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Application of Shape Analysis on renal tumors

Statistical shape analysis

Landmarks

Suppose that we want to study n objects by means of statistical
shape analysis.

A landmark is a point of correspondence on each object that
matches between and within populations.

Denote the number of landmarks by k .

Every object oi in a space V of dimension m is thus represented in
a space of dimension k ·m by a set of landmarks:

∀i = 1 . . . n, oi = {l1 . . . lk}, lj ∈ Rm. (1)
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Application of Shape Analysis on renal tumors

Statistical shape analysis

Removing the scale

1 For every i , i = 1, ..., n, the size of each object is determined
as the euclidian norm of their landmarks.

‖oi‖ =

√√√√ k∑
j=1

‖l ij ‖2
m. (2)

2 The landmarks are standardized by dividing them by the size
of their object:

l̃ ij =
l ij
‖oi‖

. (3)
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Application of Shape Analysis on renal tumors

Statistical shape analysis

Removing the location

To remove the location of the object, the landmarks are centered
by the following procedure:

1 For every i , i = 1, ..., n, we compute the the arithmetic mean
z i of the k standardized landmarks of the ith object :

z i =
1

k

k∑
j=1

l̃ ij (4)

2 We center all the landmarks by subtracting this mean:

l
i
j = l ij − z i (5)
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Application of Shape Analysis on renal tumors

Statistical shape analysis

Removing the location/scale

location (4,6), scale (3), rotation (1) and reflection (3)
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Statistical shape analysis

Removing the location/scale

Mathematical procedure for removing location/scale two objects
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Application of Shape Analysis on renal tumors

Statistical shape analysis

Remark for application

We do not need to remove rotation in our application ”medicine”,
since we use MRI images of the tumors which are frontal or
transversal images.
In engineering there is no reason for removing rotation.

We have no rotated images in our sample.

Hence, we are able to work completely in the standard
three-dimensional space with the euclidian norm.

We do not need any further procrustes analysis nor any
complicated stochastic geometry. It is easy to show that the partial
procrustean distance is the euclidean distance after transformation.
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Application of Shape Analysis on renal tumors

Statistical shape analysis

The mean shape

To compare the standardized and centered sets of landmarks, we
need to define the mean shape of all the objects and a distance
function which allows us to evaluate how ”near” every object is
from this mean shape.

The term ”mean” is here used in the sense of Fréchet (1948).

If X denotes a random variable defined on a probability space
(Ω,F ,P) with values in a metric space (Ξ, d), an element m ∈ Ξ
is called a mean of x1, x2, ..., xk ∈ Ξ if

k∑
j=1

d(xj ,m)2 = inf
α∈Ξ

k∑
j=1

d(xj , α)2. (6)
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Application of Shape Analysis on renal tumors

Statistical shape analysis

The mean shape

That means that the mean shape is defined as the shape with the
smallest variance of all shapes in a group of objects. Every
distance is continuous ( Proof: using the triangle inequality for a
metric and the ε− δ criterion). So we are able to find values
minimizing the variance. We have to look for the minimum with
the smallest variance.
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Statistical shape analysis

The mean shape and the Lp-norm

The mean shape in a finite dimensional space. Not considering the
rotation we are searching for the minimum m of:

f (m) = ||x −m||2p (7)

Differentiation with respect to m:

f ′(m) = 2(−p
n∑

i=1

(m − xi )
−1+p

n∑
i=1

(m − xi )
p)−1+ 2

p ) (8)

Now we have to solve for m.

0 = 2(−p
n∑

i=1

(m − xi )
−1+p

n∑
i=1

(m − xi )
p)−1+ 2

p ) (9)

It is easy for p = 1 and p = 2.
12 / 50
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Statistical shape analysis

The mean shape and the Lp-norm

For p = 1 we take |xi | =
√

(xi )2

m =
1

n

n∑
i=1

xi (10)

For p = 2 (euclidean distance) we get also:

m =
1

n

n∑
i=1

xi (11)

For p = 3 we get:

m =
1

2n

n∑
i=1

2xi ±

√√√√(
n∑

i=1

2xi )2 − 20(
n∑

i=1

xi ) (12)
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Statistical shape analysis

The mean shape and the Lp-norm

To show that 1
2n

∑n
i=1 2xi −

√
(
∑n

i=1 2xi )2 − 20(
∑n

i=1 xi ) is a
minimum, you put the result in f ′′(m).
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Application of Shape Analysis on renal tumors

Statistical shape analysis

The algorithm of Ziezold (1994)

The algorithm of Ziezold considering also the rotation of the
objects for computing the mean shape. To begin, we fix the mean
of all the standardized and centered objects as starting value:

m̃0 = 1
n

n∑
i=1

o i .

We then undertake the following steps for i = 1, . . . , n

15 / 50



Application of Shape Analysis on renal tumors

Statistical shape analysis

The algorithm of Ziezold (1994)

The algorithm of Ziezold considering also the rotation of the
objects for computing the mean shape. To begin, we fix the mean
of all the standardized and centered objects as starting value:

m̃0 = 1
n

n∑
i=1

o i .

We then undertake the following steps for i = 1, . . . , n

15 / 50



Application of Shape Analysis on renal tumors

Statistical shape analysis

The algorithm of Ziezold (1994)

1

m̃ 7→ wi (m̃) =

{ 〈m̃,oi 〉
|〈m̃,oi 〉| if 〈m̃, oi 〉 6= 0

1 if 〈m̃, oi 〉 = 0
(13)

2

m̃ 7→ T (m̃) =
1

n

n∑
i=1

wi (m̃)oi (14)

3

m̃r = T (m̃r−1), r = 1, 2, . . . (15)

The stopping rule is m̃ = T (m̃).
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Application of Shape Analysis on renal tumors

Neural networks

Alternative: Elements of neural networks

Neural networks have been developed originally in order to
understand the cognitive processes. A neuron perceives chemical
and physical excitement from the environment by its dendrites.
The neuron is processing this incoming data and sending the
information to other neurons via axons and synapses. McCulloch
and Pitts implemented the biological processes of a nerve cell for
the first time in a mathematical way.
Nerve cells have to access and process incoming data in order to
evaluate target information. Therefore the corresponding neural
networks are called supervised neural networks.
An unsupervised neural network has no target and is similar to a
cluster algorithm.

17 / 50



Application of Shape Analysis on renal tumors

Neural networks

Mathematical idea of neural networks

The data consist of n variables x1, . . . , xn on binary scale. For data
processing, the ith variable xi is weighted with wi . Normalised
with |wi | ≤ 1, multiplication of xi with wi determines the relevance
of xi for a target y . The value wi reflects the correlation between
the input variable and the target, the sign indicating the direction
of the influence of the input variable on the target. Weighting the
input variables for a target variable is similar to discriminant
analysis.The critical quantity for the neuron is the weighted sum of
input variables

q :=
n∑

i=1

wi · xi = w1 · x1 + ...+ wn · xn . (16)

For a target y with binary scale, a threshold S is needed. Crossing
the threshold yields 1 and falling below the threshold yields 0.
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Neural networks

Activation function

Hence the activation function F can be written as

F (q) =

{
1, if x > S
0, if x ≤ S

(17)

With the input of the activation function, we obtain y = F (q) as

y = 1, if
n∑

i=1

wi · xi > S

y = 0, if
n∑

i=1

wi · xi ≤ S

19 / 50
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Multi-layer perceptrons

Multi-layer perceptrons

In general a given target may be reached only up to a certain error.
Given a certain measure E (ỹ , y) for the distance between the given
target state y and the state ỹ computed by the neural network, the
learning of the neural network corresponds to the minimisation of
E (ỹ , y). The following training algorithm is inspired by Rumelhart,
Hinton and Williams. The total error measure over all states of a
given layer is defined as

Etotal(ỹ , y) :=
1

2

N∑
k=1

(ỹk − yk)2 . (18)

It will be used below to reset the weights in each layer of the
neural network.
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Multi-layer perceptrons

Mathematical procedure in detail

The processed state ỹ of the neural network is computed by the
following steps. First the critical parameter for the first layer is
computed from n weighted input values as

∑n
i=1 wi · xi . We

consider a hidden output layer with m neurons. For j = 1, . . . ,m,
let gj be the activation function of the j-th neuron of the hidden
layer, with an activation value of hj , given as

hj = gj(
n∑

i=1

wi · xi ) . (19)

Usually for all neurons of a given layer a common activation
function g = g1, . . . , gm, e.g. a sigmoid function, is used.
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Multi-layer perceptrons

Next, the output of the previous (hidden) layer becomes the input
of the next layer, and the activation proceeds analogously to the
previous layer. Let f be the activation function of the pre-final
(here the second) output layer. Then the pre-final critical value is

q = f (
m∑
j=1

uj · hj) . (20)

Finally, the pre-final critical value q is interpreted by a final
activation function F yielding
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Multi-layer perceptrons

Learning mechanism

The learning mechanism the weights is determined by the target
distance measure

E =
1

2

n∑
i=1

(y i − ỹ i )2 .

The weights of both layers are changed according to the steepest
descent, i.e.

∆wi =
∂E

∂wi
(21)

∆uj =
∂E

∂uj
(22)
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Multi-layer perceptrons

Learning mechanism

With a learning rate α, which should be adapted to the data, the
weights are changed as follows:

wnew
i = wold

i − α ·∆wi (23)

unew
j = uold

j − α ·∆uj (24)

The necessary number of iterations depends on the requirements
imposed by the data, the user, and the discipline.
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Multi-layer perceptrons

Learning mechanism
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Multi-layer perceptrons

Application on Shape Analysis

For simplicity, we consider now an 1-layer perceptron network,
which is sufficient for our purpose of minimising the variance.
Every landmark is weighted in every direction.

k∑
j=1

d(xj ,m)2 = inf
α∈Ξ

k∑
j=1

d(xj , α)2. (25)

In contrast to the former application of neural networks we are
using a metric function instead of a binary variable. The difference
between the weighted objects and the approximated mean shape is
used instead of the difference between the reality and the
approximation E .
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Application of Shape Analysis on renal tumors

Application in medicine: Renal tumors in early childhood

Application in medicine: Renal tumors in early
childhood

Nephroblastoma (Wilms-tumor) is the typical renal tumour in
childhood. different types of histological tumor tissue
(subtypes) exist, differentiated as a,b,c,d in our study. Three
stages of risk and malignancy. Many renal tumors in the
childhood are diagnosed as Wilms (130 per year).

Renal cell carcinoma growing also next to the kidney.Are rare
in childhood (12 per year) but frequent for adults.

Neuroblastoma is a tumor of nervous tussie and suprarenal
gland next to the kidneys with possible infiltration into the
kidney. About 140-160 cases per year in germany, in about 60
% with abdominal origin (=84 cases).

Clearcell sarcoma is a renal high malignant tumour with
possible bone metastases. Rare (12 per year).
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childhood

In about 75% of patients MRI is used, otherwise CT is used
(=different images, not comparable). Also we lost patients in
consequence of quality.
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The data

Research sample:

Magnetic resonance images of 74 cases of tumors in frontal
perspective (69 Wilms, 5 neuroblastoma).

MRI image of a renal tumor in frontal view.
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Application in medicine: Renal tumors in early childhood

The three-dimensional object

Three-dimensional model of a tumor.

30 / 50



Application of Shape Analysis on renal tumors

Getting landmarks

Getting landmarks

To get 3D landmarks we construct a three dimensional object of
the tumour from the 2D MRI. Then we take the intersection
between the surface of the tumour and the vectors going from the
centre to the edges of the platonic body C60 as landmarks as is
shown in figure.

3D-Landmarks as cut points the edge of a platonic body / the
surface of the tumor
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Experimental results in medicine

The platonic body C60

For every object, we consider the platonic body C60 whose center
lies in the center of the object. This platonic body has 60 edges
which give us 60 three-dimensional landmarks for every object.
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Experimental results in medicine

The landmarks

We take as landmarks the 60 points on the border of each object
closest to the edges of the platonic body.

Only real measured points on the border of the tumor are taken,
the approximated part of the three-dimensional object is not used.
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Experimental results in medicine

Examples of mean shapes

Figure shows the mean shape of the nephroblastomas (red) and of
the neuroblastomas (green).

There are only 60 landmarks for describing a tumor
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Experimental results in medicine

Ziezold’s test for differentiation of the types of tumors

We consider two subsets A and B of the sample of size n and
N − n respectively.

The subset A is a realization of a distribution P and the subset B
is an independent realization of a distribution Q.

The test hypotheses are:

Hypothesis: H0 : P = Q
Alternative: H1 : P 6= Q
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Experimental results in medicine

Ziezold’s test for differentiation of the types of tumors

1 Computing the mean shape m0 of subset A.

2 Computing the u-value

u0 =
n∑

j=1

card
(
bk : d(bk ,m0) < d(aj ,m0)

)
.

3 Determination of all the possibilities of dividing the set into
two subset with the same proportion.

4 Comparing the u0-value to all possible u-values. Computing
the rank (small u-value mean a small rank).

5 Calculate the p-value for H0. pr=i = 1

(Nn)
for i = 1, . . . ,

(N
n

)
,

where r is the rank for which we assume a uniform
distribution.
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Mean variance of a set of shapes

We define the mean variance in the sense of Fréchet of a set of
objects as the average of the distances to the mean shape.
If X denotes a random variable defined on a probability space
(Ω,F ,P) with values in a metric space (Ξ, d) and m ∈ Ξ is the
mean of x1, x2, ..., xk ∈ Ξ, σ2 is the variance of x1, x2, ..., xk ∈ Ξ if

k∑
j=1

d(d(xj ,m)2, σ2)2 = inf
α∈Ξ

k∑
j=1

d(d(xj ,m)2, α)2. (26)

That means that the variance is defined as the mean of the
distances between the ”mean shape” and the objects.
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The variance test

In this section we propose a test to compare the mean variance of
two groups of objects. It functions analogously to the test of
Ziezold (1994):

step 1: Definition of the set of objects

There is one set M = {o1, . . . , oN} that can be divided into two
subsets: objects with the characteristics A:
Asample = {o1, . . . , on} = {a1, . . . , an} and objects with the
characteristics B: Bsample = {on+1, . . . , oN} = {b1, . . . , bN−n}.
The subset A is a realisation of a distribution P and the subset B
is an independent realisation of a distribution Q.

Hypothesis: H0 : σ2
1 = σ2

2

Alternative: H1 : σ2
1 6= σ2

2

Define the level of significance α. If the probability for H0 is
smaller, we neglect H0 and assume H1.
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The variance test

step 2: Computing the variance

The variance is calculated by means of a straightforward
generalisation of the algorithm of Ziezold (1994). Let σ2

1 denote
the variance of the subset A. σ2

2 is then computed for the subset B.
step 3: Computing the F -value

F =
|σ̂2

1 |
|σ̂2

2 |
.

step 4: Determination of all the possibilities of dividing the
set into two subsets with given sizes

step 5: Comparing the F -value to all possible F -values.
Computing the rank (small F-value mean a small rank).
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The variance test

The variance test

step 6: Calculate the p-value for H0

pr=i = 1− 1

(Nn)
for i = 1, . . . ,

(N
n

)
, where r is the rank for which we

assume a rectangular distribution on the right side and pr=i = 1

(Nn)
on the left side.
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The variance test

Wilms tumors vs. neuroblastoma

Comparing the Wilms tumors to the mean shape of the
non Wilms tumors.

u = 72 rank = 116

Random sample: n = 1000 p = 0.116.

Comparing the neuroblastomas to the mean shape of
the Wilms tumors.

u = 112 rank = 80

Random sample: n = 1000 p = 0.080.

Wilms tumors are a homogeneous group.
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Results of variance test

The result of the test of Ziezold (1994) could be a consequence of
different variances in the two groups. Our variance test allows to
test this. For the renal tumours, the F -value for the differentiation
of the variance of the group of nephroblastomas to the group of
neuroblastomas is 1.28128 and the rank is 315. So the
corresponding p-value is 1− 0.315 = 0.685 and we have to accept
the null hyptothesis that the variance is similiar in both groups. So
both kind of tumours seem to have more or less the same
dispersion and a possible difference in the dispersion can be
excluded as cause for difficulties in distinguishing the two kinds of
tumours.
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Application of neural networks

Minimizing the variance in one of the groups does not lead always
to an optimal differentiation between the different types of tumors.
The neuronal network uses for minimizing the variance another
metric. Every landmark is weighted in every direction. For a
sample of 74 comparable tumors (69 nephroblastoma and 5
neuroblastoma the u0-values are computed for the direction
nephroblastoma vs. neuroblastoma.

u-values after every iteration of the MLP for minimizing the variance

The range of u0-values computed by the network is between 0 and
188.
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Conclusion

In medicine: Three-dimensional statistical shape analysis seems to
be a good tool for differentiating the renal tumors appearing in
early childhood.

Wilms tumors can be clearly differentiated from
neuroblastoma.

It is possible to differentiate the whole set of non-Wilms
tumors from the mean shape of Wilms tumors.

But we cannot use statistical shape analysis to say if a given
general tumor is not a Wilms tumor.

The variance test makes it possible to compute only one mean
shape.
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Outlook

Outlook

Developing a procedure for decision according to the distance
to the mean shape. Aim: Minimize the mistake in the
assignment.

Using the explorative procedure (Giebel 2007) for two and
three dimensional landmarks. Aim: Find the relevant
landmarks for differentiation.

Including in the test the variance and other parameter.
Estimating the difference by Tschebyscheff-formula.

Dynamical Shape Analysis
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Outlook

Outlook: Explorative procedure

Explorative procedure in 2D
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Outlook

Outlook: Dynamical Shape Analysis

Diagnoses of hearts
Aim: Searching for a function between time point t1 and t2
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Outlook

Outlook (Application field):

Profiling criminals (offences in an ares)

The criminal has tu use the space with its structure. Comparing of
objects with different landmarks is possible.
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Outlook

Outlook (Application field):

Application on electronic noses
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Outlook

Thank you! Ba tashakor az tavajohe shama!
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