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General description of Nagin’s model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous
subpopulations and to estimate a mean trajectory for each subpopulation.

This is still an inter-individual model, but unlike other classical models
such as standard growth curve models, it allows the existence of
subpolulations with completely different behaviors.
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The Likelihood Function (1)

Consider a population of size N and a variable of interest Y .

Let Yi = yi1 , yi2 , ..., yiT be T measures of the variable, taken at times
t1, ...tT for subject number i .

P(Yi ) denotes the probability of Yi

count data ⇒ Poisson distribution

binary data ⇒ Binary logit distribution

censored data ⇒ Censored normal distribution

Aim of the analysis: Find r groups of trajectories of a given kind (for
instance polynomials of degree 4, P(t) = β0 + β1t + β2t

2 + β3t
3 + β4t

4.
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The Likelihood Function (2)

πj : probability of a given subject to belong to group number j

⇒ πj is the size of group j .

We try to estimate a set of parameters Ω =
{
βj

0, β
j
1, β

j
2, β

j
3, β

j
4, πj

}
which

allow to maximize the probability of the measured data.

P j(Yi ) : probability of Yi if subject i belongs to group j

⇒ P(Yi ) =
r∑

j=1

πjP
j(Yi ). (1)

Finite mixture model
(
Daniel S. Nagin (Carnegie Mellon University)

)
finite : sums across a finite number of groups

mixture : population composed of a mixture of unobserved groups
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The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the
sequential realizations of the elements of Yi !!!

⇒ P j(Yi ) =
T∏

t=1

pj(yit ), (2)

where pj(yit ) denotes the probability of yit given membership in group j .

Likelihood of the estimator:

L =
N∏

i=1

P(Yi ) =
N∏

i=1

r∑
j=1

πj

T∏
t=1

pj(yit ). (3)
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The case of a censored normal distribution (1)

Y ∗: latent variable measured by Y .

y∗
it = βj

0 + βj
1Ageit + βj

2Age2
it + βj

3Age3
it + βj

4Age4
it + εit , (4)

where εit ∼ N (0, σ), σ being a constant standard deviation.

Hence,

yit = Smin si y∗
it < Smin,

yit = y∗
it si Smin ≤ y∗

it ≤ Smax ,

yit = Smax si y∗
it > Smax ,

where Smin and Smax dennote the minimum and maximum of the censored
normal distribution.
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The case of a censored normal distribution (2)

Notations :

βjxit = βj
0 + βj

1Ageit + βj
2Age2

it
+ βj

3Age3
it

+ βj
4Age4

it
.

φ: density of standard centered normal law.

Φ: cumulative distribution function of standard centered normal law.

Hence,

pj(yit = Smin) = Φ

(
Smin − βjxit

σ

)
, (5)

pj(yit ) =
1

σ
φ

(
yit − βjxit

σ

)
pour Smin ≤ yit ≤ Smax , (6)

pj(yit = Smax) = 1− Φ

(
Smax − βjxit

σ

)
. (7)
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Hence,

pj(yit = Smin) = Φ

(
Smin − βjxit

σ

)
, (5)

pj(yit ) =
1

σ
φ

(
yit − βjxit

σ

)
pour Smin ≤ yit ≤ Smax , (6)

pj(yit = Smax) = 1− Φ

(
Smax − βjxit

σ

)
. (7)
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The case of a censored normal distribution (3)

If all the measures are in the interval [Smin,Smax ], we get

L =
1

σ

N∏
i=1

r∑
j=1

πj

T∏
t=1

φ

(
yit − βjxit

σ

)
. (8)

It is too complicated to get closed-forms equations

⇒ quasi-Newton procedure maximum research routine

Software:

SAS-based Proc Traj procedure
by Bobby L. Jones (Carnegie Mellon University).

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg) & Bruno LOVAT (University Nancy II) ()Analysis of the salary trajectories in Luxembourg January 19, 2010 10 / 125



includegraphics[height=0.5cm]lsf.eps

The case of a censored normal distribution (3)

If all the measures are in the interval [Smin,Smax ], we get

L =
1

σ

N∏
i=1

r∑
j=1

πj

T∏
t=1

φ

(
yit − βjxit

σ

)
. (8)

It is too complicated to get closed-forms equations

⇒ quasi-Newton procedure maximum research routine

Software:

SAS-based Proc Traj procedure
by Bobby L. Jones (Carnegie Mellon University).

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg) & Bruno LOVAT (University Nancy II) ()Analysis of the salary trajectories in Luxembourg January 19, 2010 10 / 125



includegraphics[height=0.5cm]lsf.eps

The case of a censored normal distribution (3)

If all the measures are in the interval [Smin,Smax ], we get

L =
1

σ

N∏
i=1

r∑
j=1

πj

T∏
t=1

φ

(
yit − βjxit

σ

)
. (8)

It is too complicated to get closed-forms equations

⇒ quasi-Newton procedure maximum research routine

Software:

SAS-based Proc Traj procedure
by Bobby L. Jones (Carnegie Mellon University).

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg) & Bruno LOVAT (University Nancy II) ()Analysis of the salary trajectories in Luxembourg January 19, 2010 10 / 125



includegraphics[height=0.5cm]lsf.eps

The case of a censored normal distribution (3)

If all the measures are in the interval [Smin,Smax ], we get

L =
1

σ

N∏
i=1

r∑
j=1

πj

T∏
t=1

φ

(
yit − βjxit

σ

)
. (8)

It is too complicated to get closed-forms equations

⇒ quasi-Newton procedure maximum research routine

Software:

SAS-based Proc Traj procedure
by Bobby L. Jones (Carnegie Mellon University).

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg) & Bruno LOVAT (University Nancy II) ()Analysis of the salary trajectories in Luxembourg January 19, 2010 10 / 125



includegraphics[height=0.5cm]lsf.eps

The case of a censored normal distribution (3)

If all the measures are in the interval [Smin,Smax ], we get

L =
1

σ

N∏
i=1

r∑
j=1

πj

T∏
t=1

φ

(
yit − βjxit

σ

)
. (8)

It is too complicated to get closed-forms equations

⇒ quasi-Newton procedure maximum research routine

Software:

SAS-based Proc Traj procedure
by Bobby L. Jones (Carnegie Mellon University).

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg) & Bruno LOVAT (University Nancy II) ()Analysis of the salary trajectories in Luxembourg January 19, 2010 10 / 125



includegraphics[height=0.5cm]lsf.eps

A computational trick

The estimations of πj must be in [0, 1].

It is difficult to force this constraint in model estimation.

Instead, we estimate the real parameters θj such that

πj =
eθj
r∑

j=1

eθj

, (9)

Finally,

L =
1

σ

N∏
i=1

r∑
j=1

eθj
r∑

j=1

eθj

T∏
t=1

φ

(
yit − βjxit

σ

)
. (10)
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal
model.

Adds random effects to the parameters βj that define a group’s mean
trajectory.

Trajectories of individual group members can vary from the group
trajectory.

Software:

Mplus package by L.K. Muthén and B.O Muthén.
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Muthén’s model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Disadvantages of GGCM

1 Difficult to extend to other types of data.

2 Group cross-over effects.

3 can create the illusion of non-existing groups.
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Model Selection

Bayesian Information Criterion:

BIC = log(L)− 0, 5k log(N), (11)

where k denotes the number of parameters in the model.

Rule:

The bigger the BIC, the better the model!
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Posterior Group-Membership Probabilities

Posterior probability of individual i ’s membership in group j : P(j/Yi ).

Bayes’s theorem

⇒ P(j/Yi ) =
P(Yi/j)π̂j
r∑

j=1

P(Yi/j)π̂j

. (12)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be
strongly consistent with it.
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Use for Model diagnostics (2)

Diagnostic 1: Average Posterior Probability of Assignment

AvePP should be at least 0, 7 for all groups.

Diagonostic 2: Odds of Correct Classification

OCCj =
AvePPj/1− AvePPj

π̂j/1− π̂j
. (13)

OCCj should be greater than 5 for all groups.
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Use for Model diagnostics (2)

Diagonostic 3: Comparing π̂j to the Proportion of the Sample
Assigned to Group j

The ratio of the two should be close to 1.

Diagonostic 4: Confidence Intervals for Group Membership
Probabilities

The confidence intervals for group membership probabilities estimates
should be narrow, i.e. standard deviation of πj should be small.
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Outline

1 Nagin’s Finite Mixture Model

2 The Luxemburgish salary trajectories

3 Description of the groups

4 Economic Modeling
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The data

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

Some sociological variables:

gender (male, female)

nationality and residentship (luxemburgish residents, foreign residents,
foreign non residents)

working status (white collar worker, blue collar worker)

year of birth

age in the first year of professional activity
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Proc Traj procedure

Selection of the time period for macroeconomic reasons

(Crisis in the steel
industry and emergence of the financial market place of Luxembourg)

20 years of work for workers beginning their carrier between 1982 and 1987

Proc Traj Macro:

DATA TEST;
INPUT ID O1-O20 T1-T20;
CARDS;

data
RUN;

PROC TRAJ DATA=TEST OUTPLOT=OP OUTSTAT=OS OUT=OF
OUTEST=OE ITDETAIL;

ID ID; VAR O1-O20; INDEP T1-T20;
MODEL CNORM; MAX 8000; NGROUPS 6; ORDER 4 4 4 4 4 4;

RUN;
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Salary Dynamics

Mean annual salary growth:

Group 1 Group 2 Group 3 Group 4 Group 5

λi = 3.07% λ2 = 0.96% λ3 = 1.45% λ4 = 2.82% λ5 = 0.19%

Group 6 Group 7 Group 8 Group 9
λ6 = 2.58% λ7 = 1.28% λ8 = 0.48% λ9 = 1.09%

Flat curves : groups 2,5 and 8.

Normal salary growth: groups 3,7 and 9.

Dynamic trajectories: groups 1,4 and 6.
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Outline

1 Nagin’s Finite Mixture Model

2 The Luxemburgish salary trajectories

3 Description of the groups

4 Economic Modeling
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Dummy example

2 trajectories S1 and S2 with group size 60% and 40% of the population.

Length of the professional life: T = 40 years.

Additional life expectancy: T ∗ = 20 years.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg) & Bruno LOVAT (University Nancy II) ()Analysis of the salary trajectories in Luxembourg January 19, 2010 117 / 125



includegraphics[height=0.5cm]lsf.eps

Dummy example

2 trajectories S1 and S2 with group size 60% and 40% of the population.

Length of the professional life: T = 40 years.

Additional life expectancy: T ∗ = 20 years.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg) & Bruno LOVAT (University Nancy II) ()Analysis of the salary trajectories in Luxembourg January 19, 2010 117 / 125



includegraphics[height=0.5cm]lsf.eps

Dummy example

2 trajectories S1 and S2 with group size 60% and 40% of the population.

Length of the professional life: T = 40 years.

Additional life expectancy: T ∗ = 20 years.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg) & Bruno LOVAT (University Nancy II) ()Analysis of the salary trajectories in Luxembourg January 19, 2010 117 / 125



includegraphics[height=0.5cm]lsf.eps

Dummy example

2 trajectories S1 and S2 with group size 60% and 40% of the population.

Length of the professional life: T = 40 years.

Additional life expectancy: T ∗ = 20 years.
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Hypotheses

Salaries grow linearly, S1 with a starting value of 1500 and a growth
coefficient of 3 %, S2 with a starting value of 1000 and a growth
coefficient of 2 %.

Pensions grow also linearly, S1 with a starting value of 2718 and a growth
coefficient of 2%, S2 with a starting value of 1104 and a growth
coefficient of 1%.

Luxembourg adopts a repartition model, which means that the current
pensions are paid with the tax incomes from the current workers. Each
generation hence pays the pension for the generation before it.
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Replacement rate in the repartition model

Replacement rate = first pension / last salary

For S1, trep = 2718
1500(1+0.03)39 ' 57%.

For S2, trep = 1104
1000(1+0.02)39 = 50%.

A worker who’s trajectory is S1 with a probability of 75 % and S2 with a
probability of 25 % has a replacement rate of

trep =
0.75× 2718 + 0.25× 1104

0.75× 1500(1 + 0.03)39 + 0.25× 1000(1 + 0.02)39
' 56%.
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Coverage potential in a repartition & capitalization model
We want to know the sum a that we have to put every year in a saving
account to get a desired replacement rate taim.

a of course depends on the account’s interest rate i .

If i ∼ U(2%; 7%), a varies between 46 euros and 252 euros with a mean of
124 euros.
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Capitalization effort coefficient

τ2 = Sum of the salaries on the salary trajectory / sum of the investment
returns = 16.5 on average.

That means that you need 16.5 euros from the salary to get 1 euro by
capitalization for the pension.

In fact, if i ∼ U(2%; 7%), τ2 varies between 18 euros and 15 euros.

τ2 =
Sj

aj(i − λj)
i
(1 + i)T − (1 + λj)

T

(1 + i)T − 1
.

τ2 depends on a, hence a not only allows to get the desired replacement
rate, but a also serves to control the variability of the capitalization effort
coefficient.

We need a compromise between a high replacement rate and a small
capitalization effort coefficient.
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Repartition effort coefficient

τ1 = weighted mean of the salaries on the salary trajectory / weighted
mean of the pensions in the repartition model on the pension trajectory =
2.7 on average.

That means that the active worker have to earn 2.7 euros to pay 1 euro of
pension by repartition. pause

τ1 =

k
(1+d)T+1 PT+1 + ...+ k

(1+d)T+T∗ PT+T∗

S0 + ...+ ST

(1+d)T

.

τ1 depends on the demographic rate d . In fact, if d ∼ U(0%; 5%), τ1
varies between 6.7 euros and 1.6 euros.
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Systemic risk
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Global effort coefficient

τ = xτ1 + (1− x)τ2

is the number of euros necessary to pay 1 euro for the pension.

Here x euros come from repartition and 1− x euros from capitalization.

We want to limit the risk of the hybrid system without reducing the
pension and in the same time minimize the capitalization effort.
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Aim and solution

Aim : volatility of τ = (volatility of τ1)/m.

Solution:

x =
1

m2
.
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