Developing and Evaluating

a Computerized Adapted

 Mathematical Test
Jang Schiltz

University of Luxemburg
jang.schiltz@uni.lu

The context

- New orientation procedure for the transition from primary to secondary school
- Mathematical test from November 1996
- Not many multiple choice items, some geometrical construction items
- 81 items
- Population: 3590 mostly 12 year old pupils
- Had to eliminate 7 of these items because they did not verify the assumption of local independence; hence I kept 74 items for a more thorough analysis.

Item calibration

- Done with BILOG-MG
- Because of the lack of multiple choice items, I tried the 1 respectively 2-parameter IRT model
- Likelihood ratio test indicates that twe models are valid
- But the 1-parameter IRT model 26 items with good item fit versus 67 with the 2-parameter IRT.
- Item Response Function:

$$
P_{j}(\theta)=\frac{e^{a_{j}\left(\theta-b_{j}\right)}}{1+e^{a_{j}\left(\theta-b_{j}\right)}}
$$

$a_{j} \quad$ item slope
$b_{j} \quad$ item treshold

Checking the invariance property

- The next step consisted in eliminating the items that did not satisfy the invariance property.
- I seperated the examinees population into two groups, by splitting them at the median of the mathematical ability.
- I calibrated the items separately for the two groups keeping the same distribution and eliminated the items for which the difference of the thresholds in the two groups was larger than $1,96 \sigma$.
- I kept a final item Pool of 63 items.

Test information function

THETA

Construction of the CAT

- I used the multimedia-programming platform Quest Net+ for Windows ${ }^{\text {TM }}$.
- Initialisation: An item with mean difficulty $(0,078)$ and not too strong discrimination power $(0,618)$.

Estimation of the math skill

- I used the Bayesian modal estimation method, supposing a normal distribution of θ.
- Posterior function of likelihood :

$$
L(\theta)=\frac{\exp \left[\sum_{i=1}^{k-1} a_{j_{i}}\left(b_{j_{i}}-\theta\right)\left(1-u_{j_{i}}\right)\right]}{\prod_{i=1}^{k-1} 1+\exp -a_{j_{i}}\left(\theta-b_{j_{i}}\right)} g(\theta) .
$$

Maximum value for

$$
-\sum_{i=1}^{k-1} a_{j i}\left(1-u_{j i}\right)+\sum_{i=1}^{k-1} \frac{a_{j i} e^{a_{j i}\left(b_{j i}-\theta\right)}}{1+e^{a_{j i}\left(b_{j i}-\theta\right)}}-2 \theta=0
$$

Estimation of the math skill

float algo (float x_0)
\{ float res, a, b;

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x} _0-2.0 ; \\
& \mathrm{b}=\mathrm{x} _0+2.0 ; \\
& \mathrm{do}\{
\end{aligned}
$$

if (funct(a)*funct(b)<0)
\{if (funct(a)*funct $((a+b) / 2.0)<0) \quad b=(a+b) / 2.0$;
else $a=(a+b) / 2.0 ;\}$
else $\mathrm{a}=\mathrm{a}-1.0, \mathrm{~b}=\mathrm{b}+1.0$;
while ($\mathrm{b}-\mathrm{a}>0.005$);
res=a;
return res; $\}$

Choice of the next item

- Maximum information strategy:
- Item information function: $\quad I(\theta)=a_{j}^{2} P_{j}(\theta) \quad 1-\mathrm{P}_{\mathrm{j}}(\theta)$.

```
for (i=1 ; i<=63 ; i++)
    {info[i-1]=I(theta, i);}
for (i=1 ; i<=nom ; i++)
    {info[ens[i-1]-1]=0.0;}
```

float sup;

```
int item=1;
sup=info[0];
for (i=2; i<=63; i++)
    {if (info[i-1]>sup) {sup=info[i-1];
        item=i;}}
```


Empirical Evaluation Study

- We constructed an experimental form of our CAT and a parallel paper-and-pencil test and presented the two forms to a representative sample of 123 pupils belonging to the first year of a classical secondary school.
- To neutralize the effect of the order of presentation, the participants were distributed by randomization to two experimental groups. Group A began with the CAT and group B with the paper-and-pencil test.
- Two months later, the experimental conditions were inverted.

Criterion one: Performance scores and success ratio

- There appears no significant difference, nor between the means of the CAT note $(\mathrm{M}=0.55, \mathrm{SD}=0.47)$ and paper-and-pencil scores $(M=0.61, S D=0.65)(t=1.578, p>0.05)$, nor between the failure ratio, which is 13.8% for the paper-and-pencil condition and 8.9% for the CAT ($\chi^{2}=2.65, \mathrm{p}>0.05$).
- Thus, the CAT is comparable to a classical paper-and-pencil test by its ability to measure the performances of pupils.

Criterion two: Ability to rank pupils according to their level of performance

- The correlations between the scores on the CAT and on the paper-and-pencil test are significant ($\mathrm{r}=0.593, \mathrm{p}<0.01$), but mediumsized.
- Criterion three: Transfer and apprenticeship from one experimental condition to the other
- CAT (subgroup A: $\mathrm{M}=0.5674, \mathrm{SD}=0.408$; subgroup $\mathrm{B}: \mathrm{M}=$ $0.5420, \mathrm{SD}=0.497 ; \mathrm{t}=0.285 ; \mathrm{p}>0.05$)
- Paper-and-pencil test (subgroup A: mean $=1.0093, \mathrm{SD}=0.558$; subgroup B: mean $=0.4668, \mathrm{SD}=0.560 ; \mathrm{t}=5.100 ; \mathrm{p}<0.001$).
- Thus, there has been a positive effect of apprenticeship from the CAT to the paper-and-pencil situation and not vice versa

Criterion five: Relations with general intelligence

Correlations

		NOTE	NOTEPAP	GL	QU3 4	QU7 10	QU13 14	QU15
NOTE	Pearson	1	.493**	. $362^{* *}$. $337 *$.393**	. 035	.187*
	Sig. (2-tailed)		. 000	. 000	. 000	. 000	. 705	. 039
NOTEPAP	Pearson	.493**	1	.319**	.280**	.379**	. 171	. 131
	Sig. (2-tailed)	. 000	.	. 000	. 002	. 000	. 060	. 149
GL	Pearson	. $362^{* *}$.319**	1	. 541 **	.722**	.476**	. 338^{*}
	Sig. (2-tailed)	. 000	. 000		. 000	. 000	. 000	. 000
QU3_4	Pearson	. $337 \times$.280**	. $541^{* *}$	1	.461**	. $353{ }^{\star *}$.197*
	Sig. (2-tailed)	. 000	. 002	. 000		. 000	. 000	. 030
QU7_10	Pearson	. $393 * *$.379**	.722**	.461**	1	.406**	. 119
	Sig. (2-tailed)	. 000	. 000	. 000	. 000		. 000	. 192
QU13_14	Pearson	. 035	. 171	.476**	. $353 * *$.406**	1	.280*
	Sig. (2-tailed)	. 705	. 060	. 000	. 000	. 000		. 002
QU15	Pearson	.187*	. 131	. $338{ }^{* *}$.197*	. 119	.280**	1
	Sig. (2-tailed)	. 039	. 149	. 000	. 030	. 192	. 002	

**. Correlation is significant at the 0.01 level (2 -tailed).
*. Correlation is significant at the 0.05 level (2 -tailed).
Correlations between the CAT and paper-and-pencil test scores and the general intellectual efficiency test scores.

NOTE: CAT score
GL: general intellectual ability
QU7_10: spatial representation
QU15: computational skill

NOTEPAP: paper-and-pencil score
QU3_4: reasoning
QU13_14: perceptual speed

