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Portfolio optimisation with conditioning information

Problem context

Discrete-time optimisation
Minimise portfolio variance for a given expected portfolio
mean
Postulate that there exists some relationship µ(s) between
a signal s and each asset return r observed at the end of
the investment interval:

r = µ(s) + ε,
with E [ε|s] = 0.
How do we optimally use this information in an otherwise
classical portfolio optimisation process?
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Portfolio optimisation with conditioning information

Problem history

Hansen and Richard (1983): functional analysis argument
suggesting that unconditional moments should enter the
optimisation even when conditioning information is known
Ferson and Siegel (2001): closed-form solution of
unconstrained mean-variance problem using unconditional
moments
Chiang (2008): closed-form solutions to the benchmark
tracking variant of the Ferson-Siegel problem
Basu et al. (2006), Luo et al. (2008): empirical studies
covering conditioned optima of portfolios of trading
strategies
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Portfolio optimisation with conditioning information

Possible signals

Taken from a continuous scale ranging from purely
macroeconomic indices to investor sentiment indicators.
Indicators taking into account investor attitude may be based on
some model or calculated in an ad-hoc fashion. Examples
include

short-term treasury bill rates (Fama and Schwert 1977);
CBOE Market Volatility Index (VIX) (Whaley 1993);
risk aversion indices using averaging and normalisation
(UBS Investor Sentiment Index 2003) or PCA reduction
(Coudert and Gex 2007) of several macroeconomic
indicators;
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Portfolio optimisation with conditioning information

Possible signals (2)

global risk aversion indices (GRAI) (Kumar and Persaud
2004) based on a measure of rank correlation between
current returns and previous risks;
option-based risk aversion indices (Tarashev et al. 2003);
sentiment indicators directly obtained from surveys (e.g.
University of Michigan Consumer Sentiment Index)
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Theoretical results

Aim

Existing results are useful and instructive but limited to
problem variations where a closed-form solution is
achievable
Want to formulate the problem with conditioning
information in such a way that more general variations can
be tackled (using numerical algorithms if necessary)
Want to integrate this type of optimisation problem into an
existing theoretical framework
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Theoretical results

Idea

Formulate the Ferson-Siegel problem in optimal control
terms
Use signal (instead of time) as the independent variable
and add a signal density factor so integrals in problem
represent expectations
Realise that the signal support may equal all of R and so a
doubly-infinite version of the Pontryagin Principle must be
available
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Theoretical results

General problem

Minimise J[θ,ψ](x ,u) =

∫ ψ

θ
L(x(s),u(s), s)ds as θ → −∞, ψ →∞

subject to ẋ(s) = f (x(s),u(s), s) ∀s ∈ [θ, ψ]

lim
s→−∞

x(s) = x−, lim
s→∞

x(s) = x+,

and u(s) ∈ U ∀s ∈ [θ, ψ]

where
U ⊆ Rn and convex
x(s) ∈ Rm

L and f continuous and differentiable in both x and u
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Theoretical results

General problem (2)

In general, various types of optimality should be defined as
the cost function limit need not exist: the above case gives
"strong optimality"
Show that Pontryagin Minimum Principle (PMP) and
Mangasarian Theorem are still valid for this type of problem
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Theoretical results

Pontryagin Minimum Principle over a doubly-infinite
horizon

Theorem
If an admissible pair (x∗(s),u∗(s)) is optimal for the above
problem, there exist a constant λ0 ∈ {0,1} and a vector costate
function λ(s) = (λ1(s), . . . , λm(s)) such that, ∀s ∈ (−∞,∞),

(λ0, λ1(s), . . . λm(s)) 6= (0,0, . . .0),

Define the Hamiltonian
H(x(s),u(s), λ0, λ(s), s) = λ0L(x(s),u(s), s)+λ·f (x(s),u(s), s).
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Theoretical results

Pontryagin Minimum Principle over a doubly-infinite
horizon(2)

Theorem
u∗(s) minimises the Hamiltonian over all u ∈ U, i.e.
∀u ∈ U, s ∈ (−∞,∞), for all admissible pairs (x(s),u(s)),

H(x∗(s),u∗(s), λ0, λ(s), s) ≤ H(x(s),u(s), λ0, λ(s), s)

Additionally, the costates λi , for i ∈ {1,2, . . .m}, verify

λ̇i(s) = −∂H
∂xi

except at any points of discontinuity for u∗(s).
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Theoretical results

Proof steps for PMP over doubly-infinite horizon

Start from singly-infinite versions of the PMP (Halkin 1974)
and the Bellman Optimality Principle (BOP, easily shown)
Show that BOP still holds for the doubly-infinite horizon
Use singly-infinite PMP to establish separate optimality on
positive and negative half-axes whatever their origin
Apply finite and singly-infinite PMP variants on overlapping
intervals to establish continuity of all costate components
over the whole of R
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Theoretical results

Mangasarian sufficiency theorem over a doubly-infinite
horizon

Theorem
Given the previous problem and notation, suppose additionally
that the following conditions are satisfied ∀s ∈ R with λ0 = 1:

λ̇i(s) = −∂H
∗

∂xi
∀i ∈ {1,2, . . .n}

H(x(s),u(s), λ0, λ(s), s) is jointly convex in (x(s),u(s))
n∑

j=1

∂H∗

∂uj

(
u∗j (s)− uj(s)

)
≤ 0 ∀u(s) ∈ U.
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Theoretical results

Mangasarian sufficiency theorem over a doubly-infinite
horizon(2)

Theorem
Then the admissible pair (x∗(s),u∗(s)) solves the problem if, for
all s,

∃M > 0 : |λ(s)| ≤ M.

If H(x(s),u(s), λ0, λ(s), s) is strictly convex, the pair
(x∗(s),u∗(s)) constitutes the unique solution to the problem.

Proof is immediate for the given optimality definition and
boundary conditions
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Theoretical results

Mean-variance portfolio problem

Minimise

J(u) =

∫ s+

s−
u′(s)

[
(µ(s)− rf e)(µ(s)− rf e)′ + Σ2

ε

]
u(s)pS(s)ds

given the state trajectory

ẋ1(s) = u′(s)(µ(s)− rf e)pS(s)

with
µp unconditional expected portfolio return
rf risk-free rate of return
Σ2
ε conditional covariance matrix

pS(s) signal density function
x1(s−) = 0 and x1(s+) = µp − rf

u(s) ∈ U ∀s
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Theoretical results

Mean-variance portfolio problem(2)

Assume availability of a risk-free asset with return rf

Above expressions are for unconditional variance and
expected return in the presence of a signal (see Ferson
and Siegel 2001)
Can apply PMP to this specific case of the general problem
Formulation corresponds to a variation of a classical LQ
minimum energy problem with magnitude constraints (see
e.g. Athans and Falb 1966)
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Theoretical results

Open loop optimal portfolio weights

Define the saturation function

satu−i ,u+
i

(f ∗i ) =


−u+

i if f ∗i < −u+
i

f ∗i if − u+
i < f ∗i < −u−i

−u−i if f ∗i > −u−i .

with
f ∗(s) = ((µ(s)− rf e)(µ(s)− rf e)′ + Σ2

ε )−1(µ(s)− rf e)λ∗(s)
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Theoretical results

Open loop optimal portfolio weights (2)

We get a per-asset expression for the optimal weight:

u∗i (s) = −satu−i ,u+
i

(f ∗i (s)),

From the PMP costate equation, the λ∗i (s) = λ∗i are
constant
The optimal weights are piecewise linear in f ∗ but not, of
course, in s
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Algorithm testing

Data set

11 years of daily data, from January 1999 to February
2010 (2891 samples)
Risky assets: 10 different EUR-based funds
commercialised in Luxembourg chosen across asset
categories (equity, fixed income) and across Morningstar
style criteria
Risk-free proxy: EURIBOR with 1 week tenor
Signal: Kumar and Persaud currency-based GRAI
obtained using 3 monthly forward rates
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Algorithm testing

Experiment

Rebalance Markowitz-optimal portfolio alongside portfolio
optimal with conditioning information over the 11-year
period
Assume lagged relationship µ(s) between signal and
return can be represented by a linear regression
Use kernel density estimates for signal densities
Use direct (Gaussian collocation) method for numerical
problem solutions (Benson 2005)
Obtain efficient frontier for every date and choose portfolio
based on quadratic utility functions with risk aversion
coefficients between 0 and 10
Compare Sharpe ratios (ex ante), ongoing returns (ex
post) of both strategies
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Algorithm testing

Typical kernel density estimate for signal and resulting
optimal weight functionals

As would be expected, the constrained optimal weights are
not simply a truncated version of the unconstrained optimal
(Ferson-Siegel) weights
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Algorithm testing

Typical efficient frontiers using Markowitz portfolios
and portfolios using signal information

Average Sharpe ratios over 2891 samples: Markowitz -
0.289, using signal - 0.373 (using business daily returns
and volatilities)
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Algorithm testing

Evolution of strategy returns
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Algorithm testing

Comparison of strategy excess returns over Markowitz
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Summary

By using the signal as the independent variable, we can
express portfolio optimisation problems with conditioning
information in an optimal control format
Necessity and sufficiency results in optimal control theory
can easily be generalised to the required doubly-infinite
horizon context
In this way, it becomes possible to solve more general
types of optimisation problem through applying any of the
numerous numerical optimal control solution approaches
available
The presented problem yields significant outperformance
of a pure Markowitz strategy in a more realistic setting than
the unconstrained optimum with signalling can afford
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