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ABSTRACT

Kesterite materials (Cu2ZnSn(S,Se)4) are made from non-toxic, earth-abundant and low-cost raw materials. We summarise
here the structural and electronic material data relevant for the solar cells. The equilibrium structure of both Cu2ZnSnS4 and
Cu2ZnSnSe4 is the kesterite structure. However, the stannite structure has only a slightly lower binding energy. Because the
band gap of the stannite is predicted to be about 100meV lower than the kesterite band gap, any admixture of stannite
will hurt the solar cells. The band gaps of Cu2ZnSnS4 and Cu2ZnSnSe4 are 1.5 and 1.0 eV, respectively. Hardly any
experiments on defects are available. Theoretically, the CuZn antisite acceptor is predicted as the most probable defect.
The existence region of the kesterite phase is smaller compared with that of chalcopyrites. This makes secondary phases
a serious challenge in the development of solar cells. Copyright © 2012 John Wiley & Sons, Ltd.
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1. WHY KESTERITES

Kesterites (Cu2ZnSn(S,Se)4) are attractive materials for
absorbers in thin film solar cells. Currently, the best
performing thin film solar cells on the cell as well as on
the module level are based on chalcopyrite (Cu(In,Ga)
Se2) absorbers [1]. There are however concerns about
indium. Both indium and gallium are rather costly metals,
about 100 times more expensive than Cu and Zn (Table I).
Photovoltaics is in competition with other industries,
mainly the display industry for In and high speed semicon-
ductor logics and optoelectronics for Ga. It should, how-
ever, be taken into account that the raw material prices
make up only a relatively small part of the module produc-
tion cost. Another concern is the availability of In, which
might not be enough to produce solar cells on the terawatt
per annum level [2]. This is clearly not a problem for
today’s chalcopyrite solar module industry, but maybe it
is time now to study new materials to have them available
when limitations to In supply become noticeable. The ad-
vantage of the kesterite materials is that they are isoelec-
tronic to chalcopyrites, meaning that a number of their
material properties, such as the crystal structure are very
similar to chalcopyrites [3]. Also, the same preparation
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methods can be used and solar cells have been successfully
prepared using the same device structure as chalcopyrite
solar cells, making it an ideal alternative to In-containing
absorbers. The elements in Cu2ZnSn(S,Se)4, besides Se,
are all earth abundant with a high concentration in the crust
(Table I). Solar cells based on Cu2ZnSn(S,Se)4 have
achieved efficiencies above 10% [4]. The development
and the challenges of kesterite solar cells have been re-
cently reviewed [5,6]. Therefore, we concentrate in this re-
view on the challenges concerning the material and its
interfaces. Until recently, a number of very basic material
properties have been disputed: it was not clear whether
the structure is actually a kesterite structure [7] or a stannite
structure [8,9], and the band gap of Cu2ZnSnSe4 had been
reported between 0.8 [10] and 1.65 eV[11].
2. CRYSTAL STRUCTURE

The kesterite (space group I�4 ) and the stannite (space
group I�42m) structure differ in the ordering of Cu and Zn
(Figure 1). When comparing the available International
Council on Diffraction Data (ICDD) data on X-ray diffrac-
tion on Cu2ZnSnS4 and Cu2ZnSnSe4, it appears that the
Copyright © 2012 John Wiley & Sons, Ltd.



Table I. Price and abundance of metals used in Cu
chalcogenide solar cells.

Metal Price ($/kg)* Crust abundance ppb by weight**

Zn 2 79 000
Cu 9 68 000
Sn 27 2200
In 670 160
Ga 800 19 000

*Average prices for the last 12months taken from www.metalprices.com

and www.minormetals.com, data downloaded in August 2011.

**From www.webelements.com.
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sulphide compound tends to appear in kesterite structure,
whereas the selenide compound occurs in stannite struc-
ture. However because Cu+ and Zn2+ are isoelectronic,
X-ray diffraction cannot distinguish between kesterite and
stannite structure, because X-rays interact with the electron
shell of the atoms. On the other hand, neutrons interact
with the nuclei and can distinguish between Cu and Zn
atoms [12]. In a comprehensive neutron diffraction study
of various Cu2ZnSn(S,Se)4 compounds, it was shown that
the sulphide as well as the selenide occur in the kesterite
structure, not in the stannite structure. Both show a certain
disorder in between the Cu and Zn sites [12].

Different polymorphs have also been observed in
chalcopyrites: CuInS2 occurs in the chalcopyrite structure
as well as in CuAu ordering [13,14], whereas Cu(In,Ga)
Se2 is always in the chalcopyrite phase. This can be
understood when looking at the differences in binding
energies, which can be calculated by density functional
theory: the binding energy of the chalcopyrite phase
compared with the CuAu phase is 2meV/atom larger for
CuInS2 and CuInSe2, whereas it is 9meV/atom larger for
CuGaSe2 [15]. Thus, the chalcopyrite phase is stabilised
in Cu(In,Ga)Se2 by the Ga addition, whereas in Cu(In,
Ga)S2 the polymorphism exists and has been shown to
negatively influence the efficiency of solar cells [16]. This
Figure 1. Kesterite (left) and stannite (right) structure; large
yellow spheres: S and Se; small spheres: blue, Cu; yellow, Zn;

red, Sn. Taken from [12].
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negative influence can—at least partly—be due to a
smaller band gap of the CuAu phase [15].

The binding energies of the kesterite versus the stannite
phase in Cu2ZnSn(S,Se)4 have been calculated by several
groups using density functional theory [17–20] or hybrid
functionals [19]. They are summarised in Table II. All recent
calculations find a few millielectron volts per atom lower
binding energy for the stannite compared with the kesterite.

Earlier work found a difference of around �10meV
[17], but it is unclear from the paper whether this is
per atom or per unit cell. One thing becomes clear: all
calculations predict the kesterite as the most stable phase
for the sulphide and the selenide. However, the energy
difference of the stannite structure is only slightly larger
than the energy difference of the CuAu ordering in CuInS2.
It is therefore likely that stannite coexists with kesterite,
which explains the disorder between Cu and Zn sites found
experimentally [12]. Because the band gaps predicted for
the stannite structure are smaller than those of the kesterite,
this could be one reason for the relatively low open-circuit
voltages observed in kesterite solar cells compared with the
band gap [5,6]. The stability of CuAu ordering in the
kesterite system has also been studied, usually the energy
difference with respect to the kesterite phase is very similar
to the energy difference of the stannite with respect to the
kesterite [18]; however, Paier et al. found a considerably
lower energy difference in the case of CuAu ordering than
in the case of stannite [19].

Another structural parameter with important conse-
quences for the electronic structure is the tetragonal distor-
tion, which also occurs in chalcopyrites, i.e. the deviation
of the ratio of the long axis c over two times the short axis
from 1: c/2a 6¼ 1. This deviation leads to a crystal field and
to a non-degenerate valence band maximum [21]. The sign
of the crystal field is important for the symmetry of the
topmost valence band [21–23], which in turn is critical
for the anisotropy of the effective mass [24]. Therefore, it
is important to look into the c/2a values found experimen-
tally and theoretically.

A combination of X-ray and neutron powder diffraction
found a c/2a value in Cu2ZnSnS4 powder samples of
just very slightly above 1, namely 1.0008 [25]. A
dependence of the a lattice constant and of the c/2a ratio
on the cooling rate during crystal growth was found. A
detailed investigation of non-stoichiometric polycrystalline
thin films by grazing incidence X-ray diffraction indicates
a c/2a< 1. This is summarised in Figure 2.

The powder samples are grown by solid state synthesis
[25], the thin film from HZB is grown by a coevaporation
Table II. Difference in binding energy of the stannite with
respect to the kesterite phase calculated by several authors

and given in meV/atom.

Chen et al. [18] Paier et al. [19] Persson [20]

Selenide �3.8 �3.3
Sulphide �2.9 �2.9. . .�3.4 �1.3
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Figure 3. Williamson–Hall plot for a CZTS thin film (b* = b�(cos
(θ)/l) where θ is the position of the Bragg peak in the diffraction

pattern and l is the X-ray wave length).

Figure 2. Lattice parameters determined by X-ray and neutron
diffraction on powder samples and two different thin films of
Cu2ZnSnS4. For the powder samples, the cooling rates during
the synthesis are given as well as for all samples the chemical
composition in terms of the Cu/M (M=Zn+Sn) and Zn/Sn

ratios.

Table III. Experimental lattice parameters and band gaps for
Cu2ZnSnS4 and Cu2ZnSnSe4.

a/Å c/Å c/2a Eg/eV

Selenide 5.695 11.345 0.9960 1.0
Sulphide 5.419 10.854 1.0015 1.5
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process using ZnS, Cu, Sn and S sources [26], and the thin
film from LPV is grown by electrodeposition of metallic
precursors followed by annealing, as described in [27].
All single crystals show a c/2a> 1. The sample with the
slowest cooling is expected to be closest to equilibrium.
From this we conclude a c/2a ratio of 1.0015. The c/2a
ratios of the thin films are lower than 1. This can be
attributed to strain and to the presence of secondary phases,
because the thin films are less stoichiometric than the
powder samples (labels in Figure 2). Nevertheless, this is
significant because it shows that thin films might have a
different effective mass than the bulk material, because of
their different tetragonal distortion.

The existence of strain in CZTS polycrystalline thin
films was identified in the sample grown at the HZB by
applying the Williamson–Hall plot method [28]. In general
the Williamson–Hall plot presents increasing strain by a
steeper slope of the integral breadth b (which is obtained
from the full width half maximum of the Bragg peaks)
and the coherent domain size by the altitude at d equal to
zero (d is the lattice plane distance). Figure 3 shows the
Williamson–Hall plot for the polycrystalline CZTS thin
film grown in the HZB. The slope indicates the existence
of strain within the thin film.

For the selenide kesterites, a comparison of all the
available ICDD data gives a c/2a ratio of just slightly
<1. Two single crystals of Cu2ZnSnSe4 were grown by
the Bridgeman method. No. 1 is grown by direct reaction
of a stoichiometric mixture of Cu, Zn, Sn and Se which
was placed in an 18-mm-diameter quartz ampoule covered
inside with graphite. The sealed ampoule was quickly
heated to 600�C and kept at 600�C for 48 h. Then a heating
step followed (rate of 10K/h to 950�C), this temperature
was kept during 10–12 h. The ampoule was cooled to
~600�C with a rate of 10K/h. The next cooling step from
600�C to room temperature was made in switch off furnace
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mode. No. 2 was grown from an alloy of Cu, Zn and Sn,
heated up to 850�C, holding the temperature for 72 h and
cooling down with 21K/h. Both samples were slightly
off-stoichiometric (no. 1: Cu/M= 1.03 and Zn/Sn = 1.07;
no. 2: Cu/M= 1.05 and Zn/Sn = 1.03 as determined by
electron microprobe analysis) and showed a complete
disorder of Cu and Zn on the 2c and 2d Wyckoff sites
(concerning kesterite type structure) [29]. The a lattice
parameters of both Cu2ZnSnSe4 samples determined by
simultaneous refinement of X-ray and neutron diffraction
are very similar—0.5697(2) and 0.5693(2) nm—the c/2a
ratio is in both cases 0.9960(4). The most plausible equilib-
rium lattice parameters extracted from these investigations
are summarised in Table III.

Structures have also been calculated [17–20]. The
studies in [17,18] and [20] agree that the lattice parameters
are smaller in the sulphide than in the selenide. All
calculations [17–20] find a small tetragonal distortion:
0.998≤ c/2a≥ 1.006. However, on the trends between
sulphide and selenide and between kesterite and stannite,
there is no agreement between the different methods.
Using the experimental values of Table III, which are
based on a dedicated and comprehensive study, might help
to improve the calculations.
3. ELECTRONIC BAND STRUCTURE

For a material to be used in solar cells, the electronic
structure is of utmost importance: the band gap, the density
of states, the doping behaviour and the transport properties.
Photovolt: Res. Appl. 2012; 20:512–519 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/pip
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The following two sections discuss what is known about
Cu2ZnSn(S,Se)4 in terms of electronic structure.

The band gap is experimentally determined by optical
transmission measurements or by quantum efficiency
measurements in solar cells. The vast majority of investi-
gations finds the band gap of Cu2ZnSnS4 very close to
1.5� 0.01 eV [10,30–36]. For a long time, there has been
quite a large range of reported band gaps from 0.8 [10] to
1.65 eV [11] for the selenide compound [10,11,37–41].
However, all measurements on Cu2ZnSnSe4 solar cells
[10,40,41] showed band gaps around 1 eV. The discrep-
ancy was recently solved by [42] who pointed out that
the admixture of a ZnSe secondary phase caused the
high band gaps determined by transmission measure-
ments in the past and that the band gap of Cu2ZnSnSe4
is very close to 1.0� 0.01 eV. The values are added in
Table III.

Density functional theory calculations in different approx-
imations [17–20,43,44], hybrid functionals [18,19,43] and
GW calculations [43] were applied to determine the band
gap of Cu2ZnSn(S,Se)4 theoretically. All recent calculations
for the kesterite structure agree quite well with the experi-
mental band gaps, whereas the band gaps in stannite struc-
ture are about 100meV lower. They are summarised in
Table IV.

It is interesting to note that the low-temperature
photoluminescence (PL) results are reported with two
different peak energies for both materials. The peak
energies cannot directly be compared with the band gap
values: the PL measurements are performed at low
temperatures, where the band gap is higher than at room
temperature. In addition, all the PL peaks are broad and
asymmetric and show large blue shifts with excitation
density, which indicates the presence of fluctuating
potentials [45,46] and shifts the emission peak to lower
energies. However, these peaks can still be used as an
indication for the band gap. These broad peaks have been
found in the selenide compound at 0.85 [40] and
0.95 eV [47,48] and in the sulphide compound around
1.2 [49–51] and 1.3 eV [40,52,53]. One could assume that
those samples showing the lower energy PL are dominated
by the stannite structure, whereas samples with the higher
energy PL peak are composed mostly of kesterite phase.
It can also be speculated that the strong tailing observed
Table IV. Calculated band gaps in eV for Cu2ZnSn(S,Se)4.

Chen et al.
[18]

Paier et al.
[19]*

Persson [20] Botti et al.
[43]**

Se kesterite 0.96 1.05 1.02
Se stannite 0.82 0.89 0.87
S kesterite 1.50 1.49 1.56 1.64
S stannite 1.38 1.30 1.42 1.33

*Here we cite the hybrid functional results, which are expected to give the

better description of the electronic structure.

**Here we cite the GW results, which are supposed to give the most

accurate description of the electronic structure.
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in the quantum efficiency spectra of even the best solar
cells [6,26,41,54–56] is due to the presence of a stannite
phase with a lower band gap. Phase inhomogeneity with
different band gaps is certainly detrimental to the solar cell
efficiency, particularly to the open-circuit voltage [57].

The calculations find a rather peculiar density of states
in the conduction band [18–20,43]: the bottom of the
conduction band is made of a lone band originating from
the Sn-s and the S or Se-p states. This band is about
1 eV wide. At higher energies there is another gap
within the conduction band, also approximately 1 eV
wide. This gap is predicted to lead to a dip in the absorp-
tion spectrum [20]. This dip is currently not seen in
quantum efficiency spectra, because its energy is beyond
the band gap of CdS which is used as a buffer. However,
when buffers with higher band gap will be used, this pe-
culiarity of the density of states will lead to a loss in
short-circuit current.
4. DEFECTS

Defects control the doping and thus the band bending as
well as the recombination properties in solar cells. The
related chalcopyrites are doped by intrinsic defects; so
far, there is no indication that this is different in kesterites.
Very limited experimental data are available on defects in
kesterite. Defects in general are investigated by low
temperature PL, admittance spectroscopy or electron
spin resonance (EPR). No admittance investigations on
kesterites have been published up to date. EPR investiga-
tions have found only broad peaks related to Cu(II)
[8,58], very similar to the observations in chalcopyrites
[59–61]. This makes EPR not useful for defect studies in
these materials.

Most PL studies available show a broad peak, indicat-
ing fluctuating potentials. In this case, the PL emission is
shifted in energy and it is not possible to extract defect data
from such measurements. For defect spectroscopy, it is
necessary to have narrow peaks that can be associated with
donor–acceptor pair (DA) transitions or free to bound
transitions [45]. There are only three reports of narrow
peaks in PL measurements. All three were measured on
Cu-rich samples, films or crystals [62–64]. This is an
amazing parallel to the low temperature PL of chalcopyrite
materials, where narrow emissions suitable for defect
spectroscopy are only observed in Cu-rich material,
whereas Cu-poor material shows broad luminescence
indicative of fluctuating potentials [65–67]. In Cu-rich
sulphide kesterite films or crystals, a DA transition at
1.496 eV was observed and an exciton at 1.509 eV [62],
meaning that the defects involved in the DA transition
must be rather shallow, 10meV or less. Whether the
second DA transition reported in [62] is in fact due to the
kesterite material is disputed. A DA transition at 1.45 eV
was also reported but not discussed in terms of involved
defects [63]. In selenide kesterite material, an exciton at
1.033 eV has been observed, together with a DA transition
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at 0.989 eV with two phonon replicas [64]. This has been
interpreted as involving a donor at 7meV below the
conduction band and an acceptor at 27meV above the
valence band. A remarkable feature of both PL investigations
[62,64] that found an exciton is that the excitonic emission
quenches very fast and is not visible anymore above 20K.

A few theoretical studies on defects in kesterites are
available [68–73], all based on density functional theory,
which has its limitations predicting defect levels [43,74].
However, defect formation energies can be considered
correct. Defect formation energies depend on composition
and on the Fermi level. Nevertheless, some general trends
can be extracted. The investigations agree that the
defect with the lowest energy of formation, under many
conditions even negative, is the CuZn antisite defect and
it is an acceptor. Generally, the donor defects have higher
formation energies, most likely donors according to
[71,75] are the S vacancy and the ZnCu antisite. Further
low formation energy acceptors are the CuSn antisite and
the Cu vacancy. The low, often negative formation energy
of the most probable acceptor, namely the CuZn antisite,
can explain that Cu2ZnSnS4 [10,31,36,51,76–80] and
Cu2ZnSnSe4 [37–39,81] have always been found as
p-type. There are no reports on n-type Cu2ZnSn(S,Se)4
material. It can be assumed that the p-type character is
due to the CuZn or CuSn antisites and the Cu vacancy, with
compensation from the ZnCu antisite and the S vacancy.
Most available low-temperature PL investigations show
broad asymmetric emissions [40,47–53,82] indicating that
the material is in fact strongly compensated.
5. SECONDARY PHASES

The previous sections discuss the challenges related with
the kesterite material itself. However, it is even a challenge
to prepare Cu2ZnSn(S,Se)4 single phase. Because it is a
truly quaternary crystal, a large number of secondary
phases exist. Only one experimental phase diagram each
for the sulphide and selenide kesterite system has been
published so far [83,84]. In these phase diagrams, a small
existence region of single phase kesterite is predicted, with
1–2% (absolute) deviation in the composition at most at
growth temperatures around 550�C. In the contrary, the
phase diagram of chalcopyrites allows for Cu deficiency
of 4% absolute at the growth temperature [85]. This
difference is reproduced by equilibrium calculations.
Determination of the stability region based on total energy
calculations can be compared for chalcopyrites and
kesterites. Under Cu-rich conditions, the stability region
of Cu2ZnSnS4 extends over an area in the chemical
potential mSn–mZn diagram which is about 1 eV long and
0.1 eV wide [68,69,71]. Whereas the stability region of
CuInSe2 is about 1 eV long but 0.5 eV wide [86]. So, from
the available measurements and calculations, it can be
concluded that the existence region of single phase kesterite
is smaller compared with chalcopyrites.
516 Prog.
Best solar cells have been prepared with a Zn-rich and
Cu-poor composition. According to the experimental and
calculated phase diagrams, this means that the most likely
secondary phase is ZnS(e). It is actually found in
Cu2ZnSnSe4 films [6,48]. ZnS(e) has a wide band gap
and usually not an extremely high conductivity, thus it
would not harm the open-circuit voltage of the solar cell.
It could, however be responsible for the high series
resistance observed in all solar cells [5,6]. One can
speculate that other secondary phases such as Sn or Cu
sulphides or selenides or Cu-Sn sulphide or selenide
ternary phases are more detrimental to the solar cells,
because of their lower band gap, which reduces the open-
circuit voltage, or because of their high conductivity,
which could decrease the shunt resistance.
6. SUMMARY OF CHALLENGES

So far solar cell efficiencies of 10% have been achieved
with these new materials [4]. For kesterite solar cells to
present a commercially viable solution it will certainly be
necessary to reach 15% efficiency. Because of the potential
negative role of secondary phases, one of the major
challenges for these solar cells is the growth of single
phase material, particularly because it is very hard to
clearly detect secondary phases [53,87]. Even if pure
Cu2ZnSn(S,Se)4 is grown successfully, the control of the
structural phases remains a challenge. It will be essential
to grow pure kesterite phase, without any admixture of
the stannite structure, because of the lower band gap of
the stannite. Another challenge for the solar cells is
certainly the choice of the correct contact materials. The
interface properties are not discussed in this review
because information is scarce, and experimental [88] and
theoretical [71] data contradict. The control of recombina-
tion and doping will depend on the control of the native
defects. However in chalcopyrites, the physicochemical
nature of the doping defects is still not known [74] and
optimisation of solar cells has been quite empirical. A
similar approach might work for kesterite solar cells;
however because the existence region is smaller than in
the chalcopyrites, a better knowledge of the doping defects
is desirable.
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