produit tenseur symétrisé et {n;} une base orthonormale de
L?([0,T]) . Alors,

1.(f,) =h,(6)---h, (6), 3.22)
ou

.
0, =jo 7,(s)dW, .

Cela implique a nouveau (3.18). Le résultat général suit alors du fait que chaque
f, e L2([0,TT") peut étre approchée dans L2([0,T]") par des combinaisons linéaires

de fonction du type (3.21).

Lemme 3.14 Notons B, [’ensemble des polynomes de Wiener de la forme

T T
p(, &) dW,,..., [ e (s)dW,),
ou p,(X,-..,X%)est un polynébme a k variables et {e,,...,e,} une base orthonormale

donnée de L*([0,T]). Alors, P, estdense dans P pour la norme ||||12



Preuve: Si q:= p(J‘OT f.(s)dW,,..

suite

'fOT f(s)dW,)e P , on peut approcher q par la

q™ = ([, D(fee W, ... [ D (f,.e)e,dW).
i=0 i=0

En effet, ™ — q dans L*(£2) et

K
m 0
D™ =) —ap

i=1 i

m

DYCENNCES FLRAC

i1

dans L*([0,T]x£2) quand m — +oo.

0
Théoréme 3.15 Soit F = Zln(fn) e L*(£2). Alors, F €D, si et seulement si
n=0

+00 2

len Y o oy <0 (3.23)
Dans ce cas,

DF =>"nl,(f.(.1). (3.24)

n=0

Preuve : Soit la suite (F,,),., definie par F, =Zn I, (f.(:,1). Alors, F eD,, et

n=0

F., — F dans L*(£2). De plus, si m>k, le lemme 3.13 implique que

2

”DtFm - DtFk

Donc, sous I’hypothése (3.23),

conséquence, F D, et

L2([0TIx2)

m 2

Nl (f.¢.1)

n=k+1

L2([0,T xQ)

=LT E[{i nl,,(f,C.t)F]dt
n=k+1 (325)

=joT S n2(n-D1f, (1)

m
= z nn I” f, ||i2([O,T]”)'

n=k+1

2
LZ([o,T]"’l)dt

(D,F,),., converge dans L*([0,T]x£2) et par

n=1



D,F = lim DF, =>"nl_,(f (.1).
n=0

N—+00
Réciproquement, si F €D, ,, alors il existe des polynomes p,(x;,...,x, ) de degre k

et des m,..7m, =0 comme dans (321) tel que si on pose

Fk:pk(al,...,enk)= Z a, mkl_k[hmi(ai) (pour quelque amh__'mkeR), alors

m; ;Zmisk i=1
i

F eP, F —>F dans L?(2) et D,F, - D,F dans L*([0,T]x£2) quand k — +oo.
En appliquant la relation (3.22), on obtient I’existence de fonctions

e ([0, TT);1< j<k telles que
k
Fe :Zli(fj(k))'
j=0
Comme F, — F dans L*(£2),0na
k
Sal-,
j=0

Ainsi, pour tout j, H £ f

2 2

()

oty S [F—F

— 0 quand k — +o.

j — 0 quand k — +o.

(o1
Cela implique que pour tout j,

| £ quand k — +o. (3.26)

2(0.T]) _)H f 2(0,71)
De méme, puisque D,F, — D,F dans L*([0,T]x£2), un calcul similaire qu’en (3.25)

et le lemme de Fatou impliquent que

JZ_(; i iU, iz([w) = ,Z; lim (j S

k—+o0

2
o)

+00 2

< ”_ij.j!Hfj(k)
0

k—-+o0 j=

(o1

2
L2([0,T]x02)

= Il_m ” Dt I:k
k—>+o0

2

L2([0,T Ix) <+

=[DF| ,

ouronaposé f* =0 pour j>k. Donc, la relation (3.23) est vérifiée, ce qui termine

la preuve.

Définition 3.16 Une fonction F: 2 — R est dite réguliére si elle est de la forme
F(w)=1(,....6,),

10



pour un certain entier n, ou f eC”(R") est une fonction a croissance sous-

polyndmiale et 6, :j(: f.(t)dw, pour une fonction déterministe f, € L*([0,T]). On

note S [‘ensemble des fonctions régulieres.

Deéfinition 3.17 Pour F €S , on note T,F(®) le semi-groupe d’Ornstein-Uhlenbeck
défini par

T.F(0) = jg F(ew+1—e2'u)u(du). (3.27)

Proposition 3.18
1) FeS =TFeS

2) FeP =TFeP

3) F.GeS = [TF(0)G(0) u(do) = [ F(0)TG(0) u(dw)

4) T F=T(F)

+S

5) F=Y1(f)=TF=>e™(f)
n=0 n=0

6) [TF |, <[Fl

LP(Q) LP(Q)

Définition 3.19  On appelle opérateur d’Ornstein-Uhlenbeck le générateur L du

semi-groupe T,, défini par

LF(w) = %TIF(a))lt_o. (3.28)

Son domaine de définition est Dom(L) ={F € L*(£2)/>_n?|I,(f,)]
n=0

(@or1")

Proposition 320 F=> 1 (f)=LF=>-nl (f)
n=0

= n=0

11



L’opérateur d’Ornstein-Uhlenbeck nous permet de définir les espaces de Sobolev

géneralisés.

Défintion 3.21 Soit F un polyndbme de Wiener. Alors, pour tous p strictement

supérieurs a 1 et tous s réels, on introduit la norme
“fo-urr
”F”sp H(I L) F p’

ol pour tout F =>"1,(f,) dans P,

n=0

(1 -L)"%F =i(1+n)%|n(fn) eP.

n=0

On définit les espaces de Sobolev généralisés par

Proposition 3.22
1) Dy, =L"(£2),Vp>1

2) D, ,cD,, sip<p’ets<s' (injection compacte)

3) D,,=D_,, avec 1.l

7syq’

Définition 3.23 Soit D |'espace défini par D = ﬂDs,p :
s,p

(3.29)

(3.30)

D, est alors un espace vectoriel normé complet. De plus, on a le résultat suivant :

Proposition 3.24 Soient F D, , et Ge D, , . Alors, FGeD, , ou 1
' ‘ ' r

X
0 )

En particulier, D est une algebre et | 'application

(F.G)—>FG

T+
O |-

est continue.
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