
ENTROPY OF A CHOQUET CAPACITY∗

JEAN-LUC MARICHAL
University of Liège - Faculty of Economics
Sart Tilman - B31 - 4000 Liège, Belgium
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1 Introduction

Given a probability distribution p = (p1, . . . , pn)
∈ [0, 1]n with

∑
i pi = 1, the expression

Hn(p) = −
n∑

i=1

pi log2 pi,

with the convention that 0 log2 0 := 0, is called
the Shannon entropy of p, see [8, 9]. This value,
well-known in information theory, measures in
some sense the uncertainty which prevailed be-
fore an experiment was accomplished, or the in-
formation expected from the experiment. Note
also that it was characterized axiomatically by
many authors, see e.g. [1, 3].

Now, consider a Choquet capacity (or fuzzy
measure) on N := {1, . . . , n}, that is a set func-
tion v : 2N → [0, 1] such that v(∅) = 0, v(N) = 1,
and v(S) ≤ v(T ) whenever S ⊆ T . The following
question arises: What is the generalized counter-
part of the Shannon entropy for such a capacity?

For particular capacities, such as belief and
plausibility measures, some candidates were pro-
posed in evidence theory in the early 1980s, see
e.g. [2, 5, 7, 11]. However, it seems that no defi-
nition of entropy for a general Choquet capacity
was yet proposed in literature.

In this paper we present an entropy-like mea-
sure defined for all Choquet capacities. This “en-
tropy” was proposed very recently by Marichal [6]
in the framework of aggregation. Although it has
yet to be characterized, it satisfies properties con-
sidered as requisites for defining an entropy. In
particular, it collapses into the Shannon entropy
as soon as the capacity is additive.
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2 Entropy and aggregation
operators

Consider the weighted arithmetic mean (WAM)
as an aggregation operator:

WAMω(x1, . . . , xn) =
n∑

i=1

ωi xi

with
n∑

i=1

ωi = 1 and ωi ≥ 0 ∀i = 1, . . . , n.

It is clear that, in such an aggregation process,
the use of the information contained in the ar-
guments x1, . . . , xn strongly depends upon the
weight vector ω. For example, consider two
weighted arithmetic means with weights vectors
of the form

(1, 0, . . . , 0) and (1/n, . . . , 1/n),

respectively. We note that these operators are
quite different in the sense that the first one fo-
cuses the total weight on only one argument (pro-
jection on the first argument) whereas the second
one distributes the total weight among all the ar-
guments evenly (arithmetic mean).

In order to capture this idea, one can define
a measure of dispersion associated to the weight
vector of the weighted arithmetic mean WAMω

as the Shannon entropy of ω:

Hn(ω) = −
n∑

i=1

ωi log2 ωi.

Such a function enables to measure how much of
the information in the arguments is really used.
In a certain sense the more disperse the ω the
more the information contained in the arguments
is being used in the aggregation process.
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Now, consider the so-called ordered weighted
averaging operator (OWA), proposed in 1988 by
Yager [12]:

OWAω(x1, . . . , xn) =
n∑

i=1

ωi x(i)

with
n∑

i=1

ωi = 1 and ωi ≥ 0 ∀i = 1, . . . , n,

where (·) indicates a permutation of indices such
that x(1) ≤ · · · ≤ x(n). For this aggregation oper-
ator, the measure of dispersion, which should not
depend on a reordering of the arguments, should
also be given by the Shannon entropy. In fact,
Yager [12] proposed explicitely to use this con-
cept as measure of dispersion for the OWA oper-
ators.

It is known that Hn(ω) is maximum only when
ω corresponds to the weight vector of the arith-
metic mean, see e.g. [11]:

Hn(ω) = log2 n for ω = (1/n, . . . , 1/n),

and minimum only when ω is a binary vector:

Hn(ω) = 0 if ωi = 1 for some i ∈ N .

Thus, the measure of dispersion can be normal-
ized into

disp(ω) =
1

log2 n
Hn(ω) = −

n∑

i=1

ωi logn ωi,

so that it ranges in [0, 1].

3 Entropy of a capacity

Given a Choquet capacity v on N , the (discrete)
Choquet integral of x = (x1, . . . , xn) w.r.t. v is
defined by

Cv(x) =
n∑

i=1

x(i) [v(A(i))− v(A(i+1))],

with the usual convention that x(1) ≤ · · · ≤ x(n).
Also A(i) := {(i), . . . , (n)}, and A(n+1) = ∅. For
more details, see e.g. [4] and the references there.

It is easy to see that the WAM operators cor-
respond to the Choquet integrals w.r.t. additive
capacities (i.e., such that v(S ∪T ) = v(S)+ v(T )
whenever S ∩ T = ∅). Moreover, one can show
that the OWA operators are exactly those Cho-
quet integrals which are symmetric, that is, in-
dependent of any permutation of the arguments.

Thus, the Choquet integral is a simultaneous gen-
eralization of both WAM and OWA operators.

Starting from these facts, Marichal [6, §6.2.4]
proposed to define the entropy of a capacity v as
a measure of dispersion for the Choquet integral
Cv. This measure should identify with the Shan-
non entropy when the Choquet integral is either
a WAM or an OWA.

On the one hand, comparing

OWAω(x) =
n∑

i=1

x(i) ωi

and

Cv(x) =
n∑

i=1

x(i) [v(A(i))− v(A(i+1))]

suggests to propose as measure of dispersion for
Cv a sum over i ∈ N of an average value of

[v(T∪{i})−v(T )] logn[v(T∪{i})−v(T )], T ⊆ N\{i},
that is an expression of the form

disp(v) = −
n∑

i=1

∑

T⊆N\{i}
p|T | [v(T ∪ {i})− v(T )]

× logn[v(T ∪ {i})− v(T )],

where the coefficients p|T | are non-negative and
such that

∑
T⊆N\{i} p|T | = 1.

On the other hand, imposing the condition

Cv = OWAω ⇒ disp(v) = disp(ω)

determines uniquely the coefficients p|T |, so that
the definition proposed is the following.

Definition 1 The entropy of a Choquet capacity
v on N is defined by

disp(v) := −
n∑

i=1

∑

T⊆N\{i}

(n− t− 1)! t!
n!

×[v(T ∪ {i})− v(T )] logn[v(T ∪ {i})− v(T )].

When the Choquet integral Cv is used as
an aggregation operator, this entropy can be
interpreted as the degree to which one uses
all the information contained in the arguments
x = (x1, . . . , xn) when calculating the aggregated
value Cv(x).

Interestingly enough, its expression is very sim-
ilar to that of the Shapley value of elements in N ,
which is a fundamental concept in game theory
[10] expressing a power index:

φi(v) =
∑

T⊆N\{i}

(n− t− 1)! t!
n!

[v(T∪{i})−v(T )],
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i ∈ N .
Notice also that this new definition has yet to

be axiomatically characterized. However, to jus-
tify its use, one can show that it fulfils several
properties required for an entropy [6], namely:

• disp(v) is continuous w.r.t. v.

• disp is symmetric, that is

disp(πv) = disp(v)

for any permutation π of N . Here, πv is the
capacity on N defined by πv(π(S)) = v(S)
for all S ⊆ N , where π(S) = {π(i) | i ∈ S}.

• We have
0 ≤ disp(v) ≤ 1.

Moreover, disp(v) is maximum (= 1) only
when Cv is the arithmetic mean, and mini-
mum (= 0) only when v is a binary-valued
capacity: v(S) ∈ {0, 1} for all S ⊆ N . Note
that this latter case occurs if and only if
Cv(x) ∈ {x1, . . . , xn} (only one piece of in-
formation is used in the aggregation).

• We have

Cv = WAMω or OWAω

⇓
disp(v) = disp(ω).

• Let k ∈ N be a null element for v, that is,
v(T ∪{k}) = v(T ) for all T ⊆ N \{k}. Then

disp(v) = disp(vN\{k})

where vN\{k} is the restriction of v to N \
{k}.
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