Application of statistical shape analysis to the classification of renal tumours appearing in childhood

M.A./Dipl. Math. /Cand. Soz. päd.

Stefan Markus Giebel

Stefan.Giebel@t-online.de

Université du Luxembourg Campus Limpertsberg

Dr. J.P.-Schenk Uniklinikum Heidelberg

Prof. Dr. J. Schiltz, Uni Luxembourg

Overview

1) Survey

2) Shape

3) Mean Shape

4) Tests

5) Differences between tumours shown in an optical way

- 6) Classification
- Conclusion
- Forecast

Renal tumours appearing in early childhood

Wilms- tumours growing in the near to the kidney
Genetic cause
The majority of renal tumours in the childhood is diagnosed as
"Wilms" (80%)
There are four types of tissue (a, b, c, d) and three stages of
development (I, II, III)

- Renal cell carcinoma
 growing also in the near to the kidney
 Are very rare in the childhood
- Clear cell carcinoma
 Growing in the near to the bones .
 Are also rare

Neuroblastoma

Growing in the near to nerve tissue

Also very rare

etc.

The therapy depends on the diagnosis.

Dicom Data

Getting transversal and frontal images of the tumour Problem: Not for each patient we have both views Images created by Magnetic resonance tomography

Three-dimensional object

1. Construction by using the data (density, depth etc.)

Explorative* survey of landmarks

*there are no medical relevant points used as landmarks

1.Determining of three dimensional mass point2.Taking two dimensional image therein the mass point

Data process

1.Standardisation (using Euclidean norm)2.Centring on two-dimensional centre

Determining of "mean shape"

Determining the expected "mean shape" of a group of objects.

That mean's: smallest distance in the average to all shapes in the group

Determining of "mean shape"

Using the following algorithm

$$i = 1, \ldots, n$$

$$\begin{split} \tilde{m} \mapsto w_i(\tilde{m}) = \begin{cases} \frac{\langle \tilde{m}, o_i \rangle}{|\langle \tilde{m}, o_i \rangle|} & \text{if} \quad \langle \tilde{m}, o_i \rangle \neq 0 \\ 1 & \text{if} \quad \langle \tilde{m}, o_i \rangle = 0 \end{cases} \end{split}$$

$$\tilde{m} \mapsto T(\tilde{m}) = \frac{1}{n} \sum_{i=1}^{n} w_i(\tilde{m}) o_i$$

recursively there is a sequence

$$\tilde{m}_r = T(\tilde{m}_{r-1}), r = 1, 2, \dots$$
 iterations

criterion to stop

$$\tilde{m} = T(\tilde{m})$$

Algorithm for "mean shape" (Ziezold 1994)

Determining of "mean shape"

Statement: Patient No. 3 is very far from the "mean shape". Patient No. 16 is very near to the "mean shape".

Distance from the "mean shape" (Wilms)

patient		distance				
Nr.	Diagnose	d_f	$rang_W$			
Nr.1	n.b.	0.0849	3			
Nr.2	IId	0.1009	6			
Nr.3	IIc	0.2260	18			
Nr.4	IIIa	0.0968	5			
Nr.5	IIa	0.1567	13			
Nr.6	IIb	0.1113	8			
Nr.7	IId	0.1940	17			
Nr.8	IId	0.1448	12			
Nr.9	IId	0.1854	16			
Nr.10	IIc	0.1290	11			
Nr.11	IIb	0.1834	15			
Nr.12	IIa	0.0772	2			
Nr.13	IIc	0.0916	4			
Nr.14	IIc	0.1058	7			
Nr.15	IIc	0.1126	9			
Nr.16	n.b.	0.0541	1			
Nr.17	IIa	0.1178	10			
Nr.18	IIc	0.1754	14			
		·				

Description of the test (Ziezold, 1994)

The group of m objects is an indepent realisation of the distribution P and the other group of k objects an independent realisation of the distribution Q

Determining of p-value according to the test

H_o P=Q

 H_1 $P \neq Q$

- 1. step: Determining of "mean shape"
- 2.step: Determining of distances to the "mean shape" and the \mathbf{u}_0 according to the Mann Whitney-U-Test
- 3.step: Determining all possible u-values separating the group (k+m) in two groups with m and k objects
- 4.step: Determining the rank of u₀ in the group of all u-values
- 5.step: p-value = r/N
- 6.step: Determining the p-values in the other direction. Determining "mean shape" in the group of m objects

Description of the test (Ziezold 1994)

High u_O-values means: A lot of cases - not used for the "mean shape"- has a smaller distance to the "mean shape" than the cases used for the "mean shape"

Low u_O-values means: Only a small number of cases - not used for the "mean shape" has a smaller distance to the "mean shape" than the cases used for the "mean shape"

Determining of all possible permutations **possibilities**

4!/ (2! 2!) = 6 possibilities

|All|/ (| subset₁ |! |subset₂|! = Number of all possibilities

Checking of differences between types of "Wilms"- tumours

Subsets		Differentiation					
Tumortyp 1	Tumortyp 2	u_0	$m_{=}$	$m_{<}$	p-Intervall	k	$\binom{15}{k}$
Typ a	$\overline{Typ \ a}$	0	57	0	[0.002, 0.125]	3	455
$\overline{Typ \ a}$	$Typ \ a$	21	14	338	[0.745, 0.774]	12	455
Typ b	$Typ \ \overline{b}$	2	22	64	[0.619, 0.819]	2	105
$\overline{Typ \ b}$	Typ b	9	5	37	[0.362, 0.409]	13	105
Typ c	Typ c	6	17	431	[0.086, 0.090]	6	5005
$\overline{Tup \ c}$	Tup c	14	155	780	[0.156, 0.187]	9	5005
Typ d	Typ d	17	52	970	[0.711, 0.749]	4	1365
$\overline{Typ\ d}$	Typ d	10	40	153	[0.113, 0.141]	11	1365

m= ...: Number of cases with the same u-value

m<...: Number of cases with a lower u-value

The interval is a result of the smallest and the highest rank of u_o

Checking of differences between different tumours

N2: renal cell carcinoma K: clear cell carcinoma

N1:neuroblastoma

Subsets		Differentiation						
Tumortyp 1	Tumortyp 2	u_0	$m_{=}$	$m_{<}$	p-Intervall	k	n	$\binom{n}{k}$
Wilms	N1	12	47	122	[0.0924, 0.1271]	3	21	1330
N1	Wilms	15	36	834	[0.6271, 0.6541]	18	21	1330
Wilms	K	5	4	13	[0.0737, 0.0895]	2	20	190
K	Wilms	0	103	0	$\left[0.0053, 0.5421\right]$	18	20	190
Wilms	N2	11	3	11	[0.6667, 0.7778]	18	19	18
K	N1	0	7	0	[0.1, 0.7]	2	5	10
N1	K	1	2	5	[0.6, 0.7]	3	5	10
K	N2	0	3	0	[0.3333, 1]	2	3	3
N1	N2	1	2	1	[0.5, 0.75]	3	4	4

m= ...: Number of cases with the same u-value

m<...: Number of cases with a lower u-value

The interval is a result of the smallest and the highest rank of u_o

Conclusions

"Typ c" and clear cell carcinoma have a tendency for differentiation

Neuroblastoma only in one direction

Renal cell carcinoma not differentiable

Independence (Influence) of Landmarks of Shapes

Ziezold •Mathematische Schriften Kassel, Heft 03/2003

- H_0 The k th landmark of X is independent (influenced by) of the other landmarks with respect to the distance
- H_1 The k th landmark of X is <u>not</u> independent (influenced by) of the other landmarks with respect to the distance

$$A_{p} = A_{p}^{1} = \frac{1}{n - n_{p}} \sum_{d(\mathbf{x}^{(i)'}, \mathbf{x}^{(j)'}) > c_{p}} \frac{|x_{ik} - x_{jk}|}{d(\mathbf{x}^{(i)'}, \mathbf{x}^{(j)'})}.$$

$$A_{p}^{s} = \frac{1}{n - n_{p}} \sum_{d(\mathbf{x}^{(i)'}, \mathbf{x}^{(j)'}) > c} \frac{|x_{\tau_{s}(i),k} - x_{\tau_{s}(j),k}|}{d(\mathbf{x}^{(i)'}, \mathbf{x}^{(j)'})}.$$

Step 2.

$$R_p = \text{rank}(A_p^1, \{A_p^1, A_p^2, \dots, A_p^N\})$$

Step 3.
$$\pi_p = \frac{N - (R_p - 1)}{N} \le \alpha \text{ i.e. } R_p \ge N(1 - \alpha) + 1$$

n: all cases n p: all possibilities for 2 in n cases p: only a part of the

sample (p-quantille)

Distance between

Distance between Objects without

Random selected

N: 100 possibilities

Landmarks

kth landmark

Explanation of test

Landmark Rank

Results for p-quantile= 65%

N=100

all landmarks are independent of the other landmarks with respect to the distance

45/46
48/49
34/35
39
54/55
43
40
39
33
46/47
48
45/46
43
35/36/37
42
34
30
30
32
35
31/32/33
49
43
42

Wilcoxon - Test

Also it is interesting to test the distance of landmarks to the mean shape for differentiating nephroblastoma to neuroblastoma. For that test we use the Wilcoxon-Test and calculate according to the Mann-Whitney-U-Test all possibilities.

We assume that the <u>average of difference</u> to the mean shape for every landmark can be used for differentiating the tumors.

Wilms / Neuroblastome

Neuroblastome / Wilms

p∈ [0,1887; 0,1917]

p∈ [0,7586; 0,763]

No results for $\propto = 0.1$

Wilms d Mean shape Landmark Landmark Neuro d Mean shape Landmark Landmark

The average is not enough for differentiation

Explorative take k=5 landmarks from 24

- 1. One sample for best configuration (Test Ziezold 1994) (smallest u-value for differentiating neuro/wilms and wilms/neuro)
- 2. One sample for test the configuration

Forecast

Determining of three dimensional landmarks

First results

Three dimensional case

Sample: 5 neuroblastoma - 14 wilms Test Ziezold (1994)

Wilms / Neuroblastoma

p∈ [0,157; 0,187]

Neuroblastoma / Wilms

p∈ [0,069; 0,108]

15 from 60 landmarks

Teşekkür ederim

Application of statistical shape analysis to the classification of renal tumours appearing in early childhood

(M.A./Dipl. Math. /Cand. Soz. päd.)

Stefan Markus Giebel

Stefan. Giebel@t-online.de

Université du Luxembourg Campus Limpertsberg

Dr. J.P.-Schenk Uniklinikum Heidelberg

Prof. Dr. J. Schiltz, Uni Luxembourg