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Le calcul des variations stochastique 

 

 

3. Différentiation sur les espaces de Sobolev généralisés  

 

Soit 0([0, ])C T   l’espace des fonctions réelles continues   sur [0, ]T  telles que 

(0) 0.   Muni de la norme uniforme 

 
[0, ]

sup ( )
t T

t 




  

cet espace est un espace de Banach dont le dual *  peut être identifié à l’espace 

([0, ])TM  des mesures avec signe  sur [0, ]T , muni de la norme 

 
01

sup ( ) ( ) ([0, ]).
T

f

f t d t T  


   

 

Définition 3.1  L’espace 0([0, ])C T   est appelé espace de Wiener, parce qu’on 

peut considérer chaque trajectoire 

 ( , )t W t   

du processus de Wiener comme un élément   de 0([0, ])C T . Ainsi, on peut identifier 

( , )W t  avec la valeur ( )t au temps t d’un élément 0([0, ])C T : 

 ( , ) ( ).W t t   

De cette façon, le processus de Wiener devient l’espace 0([0, ])C T   et sa loi de 

probabilité P devient la mesure   définie sur les ensembles cylindrés de   par 

 
1

1

1 1 1

1 1 2 1 1 2 1 1 1

({ ; ( ) ,...., ( ) }) [ ,..., ]

( ,0, ) ( , , ) ( , , ) ,

k

k

k k t t k

k k k k k

F F
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t x t t x x t t x x dx dx

   

    

 

    

  
 

où 1 2, 0i kF t t t    R  et 

1
2

2
1
2

( , , ) (2 ) exp( ); 0; , .t x y t x y t x y 


    R  

On appelle la mesure  la mesure de Wiener sur .  

 



 2 

Définition 3.2  Soit 2([0, ])L T  l’espace des fonctions déterministes, définies sur 

l’intervalle [0, ]T  et de carré intégrable par rapport à la mesure de Lebesgue. Soit 

:F  R  une variable aléatoire, 2([0, ])g L T  et  

 
0

( ) ( ) .
t

t g s ds    (3.1) 

La dérivée directionnelle de F dans la direction    au point    est alors la 

variable aléatoire D F  définie par 

 0( ) [ ( )]
d

D F F
d

    


  , (3.2) 

si cette quantité existe. 

 

Remarquons qu’on considère seulement la dérivée dans des directions du type (3.1). 

L’espace des éléments   qui peuvent être écrits sous la forme (1.10) pour une 

fonction 2([0, ])g L T  est appelée espace de Cameron-Martin. On le note H.  

 

Définition 3.3  Supposons qu’une variable aléatoire :F  R admet une dérivée 

directionnelle dans toutes les directions H  dans le sens fort où la limite 

 
0

1
( ) : lim [ ( ) ( )]D F F F


    


    (3.3) 

existe dans 2( )L  . Supposons de plus, qu’il existe une fonction 

2( , ) ([0, ] )t x L T    telle que 

 
0

( ) ( , ) ( ) .
T

D F t g t dt      (3.4) 

On dit alors que F est différentiable et on pose 

 ( ) : ( , ).tF t  D  (3.5) 

On appelle 2( ) ([0, ] )tF L T  D  la dérivée de F et on note 1,2D  l’ensemble de 

toutes les variables aléatoires différentiables. 

 

Exemple 3.4  Soit 
0 0

( ) ( ) ( ) ( ),
T T

sF f s dW f s d s     avec 2( ) ([0, ])f s L T . 

Alors, pour 
0

( ) ( )
t

t g s ds   , on a 
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 

0

0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T

T T

F f s d s d s

f s d s f s g s ds

     

 

  

 



 
 

et par conséquent 1

0
[ ( ) ( )] ( ) ( )

T

F F f s g s ds         pour tout 0.  D’après la 

définition 3.3, 1,2F D  et pour tout t dans [0, ]T  et tout   dans  ,  

 ( ) ( ).tF f t D  (3.6) 

En particulier, si on choisit 
1[0, ]( ) ( )tf t t , alors 

1[0, ] 1
0

( ) ( ) ( , )
T

t sF s dW W t     et 

on obtient donc 

  
11 [0, ]( , ) ( ).t tW t t D  (3.7) 

 

 

Notons P  la famille de variables aléatoires :F  R de la forme  

 1( ) ( ,..., )nF     , 

où 1( ,..., )nx x a x



   est un polynôme aux n variables 1,..., nx x  et 

0
( )

T

i i tf t dW    pour une fonction déterministe 2([0, ])if L T . De telles variables 

aléatoires sont appelées des polynômes de Wiener. P  est dense dans 2( )L   et on a 

le lemme suivant : 

 

Lemme 3.5  Soit 1( ) ( ,..., )nF     P . Alors, 1,2F D  et 

 1

1

( ) ( ,..., ) ( ).
n

t n i

i i

F f t
x


  







D  (3.8) 

 

Preuve : Notons ( , )t   le membre droit de l’égalité (3.8). Comme, 

 
[0, ]

sup [ ] ,   pour tout 
N

s
s T

E W N


  N,  

il est facile à voir que 

 

 1 1
1 1 1

2

1

1

[ ( ) ( )] [ ( , ),..., ( , ) ( ,..., )]

( ,..., ) ( )  dans ( ) quand 0.

n n n

n

n i

i i

F F f g f g

D L
x

 



           


    



     


 



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Donc F admet une dérivée directionnelle dans la direction   au sens fort et (3.6) 

implique que 

 
0

( ) ( , ) ( ) .
T

D F t g t dt      

 

 

Introduisons une norme sur 1,2D  . Soit pour toute variable aléatoire F dans 1,2D  la 

norme définie par 

 2 21,2 ( ) ([0, ] )tL L T
F F D F

 
  . (3.9) 

Malheureusement, on ne sait pas si l’espace 1,2D  est fermé pour cette norme. Pour 

éviter les difficultés on travaille alors sur un espace légèrement différent. 

 

Définition 3.6  On note 1,2D  la fermeture de la famille P  par rapport à la norme 

1,2
 . 

 

Ainsi 1,2D  est formé de toutes les variables aléatoires 2( )F L   telles qu’il existe 

nF P  vérifiant 

 2  dans ( ) quand nF F L n   (3.10) 

et 

 2

1( )  converge dans ([0, ] )t n nF L T  D  (3.11) 

Il est bien sûr tentant de définir la dérivée d’une variable aléatoire dans 1,2D  par 

 : limt t n
n

D F F


 D . 

Pour pouvoir le faire, il faut cependant s’assurer que cette relation définit la dérivée de 

façon unique. En d’autres mots, si nG désigne une autre suite qui converge vers F, est-

ce qu’on a nécessairement 

 lim lim ?t n t n
n n

F G
 

D D  

En considérant la différence n n nH F G  , le théorème suivant répond 

affirmativement à cette question. 
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Théorème 3.7  Supposons qu’une suite 1( )n nH   d’éléments de P  vérifie les 

propriétés 

 20   ( )  nH dans L quand n   (3.12) 

 2

1( )   ([0, ] )  t n nH converge dans L T quand n  D . (3.13) 

Alors, 

 lim 0.t n
n

H


D  

 

La démonstration est basée sur la proposition suivante : 

 

Proposition 3.8 (Formule d’intégration par parties)  Soient 1,2 1,2,F  D D  et 

0
( ) ( )

t

t g s ds   , avec 2([0, ]).g L T  Alors, 

 
0

[ ] ( ) [ ]
T

sE D F E F g s dW E F D        
   . (3.14) 

 

Preuve : D’après le théorème de Girsanov, 

 2 2

0 0

1
[ ( ) ( )] ( ) ( ) exp ( ) ( )

2

T T

sE F E F g s dW g s ds           
  

       
  
  . 

Par conséquent, 

0

0

2 2

0 00

2 2

0

1
[ ( ) ( )] lim [ ( ) ( )] ( )

1
lim [ ( ) ( ) ( ) ( )]

1 1
lim ( )[ ( )exp ( ) ( ) ( )]

2

1
( ) [ ( )exp ( ) ( )

2

T T

s

T

s

E D F w E F F

E F F

E F g s dW g s ds w

d
E F g s dW g s ds

d








       


       


       


      








 
     

 

 
   

 

  
     

  

   

 

 0
0

0

]

[ ( ) ( ) ( ) ] [ ( ) ( )].

T

T

sE F g s dW E F D



     



  
  
  

  




 

 

Preuve du théorème 3.7 : La proposition 3.8 implique que 

 0
[ ] [ ( ) ] [ ]

0  quand  pour tout .

T

n n s nE D H E H g s dW E H D

n

   



    

   


P
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Comme 1( )n nD H   converge dans 2( )L   et que P  est dense dans 2( )L  , 

0nD H   dans 2( )L   quand n . Comme ceci est vrai pour toute direction de 

la forme 
0

( )g s ds


  , on a 0t nH D dans 2([0, ] )L T  . 

 

Ceci nous permet d’énoncer la définition suivante : 

 

Définition 3.9  Soit 1,2F D , c’est-à-dire tel qu’il existe une suite 1( )n nF   d’éléments 

de P  vérifiant 

 2   ( )nF F dans L   

et 

 2

1( )   ([0, ] ).t n nF est convergent dans L T  D  

Alors on appelle dérivée de Malliavin de F la variable aléatoire définie par 

 lim .t t n
n

D F F


 D  (3.15) 

La dérivée directionnelle de F dans la direction  est donnée par 

 
0

( ) ,
T

tD F D F g t dt    

pour tout 
0

( ) ,
t

g s ds    avec 2([0, ]).g L T  

 

Remarque 3.10  On dispose maintenant de deux définitions a priori différentes de la 

dérivée d’une variable aléatoire : 

1) La dérivée tFD  de 1,2F D  donnée par la définition 3.3. 

2) La dérivée de Malliavin tD F  de 1,2F D  donnée par la définition 3.9. 

Le résultat suivant montre cependant que ces deux dérivées coïncident, si 

1,2 1,2.F DD  

 

Lemme 3.11 Soit 1,2 1,2.F DD  Supposons qu’il existe une suite 1( )n nF   d’éléments 

de P  vérifiant 

 2   ( )nF F dans L   et 2

1( )   ([0, ] ).t n nF est convergent dans L T  D  

Alors, 
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 lim .t t n
n

F F


D D  (3.16) 

Donc 

 1,2 1,2 pour .t tD F F F  DDD  (3.17) 

 

Preuve :  Les hypothèses du lemme assurent que nD F  converge dans 2( )L   pour 

tout 
0

( ) ( )
t

t g s ds   , avec 2([0, ]).g L T  La proposition 3.8 implique alors que 

 0
[( ) ] [( ) ( ) ] [( ) ]

0 pour tout .

t

n n s nE D F D F E F F g s dW E F F D    



      

 


P

 

Donc, nD F D F   dans 2( )L   ce qui implique (3.16). 

 

Remarque 3.12  Remarquons que la définition de l’espace 1,2D  implique que si 

1,2nF D  pour 1n   et nF F  dans 2( )L   et si 1( )  t n nD F  est convergent dans 

2([0, ] )L T  , alors 1,2F D  et  lim .t t n
n

D F D F


  

 

Comme toute variable aléatoire F dans 2( )L   peut être représenté par sa 

décomposition en chaos de Wiener 

 2

0

ˆ( ) ( ) avec ([0, ] ),n

n n n

n

F I f f L T




   

il est naturel de se demander si on peut exprimer la dérivée de Malliavin de F en 

fonction de cette décomposition. Considérons d’abord un cas particulier. 

 

Lemme 3.13  Soit ( ) ( )n nF I f   pour quelque 2̂([0, ] )n

nf L T . Alors, 1,2F D  et 

 1( ) ( ( , )),t n nD F n I f t    (3.18) 

où la notation 1( ( , ))n nI f t   veut dire qu’on considère l’intégrale d’Itô de dimension 

1n   par rapport aux 1n   premières variables 1 1,..., nt t   de  1 1( ,..., , )nf t t t . 

 

Preuve :  Considérons d’abord le cas particulier où n

nf f   pour une fonction 

2([0, ])f L T i.e où 
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 1 1 1( ,..., ) ( ) ( ) pour ( ,..., ) [0, ] .n

n n n nf t t f t f t t t T   

Alors, 

 ( ) ( ),
n

n n nI f f h
f


  (3.19) 

où 
0

( )
T

sf s dW    et nh  est le polynôme de Hermite d’ordre n. Par conséquent, 

 
( )

( ) ( ) .
n

t n n n

f t
D I f f h

f f


   

Rappelons qu’une propriété de base des polynômes de Hermite est que 

 1( ) ( ).n nh x nh x
   (3.20) 

Cela implique que 

 
1 ( 1)

1 1 1( ) ( ) ( ) ( ) ( ) ( ( , )).
n n

t n n n n nD I f n f h f t n I f f t n I f t
f

  

       

Puis, supposons que nf  est de la forme 

 1 2
ˆˆ ˆ

1 2 1
ˆ ˆ ˆ  avecknn n

n k kf n n n   
       (3.21) 

où ̂ désigne le produit tenseur symétrisé et { }j  une base orthonormale de 

2([0, ])L T . Alors,  

 
1 1( ) ( ) ( ),

kn n n n kI f h h   (3.22) 

où 

 
0

( )
T

j j ss dW   . 

Cela implique à nouveau (3.18). Le résultat général suit alors du fait que chaque 

2̂([0, ] )n

nf L T  peut être approchée dans 2([0, ] )nL T  par des combinaisons linéaires 

de fonction du type (3.21). 

 

Lemme 3.14  Notons 0P  l’ensemble des polynômes de Wiener de la forme 

 1
0 0

( ( ) ,..., ( ) )
T T

k s k sp e s dW e s dW  , 

où 1( ,..., )k kp x x est un polynôme à k variables et 1{ ,..., }ne e  une base orthonormale 

donnée de 2([0, ])L T . Alors, 0P  est dense dans P  pour la norme 
1,2

 . 
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Preuve :  Si 1
0 0

: ( ( ) ,..., ( ) )
T T

s k sq p f s dW f s dW   P , on  peut approcher q par la 

suite  

 ( )

1
0 0

0 0

: ( ( , ) ,..., ( , ) )
m mT T

m

j j k j j

j j

q p f e e dW f e e dW
 

    . 

En effet, ( )mq q  dans 2( )L   et 

 ( )

1 1 1

( , ) ( ) ( )
k m k

m

t i j j i

i j ii i

p p
D q f e e t f t

x x  

 
   

 
    

dans 2([0, ] )L T   quand m . 

 

 

Théorème 3.15  Soit 2

0

( ) ( ).n n

n

F I f L 




   Alors, 1,2F D  si et seulement si  

 2

2

([0, ] )
1

! .nn L T
n

n n f




   (3.23) 

Dans ce cas, 

 1

0

( ( , )).t n n

n

D F n I f t






   (3.24) 

 

Preuve :  Soit la suite 0( )m nF   définie par 1

0

( ( , )).
m

m n n

n

F n I f t



   Alors, 1,2mF D  et 

mF F  dans 2( )L  . De plus, si m k , le lemme 3.13 implique que  

 

2

2

2 1

2

2

2

1([0, ] )
1 ([0, ] )

2

1
0

1

22

([0, ] )0
1

2

([0, ] )
1

( ( , ))

[{ ( ( , ))} ]

( 1)! ( , )

! .

n

n

m

t m t k n nL T
n k L T

mT

n n

n k

mT

n L T
n k

m

n L T
n k

D F D F n I f t

E n I f t dt

n n f t dt

n n f








  



 

 

 

  

 

  











 (3.25) 

Donc, sous l’hypothèse (3.23), 1( )t n nD F   converge dans 2([0, ] )L T   et par 

conséquence, 1,2F D  et 
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 1

0

lim ( ( , )).t t m n n
n

n

D F D F n I f t







    

Réciproquement, si 1,2F D , alors il existe des polynômes 1( ,..., )
kk np x x  de degré k 

et des 1,..., 0
kn    comme dans (3.21) tel que si on pose 

11 ,...,

1;

( ,..., ) ( )
k

k k i

i i

i

n

k k n m m m i

im m k

F p a h  


 


   (pour quelque 

1 ,..., km ma R ), alors 

kF P , kF F  dans 2( )L   et t k tD F D F  dans 2([0, ] )L T   quand k  . 

En appliquant la relation (3.22), on obtient l’existence de fonctions 

( ) 2̂([0, ] );1k j

jf L T j k    telles que  

 ( )

0

( ).
k

k

k j j

j

F I f


  

Comme kF F  dans 2( )L  , on a 

 22

2 2( )

( )([0, ] )
0

! 0 quand k .
j

k
k

j j k LL T
j

j f f F F




      

Ainsi, pour tout j, 
2

( )

([0, ] )
0

j

k

j j
L T

f f   quand k  .  

Cela implique que pour tout j, 

 
2 2

( )

([0, ] ) ([0, ] )
  quand k .

j j

k

j j
L T L T

f f   (3.26) 

De même, puisque t k tD F D F  dans 2([0, ] )L T  , un calcul similaire qu’en (3.25) 

et le lemme de Fatou impliquent que 

 

 2 2

2

2

2

22 ( )

([0, ] ) ([0, ] )
0 0

2
( )

([0, ] )
0

2

([0, ] )

2

([0, ] )

! lim !

lim !

lim

,

j j

j

k

j jL T L Tk
j j

k

j
L Tk j

t k L T
k

t L T

j j f j j f

j j f

D F

D F





 


 



 






  

 



  

 


 

où on a posé 
( ) 0k

jf   pour j k . Donc, la relation (3.23) est vérifiée, ce qui termine 

la preuve. 

 

Définition 3.16  Une fonction :F  R  est dite réguliére si elle est de la forme 

 1( ) ( ,..., )nF f   , 
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pour un certain entier n, où ( )nf C R  est une fonction  à croissance sous-

polynômiale et 
0

( )
T

i i tf t dW    pour une fonction déterministe 2([0, ])if L T . On 

note S  l’ensemble des fonctions régulières. 

 

Définition 3.17  Pour FS , on note ( )tT F   le semi-groupe d’Ornstein-Uhlenbeck 

défini par 

 2( ) ( 1 ) ( ).t t

tT F F e e u du


       (3.27) 

 

Proposition 3.18  

1) tF T F  S S  

2) tF T F  P P  

3) , ( ) ( ) ( ) ( ) ( ) ( )t tF G T F G d F TG d
 

          S  

4) ( )t s t sT F T T F   

5) 
0 0

( ) ( )nt

n n t n n

n n

F I f T F e I f
 



 

     

6) 
( ) ( )p pt L L

T F F
 
  

 

 

Définition 3.19   On appelle opérateur d’Ornstein-Uhlenbeck le générateur L du 

semi-groupe tT , défini par 

 | 0

d
( ) ( ) .

dt
t tLF T F    (3.28) 

Son domaine de définition est 2

2 2

([0, ] )
0

Dom( ) { ( ) / ( ) }.nn n L T
n

L F L n I f




     

 

 

Proposition 3.20   
0 0

( ) ( )n n n n

n n

F I f LF n I f
 

 

      
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L’opérateur d’Ornstein-Uhlenbeck nous permet de définir les espaces de Sobolev 

généralisés. 

 

Défintion 3.21  Soit F un polynôme de Wiener. Alors, pour tous p strictement 

supérieurs à 1 et tous s réels, on introduit la norme 

 2

,
( ) ,

s

s p p
F I L F   (3.29) 

où pour tout 
0

( )n n

n

F I f




   dans P , 

 2 2

0

( ) (1 ) ( ) .
s s

n n

n

I L F n I f




    P  

On définit les espaces de Sobolev généralisés par 

 
,

, .s p

s p



D P  (3.30) 

 

Proposition 3.22   

1) 0, ( ), 1p

p L p  D  

2) , ,   si  et   (injection compacte)s p s p p p s s 
   D D  

3) *

, ,

1 1
,  avec 1.s p s q

p q
  D D  

 

 

Définition 3.23  Soit D  l’espace défini par ,

,

s p

s p

 D D . 

 

D  est alors un espace vectoriel normé complet. De plus, on a le résultat suivant : 

 

Proposition 3.24  Soient ,k pF D  et ,k qGD  . Alors, ,

1 1 1
,  où = +  

p q
k rF G

r
D . 

En particulier, D  est une algèbre et l’application 
( , )F G F G

   D D D
 est continue. 

 


