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Préface

Les Rencontres Francophones sur la Logique Floue et ses Applications (LFA) sont I'occasion pour les
chercheurs de la communauté francophone, universitaires et industriels, de partager les avancées de leurs
travaux et de renforcer leurs connaissances autour de la thématique de la théorie des sous-ensembles flous,
laquelle s’est élargie aux théories de I'incertain que sont les théories des probabilités imprécises, de I'évidence,
des possibilités, etc.

Ces rencontres offrent, chaque année, un lieu privilégié pour des débats fructueux, suscités par les travaux
qui y sont présentés. Elles permettent aussi aux scientifiques, jeunes et expérimentés, de présenter des
recherches novatrices et de recueillir les avis constructifs des spécialistes de la communauté.

Depuis sa création en 1995, la conférence LFA a visité Paris, Nancy, Lyon, Rennes, Valenciennes, La
Rochelle, Mons, Montpellier, Tours, Nantes, Barcelone, Toulouse, Nimes, Lens, Annecy, Lannion, Aix-les-Bains,
Compiégne et Reims cette année. Cette édition contient une sélection de trente-cing communications (parmi
guarante-cing articles soumis) couvrant assez largement I'ensemble des thématiques classiques et émergentes
telles que l'intelligence artificielle, 'aide a la décision, la fouille de données, la classification, la robotique, la
reconnaissance des formes et I'analyse de données. Parmi les sujets traités, sont particulierement présentes
cette année la commande floue et la fusion d’informations. Nous tenons par ailleurs a souligner la
représentativité croissante de chercheurs provenant de pays tels que I’Algérie, le Maroc, la Tunisie ou encore le
Luxembourg, et qui représentent plus de vingt pour cent des participants attendus lors de ces rencontres. Nous
saluons avec reconnaissance leur contribution a faire de LFA un événement de la communauté scientifique
francophone qui dépasse aujourd’hui significativement les frontiéres frangaises.

Nous avons le plaisir d’accueillir deux conférences invitées. La premiere de ces conférences nous est
proposée par Thierry-Marie Guerra, professeur en automatique a I'Université de Valenciennes et du Hainaut
Cambrésis (UVHC) et directeur du Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et
Humaines (LAMIH, UMR CNRS 8201). Internationalement reconnu pour ses travaux sur le controle des
systémes non linéaires représentés par des modeles flous de type Takagi-Sugeno, il a intitulé sa conférence :
Une petite histoire de la commande floue. Y voit-on plus clair ? La seconde de ces conférences nous est
présentée par Christophe Marsala, professeur en informatique a I'Université Pierre et Marie Curie (UPMC) et
membre du département Données et Apprentissage Artificiel (DAPA) du Laboratoire d'Informatique de
I'Université Paris 6 (LIP6 UMR CNRS 7606). Spécialiste mondialement renommé de l'apprentissage et des
systemes flous, il a intitulé sa conférence : Apprentissage flou en environnement dynamique. Nous les
remercions chaleureusement d’avoir accepté notre invitation.

Nous tenons a remercier aussi tous ceux qui ont contribué a ce que LFA 2013 soit une conférence de
qualité : les auteurs pour la qualité scientifique de leurs contributions, les membres du comité de pilotage pour
leurs avis éclairés, ceux du comité de programme pour la sélection attentive des articles et enfin les membres
du comité d’organisation sans qui cette manifestation n’aurait pu avoir lieu.

Nous remercions I'Université de Reims Champagne-Ardenne, le CReSTIC et la société savante EUSFLAT pour
leur soutien logistique ou financier. Enfin nous remercions I’AFIA, I'lEEE France Section, le GDR ISIS, le GDR
MACS, le GDR 13 et la ROADEF pour leur soutien scientifique.

Jean-Luc Marichal

Président du comité de programme

Najib Essounbouli et Kevin Guelton

Présidents du comité d’organisation
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Une petite histoire de la commande floue. Y voit-on plus clair ?

Thierry-Marie Guerra

Université de Valenciennes et du Hainaut-Cambrésis, LAMIH UMR CNRS 8201

Le mont Houy, 59313 Valenciennes, France, guerra@univ-valenciennes.fr

Résumé

Apres avoir passé plus de 20 ans (déja !)
dans le domaine de la commande floue, je
propose de faire un retour en arriere et de
passer en revue plus de 30 ans de recherche
dans ce domaine ; du début historique de la
commande floue et des approches de type
Mamdani (figure 1) aux développements plus
récents basés sur les modeles de Takagi-
Sugeno (ou quasi-LPV).

(1) el ult) w(1)

—_— RF > | Modele >

oelt

Fig. 1 : le régulateur flou « historique »

Ces travaux pionniers — malgré un succes
certain en termes d’applications, plus de 5000
recensées en 1995 (Jamshidi 1995) — ont
souffert du  manque de  propriétés
mathématiques chéres aux automaticiens
disons « classiques » que sont par exemple la
stabilit¢ de la boucle, la robustesse
paramétrique, les performances, qu’elles soient
de type poles de la boucle fermée ou H2, Hinf.
En France dans les années 90 les automaticiens
s’y sont intéressés. Notamment au travers d’un
groupement Commande Symbolique et Neuro-
mimétique du GDR MACS CNRS animé par
les professeurs Laurent Foulloy et André Titl.
Ce dernier a donné lieu a deux livres dans la
collection IC2, Hermés éditeur en 2003.

L’évolution a principalement consisté en 2
parties distinctes. Premierement, n’importe
quelle technique basée sur un modéle non
linéaire peut étre appliqué sur un modele flou :
lin€arisation par retour d’état, commande

prédictive, techniques basées sur I'inverse du
modele La seconde qui s’est avérée
beaucoup plus riche est de disposer d’une
commande qui profite de la structure floue du
modele. C’est principalement 1’école japonaise
— Takagi, Sugeno, Kang, Tanaka, Taniguchi ...
qui en est a Dlorigine. Ils ont introduit et
travaillé sur les modeles appelés couramment
aujourd’hui Takagi-Sugeno (TS) illustrés ci-
apres :

If z (t)is F and ... and z, (¢) is F”

Then {xi (t+1)=Ax, (t)+Bu(t) 0

Vi (t): Cx, (t)

Munis d’une propriét¢ d’approximateurs
universels (Castro and Delgado, 1996), ils
permettent de modéliser (Tanaka et Wang
2001, Taniguchi et al. 2001) et/ou d’identifier
(Babuska 1998, Margaliot and Langholz, 2003,
Gasso et al., 2001) de nombreux mod¢les non
linéaires.

Les approches utilisent des fonctions dites
de Lyapunov et le potentiel offert par la
résolution de problémes sous contraintes LMI
(Linear Matrix Inequality). Ils rejoignent ainsi
les outils historiques des automaticiens «
classiques » et le flou perd un peu de son « ame
». On peut s’apercevoir maintenant que les
communautés se rapprochent et que les
publications se croisent.

En parallele, la commande adaptative a
connu un bel essor (Wang 1993). Elle suppose
en général une forme canonique :

{fcn =/ (x)+g(x)u

y=x

2)



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

xl(nfl):|

Si f(x) et g(x) sont connus une loi

avec x' =[x1 X,

1déale est :

u

zﬁ(—f (x)+)+k"e) 3)

avec y, laréférence a poursuivre.

Cette loi étant par essence inconnue, on peut
soit D’approximer par un systéme flou
(commande directe) soit approximer les

fonctions f(x) et g(x) par 2 systémes flous
(commande indirecte).

Il est difficile d’évaluer quel est I’apport
réel du «flou» dans toute cette littérature.
Néanmoins il n’est pas négligeable.
Aujourd’hui, il semblerait que les pays
asiatiques sont les plus intéressés par ces
approches (Chine, Taiwan, Corée du Sud,
Japon). L’essence méme du «flou» s’est
perdue en cours de route et les notions
d’incertain et d’imprécis ne sont plus
exploitées.

Des pistes ont été testées avec plus ou
moins de succés (a mes yeux): neuro-flou,
ensembles flous de type II, extension des
approches par intervalles a des approches par
ensembles flous ...

Enfin, quelques applications développées au
cours des années au LAMIH seront présentées :
pendule inversé, véhicule a 2 roues, moteur
thermique, contrdle du rythme cardiaque
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Apprentissage flou en environnement dynamique

Fuzzy Learning in Dynamical Environment

Christophe Marsala
UPMC Univ Paris 06, UMR 7606
LIP6, 4 place Jussieu, 75005, Paris
Christophe.Marsala@lip6.fr

Résumé :

Les environnements dynamiques sont de plus en plus
présent dans notre société et offrent de nouveaux défis
pour I’apprentissage automatique.

Nous nous plagons ici dans un domaine ou les données
d’apprentissage sont fournies séquentiellement, voire
temporellement, en un flux continu. Dans de tels en-
vironnements, les données dynamiques qui permettent
de constituer les bases d’apprentissage peuvent étre de
plusieurs formes : données temporelles provenant de
séries chronologiques, ou données résultant de mesures
périodiques du phénomene étudié. Par exemple, on peut
citer une série d’articles publiés dans des journaux en
ligne (chaque document est alors décrit au moyen des
thématiques ou des mots qui le constituent et qui évoluent
au fil de I’actualité).

Toutefois, les évolutions dynamiques de ces données ne
sont pas uniques et peuvent conduire a différents traite-
ments. Par exemple, en apprentissage supervisé, la dy-
namicité peut produire différents effets selon que le flux
de données apporte une plus grande précision sur les
frontieres entre les classes, ou que les limites entre les
classes évoluent au fil du temps : elles peuvent alors se
déplacer dans I’espace de description, apparaitre ou dis-
paraitre (ce peut étre le cas lorsque la description des
données évolue dans le temps comme dans 1’exemple des
journaux en ligne) [1, 3, 5].

Ainsi, de telles évolutions (on parle de “concept drift”
ou de “concept shift” par exemple) gagnent a étre prises
en compte grace a des approches d’apprentissage auto-
matique flou [2] et, en particulier, par des approches par
arbres de décision flous [4].

Mots-clés :
Apprentissage automatique flou. Systémes adaptatifs.

Abstract:

Dynamical environments are more and more present in
our society and offer a challenge for fuzzy machine lear-
ning. We place ourselves in a domain where the training
data are provided sequentially, in a flow. In such environ-
ments, dynamic data that make up evolving training sets
can be of several forms : temporal data coming from time
series, or data resulting from periodical measurements
of a studied phenomenon that evolves over time as, for
instance, a set of papers published on online newspapers
(each paper is described by means of the topics or words
that evolve over time in the description space).

However, dynamic evolutions of such data are not unique

and can lead to different ways to handle them. For ins-
tance, in supervised learning, dynamicity occurs either
when the flow of data provide more precision on the
boundaries between the classes, or when the boundaries
between the classes change over time: they could move
in the description space, appear, or disappear (it could be
the case when the description of the data evolve over time
as in the online newspaper example) [1, 3, 5].

Thus, such concept drifts or shifts have to be handled and
fuzzy machine learning [2] offers adequate tools in that
task. In particular, fuzzy decision tree based learning is a
promising approach for that task [4].

Keywords:
Fuzzy Machine Learning, Evolving Systems.
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Vision possibiliste de I'estimation du parameétre d’une loi binomiale

Possibilistic view of binomial parameter estimation

Gilles Mauris
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Résumé : définissons la  variable aléatoire S,
Cet article s'intéresse aux fondements possibilistes de correspondant & la somme des succés, celle-ci
I'estimation par intervalle de confiance du parameétre suit une loi binomiale notégin(n,p) Cette loi

d’une loi binomiale. Nous montrons que les méthodes . . , A s
probabilistes usuelles consistent a obtenir des intervalles Pinomiale présente un intérét consideérable

de confiance modélisant une incertitutiedictoa partir pour la statistique dans le sens ou elle joue un
d’intervalles de dispersion modélisant I'incertitudiere réle important dans bon nombre de problemes
des échantillons observés. Nous relions les différents pratiques de jugements a partir d’échantillons

types dintervalles de dispersion & des distributions de ¢ o “c4nirale du nombre de piéces défectueuses
possibilitéde reéquivalentes, qui par inversion donnent

des distributions de possibilitee dictocorrespondantes ~ dans une production, tests medicaux et
a lempilement des intervalles de confiance du biologiques, analyses demographiques,
parametre pour tous les niveaux. Les différent choix sondages d’opinion, jeux, ... . L’'estimation du
pour le centre des intervalles conduisent aux différentes paramétre de la loi binomiale, au-dela de son
méthodes existantes et une nouvelle que nous illustrons. intérét pratique, est de plus fondamentale dans
Mots-clés : la définition méme de la probabilité. En effet,
Théorie des possibilités, estimation de paramétre, loi lestimation de p est a la base de la

binomiale, intervalles de dispersion et de confiance . . . , . . ] A
Abstract: P justification de l'estimation d’'une probabilité

This paper deals with the possibility roots of binomial inconnue par la fréquence _ de réalisation
parameter interval estimation. It shows that oObservée sur un grand échantillon, et ce grace
conventional probability methods consist to obtain 3 |a |oi faible des grands nombres établie par
confidence intervals representirdg dicto parameter Jacques Bernoulli [1]. En conséquence, il est

uncertainty from dispersion intervals representlegre . tant de s'inté i bien d’ int
uncertainty of observed samples. We relate the different Important de sinteresser, aussi bien a'un poin

types of dispersion intervals to equivalede re de vue théorique que pratique, a ce que peut
possibility distributions those lead after inversiondto proposer la théorie des possibilités [2][3] pour
dicto possibility distributions corresponding to the ['estimation du paramétre d’une loi binomiale.
s’gacklng up of_ all confidence intervals at all Ieyels. The C'est ce que nous nous proposons de faire
different choice for the centre of the intervals ) -

corresponds to different existing methods and a novel dans C_e_t article e_n considerant les approches
one which are illustrated. probabilistes existantes sous un angle

possibiliste, a partir de transformations

KeF}/c\:;(;Egisli.ty theory, binomial parameter estimation, probabilités/possibilités [4][5][6], identifiant
dispersion intervals, confidence intervals. les intervalles de dispersion d’'une distribution

de probabilité aux alpha-coupes d'une
1 Introduction distribution de possibilit¢, pour ensuite

La premiere loi introduite en probabilités [1] proposer une nouvelle méthode d’estimation
est la loi de Jacques Bernoulli qui est une loi centrée sur la moyenne observée.
discréte fort simple, puisquelle ne peut Dans un premier temps, nous reviendrons sur

prendre que deux valeur8 (échec) oul les notions de base des probabilités et des
(succes). Par convention on note la possibilités en mettant en avant le fait que
probabilité que la variable prenne la valdur  I'estimation du parameétrp, qui est fixe mais

Si l'on réitere n fois la méme épreuve de inconnu, est caractérisée par une incertitude
Bernoulli de facon indépendante, et que nous de type de dicto (car elle porte sur une
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connaissance [7]) qui d’'une maniére ou d’'une aléatoires S = Bin25,0.4), S, = Bin100,0.4) et
autre se déduit d'une incertitude de ty*mre % - Bir(looyo_g)représentées sur la figure 1.
(car elle porte sur le réel observe) issue des
échantillons. Dans un deuxiéme temps, nous ]
présenterons les approches les plus utilisées &1%]
pour construire les intervalles de confiance du -
parametrep d'une loi binomiale[8][9] en en ]
proposant une vision possibiliste. Puis nous @121
exposerons une nouvelle méthode basée sur
des intervalles de dispersion asymétriques
centrés sur la moyenne (qui est I'estimation la ro,0s
plus vraisemblable du parametre)

Nous conclurons sur le cadre unificateur
proposé par la vision possibiliste des = gpl
approches probabilistes existantes, ainsi que
les nouvelles méthodes d’estimation qu’elles S o
suggeérent. o2 B %

[ e i Gl b e A G i e L i W i i s i ]

0 20 40 &0 a0 100

2 Notions fondamentales . _ proporiont) o .
Dans cette section, nous présentons d'abord de Figure 1. lllustration de la concentration d’'une loi
maniére intuitive les concepts fondamentaux Nous pouvons remarquer visuellement que
de I'estimation d’'une proportion déja présents . oA . o
dans les travaux des pionniers. Puis nous en P_(ZO_/"S_FZ < 60% = Zet P(70%s F; < 90% = -
proposons des définitions modernes formelles Ainsi, si avant d'observer une valeur Sgou
pour finalement les relier & la notion de de S, on parie quelle va tomber dans
distribution de possibilités. lintervalle[20,6d, on est presque sur de
gagner en misant sus, et presque sur de
2.1 Phénomeéne de concentration d’'une loi  perdre en misant su#. Si nous modifions
de probabilite l'intervalle, par exemplgss,44, nous obtenons
L'estimation du parametrep de la loi P(35< S < 49 = 0.6 et Nous prenons un risque
binomiale est a la base de la justification de de se tromper en misant sBt
'estimation d’une probabilité inconnue par la

fréquence observéepnzi sur un grand 2.2 Incertitude de reet de dicto
] . o o Nous voyons a travers I'exemple précédent
echantillonn, et ce grace a la loi faible des qgue |a concentration de la probabilité sur un
gr\ant,:is_nlombres etablie par Jacques Bernoullijnieryalle court (relativement a la longueur du
des l'origine des probabilites [1]. support) permet de faire dans un sens direct de
Oe>0 p(]Fn_p|25)sp(1—_2p) la prévision (généralement avec un certain
ne risque) a partir des observations. Elle permet
aussi en sens inverse de traiter des situations
Ce théoréme traduit ' le phénorr!én,e d_e plus complexes, mais plus proches de
concentration de la loi de probabilit¢ qui proplemes réels, c'est-a-dire 'estimation d’'un
permet en  statistique  d'obtenir  de parametrep fixe mais inconnu. Cette fois le
linformation, voire des quasi-certitudes, a probléme est de déterminer aprés avoir

phénomene de concentration s’accentue quandII est clair que p=04 est fortement

n augmente. Dit autrement plus augmente ) blabl ) ' R
plus les fluctuations d&, autour de p sont Vraisemblable et quep=08 lest tres peu
faibles. Considérons par exemple les variables (cette formulation correspond a la notion de

& RS

B K i

10
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tests statistiques). Nous sommes donc tresNotons que deux variables aléatoires peuvent

confiant dans le fait quep0[0.2;0.4 (cette

formulation correspond au concept
d’intervalles de confiance). Plus la loi est
concentrée plus les intervalles de dispersion
sont étroits et plus les intervalles de confiance
sont étroitsA la limite pour un nombre infini
d’'observations il n'y a plus de fluctuations de
la proportion F, (qui devient ainsi une
distribution de Dirac), et on peut déduire avec
complete certitude qud-, exprime la loi
déterminée suivant laquelle I'événement se
produit. Cette idée que le concept d’intervalle
de confiance est relié a la concentration de

loi est en fait déja présente (mais pas encore

formalisée) dans I'ceuvre de J. Bernoulli [1].

Ces considérations permettent de mettre le

doigt sur un point fondamental : I'estimation
du paramétrg, qui est fixe mais inconnu, est
caractérisée par une incertitude de tyge
dicto (car elle porte sur une connaissance [7])
qui d’'une maniere ou d'une autre se déduit
d’une incertitude de typée re(car portant sur
le réel observé) issue des échantillons.
2.3 Définitions formelles  des notions
précédentes
Revenons tout d'abord sur la notion de
variable aléatoire sur un espace probabilisé
(Q,7.P) qui se  definit  comme
X:Q - Rw Xtelle que X(Q) ={ X(w), w0 Q}
soit une partie au plus dénombrable Reet
que [Ox, 0 X(Q), A ={w0Q, X(w) = x} fait partie
de la famille d’événements” auxquels on
peut attribuer une probabilité parP ;
X(w) =x est une réalisation de la variable
aléatoire
L’application X permet de transporter la
probabilité P de Q sur R : on considére les
P(X=x)comme des masses ponctuelles
situées aux points, de la droite réelle. La
probabilité d’'une partie quelconque de est

la .

avoir méme loi sans étre égales.

Comme nous l'avons vu précédemment, Les
réalisations d’'une variable aléatoire fluctuent,
ce qui peut aussi s’exprimer par le fait que les
valeurs observées sont dispersées ; connaitre
les intervalles dans lesquelles elles sont
contenues en grande partie est donc une
information importante, dou la notion
d’'intervalle de dispersion de niveau
1-a (@0[0,]) dune variable aléatoirexX

défini comme tout intervalle de le forme
[G{(B).G(B+1-a)] ol G est la fonction

inverse de la fonction de répartition dé
(appelée aussi fonction quantile). Ces
intervalles ne sont pas uniques, les différents
choix possible pourpfo,]donnent lieu a

différents types d’intervalles de dispersion :
unilatéral inférieur 3=0), unilatéral supérieur

(g=a), bilatéral (/3:%). Généralement ils

sont construits autour de points définissant une
valeur « centrale » telle la moyenne, le mode,
la médiane. Les intervalles de dispersion sont
parfois également appelés intervalles de pari
(comme illustré en 2.1) ou aussi intervalles de
prévision, car comme un intervalle de
dispersion de niveau-a contient (1-a)%des
données, il y a@l-a)% de chance qgu'une
donnée tirée de cette distribution tombe dans
cet intervalle.

Si la variable aléatoire suit une loi binomiale
Bin(n,p) les intervalles de dispersion centrés
sur p sont appelés dans les programmes de
lycée intervalles de fluctuation. Notons que les
intervalles de fluctuation n’existent pas
forcément pour tous les niveaux (en raison du
caractére discret des réalisations).

Pour conclure sur les intervalles de dispersion,
soulignons la nature déterministe de ces
intervalles (les bornes sont fixes) et la nature
de rede l'incertitude qu’ils véhiculent, en effet

alors définie comme la somme de ses massed!S sont un reflet de la fluctuations des

ponctuelles. On appelle loi de la variable
aléatoireX la fonction d’ensembl®y définie

par :p, =R ({x})=RA)= R X= ¥

11

observations (due au phénoméne ou a la
maniére de [I'observer). En conséguence
augmenter le nombre d’observation ne réduit
pas cette incertitude mais permet simplement
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d’en avoir une représentation plus en accord théorique est une procédure (ou un estimateur)
avec la réalité observée. qui, si on la réitere de maniere infinie, a
La notion d'intervalles de confiance est elle l'avantage de satisfaire un taux de succés au
beaucoup plus délicate car elle a pour but de moins égal au niveau de probabilité. Par
définir I'incertitude d’'un parametre fixe mais exemple il est possible de dire avant
inconnu, et donc correspond a une incertitude I'observation que pour 100 intervalles de
de dicto (sur la connaissance que I'on déclare confiance de niveau de 90% réalisés dans des
sur p). Une difficulté mathématique provient conditions identiques, 90 contiendront le
du fait que quand la proportignest inconnue,  parameétre inconnu. Mais ce qui nous intéresse
de quelle probabilité® pouvons nous munir c’est d’avoir une information sur I'incertitude
|’eSpaC€(Qn ={03" 7 = ?) En fait, nous ne dep aprés l'observation, c'est-a-dire une fois
obtenu un intervalle de confiance
réalisépO[L(f,),U(f,)]. De fait cet intervalle

(Pp)pu[o,nl de confiance reéalisé véhicule une incertitude
P.{d}) = p>“ - prs© de dicto Il nous parait logique de transférer
lincertitude de [lintervalle de confiance
théorique (i.e. le niveau de confiance) sur
oo, intervalle de confiance réalisé car la
chaquep[0,] la loi des, sousP, qui suit une _réalisati(_)n en elle méme (en I'absence d’autres
informations) ne change pas selon nous le
degré de probabilité (subjectif ici mais
identifié a la probabilité objective que
l'intervalle aléatoire contienne le parametre)
pu[o,q) de I'événemenpd[L(f ) U(f)]. Ce transfert
X =(X, X,,...,. X,)un échantillon associ€ au est cohérent avec lidée de pari (évoqué
modéle, on appelle intervalle de confiance de précédemment) a la base des probabilités
confiance théorique poup de niveau de  Subjectives. Si nous sommes préts a parier a 90
confiance au moins-a , tout intervalle fermé euros contre 10 euros qu’un intervalle aléatoire
dont les bornes sont des variables aléatoiresde niveau 90% contient le parametge
vérifiant [8]: inconnu, nous sommes également préts a
inf P(L(X)< psU(X)=1l-a parier que le parametre inconnu est dans
oo ? lintervalle réalisé a 90%. Nous retrouvons
aussi lidéee de prévision véhiculé par un
intervalle de confiance réalisé.

pouvons considérer que toute une famille
de lois de probabilité définie par

Nous obtenons ainsi ce que l'on appelle un
modele statistique(:Qn,yg,(Pp) ) avec pour

loi binomiale Bin(n,p)
Nous pouvons alors définir les intervalles de
confiance théoriques de la maniére suivante.

Soient(Qn,Z;,(Pp) un modeéle statistique et

Il est important de remarquer que la fonction
Jur[‘c‘;,q P, définie sur 7, par A- er[];]] P(A n'est

pas en général une probabilité, c’est pour cela _ _
que I'on parle de niveau de confiance et pas de Pour conclure sur les intervalles de confiance,

niveau de probabilité (nous verrons aprés que soulignons la nature aléatoire des intervalles
ce niveau peut étre relié a la notion de théoriques (les bornes sont des variables

nécessité/possibilité). Ensuite quand nous aléatoires) et la nature de dicto de l'incertitude
remplagons la variable aléatoiné par sa  (obtenue par transfert) que vehiculent les
réalisation on obtient pour des intervalles de intervalles de confiance réalisés, en effet ils
confiance réalisés ou numériques sont un reflet de [I'incomplétude de Ila

([L(f,)U(f,)] (f,est la proportion observée) Cconnaissance d@ qui provient du nombre
dont les bornes sont déterministes. et limité et de la fluctuation des observations. En

'événement pO[L(,),u(1,)] est soit faux soit conséquence on peut espérer réduire cette

. is est lobiet de fluctuat ; incertitude sur la connaissance de en
vral, ma[s nest pas Tobjet de Tuctuation €t 5 ,gmentant le nombre d’observations.
donc n'a pas de probabilité au sens

fréquentiste. En fait l'intervalle de confiance

12
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Pour conclure sur cette sous-section, qui nousd’ignorance totale). En fait, un degré de

l'espérons aidera le lecteur a mieux

possibilité peut étre vu comme une borne

comprendre les notions évoquées, signalonssupérieure d'un degré de probabilité. Plus

gu’'au-dela des aspects notations et langage, unprécisément,

sérieux d’interprétation
subsiste au niveau

probleme
« probabiliste »

bY

a chaque distribution de
possibilitéTt, on peut associer une famille non

des vide de mesures de probabilités? ()

intervalles de confiance. Nous pensons comme gominées par la mesure de possibilité [4]:

nous l'exposons ci-apres qu’'une Vvision

possibiliste de ces notions peut aider a mieux

7(m) ={P,0A P(A<TI(A)

les comprendre et a réconcilier les points de Nous avons donc de cette maniére un pont

vue historiques et actuels.

2.4 Liens avec les (distributions de

possibilités

Notions de base de la théorie des possibilités

Une distribution de possibilitér est (dans le
contexte de grandeurs mesurables)
application de I'ensemble des partiesRde
dans[0,1] telle que sup; 77 )= 1. Un degre
de possibilitérr(x) égal al exprime I'absence
de surprise sur le fait que la valeursoit la
valeur de la variable considérée. Une
distribution de possibilité génére deux
fonctions d’ensembles non-additives [4] : une
mesure de possibilité7 et une mesure de
nécessitév .

OAORTM(A=sup-,77kK)et
OAD R N(A=1-M(A=inf,,1-7m(x))

La mesure de possibilitgd vérifie :

UABORM(AD B=max(1 (Al (B)

La mesure de nécessité vérifie :
DA BOR N(AY B=min(N( A, N B)
Une notion importante est la spécificité d’'une
distribution de possibilité qui renseigne sur sa
gualité informative.
Définition: une distribution de possibilitér
est dite plus spécifique qu’une distribution
i, (C'est a dire plus fine) si et seulement si :
OxORm (X<, (.
Si m(x)=1 pour une seule valeur de et
71(y) =0 pour toutes les valeuys# x, alorstt

une

entre théorie des probabilités et théorie des
possibilités.

Liens avec les intervalles de dispersion

Une distribution unimodale de possibilité
Tipeut aussi étre vue comme un ensemble
d'intervalles emboités| x,,%, |que sont les

alpha-coupes det [X,,%, ] ={ xm(Xzaj.

Comme indiqué précédemment, pour une
méme distribution de probabilité et un méme
niveau de confiance, il est possible de
construire différents types d'intervalles de
dispersion suivant que I'une des bornes, ou le
centre, ou un autre point de lintervalle est
imposeé. Ainsi, un intervalle de dispersion peut
étre unilatéral supérieur ou inférieur,
symétrique, centré sur la médiane,.... Il est dit
optimum si son amplitude (la différence entre
la borne supérieure et la borne inférieure) est
la plus petite parmi tous les intervalles de
dispersion de méme niveau. Dans tous les cas,
une fois fixé le type, 'ensemble des intervalles
de dispersion pour tous les niveaux de
confiance forme un ensemble d’intervalles
emboités. Et donc un sous-ensemble flou ayant
une sémantique d’incertitude, c’est a dire vu
comme une distribution de possibilités en
identifiant les a-coupes der aux intervalles
de dispersion de niveaug=1-a. Cette

approche a été utlisée dans nos travaux
antérieurs  [5][6], pour réaliser une

transformation probabilité/possibilité.

Un résultat important est que pour toute
variable aléatoireX ayant une fonction de

est complétement spécifique (cas totalement répartition G, et pour tout point central la

précis); si 71(X) =1pour toutes les valeurs
alors 1t est complétement non spécifique (cas
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distribution de possibilité définie par [6] :

(X)) =G(Y+1- (o Q) =77 (d ¥ (avec
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g:[-,c] - [c+»] une application décroissante
telle que g(c) = ¢) est unimodale de modeet
elle satisfait :0A 15 (A = R (A
Si X est unimodale de densit@.e. strictement
croissante avant le mod#® et strictement
décroissante aprés) la distribution de
possibilité optimale (au sens ou elle est
constituée des intervalles de dispersion
optimaux, i.e. les plus courts) est obtenue par :
OxO[-e,M], g(0={y= M/ it x= 0 % .
Une nouvelle maniére que nous proposons ici,
pour construire une distribution de possibilité
reliée aux intervalles de dispersion est :
77°(X) = min(G(I(X)) ,1_ G(r(x)),
g G(o) 1-G(r(c)
avecr et | des applications respectivement
croissante et décroissante définies sur
[-w,clefc+o] et telles queli)=r(c). La
distribution de possibilité est unimodale de
modec et elle satisfait :0ANZ (A= R (A.
Preuve 7r°(c) =1, siAO ¢ (A =12 R (A ; Sl
G(I(x))
WZGU(X))
car G(o<iet donqi¥(A) =P (A. ldem pour
supxd A)> c.
Remarquons que si la distribution est
symétrique autour de (etl(x))=r(x)=x) :
77°(X) = 77°(X) = min(2G(X), 2(1- G(X) -

1

cOA,supk0 A)< calorsrre(x) =

Liens avec les intervalles de confiance réalisés
et les intervalles fiduciaires de Fisher

Les intervalles de confiance réalisés sont tels

quepiDngJ]Pp(Lms p<U(R)=21-a C'est a dire
queinf P ((L(®,U(X])=1-a, en conséquence
prfog P

le degré de confiance de [lintervalle de

confiance réalisé est un degré de nécessité.

Pour construire une distribution de possibilité,
nous pouvons donc empiler les intervalles de
confiance pour les tous les niveawxi[0,]. Si

nous avons une famille dintervalles de
confiance réalisés emboités {I..1,,..1 .}

I, 01, =1..m, chaguel,ayant un niveau de
confiance A défini comme un degré de
nécessitélors I'expression de la distribution
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de possibilités équivalent a cette famille est
[10] (ce résultat s’étend au cas infini):
7 () = min max(-4 J; €)) ou I,(x) est la

fonction  caractéristique de L’équation

précédente exprime en fait la conjonction des
distributions issues de chaque intervalle de
confiance réalisé, et la distribution de

possibilité correspond a la distribution la plus

spécifique par rapport aux données disponibles
Une autre maniére d'obtenir directement des
intervalles de confiance déterministe est de
considérer l'inférence de Fisher qui conduit

aux intervalles fiduciaires [1]. L'idée de Fisher

peut selon nous se traduire en considérant
comme possible a un niveau donné toutes
valeurs dep dont I'intervalle de dispersion a ce

méme niveau contient ['observation. Les

intervalles fiduciaires sont donc clairement

reliés par inversion aux intervalles de

dispersion. Cette approche nous semble
intellectuellement plus simple (que celle des
intervalles de confiance réalisés). Dans de
nombreuses situations (notamment pour les
distributions croissantes avec le parametre, ce
qui est le cas pour la distribution binomiale)

les intervalles de confiance réalisés sont égaux
aux intervalles fiduciaires et donc nous ne
creuserons pas plus avant ici les aspects
controversés des inférences fréquentiste et
fiduciaire.

3 Méthodes de construction des

intervalles de confiance
Dans cette section nous rappelons d’abord
guelques propriétés de la loi binomiale, puis
nous présentons les méthodes les plus usuelles
de construction des intervalles de confiance
fiduciaires associées au paramégirgd] sous
I'angle possibiliste.
3.1 Propriétés de la loi binomiale
Nous noteron&, la variable aléatoire associée
a la répétition den épreuves indépendantes et
identigues de Bernoulli ayant une probabilité
de succe®. S, suit alors une loi binomiale
Bin(n,p) définie par:P(S,=R=C gL- p~.
Cette loi binomiale est asymétrique (sauf pour
p=0.5 et a pour moyenre=np. Si
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(n+1)pn’est pas entier la loi croit strictement 3.3 Meéthode de Clopper Pearson

sur [0 (n+1)p]] et décroit strictement sur L'approche de Clopper-Pearson [9] consiste a

((n+)p.i. Ele a donc un seul inverser les intervalles ,de_ dlsper’smn de type 2
i avec pour centre la médiane. L'expression de

modeM =| (n+1)p], et la moyenne est €gale au |5 gjstribution de possibilité associée a une

mode E=M =np. Si (n+1)p est entier la loi observation k (empilant les intervalles de

croit strictement sur[o,(n+1)p-1] et décroit  confiance) est :

strictement suf(n+1)p,r ; elle a donc deux 7T (P.K)=min(2F, (k/n),2(- F, (k/n),1

modesM =(n+1)p-1 et (n+1) petla moyenne Un point important est que cette distribution
E=npO[M-1 M| n'est pas atteignableDans de possibilité est unimodale et continue mais

) R elle nest pas la plus spécifique. Pour
tous les cas la distan¢® -E|<1. La mediane  amgliorer la spécificité Blaker [9] a proposé
est définie parm=| np| o np£1. Le fait que  d’inverser les intervalles de dispersion de type
les modes ou médianes n'ont pas la méme 1 qui sont discrets et inclus dans ceux de type
expression pour toutes les valeursndetp est 2 mais le mécanisme d’inversion peut (dans
a l'origine de certains problémes de monotonie des situations assez peu fréquentes) donner
aprés inversion des intervalles de dispersion. une distribution de possibilit¢ poprqui n‘est

pas unimodale.
3.2 Meéthode de Wald-DeMoivre-Laplace
C’est la méthode dite standard qui est basée3.4 Méthodes de Wilson-Sterne, Crow et
sur I'approximation par une loi normale de la Clunies-Ross
loi binomiale (établie par Laplace sur la base Pour avoir l'information la plus spécifique,
de calculs de De Moivre). L'estimatign ~ Wilson (1942) propose de considérer les

(obtenue & partir des donnéds) paramétrep intervalles de dispersion de type 1 autour du
mode. Cette méthode est plus connue sous le

suit une loi normaleN(p, M), et donc nom de méthode de Sterne (1954) ou du
. _ . n minimum de vraisemblance [9]. En effet la
p-p suit une loi normale de valeur moyenne istripution de possibilité poyr s'écrit
nulle et décart type [PL"P) (ici on a T (PK=FR(k/N+A-F(kK/0), = K n

n m'(p, k)= F (kI N+@1- FE(K/ 1), = K1
Cette approche conduit a une distribution
discréte et ne garantit pas non plus d’avoir une
distribution unimodale. Crow (1956) a proposé

p- p constitue ce qui est appelé une fonction e . « ; .
pl’pt . otal d " sp s 46 dune modification qui empéche d’obtenir des
alegloire pivotale car cetle aerniere ne depent;niepg|les disjoints apres inversion mais elle

pas du parametre inconpu A partir des  gpoutit 4 des intervalles de confiance non

intervalles de dispersion de cette fonction emboités. Clunies—Ross (1958) ont proposé
aléatoire pivotale, nous pouvons deduire simplement « de boucher les trous » entre les
facilement par inversion les intervalles de jntervalles disjoints issus de linversion [9],

confiance dep. Notons que l'approximation  conduisant ainsi & une distribution unimodale,

par la loi normale est plus ou moins bonne et mais qui en contrepartie est un peu moins
qu'elle ne garantit pas le niveau de confiance spécifique.

(cf. figure 2). Remarquons que c’est le fait

qu’il n'existe pas de fonction pivotale (non 35 Une « nouvelle » méthode

asymptotique) pour les lois discrétes (alors que pans le but d’avoir une distribution unimodale
souvent elles existent pour les parametres decontinue et construite autour de la moyenne
lois continues) qui rend la construction opservée (la valeur observée est I'estimation la
d’intervalles de confiance plus difficile. plus vraisemblable du paramétre), nous

remplacé [I'écart-type inconnu par son
estimation, la méthode score de Wilson [10]
garde le vrai écart-type). La variable aléatoire

15
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proposons d’inverser les intervalles de
dispersion de type 2 autour de la moyenne.
Nous obtenons ainsi I'expression suivante
pour la distribution de possibilité.

2F (k/n) 2(1- F, (k/n)
F(p) ~ 1-F,(p)

77°"(p, K) = min( 1)

Les figures suivantes illustrent les cas ou sur
10 tirages respectivemeBtet 5 succeés ont été
observeés.

0,8
0,6
0,4

0,2

L=}
w
—_

Clopper-Fearson
Mouvelle méthode

Wald-Laplace
Figure 2. Distributions de possibilité pour 8 succés

|
0.8
0.8
0.4

0,2

15 e i e s I B e B e e

o] 0z 04 0.6 0.8 1
p

Clopper-Fearson
Mouvelle méthode

Wald-Laplace
Figure 3. Distributions de possibilité pour 5 succes
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4 Conclusion

Nous avons mis en évidence dans cet article la
nature intrinsequement  possibiliste  de
l'estimation de parametre par intervalles de
confiance. Les méthodes probabilistes
existantes reviennent a inverser les intervalles
de dispersion construits autour de différents
centres et qui peuvent étre modélisés par une
distribution de possibilitéle re pour obtenir
une distribution de possibilitéde dicto
représentant les intervalles de confiance. Une
nouvelle méthode basée sur une nouvelle
transformation probabilité possibilité centrée
sur la moyenne observée d'une proportion
d’'une loi binomiale (qui correspond a
'estimation du maximum de vraisemblance) a
été proposée. En perspective, I'approche
bayésienne de I'estimation du parametre d’'une
loi binomiale pourrait également étre intégrée
dans le cadre possibiliste proposeé.
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Résumé :

La transformation probabilité-possibilité est une trans-
formation purement mécanique d’un support probabiliste
vers un support possibiliste et vice versa. Dans ce pa-
pier, nous appliquons les transformations les plus con-
nues sur des modeles graphiques i.e. réseaux Bayésiens
en réseaux possibilistes et vice versa. On montre que les
transformations existantes ne sont pas appropriées pour
transformer les réseaux Bayésiens en ceux possibilistes,
puisqu’elles ne conservent pas 1’information incorporée
par les distributions jointes. C’est pourquoi, nous pro-
posons deux nouvelles propriétés de cohérence applica-
bles, exclusivement, pour la transformation des modeles
graphiques. L’étude expérimentale montre I’'impact de
ces transformations sur les résultats de la propagation.

Mots-clés :

Transformation  probabilité-possibilité, =~ Réseaux
Bayésiens, Réseaux possibilistes.
Abstract:

Probability-possibility transformation is a purely me-
chanical transformation of probabilistic support to possi-
bilistic support and vice versa. In this paper, we apply
the most common transformations to graphical models,
i.e., Bayesian into possibilistic networks. We show that
existing transformations are not appropriate to transform
Bayesian networks to possibilistic ones since they can-
not preserve the information incorporated in joint distri-
butions. Therefore, we propose new consistency proper-
ties, exclusively useful for graphical models transforma-
tions. The experimental study highlights the impact of
these transformations on inference results.

Keywords:

Probability-Possibility transformation, Bayesian net-
works, Possibilistic networks.

1 Introduction

Graphical models are important tools proposed
for an efficient representation and analysis of
uncertain information. The success of graph-
ical representations is due to their capacity of
representing and handling independence rela-
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tionships, which have been proved to be cru-
cial for an efficient management and storage of
the information. Moreover, graphical models
allow a local representation and reasoning eas-
ily supported by human mind. Bayesian net-
works [14] are studied under the broader class
of probabilistic graphical models. For instance,
the standard probability theory has proved its
efficiency when all numerical data are avail-
able. But, this theory is not suitable when deal-
ing with the case of total ignorance. This is
particularly true in probabilistic Bayesian net-
works when missing data do not allow any valid
treatment. So, when experts are unable to pro-
vide exact numerical values to quantify differ-
ent links between variables, it would be bet-
ter to switch to non-classical networks such as
possibilistic networks [14]. These latter are the
marriage between possibility theory and graph
theory. In real world, we have a huge num-
ber of possibilistic benchmarks that facilitates
experts and researchers’ work. However, while
possibilistic networks are widely used in prac-
tice, possibilistic benchmarks are too rare. In
such situation, researchers who work with pos-
sibilistic networks face two choices: either they
create new possibilistic benchmarks which is
costly, or they work with random networks
which may affect the quality of their results due
to the limits of randomness. Therefore, our idea
is to exploit existing probabilistic benchmarks,
and transform them to possibilistic ones, espe-
cially that the interest of probability-possibility
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transformation grew rapidly and is still grow-
ing to this day. These graphical models, which
share the same graphical component i.e. Di-
rected Acyclic Graph (DAG), are quantified us-
ing different distributions (i.e., probability dis-
tributions in the case of Bayesian networks and
possibility ones in the case of possibilistic net-
works). Recently, the inference topic in possi-
bilistic networks has been explored using com-
pilation techniques [1]. It has been shown
that the qualitative setting of possibility theory
goes beyond the probabilistic framework and
the quantitative possibilistic framework since
it takes advantage of specific properties of the
minimum operator. So, our objective in this pa-
per is to study the possibility of switching from
one model to another in order to reason in an
efficient way.

This paper is organized as follows: Section 2
presents most common transformations. Sec-
tion 3 presents some basics of Bayesian and
possibilistic networks. Section 4 studies the
particular case of transforming Bayesian net-
works into possibilistic ones. Section 5 presents
the experimental study that aims to follow the
impact of such transformation on the possibilis-
tic network inference results.

2 Probability-Possibility Transfor-
mation

Possibility theory introduced by Zadeh [15] and
developed by Dubois and Prade [6] lies at the
crossroads between fuzzy sets, probability and
non-monotonic reasoning. The basic building
block in possibility theory is the notion of pos-
sibility distribution [6]: let V = {Xy,..., Xn}
be a set of state variables whose values are ill-
known such that D; ... D, are their respective
domains. €2 = D; x ... X Dy denotes the
universe of discourse, which is the cartesian
product of all variable domains in V. Vectors
w € () are often called realizations or sim-
ply “states” (of the world). In what follows,
we use x; to denote possible instances of X.
The agent’s knowledge about the value of the
x;’s can be encoded by a possibility distribu-
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tion 7 : Q — [0,1] where m(w) = 1 means
that w is totally possible and 7(w) = 0 means
that w is an impossible state. It is generally
assumed that there exist at least one state w
which is totally possible, 7 is then said to be
normalized. We denote by T () the set of to-
tally possible states in 7. From 7, one can
compute, for any event A C (), the possibility
measure [[(A) = sup,,. 4 7(w) that evaluates to
which extend A is consistent with the knowl-
edge represented by m. The particularity of the
possibilistic scale is that it can be interpreted
twofold: either in an ordinal manner, when the
possibility degree reflects only an ordering be-
tween the possible values, so the minimum op-
erator is used to combine different distributions,
or, in a numerical manner, so possibility distri-
butions are combined using the product opera-
tor.

Several researchers tackle different bridges be-
tween probability and possibility theory. When
we deal with those transformations, two cases
can be distinguished, those relative to subjec-
tive probabilities [8] and those relative to objec-
tive ones. In this paper, we focus on these lat-
ters which were used in several practical prob-
lems such as: constructing a fuzzy member-
ship function from statistical data [12], combin-
ing probabilities and possibilities information
in expert systems [10] and reducing the com-
putational complexity [7]. Roughly speaking,
transforming probabilistic distributions to pos-
sibilistic ones, denoted by p — , is useful
when weak source of information makes prob-
abilistic data unrealistic or to reduce the com-
plexity of the solution or to combine different
types of data. However, transformation from
possibilistic distributions to probabilistic ones,
denoted by m — p, is useful in the case of
decision making. Interestingly enough, when
transforming p — 7, some information is lost
because we transform point value probabilities
to interval values ones. In contrast, 7 — p
adds information to some possibilistic incom-
plete knowledge.
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2.1 Consistency principle

In order to describe different transformations,
several properties, called consistency principle,
were proposed in literature. We retain, in par-
ticular, three of them:

Zadeh consistency principle. Zadeh [15] defined
the probability-possibility consistency principle
such as “a high degree of possibility does not
imply a high degree of probability, and a low
degree of probability does not imply a low de-
gree of possibility”. The degree of consistency
between p and 7 is defined by: C(m,p) =
Yim1.n T * p;. Zadeh [15] pointed out that
C'(m, p) is not a precise law or a relationship be-
tween possibility and probability distributions.
It is an approximate formalization of the heuris-
tic connection stating that lessening the possi-
bility of an event tends to lessen its probability
but not vice-versa.

Klir consistency principle. The concept of con-
sistency condition was redefined by Klir [11].
Assume that the elements of {2 are ordered in
such a way that p; > O and p; > p;1, V @ =
{1..n}. Any transformation should be based on
these assumptions:

— A scaling assumption that forces each value 7;
to be a function of p; /p; (Where p; > ... > p,).
— An uncertainty invariance assumption accord-
ing to which p and © must have the same
amount of uncertainty.

— Consistency condition: m; > p; stating that
what is probable must be possible, so 7 can be
seen as an upper-bound of p.

Dubois and Prade [5] gave an example to show
that the scaling assumption of Klir may some-
times lead to violation of the consistency prin-
ciple. The second assumption is also debatable
because it assumes that possibilistic and prob-
abilistic information measures are commensu-
rate.

Dubois and Prade consistency principle. Dubois
and Prade defined the consistency principle, dif-
ferently, using these assumptions [4]:

— Consistency condition: P, < 1I;, V i =

{1.n}.
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— Preference preservation: Assuming that 7
has the same form as p, then V(wi,wy) €
0% plwr) > p(we) = w(w) > m(we) and
p(wi) = plwz) = w(wi) =7(w).

— Maximum specificity: Let m; and w5 be two
possibility distributions, then 7, is more spe-
cific than 7y iff: Vw € Q, m(w) < m(w).

2.2 Probability-Possibility transformation
rules

Several transformation rules are proposed in lit-
erature. We present the most common ones,
namely: Klir transformation (KT), Optimal
transformation (OT), Symmetric transforma-
tion (ST) and Variable transformation (VT).

Klir Transformation (KT). Assume that the el-
ements of () are ordered in such a way that:
vV i = {l.n}, p >0, p; > piy1 and
W > O, T 2 T+l with Pn+1 = 0 and
mne1 = 0. Klir has considered the principle of
uncertainty preservation under two scales [11]:
— The ratio scale: p — m and m — p, named
the normalized transformations, are defined by:

_n i

T s , = — 1
= Di S (1)

—The log-interval scale: p — m and m — p are
defined by:

1

. T
Wi:(&)aapi: nz
P1 i1 (i)

2)

Q=

where « is a parameter that belongs to the open
interval ]0, 1[.

Optimal Transformation (OT). proposed by
Dubois and Prade [4] and also called ”Asym-
metric Transformation”, is defined as follows:

n R .
m= 3 p pizzw

3/p;<ps j=1 J

3)

OT is optimal because it gives the most specific
possibility distribution i.e.  that loses less
information [7], and it’s asymmetric since the
two formulas in Equation (3) are not converse.
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Sandri et al. [7] suggested a Symmetric Trans-
formation (ST) that needs less computation but
it is quite far from the optimum. It is defined
by:

m =Y min(p;, p;) 4)

j=1

Variable Transformation (VT). It's a p — 7
transformation proposed by Mouchaweh et al.
[13] and expressed as follows: assume that the
elements of €2 are ordered in such a way that:
V 1 = {1n}, pi > 0, pi > pin1 and
7 > 0, m > m with p,,; = 0 and
a1 = 0, then:

&ymm
P1

(&)

71'1':(

where k is a constant belonging to the interval:

logpn
0=k < 7o) logrey

Bouguelid [3] proposed V'I;, which is an im-
provement of VT, to make it as specific as OT.
So, a parameter k; is set for each ;. Formally:
vV i ={l..n},

(PN (1-ps) (6)
7T’L

( pl)

where k; belongs to the interval:

log(pitpitit-+pn) /5 _ {2..n}.

(1-p:) log(Z1)

0<k <

Table 1 summarizes characteristics of KT, OT,
ST, VT and VT;. For each transformation, it
is mentioned if it deals with discrete (D) and-
or continuous case (C) and if it respects con-
sistency principle (Cs), preference preservation
(PP) and maximum specificity (MS). Clearly,
OT and V'T; are the most interesting rules in the
discrete case for p — .

Table 1: Summary of transformations

TR [p—nm | 7m—Dp Properties
DJCJCs|PPJ]MS

KT X X X | X X

OoT X X X | X X X X

ST X X X | X | x X

VT X X X

VTi X X X X X

20

3 Basics on Bayesian and possibilis-
tic networks

Bayesian networks [14] are powerful proba-
bilistic graphical models for representing un-
certain knowledge. Studying the possibilistic
counterpart of Bayesian networks leads to two
variants, namely: min-based possibilistic net-
works corresponding to the ordinal interpreta-
tion of the possibilistic scale and product-based
possibilistic networks corresponding to the nu-
merical interpretation [2]. It is well-known that
product-based possibilistic networks are close
to Bayesian networks since they share the same
features (essentially the product operator) with
almost the same theoretical and practical results
[2]. This is not the case for min-based possi-
bilistic networks due to the particularities of the
min operator (e.g. the idempotency). Over a set
of N variables V' = { X1, .., Xy}, Bayesian net-
works (denoted by BN) and possibilistic net-
works (denoted by 11G s, where ® = min in the
ordinal setting, and ® = * in the numerical one)
share the same two components:

— A graphical component composed of a DAG,
G= (V, E) where V denotes a set of nodes repre-
senting variables and E a set of edges encoding
links between nodes.

— A numerical component that quantifies dif-
ferent links. Uncertainty of each node X; is
represented by a local normalized conditional
probability or possibility distribution in the con-
text of its parents (denoted by U;). Conditional
uncertainty distributions should respect the nor-
malization constraint for each variable X; € V,
where u; is a possible instance of U;, expressed
by:

Vug, > Plxi|u) =1, max I (x;|u;) =1,
| (7

Given a Bayesian network BN on N variables,
we can compute its joint probability distribution
by the following chain rule :

p(Xi1,..., Xn) =%=1n P(X;|U;)  (8)

In a similar manner, the joint possibility distri-
bution of a possibilistic network [1G is defined
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by the ®-based chain rule expressed by:

To(X1, .., XN) = ®Qimv H(XG | U;) (9)

where ® = min for the ordinal setting and
® = * for the numerical one.

One of the most interesting treatments that can
be applied for possibilistic networks is to evalu-
ate the impact of a certain event on the remain-
ing variables. Such process, called inference,
consists on computing a-posteriori possibility
distributions of each variable X; given an evi-
dence e.

Example .1 Let us consider the Bayesian net-
work and the possibilistic network depicted by
Figure .1(a) and Figure .1 (b), respectively
(sharing the same DAG). The joint distributions
of BN and 11G, using Equations (8) and (9)
are presented in Table 2.

P(A) al | a2 ° n(A) al a2

06| 0.4 1 | 04

P(B|A) | al | a2 n(BlA) | al | a2

bl |0.6]05 bt | 1 | 1

b2 |03]03 o b2 | 04 05

b3 |0.1]02 b3 | 0.1 |02
(a) (b)

Figure 1: A Bayesian network (a) and a possi-
bilistic network (b).

Table 2: Joint distributions of BN and [1G.

A B P T s Tmin

a1 bl 0.36 1 1

a1 | by [[ 018 04 0.4

aq b3 0.06 0.1 0.1

as | by 0.2 0.4 0.4

as | by [ 0.12 [ 0.2 0.4

asz | bz [ 0.08 [ 0.08 [ 0.2

4 Transformation from Bayesian to
possibilistic networks

Probability-possibility transformations can be
useful to study the coherence between proba-
bilistic and possibilistic frameworks and, more
precisely, the consistency of derived distribu-
tions. Our idea consists in applying such trans-
formations from Bayesian networks to possi-
bilistic networks and interpreting their behavior
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on joint distributions. Formally, using existing
transformations, we can define transformation
from Bayesian to possibilistic networks in a lo-
cal manner as follows:

Definition .1 Let BN be a Bayesian network
and p be its joint distribution. Let TR be a trans-
formation rule. Let BNtolIN be the function
that transforms BN into HNgR using TR under
the setting ® s.t. ® = {x, min}. Let PDtollD
be the function that transforms a probability
distribution into a possibilistic one using TR.
Formally, HNgR is the transformation of BN
using TR if, VX; € V,

(X; | U;)) = PDtolID(P(X; | U;), TR)
(10)

[INJ® = BNtolIN(BN, TR, ®) (11

Example .2 Table 3 depicts the transformation
of conditional tables of the Bayesian network of
Figure .1 (a) using KT, OT, ST, VT and V'T;.

Table 3: Transformation of conditional distri-

butions
H(A) HKT HOT,VTI' HST HVT
ai 1 1 1 1
as 0.66 0.4 0.8 0.4
H(B ‘ A) HKT HOT,VT,i HST HVT
bl aq 1 1 1 1
bs | a1 0.5 0.4 0.7 0.5
b3 | a1 0.16 0.1 0.3 0.1
b1 | as 1 1 1 1
ba | ag 0.6 0.5 0.8 0.27
b3 | as 0.4 0.2 0.6 0.2

This local transformation does not ensure the
same results as a global one. In other words, the
transformation of the joint distribution underly-
ing the initial Bayesian network is not equiva-
lent to the transformation of its local conditional
distributions, which can affect the inference re-
sults. Let 7T;‘)FR be the transformation of the joint
distribution encoded by a Bayesian network BN
using the transformation TR and let 7 be the
joint distribution relative to ILN* obtained us-
ing Definition 1. The following example illus-
trates the problem described above.
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Example .3 Table 4 presents the transforma-
tion of global distributions of the Bayesian net-
work of Figure .1 (a) and of the resulted pos-
sibilistic network 1INg, using KT, OT, ST, VT
and V'T;. As depicted in Table 4, if we are in

Table 4: Possibility distributions using differ-
ent transformations
AT B

p | KT [OT,VI, [ ST [ VT
TR
ay (b 036 T 1 1 I I
a, [ by |08 | 05 | 044 | 08 [ 038
a by 1006 1016 006 036 0.06
4, [ b, [ 02 1055 064 034 [0&ES
4, [ by, (0121033 026 10627 0.19
4y [bs (008 022 014 | 046 | 0.09
77T
a  Thy 1036 1 I I I
a, [ by [ 018 | 05 04 0.7 | 05
a by 1006 1016 01 03 1 01
4 (b [ 02 1066 04 08 [ 04
4, [ b, (012 04 02 [ 0.64 [ 0.108
4y [bs [0.08 1026 008 [ 043 [ 0.08
nll
G Thr 7036 T 1 I I I
ay | by [0.08 | 05 0.4 0.7 05
@y s 1006 016 0.1 03| 0.1
a b 02 1066 04 0.8 oA
@ by T0IZ 06 04 08 027
@y [ bs T0.08 [ 04 02 06 [ 02

a numerical setting, the values of ™" are dif-
ferent from those of TIT and, if we deal with
an ordinal setting, the order between WZ R and
W%ﬁz is not preserved, as well. For instance, for
the transformation ST, more precisely for a,b,
and asby, we can see that 0.8 > 0.62 while
0.7 < 0.8. It is also the case of VT for a1b, and
asby. Suppose, now, that we have the evidence
B = by, then for 7T§T we have a1 > ao while the
same evidence implies ay > ay for 751 . This
means that, considering 5% as the consistent
transformation of the initial Bayesian network
and using it to infer evidence can lead to erro-

neous results.

The question that may arise is the following:
Do all transformations suffer from the problem
of information loss? The answer can be found
in the following example.

Example .4 Let us consider the BN of Figure
4 (a) such that p > q. This implies that p > 0.5
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and q < 0.5, which in its turn implies that
0.5p > 0.5q > 0.25. Table 5 shows the joint
distributions where v < 1, y < land z < 1 in
both ordinal and numerical settings and TR can
be any transformation (i.e. KT, OT, ST, VT and

V'T;). We start by interpreting product-based
1 2 al a2
P(A) ° n(A)
05|05 1 1
P(B|A)|al]| a2 N(B|A)| al a2
o fefos] () b2 Ty T
b2 | g |05 y
(a) (b)

Figure 2: A Bayesian network BN (a) and
its transformation into a possibilistic network
[INg (b).

Table 5: Joint distributions

ATB] p [mT [ al" [ mr
al | bI [ 0.5p 1 I I
al | b2 | 0.5q X y y
a2 | bl [ 0.25 zZ I I
a2 [ b2 ] 0.25 zZ I I

networks which only rely on numerical values.
It is obvious, from columns 4 and 5 of Table 5,
that there is a loss of information since values
of w™ and 7wl are different. When we deal
with min-based networks, the focus is only on
the order induced by values. In fact, the order
of TgR of the initial network BN (Figure 2 (a))
is {a1by > a1by > (agby = asgby)}, while the
order relative of w1t of the possibilistic net-
work is {(a1b1 = agsb; = agbg) > albg}. We
can see that the transformation does not pre-
serve the order.

Following this problem, we propose two new
properties. The first one (resp. the second
one), presented in Definition 2 (resp. Defini-
tion 3), is applicable for transforming Bayesian
networks into min-based possibilistic networks
(resp. product-based possibilistic networks).



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

These properties should be seen as extensions
of Dubois and Prade Consistency principle de-
scribed above.

Definition .2 Let TR be a transformation rule
used in order to transform a Bayesian net-
work BN into a min-based possibilistic network
IINIE - Let p be the joint distribution relative
to BN computed using Equation (8) and Wg R be
its transformation by TR. Let T2 be the joint
distribution relative to IINLE using Equation
(9) (st @ = min). Let 6(n]") and §(w} %)
be the order underlying " and w7, respec-
tively. Then TR is said to be consistent iff:
§(m ) = o(mpit)

min

(12)

and

(13)

Definition .3 Let TR be a transformation rule
used in order to transform a Bayesian network
BN into a product-based possibilistic network
IINTE  Let p be the joint distribution relative
to BN computed using Equation (8) and 7TpT R be
its transformation by TR. Let 71 % be the joint
distribution relative to IINI'® using Equation
(9) (s.t @ = *). Then TR is said to be consistent

iff:
TR _ _TR
T, =T,

(14)
Regarding the ordinal setting, since the order
of p is the same of 7" due to Preference
preservation condition, then, p and 727 should
have the same order to preserve the information
of the two networks. Regarding the numerical
setting, TR should preserve exactly the same

possibility measures for all events in ’Ng R and
TR
T,

We point out that Equation (13) is respected by
all existing transformations. So, using those lat-
ters, we maintain at least the normalized values
in both ordinal and numerical settings but we
lose the information encoded by joint distribu-
tions.
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5 Experimental study

The objective of the proposed experimental
study is to understand the impact of the gap
observed when using existing transformations
from Bayesian networks to possibilistic net-
works on inference results. In fact, one of the
most interesting treatments that can be applied
for possibilistic networks is to evaluate the im-
pact of a certain event on the remaining vari-
ables. Such process can be achieved using in-
ference algorithms consisting on computing a-
posteriori possibility distributions of each vari-
able given an evidence e.

The experimentation is based on 100 random
BNs. For each BN, we generate the DAG
structure and the conditional probability distri-
butions randomly by varying three parameters:
number of nodes (from 4 to 10), their cardinali-
ties (from 2 to 4) and the maximum number of
parents (from 1 to 3). Then, we generate ran-
domly the evidence e and a variable of interest
X;. The experimentation protocol can be sum-
marized as follows:

— For each generated Bayesian network, we
compute its global probability joint distribution
p using the chain rule ( Equation 8).

— We transform p into a possibilistic joint distri-
bution 7,. Among existing transformations, we
use Optimal Transformation (Equation 3) since
it respects Dubois and Prade consisteny princi-
ple presented above.

— From 7,, we compute the marginal distribu-
tion IL,,;,+(X; | e) using min-based condition-
ing [6].

— We transform the Bayesian network BN into
a min-based possibilistic network IIN,,;, using
OT.

— Once IIN,,;, is computed, we apply possi-
bilistic Junction Tree propagation algorithm [9]
in order to compute II(X; | e).

— We compute the marginal distributions of the
variable of interest .X;.

— Finally, we compare the values of I1;,;,,.(X; |
e) and II(X; | e) and also the order underlying
them.

The experimentation highlights an interesting
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result showing that, for 85% of cases, the or-
der behind TI(X; | e) is equal to the one cor-
responding to IT;u,:(X; | €). This means that
in the case of min-based possibilistic networks,
we can use OT even if the obtained possibilis-
tic network is different from the network gener-
ated from the joint possibility distribution. This
corresponds exactly to the spirit of the ordinal
setting of possibility theory since only the or-
der induced by distributions is important. Our
method can be an approximation of propagation
for min-based possibilistic networks. It relies
on the junction tree approach, which is sensible
to clusters size. It is interesting to improve in-
ference time of 85% of cases by considering,
for instance, compilation-based inference ap-
proaches for min-based possibilistic networks.

6 Conclusion

Our objective in this paper is to study the trans-
formation of Bayesian networks into possibilis-
tic networks using existing transformations pro-
posed in literature. We found out that switch-
ing from one model to another does not pre-
serve the information incorporated in joint dis-
tributions (either numerical values for 1INV, or
the order induced by values for IIN,,;,). Such
result allows us to conclude, at first sight, that
such transformations are inappropriate in the
case of graphical models. However, by follow-
ing the impact of those transformations on the
inference results, for the case of min-based pos-
sibilistic networks, the experimentation shows
that the order induced by marginal distributions
are conserved in both of the networks i.e. the
initial Bayesian network and the obtained pos-
sibilistic one, in most of the cases, which is
in harmony with the spirit of qualitative set-
ting of possibility theory since only the order
indued by distributions is important. In our fu-
ture work, we will take advantage of compila-
tion techniques for min-based possibilistic net-
works in order to make inference faster. We will
propose two new transformations respecting the
properties we proposed in order to transform
Bayesian networks into possibilistic networks
(product-based and min-based).
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Résumé :

Cet article étudie les capacités qualitatives définies sur
un ensemble totalement ordonné muni d’une fonction de
renversement de 1’ordre. En nous inspirant du role joué
par les probabilités pour les capacités quantitatives, nous
cherchons a savoir si les capacités qualitatives peuvent
étre considérées comme des ensembles de mesures de
possibilité. Plus précisément nous montrons que toute ca-
pacité qualitative est caractérisée par une classe de me-
sures de possibilité. De plus, les bornes inférieures de
cette classe sont suffisantes pour reconstruire la capa-
cité et leur nombre en caractérise la complexité. Nous
présentons aussi un axiome généralisant la maxitivité des
mesures de possibilité qui permet d’identifier le nombre
de mesures de possibilité nécessaires a la reconstruction
de la capacité. Cet axiome va aussi nous permettre de
faire un lien entre les mesures de possibilité et la logique
modale.

Mots-clés :
Capacité, mesure de possibilité, logique modale.

Abstract:

This paper studies the structure of qualitative capaci-
ties defined on a finite totally ordered scale equipped with
an order-reversing map. More specifically, we investigate
the question whether these qualitative set-functions can
be viewed as classes of simpler set-functions, typically
possibility measures, paralleling the situation of quan-
titative capacities with respect to imprecise probability
theory. We show that any capacity is characterized by a
non-empty class of possibility measures having the struc-
ture of an upper semi-lattice. The lower bounds of this
class are enough to reconstruct the capacity, and their
number is characteristic of its complexity. We introduce
a sequence of axioms generalizing the maxitivity pro-
perty of possibility measures, and related to the number
of possibility measures needed for this reconstruction. In
the Boolean case, capacities are closely related to non-
regular multi-source modal logics and their neighborhood
semantics.

Keywords:
Capacity, possibility measure, modal logic
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1 Introduction

Une mesure floue (ou capacité) qualitative
est une fonction d’ensemble monotone a va-
leurs dans un ensemble totalement ordonné.
Dans ce contexte il est impossible d’utiliser
des structures additives comme les probabilités,
ou la transformée de Mobius comme dans le
cadre des fonctions de croyance. Cependant
il semble que beaucoup de notions quantita-
tives ont une contrepartie dans le cadre quali-
tatif en remplacgant les probabilités par les me-
sures de possibilité. Par exemple la construc-
tion des fonctions de croyance introduite par
Dempster [6] a été appliquée aux mesures de
possibilité [11, 12, 21] pour définir les possi-
bilités et nécessités inférieures et supérieures.
Les possibilités supérieures et les nécessités
inférieures sont respectivement des possibi-
lités et des nécessités; ce qui n’est pas le cas
pour les possibilités inférieures et les nécessités
supérieures. Voir aussi sur ce theme, [18] pour
I’analogie avec les fonctions de croyance, et [5]
pour le lien avec la cohérence au sens de De Fi-
netti.

Une question naturelle est alors de déterminer
les capacités (qualitatives) qui définissent une
famille de mesures de possibilité, par analo-
gie avec la situation dans la théorie des proba-
bilités imprécises de Walley [22]. Cette ques-
tion a été abordée dans [7], en partant du tra-
vail pionnier de Banon [2]. De plus, il a été
montré que certains ensembles de mesures de



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

possibilité jouent un role similaire a celui des
ensembles convexes de mesures de probabilité
dans la théorie de Walley [22]. Par ailleurs rap-
pelons que les mesures de possibilité peuvent
étre raffinées par des mesures de probabilité
[9, 10].

Le but de ce papier est de montrer que les
axiomes de maxitivité et de minitivité de la
théorie des possibilités peuvent étre généralisés
pour définir des familles de capacités qualita-
tives de complexité croissante. De plus ces pro-
priétés vont permettre d’étendre aux capacités
le lien déja connu entre la théorie des possibi-
lités et la logique modale.

2 Les capacités vues comme des
possibilités imprécises

Soit S un ensemble fini et L un ensemble fini
totalement ordonné muni d’une fonction v qui
renverse 1’ordre. 1 (resp. 0) est I’élément maxi-
mum (resp. minimum) de L. Une capacité est
une fonction d’ensemble 7 : 2% — L, crois-
sante pour 1’inclusion, et telle que () = 0;
v(S) = 1. Dans la théorie des possibilités 1’in-
formation disponible est représentée par une
distribution de possibilité 7 : S — L. La va-
leur 7(s) est la possibilité que s soit 1’état actuel
du monde. L”information précise correspond au
cas ou ds*, w(s*) = 1, et Vs # s*,m(s) = 0,
tandis que 1I’'ignorance complete est représentée
par la distribution 7 telle que Vs € S, w7 (s) =
1. La mesure de possibilité associée a une distri-
bution 7 est la capacité I1(A) = maxgea 7(s).

~v¢ est la capacité conjuguée de -, définie
par 7°(A) = v(y(A%)),YA C § avec A°
le complémentaire de A. La conjuguée d’une
mesure de possibilité s’appelle une mesure
de nécessité : N(A) = v(maxsgan(s)) =
mingg4 N(S\ {s}).

Certaines capacités quantitatives g peuvent étre
représentées par un ensemble convexe de proba-
bilités : P(g) = {P, P(A) > g(A),VA C S},
par exemple, si g est une capacité convexe ou
une fonction de croyance. On retrouve les pro-
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babilités cohérentes inférieures dans le sens de
Walley [22] car on peut montrer que dans ces
deux cas, g(A) = min{P(A) : P € P(g)}.
Dans le cadre qualitatif est-il possible d’avoir
une construction similaire en remplacant les
mesures de probabilité par les mesures de pos-
sibilité ?

2.1 Possibilités et nécessités imprécises

Pour commencer rappelons quelques propriétés
de R(y) = {m : II(A) > v(A),VA C S} I’en-
semble des distributions de possibilité dont la
possibilité associée II domine . Cet ensemble
n’est jamais vide car il contient toujours 7°. De
plus 77 en est I’élément maximal.

Soit o une permutation des n = | S| éléments de

S. Le i®™M€ ¢lément de la permutation est noté
So(i) €t SL = {Se(i)s - - -, So(n) }- On définit alors
la distribution de possibilité 7 par :

Vi = 17 cee 7n7ﬂg(so(i)) = ’Y(S;')

Pour toute permutation o la mesure de possi-
bilité 117 associée a 7} appartient a R(y) et
VA C S,v(A) = min, IIY(A) [2]. Nous avons

alors la proposition suivante :

Proposition 1 Vi € R(7v),n(s) > 7)(s),Vs €
S avec o une permutation de S.

Preuve : Soit ¢ la permutation induite par T,
ie., o(i) > o(j)ssim(s;) < 7(s;). Nous avons
0(S;) = 7(si) = 4(S5) = mi(s:), Vi =
1,...,n.1

Ce résultat montre que R(y) = {m,do,7m >
7}, Mais toutes les n! distributions de possi-
bilité 7 ne sont pas des éléments minimaux de
R(). Par exemple, si v = II, I’élément mini-
mum est unique et c’est 7.

Réciproquement, pour tout ensemble de distri-
butions de possibilité¢ 7, 7(A) = min,e7 II(A)
est une capacité et 7 C R (7). Si 7 contient des
distributions de possibilité non comparables, 7
est ’ensemble des éléments les plus spécifiques
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de R(y). Par ailleurs, y(A) = max,c7 [I(A)
est une mesure de possibilité dont la distribu-
tion est 7% (s) = max,e7 7(s) [13].

R.(7), ensemble des éléments minimaux de
R(7), est un ensemble fini de distributions de
possibilité dont aucune n’est plus spécifique
que les autres. La complexité de -y est mesurée
par son nombre d’éléments. Toute capacité peut
donc étre vue comme une mesure de possibilité
inférieure : v(A) = min{Il(A),7 € R.(y)}.
Ce résultat est similaire a celui des capacités
convexes qui sont vues comme des probabilités
inférieures [22].

De maniere duale en passant par la conjuguée,
les capacités peuvent aussi étre décrites comme
des nécessités supérieures. A partir de 7 on
peut donc définir deux ensembles de mesures
de possibilités : R(7y) et R(7¢). Les possi-
bilités qui dominent ¢ sont les conjuguées
des mesures de nécessit¢é dominées par 7y :
v(A) = max{N(A), 7 € R.(7v°)}. De plus
on génere des mesures de nécessité maximales
dominées par v : R*(y) = R.(7°). Une des
deux représentations (R.(y) ou R.(7¢)) peut
étre plus simple que 1’autre. Par exemple si
est une mesure de nécessité induite par la distri-
bution 7, alors R*(y) = {7} tandis que R.(7)
contient plusieurs distributions dont 7. Comme
II(A) > N(A) = II°(A), il semble plus na-
turel d’approcher N par en dessous et II par
au dessus. Plus généralement si v est telle que
v(A) > v°(A),YA C S, alors R.(7) est plus
naturel que R (7).

2.2 Les axiomes de minitivité et de maxiti-
vité généralisés

Pour toute capacité -, il existe au moins un
entier n et n mesures de nécessité telles que
v(A) = max?_; N;(A). Nous allons montrer
que cette propriété est liée a 1’axiome de n-

adJ()nCtl()n . VA,L? Z — 1, ey n 1,
/ A Y A A .
< . .
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Lorsque n = 1, la 1-adjonction est
min(y(A),v(B)) < ~(A N B). Comme
~ est monotone croissante, les capacités 1-
adjonctives sont les mesures de nécessité.

Considérons les mesures 2-adjonctives.

Proposition 2 min(v(A),v(B),~v(C)) <
max(y(ANB),y(BNC),v(ANC)),VA, B, C,
ssi il existe deux mesures de nécessité distinctes

telles que YA, v(A) = max(N1(A), Na(A)).

Preuve :

max(N1(A), N2(A)).
perdre de généralit¢ on peut supposer 1’existence

< Supposons Y(4) = Sans
de sous-ensembles distincts A, B et C tels que
Ni(A4) = Na2(A4),Ni(B) = N2(B),N2(C) = N1(C)
avec au moins une inégalité stricte (sinon 7y est une me-
sure de nécessité). On a alors min(y(A),~(B),y(C)) =
min(Ny(A), N1(B), N2(C)) et v(A N B) s’exprime
comme
max[min(Ny(A4), N1(B)), min(No(A4), N2(B))].
Soit en développant y(AN B) :

min[max(Ny(A), Na(A)), max(Ny1(A), Na(B)),
max (N1 (B), Na(A)), max(Ny (B), Na(B))].

Par construction Ny(A4) > Ny(A), N1 (B) > Na(B)
ce qui entraine y(A N B) = min(N;(A), N1(B)) =
min(y(4),7(B)) = min(y(A),7(B),~(C)) alors
max(vy(A N B),vy(A n C),v(B N () >
min(7(4),7(B),7(C)).

= Supposons que (A) =  max;_; N;(4).
Nous pouvons trouver trois ensembles distincts
A,B,C tels que min(y(A4),v(B),~v(C)) =
min(N1(A), Na(B), N3(C)) et vérifiant

min(y(4),7(B),7(C)) >  max[y(A N B),
v(A N C),v(B N C)]. Par exemple on peut choisir
A,B,Ctelsque y(A) = Ni(A) ety(A") =0,VA' C A4,
¥(B) = N3(B) et v(B') = 0,vB" C B,
v(C) = N3(C) et v(C") = 0,¥C" C C. Nous
avons donc max(y(AN B),v(BNC),y(ANC(C)) =

Remarque : Si 7(A) = max(N;(A), No(A)),
nous pouvons avoir min(y(A),v(B),y(C)) <
max(y(ANB),v(BNC),y(BNC)). En effet
il est suffisant d’avoir 7(C') < v(AN B), ce qui
est différent du cas n = 1.
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Dans le cas général nous avons :

Proposition3 VA; i =1,...n+1,
min ! y(A;) < max;z; v(A; N A;) ssi il existe
n mesures de nécessité distinctes telles que

VA, 7(A) = maxj_; N;(A).

Preuve < Supposons
max}_; Nj(A), on a alors mini"} v(4;) —
min?:ll max?zl N; (A;) = min?ill N;, (4;) avec

Nj.(A;) > Ni(4;,),Vk # j;, k variant de 1 a n

que

VA y(4) =
n+1

et 2 de 1 an+ 1. Au moins deux indices j; pour
¢ variant de 1 a n + 1 sont égaux car j ne prend
que n valeurs distinctes. Sans perdre de généralité
supposons que j; = 1 = jo, ie., mint' y(4;) =
min(N; (A1), N1 (Ag), min] ' Nj, (4:)).

On a donc v(A; N Az) = max] ; N;(4; N Ay) =
max]_; min(N;(A;), N;(Az)). De plus Ny(A4;) >
Ni(A7) et N1 (As) > Ni(As) pour tout k de 2 a n, donc
min(Ny (A1), N1(A2)) > min(Ng (A1), Nk(Asz)) pour
k de 2 a n. Nous avons donc

v(A1 N Az) = min(Ny (A1), N1(A2)) =
min(y(41),7(Az)) > miniH' y(4;).

= Pour la réciproque la démonstration est la méme que

celle faite pour le cas n=3. H

Dans les résultats précédents les mesures de
nécessité peuvent étre remplacées par les me-
sures de possibilité et on peut affaiblir la maxi-
tivité. Plus précisément on aura 1’axiome dual

de n-max-dominance : VA;,i =1,...,n+ 1,
n+1 .
A;) > A;UA;
maxy(Ai) 2 _min (AU A4;)

et la proposition suivante

Proposition4 VA; i =1,...,n+1,
max}"} v(A;) > ming; v(A; U A;) ssi il existe
n mesures de possibilité distinctes telles que

7(A) = min, II;(A).

Remarque Le concept de n-adjonction
semble jouer dans le cadre qualitatif un rdle si-
milaire a la n-super-modularité.

2.3 Les ensembles focaux qualitatifs

La transformée inférieure de Mobius d’une
capacité qualitative ~y est une fonction 74
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2% — L définie par y4(E) = v(E) siy(E) >
maxpcg Y(B) et 0 sinon. Comme v est mono-
tone, la condition v(E) > maxpcg y(B) peut
étre remplacée par max,cg (£ \ {z}). Onnote
F7 = {E,v4(E) > 0}, qu'on appelle la fa-
mille des éléments (ou ensembles) focaux de .

Comme la transformée qualitative de Mobius
d’une mesure de possibilité est sa distribu-
tion de possibilité, -, apparait comme la
généralisation de la notion de distribution de
possibilité sur I’ensemble des parties de S.
De plus elle contient 1’information minimale
nécessaire pour reconstruire la capacité vy [14,
9], car v(A) = maxgca v« (E). Cette équation
fait apparaitre la similarité entre les capacités
qualitatives et les fonctions de croyance [19] :
I’addition est remplacée par le max et 4 joue
le role de la fonction de masse (la transformée
de Mobius de la fonction de croyance) [15].

Notons -, la capacité booléenne : v,(A) = 1
si Y(A) > A > 0, et O sinon. Si la capa-
cité y est n-adjonctive, le nombre maximal des
éléments focaux de v, est borné par n. En effet,
puisque v(A) = max}_; N;(A), 'ensemble des
éléments focaux de ~y, contient au plus n sous-
ensembles F; tels que

Par ailleurs, si £ est un élément focal de -,
définissons la mesure de nécessité Ny par VA #
S,Ng(A) = vx(E) si E C A et 0 sinon.
Alors v(A) = maxgerr Ng(A). Considérons
toutes les chaines de sous-ensembles emboités
dans F7. Chacune d’elles définit une mesure de
nécessité N;. Si une capacité est n-adjonctive,
cela signifie qu’il y a exactement n chalnes
d’ensembles focaux dans F7. Remarquons en-
fin que dans le cas extréme ou les éléments
de F7 sont des singletons, chaque mesure de
nécessité N est aussi une mesure de possibi-
lité ; alors ~y est une mesure de possibilité.

Dans [7], il est montré que la transformée de
Mobius qualitative permet de trouver les distri-
butions de possibilité les plus spécifiques domi-
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nant 7y en sélectionnant un élément dans chaque
ensemble focal.

2.4 n-adjonction et k-maxitivité

Une capacité est k-maxitive ssi ses ensembles
focaux ont au plus k£ éléments [17, 14]. Nous
allons montrer qu’il existe une connection entre
la k-adjonction et la k-maxitivité. Commengons
par regarder le lien entre les ensembles focaux
d’une capacité et de sa conjuguée.

Proposition 5 Soit v une capacité booléenne
et F' = {E\,...E;} ses ensembles focaux;
alors F7° = minc{{sy,...s1},8 € E;,i =
1....k}, on minc choisit les plus petits en-
sembles au sens de l’inclusion.

Preuve : Nous avons F7° = minc{4,v°(A4) =
1}. Or v¢(A) = 1 ssi A contient un ensemble
de la forme {si,...sc},s € Ei,i = 1... k.
En effet, 7°(A) = 1 <= 7(A°) =0 <
VE € F',E € A°donc 1*(A) = 1 —
VE € F',EN A # (. On peut donc écrire
7(A) =1 <= VE € F',dsg € ENA <=
dF = {sg : F € F'}, F C A, ou pour chaque
ensemble focal £ de v, sg est choisi dans £. B

Donc si une capacité booléenne est k-adjonctive
(elle a k ensembles focaux), alors sa conjuguée
est k-maxitive.

Les éléments sp choisis dans les ensembles
focaux F ne sont pas nécessairement
distincts si les éléments focaux se che-
vauchent. Par exemple si F7' = {FEi, F»}
avec E1 = {80781,83},E2 = {80,82,84},
alors les éléments focaux de la conjuguée
sont les plus petits éléments de la fa-
mille {{so}} U {{so,s:},i = 1,...,4} U
{{81,82}7{81,84}7{83,82},{83,84}}, i.e,

F1* = {{sods1, s}, {5150}, {55, 52}, {3, 513}

(7¢)¢ = v entraine la propriété suivante :

Proposition 6 c(c(F?)) = F" o ¢(F") est la
transformation de F vers F°

Par exemple si 77 = {A, B}, alors F7" =
{{s} + s € AN B} U {{sa,sp} : sa €
A\B, sp € B\ A}.Reconstruisons les éléments
de F7 a partir de F°. Chaque ensemble F7 doit
contenir AN B. Supposons que nous choisissons
sa € {sa,sp}. Ce choix couvre tous les en-
sembles focaux {s4,s},s € B\ A. Cela nous
empéche de choisir le prochain élément dans
B\ A. Donc le choix suivant se trouve dans A.
Ainsi I’ensemble focal A est construit.

Regardons le cas général. Dans la suite fg est
I’ensemble des éléments focaux A de ~ tels que
v(A) = f. Une preuve similaire a celle de la
proposition 5 entraine le résultat suivant :

Proposition 7 Soit v une capacité et F' =
{Ey, ... Ep}. Alors, v°(A) = 1 ssi Vi =
1--- k : E;NA # 0. De plus, F/' =
minc{{s1,...sx},s; € Ej,i=1... k}

Proposition 8 A est un élément focal de ~° tel
que v (A) = v(a) > 0 si et seulement si c’est
un élément minimal de I’ensemble {E = {sg :
vu(E) > a}, ENF = () pour un certain F' €
F}, avec sp € E.

Preuve : 75, (A) = v(a) signifie que A est un
ensemble minimal tel que 7¢(A) = v(«).

7(A) = v(a) # 0,1 ssi VE,yx(E) > «
implique E N A # QetIE,ENA = ( tel
que v4(E) = «. En effet, v°(4) > v(a)
ssi Y(A°) < a ssi VE,yx(E) > « implique
E ¢ Ac De plus v“(A) = v(a) est vraie
s’il existe un ensemble focal £ C A€ tel que
1#(E) = ol

Nous pouvons donc construire la transformée
qualitative de M6bius d’une capacité a partir de
celle de sa conjuguée. Il est facile de voir que
dans le cas général, si une capacité a k €léments
focaux sa conjuguée sera k-maxitive, car les
plus grands éléments focaux v sont obtenus en
choisissant un élément dans chaque élément fo-
cal de 7.

Il reste la question de savoir comment
construire les n distributions de possibilité
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telles que v est m-adjonctive en termes de m
distributions de possibilité telles que v est m-
max-dominante. Par exemple une mesure de
nécessité N est 1-adjonctive par rapport a sa
distribution de possibilité m, elle est aussi n-
max-dominante par rapport a n mesures de
possibilité avec n le nombre d’éléments fo-
caux emboités de la mesure de nécessité N.
Plus précisément les ensembles distincts A,, =
{s : m(s) > o} sont tels que N.(A,,)
viagr), avec ap = 1 > ag > -+ > ap >
apy1 = 0. Alors N = min]", II;, avec m;(s) =
v(ig1),Vs € Ag, et 1 sinon.

3 Un point de vue logique modale
sur les capacités

Dans cette section nous allons montrer que
les résultats précédents suggerent une nou-
velle sémantique pour des logiques modales
générales. Considérons un langage proposition-
nel £ ayant des variables booléennes {a, b, c...}
et des connecteurs A,V,—,—. Soit S l’en-
semble des interprétations de ce langage. Etant
données une proposition p € L, une mesure de
nécessité NV sur S dont la distribution de possi-
bilité est 7, Op représente N(A) > A > 0, avec
A = [p] C S I’ensemble des modeles de p. Cp
correspond a la mesure de nécessité booléenne
dont la distribution de possibilité est la fonction
caractéristique de £ = {s|m(s) > v(\)}.

Considérons un langage propositionnel de ni-
veau supérieur L défini par Vp € L£,p € L,
etsi ¢,y € L, alors ~¢ € Lo,etp AN € L.
Les variables de L5 sont alors {(0p : p €
L}. Op est une notation simplifiée de —[O—p.
Alors Op modélise TI(A) > v(X\) ou IT est la
conjuguée de N. Cela définit un fragment tres
élémentaire de la logique modale KD connue
sous le nom de MEL [1]. En effet les axiomes
suivants sont vérifiés

- (K) :FO(p — q) = (Op — Og).
— (N): F Opsip est une tautologie (- p).
- (D): F0Op— Op.

Ces axiomes impliquent la forme booléenne de
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I’axiome de minitivité, soit I’axiome
(©):0(pAg) = (HpAlg).

Un modele pour une formule ¢ € L5 est un
ensemble non vide £ C S. L’ensemble E est
compris comme 1’état épistémique d’un agent.
La satisfaction des formules de MEL est alors
définie de la facon suivante pour ¢, € L :

E = Op, si et seulement si £ C [p];
— E = —¢, sietseulement si F [~ ¢;

E |E ¢ A1, siet seulement si £ = ¢ et
E=;
alors, E = Op si et seulement si £ N [p] # 0.

Pour tout ensemble I' U {¢} de Lp-formules,
¢ est une conséquence sémantique de I', notée
I' = ¢, lorsque pour chaque épistémique
EE | T implique £ | ¢. Si N est
une mesure de nécessité booléenne induite
par E, on lui associe une interprétation clas-
sique de Lp, de la forme /\pemv([m):1 Op A

/\pEE:N([p]):O ~Up.

En utilisant le méme langage = [Jp peut aussi
représenter y([p]) > A > 0 pour toute ca-
pacité qualitative . Up correspond alors a la
capacité booléenne définie par v,(A) = 1 si
v([p]) = A > 0et0 sinon. On peut alors vérifier
les axiomes suivants [8] :

—  (RE): +0Op=0qlorsque - p = q.
- (RM): F0Op — Og, lorsque - p — q.
- (N): FOpsikp; (P): FOp,sikp.

C’est une logique modale non réguliere. Plus
précisément c’est un fragment de la logique
modale monotone EMN [4], ou les moda-
lités ne s’appliquent qu’aux propositions. Sa
sémantique habituelle est basée sur les voisi-
nages (familles de sous-ensembles de mondes
possibles ayant certaines propriétés). Cette lo-
gique ne satisfait pas les axiomes K, C et D.
Cette logique modale est le point de vue logique
naturel des capacités qualitatives. En effet, toute
interprétation classique de L satisfaisant les
axiomes précédents définit et est définie par une
capacité booléenne (5. De plus elle est de la

forme A\e (521 P A Apegippy=o "1
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Nous pouvons alors traduire la propriété de n-
adjonction dans le cadre de la logique modale
(lire [8] pour le cas n = 2). Soit n le plus petit
entier pour lequel y(A) = max} ; N;(A). En
notant [J;p pour N;([p]) > A > 0, il est clair
que ([p]) > A > 0 représente (p = VI, 0;p,
ou les [J; sont des KD modalités. Par dualité, Op
veut dire =[J—p, et on a alors Op = A", 0ip.
On peut écrire alors I’axiome de n-adjonction
dans le cadre logique :

(n-C) : F (N Opi) — ViLL, O(pi Ap;)

Cela implique que siles p;, 2 = 1...,n+1 sont
mutuellement inconsistants alors = = A" ! Op;.
Cette propriété montre qu’on ne peut pas avoir
v([pi]) > A >O0pourtouti =1...,n+ 1.

La sémantique de la logique EMNP+-n-C peut
s’exprimer de deux facgons :

— Sous la forme de n états épistémiques (sous-
ensembles de S) : (Ey,...,E,) E Op si
J4i € [1,n],E; = [O;p. Par construction,
Ey, ..., E, sont les ensembles focaux de la
capacité booléenne définie par v,(A) = 1 si
~v([p]) = A > 0 et O sinon.

— En termes de voisinage : ce sont les sous-
ensembles non vides N de 2° tels que N |=
Op si et seulement si [p] € N et N |= O siet
seulement si [-p] € N.

Pour une KD modalité, il est clair que N =
{A,N(A) > \} = {A|A D E} pour un en-
semble non vide £ C S (N est un filtre propre).
Pour une modalit¢ EMNP N = {A,~v(A) >
A > 0} # 29 est fermé pour I'inclusion
et non vide. Pour une modalit¢ EMNP—+n-C,
N = {A,~v(A) > X > 0} est 'union de n
filtres propres de la forme {A, N;(A) > A} =
{A|A D E;}.

Dans le cas extréme ou les ensembles
(Ey,...,E,) sont des singletons, la moda-
lité¢ [p vérifie la distributivité par rapport a la
disjonction : = O(p V q) = Op Vv Og (mais
non par rapport a la conjonction), ainsi que
I’opposé de I’axiome D : - Op — Up. En
d’autres termes, les modalités de nécessité et
de possibilité sont échangées. Nous sommes
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ramenés a la logique MEL en échangeant les
modalités de base [ et {. En fait, cet échange
des modalités est une simple instance d’une
question plus générale, considérée dans la sec-
tion précédente, celle de calculer les éléments
focaux d’une capacité a partir de ceux de sa
conjuguée. Cela revient au niveau sémantique
a la transformation d’une logique basée sur les
états épistémiques de k agents dans la situation
duale d’une logique multi-sources associée a
un ensemble d’agents dont la connaissance a
une imprécision limitée (i.e., ou chaque état
épistémique met en jeu au plus k£ mondes
possibles).

4 Conclusion

Nous avons étudié la représentation des capa-
cités prenant des valeurs sur une échelle finie
totalement ordonnée par une famille de distri-
butions de possibilité qualitatives. Il se trouve
que toute capacité peut €tre vue soit comme
une mesure de possibilité inférieure soit comme
une mesure de nécessité supérieure par rapport
a deux familles distinctes de distributions de
possibilité. Cette remarque a conduit a propo-
ser une généralisation des propriétés de maxi-
tivité et de minitivité en théorie des possibi-
lités, offrant ainsi une classification des capa-
cités qualitatives en termes de niveaux crois-
sants de complexité et de généralité, basée sur le
nombre minimal de distributions de possibilité
dont on a besoin pour les représenter. En parti-
culier, on a montré qu’une intégrale de Sugeno
est une intégrale possibiliste inférieure [7]. Le
calcul d’une intégrale de Sugeno est simplifié
pour des capacités k-adjonctives ou k-max do-
minantes. De plus, I’étude des relations entre
les ensembles focaux d’une capacité et ceux de
sa conjuguée a mis en évidence les liens entre
capacitiés k-adjonctives et k-maxitives. Enfin,
on a montré un lien entre les capacités qualita-
tives et les logiques modales non-régulieres, qui
généralisent les logiques modales de type KD
au méme sens ou les capacités généralisent les
mesures de nécessité.
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De nombreuses directions de recherche

s’ouvrent a partir de ces résultats :

— Du co6té de la logique, on peut reconsidérer
I’étude des logiques modales non-régulieres
a la lumiere d’une sémantique basée sur les
capacités. Le fait que cela conduit a des dis-
jonctions d’opérateurs de nécessité de type
KD rappelle le cadre épistémique de Belnap
[3], et les logiques paraconsistantes. Le fait
qu’un cas extréme de logique EMN revient a
une logique modale similaire a celles de type
KD ou possibilité et nécessité sont échangées
reflete le fait que dans le bitreillis de Belnap,
les valeurs épistémiques représentant 1’ infor-
mation contradictoire et I’absence d’informa-
tion jouent des roles symétriques.

— On peut aussi vouloir évaluer la quan-
tité d’information (ou I’incertitude) conte-
nue dans une capacité qualitative [16]. Dans
[7], la distribution de possibilit€é maxima-
lement spécifique dominant une capacité a
été étudiée et s’avere étre la contrepartie
de la fonction de contour des fonctions de
croyance pour les capacités qualitatives. Ceci
peut suggérer une approche basée sur la com-
paraison des fonctions de contour.

— Une contrepartie qualitative de 1’ordre infor-
mationnel basé sur la spécialisation des fonc-
tions de croyance (inclusion d’ensembles fo-
caux), ainsi que de la regle de combinaison
de Dempster, a été proposée dans [18]. Ces
recherches doivent étre poursuivies dans le
cadre de techniques de fusion d’information
qualitative allant au dela de celles basées sur
la théorie des possibilités.
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Résumé :

Nous proposons un formalisme mathématique
pour analyser 'interprétabilité d’une partition floue,
ainsi qu’'un algorithme générique pour la préserver
pendant le processus d’optimisation du systeme flou.
L’approche est assez souple et il aide & automatiser
le processus d’optimisation. Certains outils sont em-
pruntés au domaine de la topologie algébrique.
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Abstract:

We present a mathematical framework to analyze
the interpretability of a fuzzy partition and a generic
algorithm to preserve it during the optimization of
the fuzzy system. This approach is rather flexible
and it helps to highly automatize the optimization
process. Some tools come from the field of algebraic
topology.

Keywords:
fuzzy system, fuzzy partition, interpretability, op-
timization, tuning

1 Introduction

Fuzzy ruled based systems have found many
real-world applications. One of their appeal-
ing features is that in most cases they are eas-
ily interpretable by humans. However, when
used to tackle complex problems, there is of-
ten need to make use of automatic optimiza-
tion methods that improve the original sys-
tem (cf. [2]). These automatic methods have
a drawback: It may entail important losses
in the interpretability of the system, in par-
ticular in the fuzzy partitions. The goal of
this paper is to deal with this loss of inter-

*Current address: Télécom ParisTech - TSI,
CNRS LTCI, 46 rue Barrault, F-75634 Paris Cedex
13.
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pretability.

Let us say that the fuzzy system under study
is composed of rules of the form “If x; is A;
and ... x, is A, then y is B”, where x; and
y are linguistic variables and A; and B are
predicates. These predicates have their nu-
meric counterparts: The fuzzy sets which for-
malize their meaning. If these rules are fixed
and we adjust the parameters determining
the fuzzy sets, the process is usually called
tuning or parametric optimization. If we ad-
just the number of rules, the space of func-
tions to which the fuzzy sets belong, or some
other high-level components of the fuzzy sys-
tem, the process is usually called structural
optimization or learning. The work pre-
sented in this paper concerns the case of
parametric optimization.

Although there is no standard definition for
the notion of interpretability of a fuzzy sys-
tem, we can distinguish, following [1, 3], two
levels of interpretability: That of fuzzy parti-
tions and that of rule analysis. In this paper
we deal with the problem of preserving the
interpretability of the fuzzy partitions during
the process of parametric optimization. We
can divide this work in two parts: Firstly we
provide a mathematical framework in which
the concept of interpretability may be for-
malized, and secondly we provide a generic
algorithm that takes as input a fuzzy system
and a function to optimize (that measures
the quality of a fuzzy system) and gives as
output an optimized fuzzy system that pre-
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serves interpretability.

Thanks to this formalization the process of
optimizing will be, in our view, much more
painless for the user than in previous ap-
proaches. In particular it may be carried out
not only by experts in optimization of fuzzy
systems as usual, but also by users that are
just experts in the problem-specific domain
and whose knowledge in fuzzy theory may be
limited.

In our approach we do not fix a priori the
notion of interpretability. The mathemati-
cal framework that we propose is problem-
independent and sufficiently generic to let
the user establish which configuration he
wants to preserve during the optimization
process. The essential point is the formaliza-
tion of the notion of interpretability in topo-
logical and geometrical terms. Its preserva-
tion implies some particular constraints on
the acceptable solutions for the optimization
problem. In the generic algorithm that we
propose, the codification and verification of
these constraints is automatically done.

The geometric and topological analysis be-
gins with a fuzzy system that the user consid-
ers interpretable. The domain of each vari-
able is partitioned in such a way that the rel-
ative order of the different membership func-
tions is constant on each region. These re-
gions, and the order relations associated to
them, will determine the geometric and topo-
logical constraints that will be taken into ac-
count during the optimization. In order to
codify this information, a key role is played
by homology groups. We make use of these
well-known algebraic objects, which are able
to capture a very significant part of the topol-
ogy of a space and are well-suited for com-
puter calculations. There exist several im-
plementations to compute different homol-
ogy groups. The reader interested in more
details may consult for instance [5, 6, 8].
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2 A topological framework for
the analysis of interpretabil-

ity

2.1 The main idea

What we propose in this paper is not an abso-
lute definition of interpretability, but rather
a framework in which the actual definition,
which will strongly depend on the user, can
be expressed. We may talk then, given a user
U, of interpretability relative to U. Our ap-
proach is strongly focused on topology: Our
viewpoint is that the properties of the fuzzy
partition that the user requires to be pre-
served are essentially of a topological nature.

Let us say a user defines a fuzzy partition
such as the one on Figure 1. It seems rea-
sonable to consider that the user requires the
optimization process to preserve, at least, the
order of the terms. This order, though not
explicitly formalized, underlies the solution
we usually find in the literature: To strongly
constrain the possible variations of the mem-
bership functions, in order to obtain very
similar configurations as the original one (as
in Figure 1).

Low Medium High

Low Medium

High

Figure 1: Example of a fuzzy partition and
some possible constraints on it.

Some difficulties may arise if we try to de-
fine an order in a case such as that of Fig-
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ure 2. In more general cases, such as those
of 2-dimensional variables, the concept of or-
der may not even make any sense. However,
there are always some basic properties that
the user wants to preserve to be able to at-
tach some meaning to the system. In our
approach, these properties have a topologi-
cal nature and are locally determined by the
values of the different membership functions.
In particular, we think that the relative order
of these values is crucial.

The main idea is to partition the numeric do-
main of the variable into regions in which the
relative order of the membership functions is
constant, such as in Figure 2.

Extreme
P
.

s 4
¢ ¢ 9 ¢ ¢ 9 ¢ ¢
1 i ) N i |
i i i N/ w4
N\ BV VA
AN AN Wi
0 L1 25 50 1175 1 1 1 100

$ $ 6 [ R 6 6 b
X1 T2 X3 T4 Ty Tg T7Ig L9

R Ry R

'3 ‘ :
Ri Ry iRy Rs ReiRg Ro RioiRizRus

Vo

[ | Voo ¥ o v ¥y § ¥y oy
s —.v 1 4 = A =¥ 4 V=1 B T
E>l=H ..~ ! S s . % . EsH=L
EslsH 7 LSESH 7 LHSE 7 Hs[E | HsEsL % EsHsL
E=L3H L>EsH  L=H>E  Hsl=E H=E>L

Figure 2: Decomposition of the domain in
regions R; in which the relative order of the
membership functions is constant. We sup-
pose that the domain of the variable is the
interval [0, 100].

Some properties of this partition will be re-
quired to be preserved during the optimiza-
tion process. Examples of such properties
could be:

e There is a region Ry in which the rela-
tion Extreme > Low > High holds, with
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neighbors R, and Rj3, such that in R; we
have Low = High < Extreme, and in R3
we have Extreme = Low > High.

e The value 50 belongs to the region Rg
that verifies Low > High > Extreme.

The rest of the section will be devoted to
make this main idea more precise. In partic-
ular, we will present two key notions: The
geometric and topological signatures.

2.2 Notation and definitions

The definitions concerning fuzzy systems,
such as linguistic variable, membership func-
tion, etc. are standard (see for instance
[7]).  We consider that the numeric do-
mains associated to each linguistic variable
are equipped with a natural topology (as it
is the case with R™).

o Let ) be the set of possible fuzzy sys-
tems under consideration, and let A =
Ay X ... x A, (typically A C R") be the
domain of the parameter vector that we
consider as determining a fuzzy system.
A solution to our optimization problem
will be then an element a € A.

e We denote by w : A — ) the map that
determines a fuzzy system w(a) from the
parameter vector a. In particular w de-
termines every membership function of
the system.

e We denote by V the set of all linguistic
variables and we suppose it is the same
for every w € Q2. We denote by Dom,
the domain of a linguistic variable v €
V.

2.3 Geometric signature

Let w € Q be a fuzzy system and v € V a
linguistic variable. The geometric signature
of w relative to v, that we denote by ¥4,,(v), is
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a mathematical object that captures all the
potentially interesting properties of the par-
tition induced by w on Dom,,. It provides the
regions in which the relative order of the dif-
ferent membership functions is constant, and
together with each region, its corresponding
order.

As an illustration, consider that for a certain
w € Qand v € V, Figure 2 represents the
partition induced by w on Dom,. In this
case 9,(v) is the map that associates to i €
{1,...,13} the region R;, together with the
corresponding order relation on terms. For
instance:

e ¢,(v)(1) is the region Ry, i.e. the in-
terval [0, x;], together with the order
Extreme > Low = High.

e 4,(v)(3) is the region Rj, i.e. the point
{z2}, together with the order Extreme =
Low > High. In practice, regions of low
dimension (0 in this case) may be ig-
nored.

In some cases the user might consider cer-
tain “dummy” functions Dom, — [0,1] to
code particular constraints, such as interac-
tions between membership functions. For
instance, to deal with strong partitions we
might consider the constant function 1 and
the function Y, p;(z) (where pu; represents
the i-th membership function).

The geometric signature of w, denoted by ¥,,,
is the map that associates ¢, (v) tov € V.

2.4 Topological signature

The topological signature of w relative to v,
that we denote by 7, (v), is a a weaker con-
cept than that of the geometric signature,
ie. for w,n € Q, if 4,(v) = ¥,(v) then
T(v) = F(v). It codes the topological in-
formation contained in ¥,,(v). The topologi-
cal signature of w is the map that associates
4,(v) tov € V. We denote by .Z,.
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In the field of computational topology, the
use of homology groups is widely spread to
deal with the topology of a space. We will
not provide here any definition concerning
homology theory, since it is out of the scope
of this paper; nevertheless we should say that
these groups are topological invariants of al-
gebraic nature, that capture an important
part of the topological information of a space
and are well-suited from an algorithmic view-
point. The reader interested may consult for
instance [5], a standard reference in algebraic
topology, or [6, 8] for an approach more fo-
cused on computational aspects.

We can propose then to code the topological
signature in terms of these homology groups,
that we denote by Hy for N € N. Let
v € V and consider w,n € () such that w
induces a partition on Dom, composed of re-
gions Ry, ..., R, and ) induces a partition on
Dom,, composed of regions S1,...,S,. Then
we say that 7,(v) and Z,(v) are equal if
there is a n-permutation ¢ such that:

1. the order on terms corresponding to R;
is the same as that of S, for ¢ =
1,...,n, and moreover

2. Hy,(Urex Snky) = Hn(Urex Ri) for each
K CJlandneN.

The homology groups are characterized by
some integers, namely the Betti numbers and
the torsion coefficients; they will be stored
and used as topological signature. However,
we should say that this is a general-purpose
coding; in practice there may be different
ways to implement the notion topological sig-
nature, depending mostly on the nature of
Dom,. In some cases the computation of
these homology groups may not be necessary
and a much more efficient coding can be de-
vised.

To illustrate the notion of topological signa-
ture, consider that for a certain w € ) and
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v € V, Figure 2 represents the partition in-
duced by w on Dom,. In this case, Z,(v)
provides for each i € {1,...,13} the the or-
der on terms corresponding to the region R;,
and for each K C {1,...,13} the topologi-
cal information of U;cx R;. For instance, if
we consider K = {4,5}, 7, (v) codes the fact
that R4y U Rj5 is connected, and if we con-
sider K = {1,6,9} the fact that Ry URgU Ry
is composed of three connected components.
Essentially, .7,(v) codes the following infor-
mation:

1. There are 13 regions R; (each one being
a connected set),

2. the order on terms corresponding to R;
is Extreme > Low = High, that of Rs is
Extreme > Low > High, etc.

3. Ry is neighbor of Ry, Ry is neighbor of
R, and Rj3, etc.

Hence if we consider another n € 2 whose
decomposition of Dom, is given by regions
S1,...,Su, then J,(v) = Z,(v) iff M = 13,

and for some permutation o we have:

1. The order on terms corresponding to
Sy(1) is Extreme > Low = High, that of
Sy(2) is Extreme > Low > High, etc.

2. S, is neighbor of S, 2y, Sy(2) is neigh-
bor of Syyand S, ), ete.

3 User interactions: An op-
erational definition of inter-
pretability

As we have already mentioned, we do
not provide an absolute definition of inter-
pretability, but rather, given a user U, a con-
ceptual and operational framework to deal
with interpretability relative to U. The goal
of this section is to show how we can define
and manipulate this interpretability relative

37

to U, relaying on the notions presented in
Section 2 and, importantly, on some interac-
tions with U. We should mention that the in-
teractions we present here seem to us flexible
enough to cover most part of needs; however,
other interactions could be consider.

Our base hypothesis is that the notion of
interpretability has essentially a topological
flavor. An oversimplified version of this hy-
pothesis would be :

Assumption 1. If a user U considers w €
2 to be interpretable, then there is no n €
Q considered as interpretable by U and such

that 7, # T,.

Assumption 1 is slightly stronger than the
actual assumption we make, however it syn-
thesizes quite clearly the main idea of our
approach. We want to provide an opera-
tional definition of interpretability relative to
U. For this we need, of course, some interac-
tion with U. Since we are talking about inter-
pretability in the context of the optimization
of a fuzzy system, we suppose that there ex-
ists at least one wy € () that is interpretable
relative to U and that U is capable of de-
scribing it, i.e. providing a parameter vector
a € A such that w(a) = wo.

This is the slightest interaction with U that
our method needs. However, if we want to
make our method more flexible, we can al-
low U to provide more information. Next we
present the two other kind of interactions we
may consider.

Relaxation of the topological conditions
This is basically a relaxation of Assumption
1. Once U has provided a wy € €2 that he con-
siders to be interpretable, one could consider
that for a solution a € A to be acceptable,
i.e. such that w(a) is interpretable relatively
to U, a must satisfy Z,@) = Z,. Instead,
we may let the user relax this condition: He
could omit, if he wishes, some of the topolog-
ical conditions imposed by .7,,. Typically it
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may consist in merging different regions and
requiring a relaxed order on terms; in this
case the relaxed order should be compatible
with the order of the merged regions (see ex-
ample in Figure 5). This notion of compat-
ibility could be easily formalized in terms of
the lattice of partial orders on terms.

Addition Con-
versely U may strengthen the conditions for
a solution to be considered interpretable.
This extra conditions are of a geometric
rather than topological nature. This will
allow U to specify the regions to which
certain points should belong. If we consider
again Figure 2, U may want to include
the condition “0 € R;”, that is “0 should
belong to the region indexed by 1”7, or more
precisely “0 should belong to the region
whose corresponding order on terms is
Extreme > Low = High, that is neighbor of
other region (namely Rs) whose correspond-
ing order is Extreme > Low > High, that is
neighbor of etc. 7. It is clear that we can
codify these kind of conditions in terms of
the point 0 and the signature .7, .

of geometric conditions

4 Algorithm

We present here the different parts of a
generic algorithm that fulfills our purpose:
To optimize a given fuzzy system while pre-
serving its interpretability. In Figure 3 we
can see a scheme of this algorithm, but rather
than explaining it in its more abstract form,
we prefer to focus in the explanation of a par-
ticular example. The generic case will easily
be induced from this description.

Let us consider a certain fuzzy system wy
modeling a 2-dimensional problem and in
which only one linguistic variable v is in-
volved. For instance there may be some rules
involving the terms East, West and Center
that are used to activate some procedures:
We could imagine a fuzzy controller that pro-
duces policy decisions (e.g. public trans-
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Figure 3: Scheme of the algorithm.

ports, taxes, etc.) for towns in a certain area,
following rules of the type “If town T is in
region East then apply policy P to T”. An
example of the membership functions associ-
ated to East, West and Center can be found
in Figure 4.

Let us say a user U considers wy as inter-
pretable and wants to optimize it using a
performance function f.

Preprocessing

Step 0. The user gives wy and f as input.

Step 1. The first part of the algorithm con-
sists in computing the geometric signature,
that is the regions in which the order of
terms is constant. Let fiwest, fiCenter, [LEast
Dom,, — [0,1] be the membership functions
corresponding to the terms West, Center and
East. The domain is discretize and each
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Figure 4: Example of three membership
functions associated to a 2-dimensional vari-
able. Darker colors represent values closer to
1. The black dots represent towns.

function is evaluated on each point of the
grid. This evaluation induces a label for
each point, e.g. a point x gets the la-
bel West < East < Center if pwest(z) <
fgast () < ficenter(z). Then we can explic-
itly compute the regions (maximal connected
components with the same label) by using,
for instance, the method described in [4].

Step 2. At this point comes the second in-
teraction with U (apart from Step 0): The
regions are presented to him (we can omit re-
gions of dimension 0 and 1) and then he can,
first relax the topological conditions that will
be imposed to the acceptable (interpretable)
solutions, and afterwards impose some geo-
metric conditions. In Figure 5 we can see an
example in which U, only interested in the
function with highest value, decides to re-
lax the topological conditions by merging the
regions that share the same highest-valued
function; he also imposes the geometric con-
ditions “town X must belong to the region in
which the value of West is the biggest” and
“town Y must belong to the region in which
the value of Center is the biggest”.

Step 3. No other interaction with U is
needed, since he has just operationally de-
fined what he considers as interpretable:
This definition is essentially contained in
the right side of Figure 5 (in Figure 6 we
can find examples of interpretable and not-
interpretable solutions). This information is
then coded in terms of homology groups, fol-
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E<C<W

C<E;/W C\;\W<E
Figure 5: Regions induced by the functions
in Figure 4. On the right side, a relaxation
of the topological conditions and the addition
of two geometric conditions: Since only the
highest-valued functions are relevant, some
labels are merged; moreover town X must
belong to the region in which pwest is the
highest-valued function and town Y to the
region in which ficenter is the highest-valued
function.

lowing the explanations of Section 2 and us-
ing for instance the algorithms presented in

[6].
Optimization process

Step 4. This well-coded information, as well
as the function f and wy, is given as an input
to an optimization algorithm, and is inter-
preted as a constraint C' on the (signatures of
the) solutions. This optimization algorithm
may be of different types (e.g. metaheuristic
or exact) depending on the nature of f. As it
is the case for any iterative optimization al-
gorithm, it should contain a “solution genera-
tor” module. This module may have different
ways of dealing with constraints. The most
basic option would be to test C' for each so-
lution that it generates and to use the result
of the test to generate a new solution. An-
other option would be to do some kind of pre-
processing, in which the acceptable domain
is approximated, and then to only generate
valid solutions. In any case we will need to
iterate a process similar to Step 1 and Step 3:
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Figure 6: The top figure corresponds to a
possible configuration of a solution that is
acceptable. The bottom figures correspond
to unacceptable configurations: The left one
does not satisfy the topological conditions
since the region whose highest-valued func-
tion iS ficenter is disconnected; the right one
does not satisfy the geometric conditions
since town Y does not belong to the region
whose highest-valued function is ficenter-

Given a € A, compute 9,4 and (), and
use them to test if a satisfies C'. This will
ensure that the final solution is interpretable
relative to U.

5 Conclusion

We have presented a generic method to deal
with the loss of interpretability in fuzzy par-
titions during the optimization of a fuzzy sys-
tem. It relies essentially on topological con-
cepts and tools, which confers a solid mathe-
matical foundation, and makes use of differ-
ent well-known algorithms in computational
topology. Our definition of interpretability is
not absolute, but rather relative to each user,
who implicitly defines the notion by means
of some specific interactions. That makes
this approach quite flexible. Moreover the
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method can be uniformly applied in many
situations without the need of an expert in
optimization of fuzzy systems. The next step
is to fully implement the algorithm and to
validate it by user-testing.
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Résumé :

Dans la formulation du Modus Ponens Généralisé
(MPG) rien n’empéche de faire un raisonnement avec
une observation disjointe de la prémisse. Méme si les
conclusions obtenues, dans ce cas, ont été interprétées par
plusieurs auteurs, peu de travaux se sont penchés sur un
contrdle de I’applicabilité de la regle.

Dans cet article, nous étudions une inférence basée sur un
Modus Ponens Généralisé¢ (MPG) avec contrdle de I’ap-
plicabilité en utilisant une conjonction entre 1’observa-
tion et la prémisse. Nous constatons que cette nouvelle
formulation du MPG, dans le cadre de la logique floue
dite de Zadeh-Godel et en conséquence avec utilisation
d’une vraie implication, donne exactement les mémes
résultats que ceux obtenus par I'inférence de Mamdani.
En d’autres termes, on obtient une nouvelle interprétation
de I'inférence de Mamdani dans un cadre logique, au
lieu de la considérer comme une représentation graphique
d’une fonction décrite comme une disjonction de points
flous (i.e. interprétation classique).

Par ailleurs, cette nouvelle formulation ouvre la voie a
de nouvelles méthodes d’inférence qui ont un esprit si-
milaire a celle de Mamdani, mais présentent de nouvelles
caractéristiques particulieres.

Mots-clés :

Modus Ponens Généralisé, Inférence de Mamdani, Im-
plications, Incertitudes

Abstract:

Even if the Generalized Modus Ponens (MPG) has
been studied and interpreted by several authors, little
work has been done on controlling the applicability of
the rule. In fact, in its formulation nothing prevents from
applying the formula even when the observation is dis-
joint from the premise.

In this paper we study an inference based on the Gene-
ralized Modus Ponens (MPG) with control of the appli-
cability by a conjonction between the observation and the
premise. We find that this new formulation of the MPG, in
the Zadeh-Godel fuzzy logic framework and thus using a
real implication infers the same conclusions as those ob-
tained by Mamdani’s inference. In other words, we obtain
a new interpretation of Mamdani’s inference inside a lo-
gical framework instead of considering it as a graph of
a function described as a disjunction of fuzzy points (i.e
the classical interpretation).

In addition, this new formulation opens the way up to new
methods of inference that are similar in spirit to Mamda-
ni’s, but with novel particularities.
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Keywords:

Generalized Modus Ponens, Mamdani Inference, Im-
plications, Uncertainty

1 Introduction

Dans la formulation du Modus Ponens
Généralisé (MPG) rien n’empéche de faire un
raisonnement avec une observation disjointe de
la prémisse. Méme si les conclusions obtenues,
dans ce cas, via les différentes inférences ont
été interprétées par plusieurs auteurs [11, 14],
peu de travaux se sont penchés sur un contrdle
de I’applicabilité de la regle.

Dans la littérature, deux grands modes
d’inférence se confrontent [13] : le Modus Po-
nens Généralisé (MPG) proposé par Zadeh [10]
et 'inférence de Mamdani [4], sur laquelle
s’appuie une grande partie des controleurs
flous [9].

Une des grandes différences qui apparait par
la simple observation des formulations est que
I’inférence de Mamdani permet de conclure
a partir d’hypotheses en utilisant une pseudo-
implication, dont il est bien connu [12] qu’elle
ne répond pas aux criteres des implications [5].

Il est bien connu que la commande floue re-
garde I’'inférence de Mamdani comme une des-
cription disjonctive des points du graphe de
la fonction de commande alors que les autres
autres inférences se réferent a une description
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conjonctive.

Dans ce papier nous rappelons ces deux modes
d’inférence. Ensuite, nous focalisons notre at-
tention sur le comportement du Modus Ponens
Généralis€ quand la regle ne s’ applique pas (i.e.
lorsque I’observation et la prémisse sont dis-
jointes).

Ces observations nous amenent a introduire, en
section 3, une formulation du MPG intégrant
I’applicabilité de la regle, pour laquelle nous ex-
plicitons quelques propriétés. Nous constatons
que l’inférence de Mamdani est équivalente
a un Modus Ponens Généralisé avec controle
d’applicabilité de la regle. Pour finir, nous
illustrons comment cette nouvelle formulation
ouvre la voie a des méthodes d’inférence qui
ont des caractéristiques proches de celle de
Mamdani, tout en reposant sur des “vraies” im-
plications.

2 Inférences approximatives
2.1 Le Modus Ponens Généralisé

Le Modus Ponens classique permet de tirer
des conclusions a partir de regles pré-€tablies.
Ainsi, a partir d’une implication A = B (“Sile
feu est rouge, alors je m’arréte”) et de la donnée
de la prémisse A (“le feu est rouge”), on peut
déduire la proposition B (“je m’arréte”).

AN(A=B)— B (1)
Dans le cadre général, les observations sont
proches de la prémisse A et tiennent compte de
la certitude que 1’on peut leur accorder. 1l est
donc important de pouvoir utiliser I’implication
pour une donnée qui n’est pas nécessairement
A, ce qui conduit au raisonnement approxi-
matif introduit par Zadeh [10]. Le Modus Po-
nens Généralisé permet d’exploiter I'implica-
tion proposée pour une prémisse proche de A,
notée A’, pour inférer une autre conclusion B’,
dont la fonction d’appartenance se calcule a
I’aide de la formule :

[ (y) = supeexT(far(x), [r(7,y)) ()
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Lukasiewicz

Figure 1: Implication de Lukasiewicz, en haut,
et le min, opérateur utilisé par Mamdani a la
place de I’implication, en bas.

ou 7’ représente une t-norme et [ une implica-
tion floue.

Cette équation correspond a une extension a des
ensembles flous de la proposition :

ANA=B)—= B (3)

2.2 Inférence de Mamdani

Proposé par Mamdani en 1974, pour controler
la vitesse d’un moteur [4], le controleur de
Mamdani se base sur des regles d’inférence,
pour déduire des informations observées, des
décisions de régulation [9]. La premiere étape,
appelée fuzzification, consiste a récupérer les
données d’observations et les traduire en sous-
ensembles flous. Ces observations vont en-
suite étre confrontées au jeu de regles qui
régit le contrdleur. C’est durant cette phase que
I’inférence de Mamdani est généralement mise
en oeuvre. On obtient ainsi des conclusions
propres a chaque regle, que I’on agrege disjonc-
tivement. L’ensemble final est ensuite traduit en
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une valeur réelle, qui sera généralement 1’abs-
cisse du centre de gravité de cet ensemble. Cette
derniere étape s’appelle la défuzzification. Ce
type de controleur est souvent employé lors de
la conception de systemes régulés.

L’inférence, qui permet le calcul de I’ensemble
B’ se fait de la maniere suivante :

I (y) = supgex(min(fa(x),
min(fa(x), fe(y))) “)

On remarque, comme d’autres auteurs 1’ont fait
auparavant [12], que cette formule correspond
au cas général (2) en choisissant le min comme
t-norme et en remplagant 1’implication par le
main également.

Pourtant il est bien connu que le min n’est pas
une implication, mais une conjonction.

2.3 Gestion des valeurs de vérité

Si 'on s’intéresse au comportement de ces
deux opérateurs logiques (conjonction et im-
plication), on observe que dans le cas booléen
le comportement differe quand la prémisse
est FAUSSE. La conjonction donne toujours
un résultat FAUX et I’implication un résultat
VRAI, comme présenté sur la Figure 1. En lo-
gique floue, c’est principalement la zone ou la
deuxieme variable est supérieure a la premiere
(zone grisée sur la Figure 1) qui va différer. Au
lieu de donner une valeur forte a I’implication,
le résultat sera faible (ou nul).

Il se trouve que cette situation arrive surtout
quand I’observation A’ est tres différente (voire
disjointe) de A. En effet, dans ce cas, il existe un
point dans I'univers ou la prémisse est FAUSSE
et I’observation est VRAIE. Donc, comme vu
précédemment dans le cas du MPG I'implica-
tion sera VRAIE tandis que dans I’inférence de
Mamdani la conjonction correspondante sera
FAUSSE.

Dans le cas flou, en fonction de la combinai-
son t-norme/implication choisie pour le Mo-
dus Ponens Généralisé (2), les incertitudes et
imprécisions ne sont pas gérées de la méme
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Tableau 1: Exemples d’opérateurs compa-
tibles [1] pour le Modus Ponens Généralisé et
pour le MPG avec applicabilité.

t-norme Implications compatibles
F.ukasiewicz
Kleene-Dienes
Wilmott
Brouwer-Godel
Rescher-Gaines
Brouwer-Godel

Rescher-Gaines

F.ukasiewicz

manicre [1]. Mais toutes les combinaisons
ne sont pas possibles. Plusieurs contraintes
peuvent étre imposées pour le choix des
opérateurs. Classiquement, seule la compatibi-
lité, avec le Modus Ponens Classique, est de-
mandée, c’est-a-dire que 1’on impose de retrou-
ver B lorsque A = A’. Les combinaisons pos-
sibles [1] sous cette contrainte sont répertoriées
dans le tableau 1.

La plupart des combinaisons compatibles vont
placer un palier d’incertitude ¢ (Figure 2(b)),
si bien que dans le cas limite ou les deux en-
sembles A et A’ sont disjoints, tout I’univers de
la conclusion aura un degré d’appartenance va-
lant 1.

A I’inverse, 1’'inférence de Mamdani, comme
définie en section 2.2, prend I’écart entre A et A’
en diminuant la valeur maximale de 1’ensemble
(Figure 2(c)); si bien que dans le cas disjoint,
on aura cette fois une valeur 0 pour tout I’en-
semble d’arrivée.

24 Comportement du MPG quand la regle
ne s’applique pas

Les différences décrites précédemment ont
des conséquences qui vont au-dela des in-
terprétations données a ces comportements. En
particulier, le fait d’utiliser une conjonction
plutdt qu'une implication a des conséquences
sur l’agrégation de regles. Et tout parti-
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(a) Observation A’ et prémisse A

(b) MPG avec t-norme et implica-
tion de Lukasiewicz

g|

(¢) Inférence de Mamdani

Figure 2: Gestion des incertitudes : on compare
les résultats obtenus par les deux inférences
étudiés dans un cas simple ou A et A’ ne sont
pas identiques.

culierement quand la reégle ne devrait pas s’ap-
pliquer (i.e. quand I’observation et la prémisse
sont disjointes).

L’utilisation d’une vraie implication (i.e. du
MPG) impose un certain nombre de contraintes
pour la création d’un systeme d’inférence ou
d’un contrdleur, expliquées par de nombreux
auteurs [11, 14].

Une des caractéristiques du MPG est que,
si les ensembles A et A’ ont des supports
disjoints (ou presque), la conclusion inférée
dépend exclusivement (ou fortement) de 1’uni-
vers de définition de la conclusion. Ce com-
portement rend non seulement 1’interprétation
du sous-ensemble obtenu délicate, mais en
cas de défuzzification [7], la valeur sera for-
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tement influencée par I'univers de définition.
Par exemple, considérons une regle dont la
conclusion est un sous-ensemble flou de va-
leurs d’angle qui varient entre 45° et 90°. Si
la mesure observée est telle que la regle ne
s’applique qu’a la marge (i.e. observation et
prémisse sont presque disjointes), on obtien-
dra tout ’univers (de 0° a 360°) avec un degré
proche de 1 (i.e. totale ignorance), avec un
MPG. Une défuzzification par centre de gra-
vité donnera un résultat proche de 180°, qui se
trouve loin du sous-ensemble conclusion de la
regle.

On pourrait argumenter que le probleme pro-
vient du fait qu’on ne doit pas défuzzifier
en présence d’une “totale ignorance”. Quelle
est alors la limite? A partir de quel mo-
ment de cohérence observation-prémisse peut-
on défuzzifier ?

Une autre conséquence, connue de longue
date [11], du comportement du MPG en
présence d’observations et de prémisses dis-
jointes, est que la fusion des conclusions doit
étre conjonctive. En effet, une agrégation
disjonctive ferait que la conclusion d’une regle
qui ne s’applique pas (ignorance totale) domine
toute autre conclusion.

Malheureusement un contexte conjonctif
empéche de modéliser des options alternatives.
En effet, on peut simplement imaginer que deux
regles se déclenchent avec la méme observation
et donnent des conclusions disjointes. La fusion
conjonctive force la cohérence et donne des
solutions qui malheureusement masquent les
alternatives.

Comme ces comportements sont fortement liés
a ’applicabilité de la regle, nous proposons de
contrdler le MPG par une conjonction entre la
prémisse et I’observation.

3 MPG avec applicabilité de la regle

Nous proposons une nouvelle formulation du
Modus Ponens Généralisé, avec applicabilité de
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la regle, dans le cadre suivant :

(ANAYA(A= B) - B’ (5)

Cette formulation est compatible avec le Mo-
dus Ponens, puisque 1’on retrouve (1) lorsque
A=A

Nous proposons d’étendre cette formulation au
cas des sous-ensembles flous, en mesurant 1’ap-
plicabilité de la regle par I’évaluation de la com-
patibilité entre la prémisse A et 1’observation A’
par I'intermédiaire d’une conjonction 75 :

fe/(y) = suprexTi(Ta(fa(), far(2)),
IR(:E7 y)) (6)

La compatibilité [1] avec le Modus Ponens clas-
sique, mentionnée précédemment, restreint le
choix de 75 au mun. En effet, si on souhaite
avoir B = B quand A’ = A, alors la t-
norme 75 doit étre idempotente, forcant ainsi le
choix du min. Nous obtenons comme formu-
lation pour le Modus Ponens Généralisé avec
applicabilité de la regle :

for(y) = supsexT(min(fa(z), fa(z)),
Ir(z,y)) (1)

3.1 Propriétés

Pour une t-norme 7' et une implication [z quel-
conques, la formulation proposée (7) présente
plusieurs propriétés notables :

— Propriété 1 : Si la prémisse et I’observation
sont disjointes (A N A" = ()), alors la conclu-
sion est I’ensemble vide (B’ = ().

Preuve :
Si A et A’ sont disjoints, alors Vx
min(fa(x), fa(x)) 0, qu’on remplace
dans (7).

Cette propriété traduit le comportement sou-
haité du MPG avec applicabilité quand la regle
ne s’applique pas : on obtient I’ensemble vide.
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— Propriété 2 : Si ’observation est égale a
la prémisse (A" = A), alors la conclusion
obtenue par MPG avec applicabilité est iden-
tique a la conclusion de la régle (B’ = B),
si la t-norme 7' et I'implication [y sont
compatibles pour le MPG.

Preuve :

Par hypothese Yz min(fa(z), far(z)) =
fa(x), que 'on introduit dans (7) pour
retrouver le MPG (2). Si T et I sont compa-
tibles, alors pour A’ = A on trouve B’ = B.

T-norme et implication compatibles : De la Pro-
priété 2, découle que si la t-norme 7" et I'impli-
cation [/ sont compatibles pour le MPG, alors
elles le sont aussi pour le MPG avec applicabi-
lité de la regle.

Donc, les opérateurs compatibles pour le MPG
avec applicabilité de la regle, sont ceux compa-
tibles pour le MPG (Tableau 1).

— Propriété 3 : Si I’observation est incluse dans
la prémisse (A’ C A), alors le MPG et le
MPG avec applicabilité sont équivalents.
Preuve :

Par hypothese Vo min(fa(z), fa(x)) =
far(z), que on introduit dans (7) pour
retrouver le MPG (2).

Notons que, quand 1’observation est plus
précise que la prémisse (A" C A), pour la plu-
part des couples 7" et [ compatibles, la conclu-
sion obtenue par le MPG classique (et donc par
le MPG avec applicabilité) est égale a la conclu-
sion de la reégle (B’ = B). Ceci traduit le fait
que méme si on a une observation plus précise
on ne peut pas conclure quelque chose de plus
précis que la conclusion de la regle.

— Propriété 4 : Si l’observation contient la
prémisse (A’ D A) et la t-norme T et
I’implication [; sont compatibles, alors la
conclusion obtenue par MPG avec applica-
bilité est €gale a la conclusion de la regle
(B'= B)

Preuve :
Par hypothese Vax min(fa(x), far(z)) =
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fa(z), que I'on introduit dans (7). On re-
trouve la formulation du MPG pour A" = A,
et donc B’ = B, car T et I sont compa-
tibles.

Notons que cette propriété n’est pas vérifiée
par les différentes variantes du MPG, mais elle
I’est par I’inférence de Mamdani.

3.2 Comparaison Iinférence de

Mamdani

avec

Le MPG avec applicabilité de la regle, comme
défini dans la section 3, offre le choix d’un cer-
tain nombre de combinaisons d’opérateurs 7' et
Ir compatibles (voir Tableau 1). Il se trouve
que si on prend comme paire les opérateurs
dits de Godel (i.e. (8) et (9)), alors le MPG
avec applicabilité est équivalent a I’'inférence de
Mamdani.

Teodel(x, y) = min(z,y) (8)
1 siz <
Icodel(x,y) = { Y sinon y 9)

Ces deux opérateurs correspondent a I’exten-
sions au flou [17] de la logique intuitionniste in-
troduite par Godel [15]. Notons aussi que 1I’im-
plication /.4 st le résidu de la t-norme : min.

— Théoreme 1 : Le MPG avec applicabilité
dans le cadre de la logique floue dite
de Godel est équivalente a I'inférence de
Mamdani
Preuve :

L’équation (7) du MPG avec applicabilité
dévient dans le cadre de la logique de Godel :

fB/(y) = supzex{min(min(fa(z), fa(2)),
IGodel(xv y))}

En appliquant la formulation (9) de I’'impli-
cation de Godel on obtient :

fr(y) = maz{supiaex,y{min(fa(z), fa(x), 1)},
supize x,} {min(fa(z), far(2), f5(y))}}

ou X; = {x € X | fa(z) < fp(y)} et
Xo={z € X | falz) > fp(y)}.
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Quandon a f4(z) < fg(y), on obtient :
mln(fA(x)7 far (1‘), 1) = min(fa(x), fa (l‘), IB(y))

Ce qui implique dans I’équation précédente :

[ (y) = maz{
SuP{xeXl}{min(fA(x)’ Jar (x)7 fB(yD}?
Sup{meXz}{min(fA(x)v far (:L'), fB(y))}}

Nous retrouvons ainsi la formulation de
I’inférence de Mamdani (4).

3.3 Discussion

Les propriétés présentées dans la section 3.1
font du MPG avec applicabilité de la regle
une formulation intéressante de plusieurs points
de vue. Du coté pratique, la Propriété 1 im-
plique que si aucune régle ne s’applique, alors
on conclut a I’ensemble vide. A ce moment la
question de la défuzzification, qui pose dans ce
cas probleme pour le MPG, ne se pose plus.

La propriété 4 traduit le fait que si on observe
quelque chose de proche mais plus imprécis que
la prémisse, on ne peut conclure que ce qu’in-
dique la regle. Ceci est imposé par le fait qu’on
ne se prononce pas sur les valeurs de I’univers
de conclusion ou le degré d’appartenance de B
est nul.

Les similarités entre le MPG et le MPG avec
applicabilité de la regle sont concrétisées par
les propriétés 2 et 3. Les deux propriétés af-
firment que ces deux modes d’inférence sont
équivalents quand I’ observation est proche mais
moins imprécise que la prémisse.

3.4 Nouvelles inférences

Il est communément admis que la seule pro-
priété nécessaire pour déclarer une formulation
du MPG comme viable, est la comptabilité avec
le Modus Ponens classique [1] [13]. Nous intro-
duisons ainsi plusieurs nouvelles formulations
qui méritent d’€tre étudiées, puisqu’elles pro-
posent des variantes de la méthode d’inférence
la plus populaire dans le monde des applica-
tions, 1’inférence de Mamdani.
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Par exemple, si l’on choisit Lukasiewicz
comme t-norme et Kleene-Dienes comme im-
plication, on obtient la formule suivante :

fB/(y) = supzexmaz(min(fa(z), fa(z))
+maz(1 - fa(z), f5(y)) —1,0)

Par construction, cette forme du MPG avec
applicabilité vérifie les propriétés de la sec-
tion 3.1, en particulier le fait que, si la regle
ne s’applique pas, alors la conclusion inférée
soit I’ensemble vide. La Figure 3(a) illustre
son comportement lorsque A et A’sont définis
comme sur la Figure 2(a). On note que par rap-
port a une inférence de Mamdani, ce Modus Po-
nens Généralisé avec controle de 1’applicabilité
trouve un ensemble B’ plus précis.

Si I’on choisit I’implication de Wilmott, avec la
t-norme de Lukasiewicz, on obtient la formula-
tion suivante :

B (y) :supmeXmax(min(fA (x)v fA’(m))
+maz(l — fa(z), min(fa(z), f5(y))) —1,0)

Encore une fois cette forme du MPG vérifie
toutes les propriétés énoncées. Comme I’illustre
la Figure 3(b), elle permet de trouver un en-
semble B’ plus précis que B, mais avec cette
fois, une incertitude plus grande.

Conclusion

Dans la formulation du Modus Ponens
Généralisé (MPG) rien n’empéche de faire un
raisonnement avec une observation disjointe de
la prémisse. Méme si les conclusions obtenues,
dans ce cas, via les différentes inférences ont
été interprétées par plusieurs auteurs, peu de
travaux se sont penchés sur un contrdle de
I’applicabilité de la regle.

Dans cet article nous avons montré qu’une
inférence basée sur un Modus Ponens
Généralis¢ (MPG) avec controle de 1’ap-
plicabilité, dans le cadre de la logique de Godel
étendue au flou, est équivalent a I'inférence
proposé par Mamdani pour son fameux
contrOleur. L’applicabilit¢ de la regle est ici
traduite par une conjonction entre 1’observation
et la prémisse. Le cadre logique de Godel
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(a) Avec t-norme de Lukasiewicz et
I’implication de Kleene-Dienes

(b) Avec la t-norme de fukasiewicz
et I'implication de Wilmott.

Figure 3: Illustration du comportement du
MPG avec applicabilité, dans des cas non-
équivalents a I’'inférence de Mamdani. On uti-
lise les méme regle et observation que pour la
Figure 2.

impose comme conjunction le min et comme
implication le résidu de cet opérateur.

Par ailleurs, cette nouvelle formulation ouvre
la voie a de nouvelles méthodes d’inférence
qui ont les mémes caractéristiques essentielles
que l'inférence de Mamdani, mais présentent
d’autres caractéristiques nouvelles. Dans 1’ave-
nir nous étudierons plus en détail ces variantes.
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Résumé :

Nous présentons un cadre logique minimal qui permet
de raisonner avec des formules booléennes qualifiées par
des bornes inférieures de degrés de nécessité ou de possi-
bilité. Il s’agit d’un langage propositionnel enchassé dans
un autre qui qualifie les propositions du premier. La ver-
sion tout-ou-rien de ce cadre correspond a une logique
épistémique élémentaire MEL dont la syntaxe est un frag-
ment de la logique modale KD, et dont un fragment per-
met de capturer les logiques tri-valuées de Lukasiewicz et
de Kleene. Sa sémantique se décline en termes de sous-
ensembles d’interprétations du langage propositionnel.
La version valuée de cette logique épistémique généralise
la logique possibiliste et sa sémantique est en termes
de familles de distributions de possibilité. Nous mon-
trons la complétude de cette logique par rapport a cette
sémantique possibiliste.

Mots-clés :
Théorie des possibilités, logique épistémique, logique
tri-valuée

Abstract:

We present a minimal logical setting for reasoning with
Boolean formulas annotated with lower bounds of neces-
sity or possibility degrees. It is in fact a standard propo-
sitional language embedded into another one, whose role
is to express beliefs about propositions of the former. The
all-or-nothing version of this setting corresponds to a sim-
plified epistemic logic MEL, whose syntax is a fragment
of the modal logic KD. A fragment of MEL is enough to
capture three-valued logics of Lukasiewicz and Kleene.
Its semantics can be expressed in terms of subsets of in-
terpretation of the inner propositional language. The gra-
ded version of this epistemic logic generalizes possibi-
listic logic as well, and its semantics is in terms of sets
of possibility distributions. We show the completeness of
this logic w.r.t. this possibilistic semantics.

Keywords:
Possibility theory, epistemic logic, three-valued logic

1 Introduction

Il y a trois approches logiques pour formaliser

I’incertitude due au manque d’informations et

la notion de croyance subjective induite :

— Lalogique tri-valuée de Kleene [14] ou on in-
troduit une troisieme valeur de vérité en plus
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de vrai et faux, et qui veut dire inconnu ; cette
logique est vérifonctionnelle et se définit par
des tables de vérité pour la négation (involu-
tive) et la conjonction (le minimum).

— La logique épistémique introduite par Von
Wright et Hintikka qui utilise le forma-
lisme de la logique modale, la modalité de
nécessité Lo représentant la connaissance ou
la croyance dans la proposition «. Elle s’ap-
puie sur une sémantique de Kripke a base de
relations d’accessibilité [12].

— La logique possibiliste, dont la syntaxe uti-
lise des conjonctions de paires (v, a) formées
d’une proposition booléenne « et d’un poids
a, souvent sur |0, 1] qui représente une borne
inférieure du degré de nécessité de o au
sens de la théorie des possibilités, interprété
comme un degré de certitude [4].

Toutes ces approches semblant aborder des

questions similaires (I’inconnu, la croyance,

I’incertitude) il est naturel de leur chercher un

cadre commun. C’est le but de cet article. On

montre que ce qui différencie ces approches
c’est leur pouvoir expressif. On propose un
cadre général pour les prendre en compte toutes
et pour les situer les unes par rapport aux autres.
Plus précisément, on peut voir la logique tri-
valuée comme moins expressive que la logique
épistémique. Si on ne considere pas l'intros-
pection, le langage de la logique épistémique
peut étre simplifié et sa sémantique se décliner
en termes de distributions de possibilité tout
ou rien. Le langage de la logique possibiliste
peut étre étendu a des négations et des dis-
jonctions de paires («,a). On obtient alors
un langage dont la sémantique est celle de la
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théorie des possibilités et qui peut exprimer
la logique tri-valuée, la logique épistémique
simplifiée, et la logique possibiliste. Notre ap-
proche s’inspire de celle esquissée par Héjek
[11] dans son livre (p. 211 et seq.) et dans
[10]. Elle en différe car nous utilisons des mo-
dalités de croyance pondérées, tandis que ces
auteurs utilisent un prédicat flou comme sym-
bole modal. On présente d’abord la version tout
ou rien (MEL [1]) de la logique possibiliste
généralisée en montrant comment on prouve sa
complétude sans le recours aux relations d’ac-
cessibilité. On rappelle des résultats récents qui
montrent que la logique tri-valuée de Kleene
peut étre vue comme un fragment de MEL.
Dans la section suivante, on décrit le forma-
lisme de la logique possibiliste généralisée in-
troduite dans [7]. Dans la derniere section avant
la conclusion, on donne une nouvelle preuve de
complétude plus simple que celle de [9].

2 Lalogique épistémique simplifiée

On considere un langage classique £ propo-
sitionnel, avec k variables propositionnelles,
P1,---,Pk- On note «, (3, ... les formules de £
obtenues avec les connecteurs booléens —, A, V
usuels. Pour tout ensemble B U {a} de for-
mules de £, B Fpp « signifie que « est une
conséquence syntaxique classique de B en lo-
gique propositionnelle PL. Dans cette section,
on construit un autre langage dans lequel un
agent peut exprimer qu’il croit ou qu’il ignore
certaines propositions de £ [1].

2.1 Syntaxe

L’idée principale de la syntaxe est d’encap-
suler chaque formule o de £ dans une mo-
dalit¢ notée [J. On construit alors de nou-
velles variables logiques de la forme Ua
qui expriment que 1’agent croit que « est
vrai. On sépare completement les proposi-
tions de £ qui concernent le monde réel
et les propositions précédées du symbole L1,
qui décrivent I’état épistémique d’un agent.
Les formules épistémiques, notées ¢,, ...
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forment un langage propositionnel £ engendré
récursivement a partir d’'un ensemble At =
{Oa : a € L} de formules atomiques définies
a partir des formules du langage £, et a I’aide
des connecteurs booléens —, A :

Oa € Lo, sia € L;

ﬁgb € ED) gb/\,lvb € ED,Si ¢7,¢ € CD-
La modalité du possible est Qv := —[I-a.

On appelle les formules de Lo des formules
épistémiques car elles se réferent a 1’état
épistémique d’un agent, par opposition aux for-
mules ontiques o € L qui se réferent au monde
réel. Dans le langage £, un agent peut déclarer
qu’il est certain que la proposition « est vraie
(sous la forme o) mais aussi :
— qu’il n’a pas d’argument en défaveur de «,
sous la forme Qo ;
— qu’il ignore si « est vrai ou faux, sous la
forme Qa A O—a;
— qu’il sait si « est vrai ou faux, mais refuse de
révéler sa croyance, sous la forme Ua/V—a.
Dans la suite I' représente un ensemble de for-
mules de £ déclarées par 1’agent, et B un en-
semble de formules de L.

Dans cette approche, les modalités [J et ) ne
s’appliquent qu’aux formules du langage pro-
positionnel £, contrairement aux logiques mo-
dales usuelles qui les enchassent [13].

2.2 Axiomes

Le fait de pouvoir exprimer des croyances dans
L suggere d’adopter les axiomes du systeme
modal K D, a savoir :

Axiomes :

(LP): (i) ¢ — (¥ — ¢);

(1) (¢ = (b = p)) = (¢ = ¥) = (¢ — p));

(iii) (¢ — =) — (¥ — 9);

(K): Ola = ) = (0o —08);
(N): Oa,Vatel que Frp
(D) : Oa — Oa.

Regle d’inférence :

(MP) {¢,¢ — ¥} .

(LP) indique que cette logique doxastique,
nommée MEL, est une logique proposition-
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nelle. Selon I’axiome K, si 1’agent croit qu’une
proposition se déduit d’une autre, il croit que
cette derniere est vraie, des qu’il croit que la
premiere I’est. L’axiome D considere que la
certitude est plus forte que la plausibilité, une
contrepartie de 1’inégalité entre fonctions de
croyance et de plausibilit¢é de Shafer, ou me-
sures de nécessité et de possibilité [4]. L axiome
N suppose que pour I’agent toutes les tautolo-
gies sont vraies. La notion de conséquence syn-
taxique a partir d’un ensemble I' de formules
(notée ), 1) est définie de facon classique.

Le langage de MEL est un fragment de ceux
de KD45 ou de S5 (sa partie subjective). Les
logiques modales sont souvent définies en par-
tant de la syntaxe la plus générale qui étende
LP, et en ajoutant des axiomes (tels 4, 5) pour
la simplifier. Ici on prend le parti opposé et
on construit le plus simple langage épistémique
a partir de LP. En fait, MEL peut se voir
comme une logique propositionnelle standard
avec des variables propositionnelles spécifiques
construites a partir d’'un autre langage propo-
sitionnel. Par construction, la déduction dans
MEL est la déduction dans LP sur le langage
induit par le vocabulaire At, avec des axiomes
supplémentaires :

F|_MEL¢ < FU{K,N,D} l_LP qb,

ou {K,N,D} sont toutes les instances des
axiomes K, N, D. En particulier le théoreme de
la déduction est valide dans MEL.

Calculer les conséquences de I' permet de
mieux cerner 1’état de connaissances de 1’agent
a partir de son témoignage, en construisant
toutes les formules qu’il pourrait affirmer sans
ajouter plus d’information. En fait, MEL est un
fragment du systeme modal normal KD avec
un langage restreint. En effet, I' Fy;pp ¢, si
et seulement si I' Fxp ¢, pour tout ensemble
'U{¢} de formules de MEL.

2.3 Sémantique

Une valuation booléenne, est une application
w : PV — {0,1}, avec PV := {p1,...,px}-
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Ces valuations (interprétations) forment 1’en-
semble V. Pour une formule o € £, w |= « veut
dire que w satisfait (est un modele de) a, c.-a-
d., w(a) = 1 (vrai). On note o], I’ensemble des
modeles de . Donc 2 = {[a] : a € L}.

Nous suivons verbatim la définition de Hintikka
pour évaluer les formules Lo : “a est vrai dans
tous les mondes possibles compatibles avec les
croyances de I’agent” !, et on note F 1’ensemble
de ces mondes. Un état épistémique est donc
vu comme un ensemble de valuations propo-
sitionnelles (en fait leur disjonction). Chacune
d’elles représente un état du monde possible
pour I’agent. On suppose de plus que E est non-
vide (sinon I’agent est incohérent).

La satisfaction des formules épistémiques est
définie récursivement ainsi :

- FEOaq,ssi E C [a],Va € At.

- E ¢, ssi E W ¢.

- EEoNY,ssiEE=oetE .

C’est la sémantique épistemique de MEL. F |=
Ua veut dire que si I’état épistémique de I’agent
est F, il croit que « est vrai. En voyant la fonc-
tion caractéristique de / comme une distribu-
tion de possibilité, il est clair que £ | Qo
peut s’écrire N([a]) = 1 au sens de la mesure
de nécessité basée sur E. De méme, F = Qa,
ssi ENJa] # 0 : 11y aau moins un état du
monde possible pour I’agent, ou « est vrai, soit
II([a]) = 1 au sens de la mesure de possibi-
lité basée sur E. De plus, £ = Qa A -«
correspond a l’ignorance quant a «, car alors
Enlal # 0,E N [a]¢ # (. Cette informa-
tion est non-triviale sur 1’état épistémique de
I’agent, méme si elle ne dit rien sur I’état du
monde.

On note £(¢p) = {E # 0 : E | ¢} 'en-
semble des modeles épistémiques de la for-
mule ¢ € Lpg. Si I' est un ensemble de for-
mules épistémiques, £ | I' veut dire £ =
¢, pour tout ¢ € I'. On note £(I') I'en-
semble des modeles épistémiques de la base de

Article Epistemic Logic, Stanford Encyclopedia
of Philosophy, http ://plato.stanford.edu/entries/logic-
epistemic/index.html.
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croyances ['. On peut alors définir une inférence
sémantique :

Définition 1 Pour tout ensemble T' U {¢}
de formules épistémiques, ¢ est conséquence
sémantique de T, noté I' |=ppp &, si VE #
0, E E T implique E = ¢ (autrement dit :
E(T) C &)

24 Complétude

On peut aussi utiliser la sémantique proposi-
tionnelle standard, car £ est aussi un langage
propositionnel. Un modele standard d’une for-
mule épistémique est une interprétation v de
Lp, une application de At dans {0,1}. No-
tons Vg ’ensemble de ces valuations. On peut
définir une inférence sémantique standard :
' Erp ¢ avec ces valuations. La logique
propositionnelle qui utilise le langage Ln, les
axiomes (LP) et le modus ponens (MP) est saine
et complete relativement a cette sémantique
standard.

Pour la logique MEL, on doit se restreindre
aux interprétations standard v qui respectent les
axiomes K, D, et N, soit un sous-ensemble de
Vo noté Vi pr. Pour montrer la complétude de
MEL il suffit de montrer que les interprétations
standard de V);g; sont en bijection avec les
états épistémiques {F : ) # E C V} et que
la sémantique épistémique est équivalente a la
sémantique classique restreinte a Vy gy,

A toute valuation v € Vg, on peut attacher
une fonction d’ensemble booléenne g, : 2V —
{0, 1} telle que :

go([a]) := v(0a), Oa € At.

qui constitue une représentation de 1’incerti-
tude. Dans le cas de MEL, on peut définir exac-
tement le type de mesure d’incertitude induite
par ces valuations. On vérifie aisément que :
1. Si v € Vg satisfait ’axiome N, alors
g(V) = L.
2. Siv € Vg satisfait I’axiome D alors VA C
V, gu(A) <1 —gy(A°), etdonc g,(0) =0
si N est supposé en plus.

52

3. Si v € V[ satisfait les axiomes K et N,
alors VA, BCV:
gu(AN B) =min(g,(A), g,(B)).

Le dernier résultat, a savoir que g, est une me-
sure de nécessité, ne fait qu’exprimer que K et
N impliquent I’équivalence entre CI(a A ) et
Ua A S en logique modale KD.

A tout v € Vg1, on associe 1’état épistémique
E,={weV:g(V\{w}) =0}

Par définition de E,, on vérifie que :

(i) Puisque g, est une mesure de nécessité, F,
est unique et non-vide, et v(Ca) = 1 ssi
E, C [a].

() v Erp ¢ ssi B, E ¢ (sémantique
épistémique).

Pour toute valuation classique de Lp (qui

vérifie les axiomes K, D, N), on peut donc

définir un état épistémique unique. Inversement,
tout état épistémique £ induit une valuation du
langage modal £ comme suit :

1si B C |al;

UE(DQ) = 0 sinon

On obtient donc la complétude de MEL par rap-
port a la sémantique épistémique en vertu de la
complétude de la logique propositionnelle :

Théoreme 1 I’ FuvEL ¢ — T ):MEL (b

On voit donc que la logique modale KD res-
treinte au langage épistémique L peut étre vue
comme la logique de la théorie des possibilités
tout ou rien, soit la plus élementaire logique de
I’information incompléte.

2.5 Situation de la logique de Kleene

La logique tri-valuée de Kleene utilise le méme
langage £ que LP, mais elle considere trois va-
leurs de vérité ordonnées V' > [ > F' qui
peuvent s’interpréter comme vrai, inconnu et
faux, respectivement. On note ¢ une valuation de
PV dans {F, I, T}. On définit alors les connec-
teurs de négation — et de conjonction [ et de
disjonction LI comme ceux de Zadeh :
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1. -F=V,—-V = F,—I = I (involution)

2. t(an B) = min(t(«),t(F))

3. tla U B) = max(t(a),t(3))
Néanmoins, ces valeurs de vérité ont un relent
épistémique : inconnu s’Oppose a certain que
vrai et certain que faux et les valeurs {F, I, T}
renvoient a la connaissance d’un agent sur
des propositions en fait booléennes. Si « et (3
couvrent I’étendue des possibles, leur disjonc-
tion devrait &tre vraie méme si elles sont incon-
nues (t(«) = t(5) = I), et pourtant t(a L 3) =
I [3]. Pour résoudre ce paradoxe, on peut plon-
ger la logique de Kleene dans MEL comme ex-
pliqué dans [2]. Rappelons ces résultats.

En accord avec le sens de la modalité [, on peut
traduire en MEL les affirmations « ¢(p) = V' »
par - Op, «t(p) = F » par = O=p, et donc
«t(p) = I» par = =Op A =O-p pour une
variable propositionnelle p. Plus généralement,
déclarer une proposition « vraie dans la logique
de Kleene, c’est dire que ¢(«v) = V. On peut tra-
duire toute affirmation de ce type en MEL par la
procédure suivante [2] :

— Mettre « sous la forme d’une conjonction de
clauses en forme normale négative : @ =
M, uj;l ?;j avec ;; = py ou —py, (littéral).

— La traduction de t(ar) = V dans MEL est
la formule A2, V4L, [0¢;; (en remplagant la
négation — par — dans /;;).

On remarque que cette traduction n’utilise

qu’une partie du langage £ : on ne met le sym-

bole L] que devant des littéraux, et on n’utilise

pas la négation — de L. Il est montré dans [2]

que ce fragment £ID{ de £ capture exactement

lalogique de Kleene. En particulier ¢(¢; LI {y) =

1 veut dire [3¢; v O¢5 et non O(¢1 V £5), ce qui

résout le paradoxe si {; = —/{5. La logique de

Kleene ne peut pas exprimer [J(¢; V £5).

Une valuation ¢ en logique de Kleene est iso-
morphe a un modele partiel en logique pro-
positionnelle. 1 suffit de poser w(p) = 1 si
t(p) = V,etw(p) = 0sit(p) = F.On
a donc un état épistémique de la forme F; =
[Nit(pi)=vPi [ 1 Nizt(py)=FPi)> qu’on peut quali-
fier de rectangulaire. Si B est une base de
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connaissances en logique de Kleene, B | 3
veut dire que si t(a) = V,Va € B alors t(f5) =
V. Soit 7 (B) la traduction de B en MEL avec
la procédure ci-dessus. On a montré [2] que
B =k [ sietseulement si 7(B) Fypr 7(6)
si et seulement si Vt,E, = 7(B) = E;
7 (B). Ce résultat indique bien que la logique
de Kleene ne permet de modéliser que certaines
formes d’information incomplete.

Ces résultats ont été étendus a la logique tri-
valuée de Lukasiewicz [2] qui correspond au
fragment de £ ot on ne met le symbole [ que
devant des littéraux.

3 Logique possibiliste

Dans sa forme de base, la logique possibiliste
[4] représente des connaissances proposition-
nelles plus ou moins certaines, sous la forme
de paires («,a) ol « est une formule pro-
positionnelle de £ et a €]0,1] un degré de
certitude positif. Sa sémantique s’exprime en
termes de distributions de possibilité, qui sont
des applications 7 de I’ensemble de toutes les
interprétations propositionnelles V' dans [0, 1].
Pour chaque valuation w &€ V, le degré
m(w) exprime a quel point w est plausible,
c.-a-d. a quel point il est compatible avec la
connaissance disponible. Elle raffine la notion
d’état épistémique booléen (en indentifiant £
au noyau {w : m(w) = 1}. Etant donné une dis-
tribution de possibilité 7, les mesures associées
de possibilité II et de nécessité N évaluent a
quel point respectivement une proposition est
possible et nécessaire :

M1(a) = sup{m(uw) | w = a)
N(a) =1—-T(—a) = inf{l — 7(w) |w E —a}

On évalue les formules possibilistes (c, a) sur
les interprétations du langage £, a I’aide de la
distribution de possibilité la moins spécifique
telle que N (a) > a [4]. On utilise les axiomes
de la logique propositionnelle avec un degré
de nécessité 1, et le modus ponens pondéré :

{(a,a), (=a'V §,0)} (3, min(a, b))}.

La logique possibiliste ne prend en compte que
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des ensembles de formules pondérées de la
forme («, a), soit des conjonctions d’assertions
de la forme N(a) > a. Dans certaines appli-
cations, on peut avoir besoin de relier de telles
assertions en utilisant des connecteurs proposi-
tionnels différents. En programmation logique,
par exemple, une régle (sans négation) telle que
P1,---,Pn — @, reliant des variables propo-
sitionnelles, signifie intuitivement que chaque
fois que py, . . ., p, sont connues comme vraies,
on doit accepter ¢ comme vraie également. Cela
pourrait étre exprimé en utilisant des mesures
de nécessité et I’implication matérielle sous la
forme (N (py) = 1)V -+ V (N(p,) > 1) V
(N(q) > 1) [8]. Cette proposition ne peut pas
étre exprimée en logique possibiliste. On le peut
dans MEL sous la forme —Up, V - - -V =Up, V
[lg. Mais dans MEL, les mesures de nécessité
sont tout ou rien.

4 Logique possibiliste généralisée

La logique possibiliste généralisée (LPG) [7]
étend la logique possibiliste au sens ou des
énoncés de la forme (o, a) peuvent étre com-
binés en utilisant n’importe quel connec-
teur propositionnel, plutét que seulement la
conjonction. Elle généralise donc aussi la lo-
gique MEL avec des modalités valuées.

4.1 Syntaxe et sémantique

Pour mettre en évidence que la sémantique de la
LPG est basée sur la théorie des possibilités, on
utilise dans cet article une notation légerement
différente de la syntaxe usuelle en logique mo-
dale, et de celle dans [6, 7, 8], ou la notation est
proche de celle de la logique possibiliste. Nous
améliorons ainsi la lisibilité par rapport a ces
derniers articles tout en soulignant le lien avec
la logique modale. Soit A = {0, ¢, %,..., 1}, ol
k € N\ {0}, I’ensemble des degrés de certitude
considérés; AT = A\ {0}. Sia € At on note
p(a) la valeur précédant a dans I’échelle. Les
formules bien formées en logique possibiliste
généralisée forment le langage propositionnel
LE défini comme suit :
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— Si « est une formule propositionnelle ontique
eta € A, alors N, (a) € LE.
— Si ¢ et ¢ sont des formules bien formées,
alors —¢ € L et o ANy € LE,
Intuitivement, N;(«) signifie qu’on est
completement certain que « est vrai, tandis
que N,(«) avec a < 1 signifie qu’il y a une
information qui suggere que « est vrai, et que
rien ne suggere que c’est faux (c.-a-d., on
considere plus plausible que « soit vrai que
a soit faux). Nj(«) correspond a o dans
MEL. Les atomes de £F sont donc de la forme
AtF = {(Ny(a) :a € L;a € AT},

Notons qu’il faut £ > 2 (au moins trois niveaux
de certitude) pour pouvoir distinguer entre cer-
titude complete et certitude partielle. Formel-
lement, un agent affirmant N,(«) est dans un
état épistémique 7 tel que N(a) > a > 0. En
conséquence, =N, («) équivauta N(a) < p(a),
qui signifie que IT(—a) > 1 — p(a) € AT ; syn-
taxiquement on écrit IT,(—a) avec b = 1—p(a).

La sémantique de la LPG est définie en termes
de distributions de possibilité normalisées (c.-
a-d., t.q. Jw 7(w) = 1) sur les interprétations
propositionnelles, ou les degrés de possibilité
sont restreints a A. Au lieu d’évaluer de facon
graduelle les formules possibilistes (a, a) sur
les interprétations w du langage £ [4], on peut
choisir de les évaluer de facon tout ou rien sur

les distributions de possibilité construites sur V

[6, 7]. Une distribution de possibilité 7 est un

modele (épistémique) de :

— Ny(a) (soit (a,a) en logique possibiliste
usuelle) ssi N(a) > a, ou N est la mesure
de nécessité induite par 7 ;

— @1 N\ ¢9 ssi 7 est un modele de ¢ et de ¢ ;

— —¢1 ssi  n’est pas un modele de ¢;.

De maniere naturelle, 7 est appelé modele d’un

ensemble I' de formules de la LPG, ce qui

s’écrit  |= T si ¢’est un modele de chacune des
formules de cet ensemble. On écrit I' =7 p¢ ¢,
pour un ensemble I' de formules en LPG et ¢

une formule en LPG, ssi chaque modele de T"

est aussi un modele de ¢. On dit qu’un modele

possibiliste 7 est booléen si w(w) € {0, 1} pour

chaque monde possible w.
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On considere I’axiomatisation suivante [9], qui
étend celle de MEL [1].

(LP)

(K): Ny(a — 3) = (No(a) = No(3));
(N): Ny(a), atel que Frp a;

(D): Ny(a) — IIj(a),Va € At

(AF) . Na1( ) — NEQ( ), si aq Z Q9.
et la regle du modus ponens.

Dans (D), IT;(«) exprime —N,(—«),¥b > 0.
On voit que quand a est fixé on obtient une co-
pie de MEL (si on utilise N, () — =N, (—«)
pour (D)). On récupere le modus ponens de
la logique possibiliste et une regle hybride
supplémentaire déja suggérée en [5] :

Lemme 1 Les regles d’inférence suivantes
peuvent étre établies :
— {Nq, (@), Ng, (o = B8)} F Ninin(ar a2)(3)

— {ILs, (@), Noy (o — 3)} F 1L, (8)
sias >1—aq

Preuve: La premiere est obtenue en utilisant
(AF) sur les deux prémisses (en les affai-
blissant au niveau min(a, as)), obtenant ainsi
Nmin(al,az)(a) - Nmin(ahaz)(ﬁ) par modus po-
nens sur K et Nyyinq, q0,) (v — (), et & nouveau
le modus ponens. La seconde est obtenue en
établissant N _p(,,)(—a) a partir de N, (o —
B) et de Ni_p(q,)(—3) (en réécrivant & — [
sous la forme =3 — —a). On doit cependant
supposer 1 — p(a1) < as, soit a; + ay > 1, afin
d’affaiblir N, (o« — 3) en Ni_pq (a0 — B).
Sil—p(a1) > az, (AF) ne fournit que N, (—a),
dont la négation est plus faible que la prémisse
IT,, («).

Le caractere sain de I’inférence syntaxique ne
pose pas de probleme a établir.

Proposition 1 (Correction) Soit [" une théorie
en LPG, c.-a-d., un ensemble de formules de la
LPG. Supposons que la formule de la LPG ¢
peut étre dérivée de I' par modus ponens et a
partir des axiomes (LP.K, N, D, AF). Alors on a

bien que T |=ppa ¢.
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4.2 Complétude de la LPG

Pour la complétude, on procede comme dans
le cas tout ou rien. Une valuation classique de
LE est une application v : Ny(a) € At* —
v(Ng(a)) € {0,1}. L’axiome (AF) impose
que si v(Ny(a)) = 1let0 < b < a alors
v(Ny(a)) = 1. On peut alors définir une fonc-
tion d’ensemble g, sur VV comme suit

gu([ad) 1}

avec la convention g,([a]) = 0 si v(Ny(«)) =

0,Va > 0. Les autres axiomes de LPG imposent

les contraintes suivantes a la fonction g :

— L’axiome (N) implique ¢,(V) = 1.

— Pour I’axiome (D), v(N,(a)) = 1 implique
v(N,(—a)) = 0,Va > 0. Dong, si g,([a]) =
a > 0, alors g,([7a]) = ¢,([a]) = 0. En
particulier, g, (0) = 0.

— Pour I'axiome K, notons que si a F (3, il
implique - N,(a) — N,(f), en vertu de
I’axiome (N). Donc v(N,(«)) = 1 implique
v(N,(8)) = 1 et donc g, est monotone crois-
sante avec I’inclusion.

— On peut écrire I’axiome K comme suit :
Ni(a — #) — (Nu(a) — Na(a A 8)).
Si v(Ny(a)) = 1etv(Ny(5)) = 1, 0ona
donc v(N,(a — f)) = 1; mais (K) im-
plique v(IN,(aAB)) = 1. Donc g, ([aAf]) >
min(g([a]), g.([3]))-

On conclut donc que la fonction g, est une me-

sure de nécessité a valeurs sur A. Elle est définie

completement par une distribution de possibi-
lité normalisée m,. Il y a donc une bijection
entre les valuations classiques de £ qui satis-
font les axiomes (K, N, D, AF) et les distribu-
tions de possibilité a valeurs sur A.

= max{a : v(N,(a)) =

Proposition 2 (Complétude) Soir T' U {¢} C
E’“D une théorie en LPG. ' =1 pg ¢ si et seule-
ment si ¢ peut étre dérivé de 1" par modus po-
nens et a partir des axiomes (LP, K, N, D, AF).

Preuve: : I' -7 pg ¢ si et seulement si
INU{K,N,D,AF} Frp ¢ si et seulement si
I' U{K,N,D,AF} [=rp ¢ (complétude de
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la logique propositionnelle), si et seulement si
I' Erpe ¢ (en utilisant la bijection entre dis-
tributions de possibilité et les valuations clas-
siques de L£F qui satisfont les axiomes (K, N,
D, AF)).

5 Conclusion

Cet article fait donc la synthese entre plusieurs
logiques de I’information incomplete et montre
le role central d’'une sémantique en termes de
distributions de possibilité. La logique possibi-
liste généralisée permet de couvrir toutes ces
approches. Ces résultats organisent le paysage
des diverses logiques dans ce domaine. Le cadre
de la LPG est tres expressif, mais sa complexité
[9] est celle de S5 et dépend de k. Parmi les ap-
plications envisageables, la programmation lo-
gique offre des perspectives intéressantes. Un
programme logique P de type ASP ne contient
que des regles de la forme

T1y ey Ts, NOLPL, ooy NOE D, — 1 B ... P qn

et des faits de la forme r; & ... & r, ou
Ti, P, Qr sont des variables propositionnelles, ©
est une disjonction, et not r; est une négation
faible évoquant I’ignorance relative a la vérité
de I’atome r;. Pearce [15] a montré comment
généraliser ce formalisme en le capturant dans
une logique a cinq valeurs de vérité, la valeur
médiane exprimant I’ignorance. Dans [8], on a
montré comment la LPG avec une échelle A
a trois niveaux (k = 2) peut exprimer, sous
une forme plus facile a interpréter, les faits :
Ny (r1) V... VNy(r,) et les régles comme suit :

_\N1 (7’1)\/VﬁHI(_'pm)VNl(ql)\/\/Nl (qn>

Notons que puisque 1’échelle de possibilité
possede trois niveaux, —II;(—p,,) n’est pas
équivalent & Ny(p,,), mais a Ny /o(py,), ce qui
capture la particularité de la négation faible en
ASP. Voir [9] pour une étude de la traduction
de la logique a 5 valeurs de Pearce en LPG,
dans le méme style que celle de la logique de
Kleene rappelée plus haut. Dans le futur, on
peut reconsidérer les nombreuses s€émantiques
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multivaluées en programmation logique et dans
les bases de données avec valeurs nulles, ainsi
que certaines logiques multi-agents [6], dans le
cadre de la LPG.
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Résumé : o ) o _ fiables comme des données historiques, des
Ces travaux s'intéressent a la validation d'un outil et jnformations issues de I'expertise. La mise en

de son systeme de connaissance associé, dans le cadr N 1o > PRI
d'une évaluation de risques industriels ou Geuvre de ces systemes d'aide a la decision

environnementaux. Ces systémes composés de plusieurd?OUr I'évaluation d'un risque se base sur ces
sources de connaissance (experts, bases de donnéedjifférentes sources d'information de nature

modeles numériques,...) doivent pourvoir étre comparés différente car I'obtention de ce calcul du
et dans le meilleur des cas, un ordonnancement par risque n'est pas exacte (manque de

rapport a un objectif de validation opérationnelle doit o, qiccance) Lincomplétude de linformation
étre proposé. Une approche de type analyse multicritere

est proposée sur des critéres de validation issues de |ad|spon|ble est 9ompensee par dQS avis
métrologie. Ces premiers résultats montrent la difficulté d'experts, appuyés sur leurs connaissances
de construire une échelle de référence ou d'utilité pour théoriques ou empiriques. L'évaluation du
de“t’)( S.‘IF’Ot'eS tde hrihaedibonal .td? ":jr].cef”a'”'t.dﬁ,typfs risque, et les décisions qui en découlent, ne
probabiliste et possibiliste. Un critére d'informativité es .

particulierement développé utilisant I'entropie de repose plus al(.)rs ,unlquement sur la nature‘du
Shannon et sa déclinaison & des distributions discrétesPFOCESSUS, mais également sur les hypotheses
de possibilité. et I'arbitrage fait par les experts. La décision
est la résultante d'une synthese des

Mots-clés :
Analyse  multicritére,  possibilité, incertitude, ~CONNaissances, partiellement subjectives, qu'il
validation convient de valider. Cette validation nécessite
dans un premier temps de formaliser de
1 Contexte maniere générique les étapes d'un processus de

décision, dans un cadre qui integre le plus
La gestion du risque, dans des contextes d’élément  possible  Iétat reel des
industriels ou environnementaux (risque de connaissances. Ces étapes constituent la base
pollution, risque d'inondation...), requiére de de la validation opérationnelle [3] qui propose
prendre des décisions dans le cadre deles différentes etapes de la transformation de
systémes complexes d'aide a la décision. Cesconnaissance nécessaire lors d’'un processus
systémes s'appuient sur une caractérisation dud’aide a la décision. Dans ce contexte, on se
risque qui nécessite une grande quantité propose de s'intéresser a la premiére étape de
dinformation. Ces informations sont recueil du modéle formel proposé : soit, a la
généralement manipulées par différents prise en compte des différentes sources
opérateurs comme des modéles numériques,d’information nécessaires a la quantification
des systtmes a base de cas, des outilsdes variables étudiées du systeme concerne. |
d’analyse multicritéres, utilisant des sources de s’agit alors de pourvoir hiérarchiser les
données hétérogénes plus ou moins differentes sources d’information par rapport a
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une qualification de [I'opérationnalité du < Calibration : en supposant disposer de
systeme d'aide a la décision au regard de laréférents connus, la source d'information est-
connaissance disponible. Une approche elle fidele ?
d’optimisation multicritere est proposée a L’informativité cherche a évaluer la quantité
partir de criteres qui permettent de prendre en d'information apportée par une source. La
compte difféerents modeéles de I'imperfection théorie de l'information de Shannon, propose
de la connaissance. d’évaluer [linformation apportée par une
distribution de probabilite. La divergence de
2 Analyse multicritere en validation Kullback-Leibler [4] retenue permet de
opérationnelle mesurer la  dissimilarité  entre  deux
distributions de probabilité (dont une loi
uniforme). Une généralisation du critére

sources différentes pour quantifier une dinformativité est proposee dans un cadre
variable aléatoire réellX. Ces propositions ~POssibiliste notamment pour des distributions
peuvent étre formalisées sous la forme de discretes .de,possmlllte,' I’mformla'glvnlén) est
distributions de probabilité ou de distributions @lors estimee. Une informativitd(p) est

de possibilité. Ces distributions sont autant €9alement calculable. Ceci permet alors de
diinformations que l'on souhaite qualifier et comparer deux types de sources; une
comparer en l'absence de référent absolu. cettedistribution de probabilit@ et une distribution
exigence correspond & systéme décisionnelde possibilitésr par rapport a ce critere. Un
multi-acteurs, et une approche multicritére est deuxieme critere, dit dealibration peut étre
privilégiée dans cette étape [5]. On cherche & construit sur la base de ces distributions
construire un pré-ordre (partiel ou total) selon Probabilistes et possibilistes. Cependant ces
un ou plusieurs critéres. deux criteres conduisent a une difficulté de
Il s’agit de construire successivement un construction du pré-ordre: en effet, il est
référent soit une métrique, une fonction difficile d'ignorer la dépendance que peuvent
d'utilité qui permet de définir des critéres sur avoir ces deux criteress priori dans un choix
des sources de données pouvant étrefinal. Il est donc indispensable dans I'étape
représentées par des fonctions de densité desuivante de voir comment cette dépendance
probabilité, de densité de possibilités voir Peut étre résolue : soit en la supprimant, soit en
d’autres formalismes de [Iinformation €sSsayant de voir comment une fonction de
(fonctions de croyance). En effet, on peut Préférence peut étre construire, ou bien étre
considérer que des sources de données peuvenifitroduite dans la méthode d’agrégation finale.
étre des scalaires ou de vecteurs entachés

d’erreur, de type variable aléatoire (comme un Références

parametre d’entrée ou une variable d'entrée a 1, 1 pegtorg, T. R. Cooke, RProbabilistic risk

un modele de typeepp d'écoulements) a analysis : foundations and method€ambridge
laquelle est associée une probabilité ; I'avis University Press.2001

d’expert recueilli comme une confiance sur un [2] R. Cooke. Experts in uncertainty Oxford
intervalle de valeurs est formalisé sous forme University Press.1991

une distribution de possibilités concernant la [3] IMdR, Projet P09-2 Validation et représentativité

plausibilité et la nécessité de la grandeur ~ dun réseau bayésien en analyse des risques et
sureté de fonctionnemeriRapport de I'Institut de

On dispose d'un ensembledA propositions de

estlmee._ . ) . Maitrise des Risques (IMdR), 2011.

Deux Cn_teres’ inspirés de travaux de [1] [2] [4] S. Kullback, R.A Leibler,. On information and
sont envisages : sufficiency. The Annals of Mathematical Statistics,
* Informativité : quelle quantité d'information 1:79-86,1951

est apportée par une source d'information ? [5] B. Roy. Méthodologie multicritere d'aide a la

décision Hermés Science.1985
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Résumé :

L’appariement est une tache primordiale pour abou-
tir a la gestion de I’hétérogénéité sémantique d’ontolo-
gies distribuées et ainsi assurer leur interopérabilité entre
les différents systémes les utilisant. Cette mise en corres-
pondance consiste principalement a détecter des relations
sémantiques entre les entités de deux ontologies par ap-
plication de méthodes d’alignement fondées sur des me-
sures de similarité. L’emploi de mesures de différentes
natures fait inévitablement apparaitre des conflits. Nous
proposons dans cet article de gérer ce conflit a I’aide de
la théorie des fonctions de croyance.

Mots-clés :

Appariement des ontologies, mesure de similarité,
théorie des fonctions de croyance, conflit.

Abstract:

Ontology matching is one of the most important tasks
to mitigate the effect of semantic heterogeneity and to
assure the interoperability between the different systems
that use them. The matching consists in detecting the se-
mantic relations between entities of two ontologies and
thus by the application of different techniques which are
based on similarity measures. Using these measures can
lead to conflicting aligments. We propose in this paper to
manage the conflict using the Dempster-Shafer theory.

Keywords:

Ontology matching, similarity measure, belief function
theory, conflict

1 Introduction

Pour faire face a 1’émergence d’applications
basées sur 1’exploitation conjointe de sources
de données distribuées dont le format est diffi-
cilement interprétable par des machines, la no-
tion du web sémantique a été introduite [2].
Cette nouvelle génération du web tend a facili-
ter I'intégration et 1’interopérabilité de sources
de données entre différentes applications. Le
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web sémantique repose essentiellement sur
I'utilisation d’ontologies décrivant la struc-
ture et la sémantique des données contenues
dans les documents web. Toutefois, il n’existe
pas d’ontologie partagée de référence pour
chaque contexte applicatif, mais plusieurs on-
tologies développées indépendemment les unes
des autres et couvrant souvent partiellement le
contexte applicatif concerné. L’ utilisation de ce
genre de données repose donc sur une €tape
de résolution de I’hétérogénéité sémantique des
sources a travers 1’appariement des ontologies
[5]. Cet appariement vise a trouver des cor-
respondances entre les entités de deux onto-
logies. Ces entités peuvent €tre des concepts,
des propriétés ou encore des instances. L’en-
semble des correspondances appelé alignement
peut étre traité de différentes manieres en fonc-
tion des besoins des applications. Une exploi-
tation possible d’un tel alignement consiste a
fusionner les deux ontologies pour obtenir une
nouvelle ontologie. Le résultat de 1’appariement
peut aussi conduire a la génération de regles de
raisonnement pour I’interprétation des ontolo-
gies appariées.La découverte manuelle des cor-
respondances sémantiques entre deux ontolo-
gies est une tache coliteuse en temps, inefficace
et pouvant conduire a des erreurs [7]. Dans [5],
les auteurs recensent les différentes méthodes
existantes et les principaux défis sous-jacents
a cette tache d’appariement : la robustesse
et I’évolutivité. La robustesse concerne le fait
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que les erreurs mineures ne doivent pas avoir
un impact sur le résultat de 1’alignement et
I’évolutivité quantifie la capacité de ces tech-
niques a s’exécuter en un temps raisonnable,
méme en présence d’ontologies volumineuses
[14]. Ces méthodes reposent essentiellement
sur I’exploitation de mesures de similarité. Indi-
viduellement, aucune mesure de similarité per-
met d’obtenir un alignement parfait. Dans ce
travail, nous émettons I’hypothese qu’en ex-
ploitant la complémentarité de différentes me-
sures de similarité, un alignement de meilleure
qualité serait obtenu. Cependant, combiner plu-
sieurs méthodes conduit souvent a la nécessité
de gérer des conflits d’alignements, conflits que
nous proposons de gérer a I’aide de la théorie
des fonctions de croyance [3], théorie reconnue
comme un outil robuste dans la combinaison de
jugements incertains.

Nous tenons a préciser que 1’approche exposée
dans cet article est une description détaillée de
trois étapes essentielles a I’obtention d’un en-
semble d’alignements. Ces derniers feront 1’ ob-
jet, dans des travaux futurs, de construction
d’une nouvelle ontologie incertaine a partir de
deux ontologies appariées. Les trois étapes de
notre approche sont :

1. Appariement des ontologies : Au cours de
cette étape, nous utilisons trois méthodes
d’appariement qui donneront pour chaque
entité de 1’ontologie source sa correspon-
dante dans 1’ontologie cible.

2. Modélisation dans le cadre de la théorie
des fonctions de croyance Les ali-
gnements obtenus au cours de I|’étape
précédente seront modélisés dans le cadre
de la théorie des fonctions de croyance et
les résultats d’alignement seront combinés
par application de la régle conjonctive nor-
malisée.

3. Prise de décision : En s’appuyant sur la
formalisation du conflit obtenue lors de
I’étape de combinaison, un processus de
décision permettra d’identifier les aligne-
ments les plus crédibles.

Cet article est une amélioration de 1’approche
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proposée dans [4] ol nous nous sommes li-
mités a la description des bases théoriques de
notre approche a la différence de cet article ou
nous proposons une meilleure modélisation et
nous exposons les résultats d’appariement ob-
tenus sur des données réelles. Le reste de ’ar-
ticle est organisé comme suit : La section 2
présente les principes et techniques d’apparie-
ment. La section 3 est dédiée aux notions de
base de la théorie des fonctions de croyance.
Nous présentons dans la section 4 notre ap-
proche de modélisation des alignements dans le
cadre de la théorie des fonctions de croyance
pour ainsi conclure et donner les différentes
perspectives dans la section 5.

2 Appariement des ontologies
2.1 Notions de base

Gruber définit une ontologie comme étant une
spécification explicite d’une conceptualisation
[6]. En effet, pour un domaine de discours, une
ontologie est un modele abstrait qui est défini
dans un langage interprétable par une machine
et qui met en évidence un ensemble de concepts
et des relations entre ces concepts. Une ontolo-
gie est composée essentiellement :

— de concepts ou classes qui décrivent une col-
lection d’objets pour un domaine particu-
lier. Ces concepts sont organisés selon une
hiérarchie taxinomique,

— d’individus qui représentent les instances de
classe,

— de relations explicitant les liens établies entre
les individus,

— d’attributs qui décrivent les propriétés des in-
dividus d’une classe,

— et d’axiomes permettant d’inférer de nou-
velles connaissances.

L’appariement des ontologies apparait comme

une étape indispensable pour assurer la

réconciliation entre ontologies hétérogenes
et leur intéropérabilité sémantique vis-a-vis
des différentes applications. Le processus
d’appariement prend en entrée deux ontologies
O, et Oy [5] et produit un ensemble de corres-
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pondances entre les entités des deux ontologies
appariées. Une correspondance est un 5-uplet :

<id, e, ey, 1, N>

— id : identifiant de la correspondance.

— ey etes : entités tel que ey appartient a une on-
tologie source O, et e, appartient a une onto-
logie cible O,. Ces entités peuvent étre des
concepts, des propriétés ou encore des ins-
tances.

— r est une relation entre les entités
(équivalence, disjonction, subsomption),
ou seule I’équivalence est étudiée dans notre
approche.

— nestune mesure de confiance obtenue par ap-
plication d’une mesure de similarité.

2.2 Les techniques d’appariement

Dans [5], les auteurs dressent un état de 1’art
complet des différentes méthodes d’apparie-
ment et notamment des mesures de simila-
rité utilisables pour établir les correspondances
entre les entités. Ces méthodes peuvent Etre
qualifiées :

— de terminologiques, en comparant chaines de
caracteres formées a partir des noms, des la-
bels ou encore des commentaires des entités.

— de structurelles, ou I’information structurelle
des entités, i.e. les relations qui existent entre
les entités (subsomption, rang, domaine, . ..),
est exploitée pour créer les correspondances.
Ces méthodes reposent soit sur la structure
interne des entités (cardinalité, transitivité,
multiplicité, ...), soit sur leur structure ex-
terne, c’est-a-dire la position des entités dans
la hiérarchie de I’ontologie.

— d’extensionnelles, lorsqu’elles exploitent les
instances des concepts pour établir des simi-
larités.

— de sémantique, lorsqu’elles s’appuient sur la
sémantique de la théorie des modeles afin
de justifier les résultats de 1’alignement. Ces
méthodes déductives sont souvent précédées
d’une étape de prétraitement et exploitent les
instances associées a une entité pour définir
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son contexte et I’interpréter.

3 La théorie des fonctions de

croyance
3.1 Formalisme

La théorie des fonctions de croyance, également
appelée théorie de Dempster-Shafer [3] [8],
est fondée sur la manipulation de fonctions de
masse. Une fonction de masse représente une
évaluation quantitative des connaissances sur
un probléme donné. En effet, pour un probleme
donné, on définit un cadre de discernement
© comme étant un ensemble fini de toutes
les hypotheses possibles exhaustives et exclu-
sives. Une fonction de masse est décrite sur
I’ensemble de tous les sous-ensembles de O,
noté 2°. Cette fonction de masse ou masse
élémentaire de croyance est décrite par :

m(0) =0 (1)
> m(A)=1 (2)
ACO

Les éléments A tel que m(A)> 0 sont appelés
les éléments focaux.

3.2 Combinaison

En présence d’informations imparfaites (incer-
taines, imprécises et/ou incompletes), la fusion
se présente comme une solution pour obtenir
une information plus pertinente et plus fiable.
La théorie des fonctions de croyance est un outil
intéressant et robuste de fusion de données. En
effet, elle repose sur la possibilité de construire,
pour un méme cadre de discernement, une
fonction de masse unique par combinaison des
différentes fonctions de masses élémentaires is-
sues de plusieurs sources d’informations dis-
tinctes et indépendantes et ceci en vue d’une
prise de décision. Il existe un grand nombre
de regles de combinaison [13], nous nous limi-
tons dans cet article a la présentation de la regle
conjonctive normalisée proposée par Dempster
[3]. Pour deux fonctions de masse m; et mo et
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pour tout A € 29, A £ (), cette régle conjonc-
tive normalisée est définie par :

1
Mig(A) = 1_ % > mu(B) x my(C)
BNC=A
3)
ot k = > m(B) x my(C) est souvent
BNC=0

considérée comme une mesure de conflit entre
les sources. Cependant cette normalisation par
1- k£ masque le conflit et a été introduite pour
rester en monde fermé (toutes les hypotheses
possibles du probleme appartiennent au cadre
de discernement © et m(()) = 0).

3.3 La prise de décision

Au regard de l’information obtenue suite a

la combinaison des informations issues des

différentes sources, on souhaitera le plus sou-
vent désigner 1I’hypothese la plus vraisemblable.

D’une facon générale, comme présentée dans

[12], les fonctions de décision (plausibilité,

crédibilité, probabilité pignistique) prennent la

décision sur les singletons du cadre de discer-
nement.

— Maximum de crédibilité : la crédibilité (bel)
représente le degré de croyance minimal ap-
porté a un sous ensemble de 2°. Elle me-
sure a quel point les informations données
par une source soutiennent A. Cette fonction
est définie pour tout A € 2° et a valeurs dans
[0, 1] par :

bel(A)= > m(B)

BCA,B#)

“)

Le maximum de crédibilité consiste a rete-
nir I’hypothese la plus crédible. En d’autres
termes, cette fonction de décision permet de
retenir la meilleure hypothese tout en don-
nant le minimum de chances a chacune des
disjonctions. C’est un critere de décision pes-
simiste.

— Maximum de plausibilité (pl) : La plausibi-
lité représente la croyance maximale affectée
2 un sous-ensemble de 2°. Elle mesure 2
quel point les informations données par une
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source ne se contredisent pas. Cette fonction
est définie pour tout A € 2° et a valeurs dans
[0, 1] par :

(&)

ANB#0

Le maximum de plausibilité consiste a re-
tenir I’hypothese la plus plausible. En effet,
cette fonction de décision permet de retenir la
meilleure hypothese tout en donnant le maxi-
mum de chances a chacun des singletons.
C’est un critere de décision optimiste.

— Probabilité pignistique : Dans [9], Smets pro-
pose un compromis entre les deux regles de
décision précédemment citées. En effet, la
probabilité pignistique est une mesure qui
permet d’équirépartir la masse placée sur
chaque hypothese différente d’une hypothese
singleton, sur les hypotheéses qui la com-
posent.

betP(X) = >

AE29 XcA

m(A)

A= m(@) ©

ou |A| est la cardinalité¢ de A. Prendre la

décision en appliquant le maximum de la

probabilité pignistique revient a choisir I’hy-

pothese singleton la plus probable.
Cependant, il est possible de prendre une
décision sur les unions des singletons tel est le
cas de la regle de décision proposée par Ap-
priou [1]. En effet, elle permet de pondérer les
reges de décision précédemment citées par une
fonction qui rassemble toutes les préférences a
priori relatives a la décision escomptée. Elle est
décrite pour VA € 2° par :

A = argmaz (mg(X)pl(X)) (7
Xe20
ou my est une masse définie par :
1
mq(X) = Kglx (W) @)

r est un parametre appartenant a [0, 1] permet-
tant de choisir une décision allant du choix d’un
singleton (r = 1) a I’'indécision totale (r = 0).
La valeur Ay permet d’intégrer le manque de
connaissance sur 1’un des éléments X de 2°. La
constante K ; est un facteur de normalisation.
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4 Processus de Décision

Crédibiliste

Le processus de décision crédibiliste proposé
dans cet article est illustré sur deux ontolo-
gies O; et O, relatives a I’organisation de
conférences .

4.1 Etape 1 : Appariement des ontologies

La mise en correspondance de deux ontologies
est effectuée a I'aide de techniques termino-
logiques d’appariement a savoir les distances
de Levenshtein, Jaro et Hamming. Ce sont des
méthodes qui, comme décrites précédemment,
comparent les chaines de caractéres sans pour
autant tenir compte des relations existantes
entre les entités.

— Distance de Levenshtein : Elle est égale
au nombre minimal d’opérations de suppres-
sion, d’insertion ou de substitution de ca-
racteres nécessaires pour la transformation
d’une chaine en une autre.

— Distance de Jaro : Elle mesure le nombre
et I’ordre des caractéres communs entre deux
chaines de caracteres.

— Distance de Hamming : Elle mesure le
nombre de positions au niveau desquelles les
deux chaines de caracteres difféerent.

La figure 1 montre un extrait des correspon-
dances établies entre une ontologie source O
et une ontologie cible Oy selon une mesure
de similarité. Rappelons que dans un proces-
sus d’appariement, on désigne aléatoirement
une ontologie de référence pour laquelle on es-
saie de chercher pour chacune de ses entités
sa correspondante dans une ontologie cible.
On observe que ’entité Con ferenceMember
de l’ontologie O; est appariée aux entités
Con ference et Con ference_fees de 1’ontolo-

gie O,.

Par application des méthodes terminologiques
d’appariement présentées précédemment, on

1. http ://oaei.ontologymatching.org/2013/
conference/index.html
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Figure 1 — Appariement entre deux ontologies
pour une méthode donnée

aboutit 2 un ensemble de correspondances
possibles. Pour limiter le nombre d’aligne-
ments considérés, un seuil de filtrage sur le
degré de similarité a été défini empiriquement.
Pour illustrer I’absence fréquent de consen-
sus entre les méthodes d’appariement utilisées
pour une méme entité de O, le tableau 1
montre les appariements privilégiés pour cha-
cune des trois méthodes considérées en prenant
Con ference Member comme entité de départ
de I’ontologie source O;.

Tableau 1 — Résultats d’appariement de 1’en-
tit€ e; = Con ferenceMember de O, avec des
entités de O,

méthode ey € Oy n
Levenshtein | Conference_fees | 0.687
Jaro Conference 0.516
Hamming Conference 0.625

4.2 [Etape 2 : Modélisation dans le cadre de
la théorie des fonctions de croyance

Les résultats d’appariement de 1’étape
précédente seront modélis€s dans le cadre
de la théorie des fonctions de croyance.

— Cadre de discernement : il sera composé de
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toutes les entités de 1’ontologie cible Oy ap-
pariées a une entité de O; par au moins une
des méthodes d’appariement considérées. Si
I’on reprend I'illustration d’appariement de
la figure 1, le cadre de discernement © est
composé de toutes les entités de Oy a I'ex-
ception de T'hing et C'o_chair .
Sources d’information : Chaque correspon-
dance établie par une méthode d’appariement
sera considérée comme une information dont
la source est I’application d’une méthode
d’appariement sur I’entité de O; concernée
par la correspondance.
Les fonctions de masse : Parmi 1’ensemble
des correspondances établies, on ne conserve
que celle ou l’entité source e; € O; a
un appariement de proposée pour toutes
les méthodes d’appariement considérées.
Une fois les correspondances retenues, on
construit pour chaque source sa propre
fonction de masse. La mesure de similarité
obtenue pour une correspondance suite a
I’application d’une méthode d’appariement
est interprétée comme une masse. Vu que
la somme des masses de croyance pour une
source donnée doit €tre égale a 1, une masse
sera affectée a I’ignorance totale.
Reprenons les résultats du tableau 1.
Ce tableau montre les informations
de trois différentes sources que nous
désignons par Si., Siaro € Shummings OU
ey = ConferenceMember. Selon S;.,,
la masse associée a la correspondance
avec Conference_fees de (s, notée
msfelu(C’onference,fees) = 0.687 est donc
msleelv(@> = 1 — 0687 = 0.313. Pour
cet exemple restreint aux correspondances
privilégiées partant de e; pour les trois
méthodes, les trois fonctions de masse sont
les suivantes :
- mSleelv(Conference,fees) =
msleelv(@) = 0.313,

- mS;ém(Conference)
msjém (@) = 0484,
(Conference) =

(©) = 0.375.

0.687 et

0.516 et

— mge 0.625 et

hamming
msel

hamming
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— Combinaison : Au cours de cette étape, les
fonctions de masse des trois sources se-
ront combinées par application de la regle
conjonctive normalisée. On obtient alors une
masse pour chaque entité e; € Oy candi-
date a un appariement avec une entité e; €
O; donnée. Pour notre exemple ou e; =
Con ference Member, on obtient les masses
combinées suivantes :

- mg o (Conference_fees) = 0.2849,

comb
- mé . (Conference) = 0.5853,
~m L (0) = 0.1298.

4.3 Prise de décision

Une fois que nous avons tenu compte de toutes
les informations provenant des différentes
sources, 1’étape de décision s’impose. Cette
étape nous permettera de décider sur ’entité
de I’ontologie cible a apparier avec chacune
des entités de I’ontologie source. Au cours de
cette étape de décision on va pouvoir décider
par exemple si on doit apparier I’entité Confe-
renceMember a I’entité Conference_fees ou a
I’entité Conference ou bien encore établir une
indétermination. Dans ce cas, les correspon-
dances concurrentes doivent €tre maintenues.
Rappelons qu’a I’issue de 1’étape précédente,
nous avons obtenu les résultats suivants par
application de la reégle conjonctive normalisée :

- mg (Conference_fees) = 0.2849,

comb
- m& . (Conference) = 0.5853,
—m®, () = 0.1298.

N

La regle de décision, a savoir le maximum
de la probabilité pignistique, considere que le
meilleur correspondant pour ConferenceMem-
ber de 1’ontologie source est ’entité Confe-
rence de 1’ontologie cible. Par application de la
regle de décision proposée par Appriou, on ob-
tient un résultat imprécis, c’est-a-dire une dis-
jonction entre C'on ference_fees et Conference
(Conference_fees U Conference), ce qui se
traduit par le fait qu’on pourra apparier Confe-
renceMember de I’ontologie source avec soit
Conference_fees ou Conference.
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5 Conclusion et perspectives

Dans cet article, nous avons proposé un pro-
cessus de décision dans le cadre de I’apparie-
ment des ontologies. Cette approche se déroule
principalement en trois étapes ou nous €tions
amenés tout d’abord a chercher les alignements
entre les entités de deux ontologies par ap-
plication des méthodes terminologiques. En-
suite, nous avons procédé a la modélisation des
résultats dans le cadre de la théorie des fonc-
tions de croyance. La derniere étape consiste a
prendre une décision quant au correspondant de
chaque entité de I’ontologie source et ceci par
application des regles de décision.

Comme perspectives a ce travail, nous envisa-
geons tout d’abord d’utiliser d’autres méthodes
d’appariement tenant compte des différents as-
pects sémantiques et structurels des entités a
apparier et aussi de se fonder sur les résultats
de décision pour construire une ontologie in-
certaine. Le passage a I’échelle du cadre de
discernement important pour les ontologies
nécessitera de développer des approches effi-
caces de décision sur I’espace puissance.
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Résumé :

Quand un agent regoit une information d’un autre ag-
ent, la facon dont il integre éventuellement cette informa-
tion dépend de son propre état de croyance initial, de
la confiance / défiance qu’il a vis-a-vis de 1’autre agent,
et éventuellement des arguments que 1’autre agent peut
apporter a I’appui de son affirmation, et de la maniere
dont ces arguments rencontrent les croyances du premier
agent. Nous cherchons a représenter ce processus com-
plexe de révision dans le cadre de la logique possibiliste.

Mots-clés :
logique possibiliste, révision de croyances, fusion d’in-
formation, confiance, argumentation.

Abstract:

When an agent receives a piece of information from an
other agent, the way he is going to take it into account
depends on his own state of beliefs, on his trust / distrust
with respect to the other agent, and possibly on the argu-
ments that the other agent can produce for supporting his
claim, and how these arguments interact with the beliefs
of the first agent. We study how to represent this complex
revision process within the setting of possibilistic logic.

Keywords:

possibilistic logic, belief revision, information fusion,
trust, argumentation.

1 Introduction

Il existe une littérature considérable sur
la révision de croyances (un processus
asymétrique ou la priorité est donnée a I’infor-
mation entrante) et sur la fusion d’information
(un processus symétrique d’intégration de
I’information provenant de plusieurs sources
d’information en parallele), dans différents
cadres de représentation des connaissances.

La logique possibiliste en associant des pro-
positions avec des niveaux de certitude offre
un cadre pondéré a la combinaison de 1’in-
formation qui autorise différentes opérations
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d’agrégation [4, 1]. Un cadre étendu permet de
prendre en compte les croyances mutuelles de
groupe d’agents [6]. Des informations de niveau
méta sur la capacité des sources a fournir des in-
formations toujours correctes et éventuellement
completes peuvent y €tre prises en compte [5].
Le processus de transmission de 1’information
au travers de plusieurs agents a été récemment
analysé dans des cadres de logique modale et
de fonctions de croyance [2, 3] et peut se trans-
poser en logique possibiliste. Par ailleurs, I’idée
de décodte (“discounting”) de la confiance dans
I’information fournie par une source quelque
peu douteuse est ancienne ; elle a été récemment
enrichie en prenant en compte la compétence
des sources et leur propension a dire la vérité
[9] dans le cadre des fonctions de croyance.

La réception par un agent d’une information
qui rentre en conflit avec ses croyances est
souvent affaire d’argumentation de la part de
I’autre agent qui I’informe. Des travaux ont
comparé les processus de révision et d’argu-
mentation, montré leur complémentarité, pre-
nant aussi en compte des regles par défaut dans
I’argumentation [8, 7]. La confiance (et la dé-
fiance) peuvent elles-mémes €tre argumentées
[10]. Nous discutons maintenant comment ces
différents aspects peuvent étre pris en compte et
intégrés dans le cadre de la logique possibiliste.

2 Esquisse d’une approche unifiée

Considérons une proposition p. L’agent a peut
étre (plus ou moins) certain que p est vrai, ou
que p est faux, ou encore ne pas savoir si p est
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vrai, ou si p est faux. Sa confiance dans les dires
de I’agent b peut €tre plus ou moins grande, (ou
au contraire, il peut douter de ses dires avec
un niveau de défiance plus ou moins grand),
il peut aussi avoir une information imprécise,
voire nulle, sur cette confiance / défiance. On
peut aussi envisager que a considere que p est
plus ou moins possible, sans qu’il n’ait aucune
certitude sur p, i.e., sans qu’il ne ne sache rien
de la possibilité de —p.

Supposons que a croit p (a un certain degré
«), que b affirme que p est faux (avec un cer-
tain degré de certitude [3), et que a a confiance
au niveau vy en b. Les deux premieres informa-
tions correspondent a des formules standards de
la logique possibiliste associées a des agents :
(p,a/a) et (—p, 3/b). La derniére peut s’écrire
sous la méme forme, (b,v/a), en assimilant a, b
a des propositions ; ce qui conduit par inférence
a (—p,min(B,v)/a). On voit qu’on n’est pas
dans une situation de révision classique, qui
donne la priorité a I’information entrante. Se-
lon les valeurs relatives de a et de min(/3, ),
a va continuer a croire p, ou se mettre a croire
que p est faux (avec avec un degré de certitude
affaibli par rapport a 3). Si & = min(3,7), a
se retrouve dans un état de doute absolu ou p et
—p lui apparaissent chacun completement pos-
sibles. Notons qu’un tel mécanisme simple de
“discounting” et de gestion de I’'incohérence par
niveau ne modifie pas la confiance de a par rap-
port a b, si b va a I’encontre des croyances de a,
ni ne la rend plus imprécise. On n’y modélise
pas non plus la simple défiance.

L’agent b peut énoncer un (ou plusieurs) argu-
ment(s) a ’appui de son affirmation, c’est-a-
dire un ensemble minimal cohérent de propo-
sitions qui impliquent —p. Certains composants
de I’argument considéré peuvent étre partagés
par a, d’autres inconnus de a. Si I’argument de
b comporte des éléments qui contredisent les
croyances de a, cela amenera a a affaiblir la
possibilité de —p de maniere d’autant plus forte
que les croyances contredites de a seront fortes.

On voit que les processus de “révision”, de prise
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en compte (et d’évolution) de la confiance, et
d’évaluations de la force des arguments sont
étroitement liés.

3 Conclusion

La présentation du travail en cours montrera
comment ces différents aspects peuvent étre ar-
ticulés dans le cadre de la logique possibiliste.
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Résumé: _ o ~ imprécises, 'ensemble  des  données
_ Lageneration qe cha}mps sc_al:’:ures spatiaux, |,nterpol_es compatibles avec les informations disponibles
a partir de données géo localisées ayant une evaluatlonContient plus d'un élément. Supposons que I'on

floue reste significative sur deux aspects : la génération . . \ v .
du champ continu de valeurs floue d'une part, et de la SOuhaite construire un modele d'interpolation

pertinence des résultats dans le cadre de lutilisation Précis qui corresponde a l'ensemble des
d'experts. En effet, plusieurs techniques ont été eléments admissibles. Un tel modele se basant
explorées dont le krigeage flou mais peu de choses soptsur les données disponibles sera différent selon

retranscrites concernant la génération d’'un champ a < L . \ .
partir de données possibilistes et de la c:onnaissanceIeS donnees précises choisies. Le modele doit

exploitable en sortie. Deux nouveaux algorithmes sont Par conséquent étre également imprécis et cela
proposés et appliqués a des données environnementalesimplique que I'on introduise un second niveau
de champs d’estimation de la profondeur du substratum d'incertitude. Un tel modéle devrait donner en
pour I'étude de nappe aquifere pour essayer d'évaluer la chaque pointx de l'espace non pas une
pertinence de la connaissance spatiale produite. distribution de possibilité sur les valeurs de
Mots-clés : _ o o mais sur les distributions de possibilité gur
Interpolation spatiale floue, possibilités, estimation de admissibles en x. L'interpolation et

champ de profondeurs de substratum s . . p

'estimation spatiale sont basées sur des

distances entre les points de l'espace, et entre
1 Introduction les valeurs deZ. Il existe de nombreux

modeles de distance entre les données de type
L'interpolation floue est un probleme qui a été distribution de possibilité. Certains renvoient
abordée sous plusieurs angles depuis lesune distance réelle précise dautres une
années 1970, mais pour lequel il existe peu dedistance sous forme d'une distribution de
solutions satisfaisantes. Le type d'incertitude possibilité, ou des distances sous forme
ou d'imprécision que le modele doit prendre dintervalle. Deux approches sont envisagées
doit étre précisé. [5] distingue trois types dans cette étude :
d'imprécisions possibles : sur la localisation, 1. une approche combinant du krigeage avec
sur les données, et sur les interactions spatialesun algorithme de type Monte-Carlo afin de
entre les données. Seule I'imprécision sur la reconstituer en chaque une distribution de
donnéeZ est considérée, le probléme de la possibilité par tirage aléatoire,
localisation des points de mesure n’est pas pris 2. une approche adaptant l'algorithme de soft
en compte. On supposera alors que le point dekriging proposée par [3], ce qui permet de
mesure enx [X,y,4 est connu a une erreur borner la distribution de possibilité en tout
estimée. L'interpolation ou I'estimation spatiale point de I'espace.
en présence d'incertain se heurte a un
probleme conceptuel : en toute rigueur, il est
difficile d'obtenir un modéle d'interpolation ou ! Distributions admissibles au sens ou elles sont

d'estimation précis a partir de données compatibles —avec ~des valeurs  supports et
. £ . . ___hoyaux voisines: soit I'enveloppe de I'opérateur de type
imprécises. En présence de donneées

O (min)
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On présentera successivement ces

deuxde sesa-coupes T, définies par touta €

techniques d’interpolation spatiale en présence ]0,1] par n, = {x e X|n(x) = a}. Si0 < a <
d’incertitude (section 2), et leur mise en g<1 alorsty U Ty . La coupe de niveau=1

application sur cas test (section 3).
L’application a l'estimation d’'un champ de

profondeurs de substratum (section 4) pour
'étude de nappe aquifére permettra d’aborder
le probleme de I'adéquation entre ce type de
formalisme et de la prise en compte de

est appelé noyau, la coupe de niveauO est
appelé support.

2.2 Construction de I'estimateur

L'opérateur d'interpolation sur des données

données imprecises dans le cadre d'expertisefoues représentées par des distributions de

en Géosciences.

2 Estimateurs flous sur de données
possibilistes

Soit une zone géographig&alans laquelle on
souhaite évaluer une grandeuiOn dispose de
n points de mesurg aveci = 1,...,n, pour
lesquels on connait une distribution de
possibilité de la valeuz : 15(z). On cherche a
estimer la distribution de possibilit§ en tout
point x [0 S a partir des,.

2.1 Eléments sur les possibilités

La théorie des possibilités introduite par [6]
fournit un cadre méthodologique pour traiter
l'information imprécisez [2]. Une distribution

de possibilité peut étre vue comme une
superposition d'intervalles emboités de valeurs
du parametre incertain ou chaque intervalle
correspond a un degré de confiance [1]. Une
mesure de possibilité sur un ensemileest

une fonction Msur Z, prenant ses valeurs dans

possibilité permet de fournir soit des données
floues avec des distributions de possibilités ou
des ensembles flous basiques, soit des
d'intervalles, voire éventuellement des données
précises. Il semble plus pertinent de rechercher
un résultat qui soit une distribution de
possibilité pour éviter de perdre de
I'information. Si I'on interpole des distributions
de possibilités en utilisant desi-coupes
une caractéristique importante pour
I'estimateur est la cohérence du résultat tel que
gu'en chaque point lesx-coupes de rang
supérieur soient incluses dans tesoupes de
rang inférieur ; 'opérateur croissant préservera
'emboitementa-coupes.

2.3 Krigeage par échantillonnage aléatoire

En krigeage, les méthodes existantes souffrent
de la complexité de l'application du krigeage a
une distribution de possibilité [4]. L'idée

d'utiliser une méthode de krigeage par
échantillonnage aléatoire de type Monte-Carlo
pour calculer l'interpolation de distributions de

un ensemble totalement ordonné généralementPOssibilite est suggeree par [4]. En presence

Z = |[0; 1], tel que :

M (0)=min Z etll (X) =max Z
avec :

I—)[((Uizl..kAi) =max;—qy,_ x [1(4;) Y(A))i=1,.k €
2

d'incertitude, le principe consiste a utiliser un
échantillonnage de type Monte-Carlo, pour
kriger un grand nombre de profils de valeurs
admissibles, puis leur appliquer un estimateur
local précis, et en déduire un estimateur
possibiliste en un point donné. L'avantage de
cette approche est qu'il n'est pas nécessaire de

On peut construire une mesure de possibilité a construire un modele de krigeage qui puisse

partir d’'une distribution de possibilité sur X.
Réciproquement une mesure de possibilité
sur X induit une distribution de possibilité :
vx € X,m(x) = [[({X}). Une distribution de

possibilité peut étre représentée par I'ensemble relativement simple :
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traiter des données possibilistes (variogramme
flou) contrairement a [5]. La méthode de
krigeage par échantillonnage aléatoire
proposée ici repose sur un principe
il s'agit de générer un
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grand nombre de tirages aléatoires eI

sélectionnantz® des valeurs entre les bornes - . su (r:

des supports des distributions de possibilité, — »=suw.swe ()

puis de kriger chaque tirage, afin d'extraire de [°n'="=" -

'ensemble des tirages une distribution de | _uu.y

possibilité résultante. Une distribution de pour tous les z & S faire

possibilité ne contient pas dinformation % = kri (e, 2);

supplémentaire sur la probabilité d'occurrence | | * 7™

des différentes valeurs. Tous les points de 4.

possibilité non nulle onta priori la méme /* On récupere 1’enveloppe convexe +/

probabilité d'occurrence, tandis que les points o fou los o= faire

de possibilité nulle ont une probabilité i”:()

d'occurrence égale a zéro.

Le krigeage réalisé pour chaque tirage Figure 1 — Algorithme méthode de krigeage

aléatoirek, consiste a faire I'estimation en un par échantillonnage aléatoire

point x, & partir des différentes valeuwt's(x)

sur lesi points de mesure : soit a chaque tirage Le soft kriging introduit par [3] cherche a

k une valeur 2¥ (x). Pour déterminer la  pouvoir prendre en compte dans l'interpolation

possibilité associée en ce poigt (x), on des intervalles, des indications sur la confiance

associe & la valeur obtenue par krigeage la relative sur la probabilite d'occurrence des

possibilité minimale des points interpolés, soit valeurs d'un intervalle. Le principe de calcul

la confiance minimale associée cette valeur. de linterpolation en présence dincertitude

On obtient alors la valeur par ™ tirage SFODoslé IDafd[3]I est ded travailler noln plus sur
: X k& es valeurs de la grandesia interpoler, mais

pour chaque poink, et ; (Z (xi)) =m la sur des fonctiong indicatricemcFl)(x,z) qui

possibilité associee : permettent de représenter mathématiquement
si la valeurz est inférieure ou supérieure, a la
m(2*(x)) = min;(nf) (1)  mesure au point : lorsquez > Z (x), ind(x,z)
] ) ) =1 ;lorsque =Z (x), ind(x,z)= 0.
LesK échantillons obtenus en un poxvont Dans le cas oll la mesure erst un intervalle

permettre de reconstruire une distribution de [z (x) ,.Z* (x)], on a également : lorsque> Z*
possibilité en ce po.ir'lt. Pour chaque valeua (x)_, ind(x,z)= 1; lorsquez = Z (x) , ind(x,z)=
valeur de la possibilitér (z(x)) est la valeur o et lorsque Z_ (x) < z<Z" () la fonction la

maximale des possibilités (z”‘(x )) soit : fonction ind(x,z)n’est pas définie.
T[x (Z(x)) = Données : n points z; et les valeurs mesurées en ces points Z (z;)
max I:T[(ZAk(x)) |ZAk(x) = Z(.X),Vk (= K] (2) /* Z (z;) peut &tre un réel ou un intervalle */
Données : Une discrétisation I. = {z} des valeurs possibles pour z
. . o /* Création des fonctions ind(z;, zi) */
7 (z(x)) est une estimation de la possibilité i z() < = alors ind(e,, ) = 0
interpolée a partir desn échantillons de Bt i ) Aloman i~
possibilités associés aux points x sion ”"""'l“”" - “]‘*f .
pour tous les z. € [, faire
Kriger les fc m(A'tiuus ind(zx, z;) (en faisant attention au cas ou toutes les valeurs
2.4 Algorithmes prudent d’interpolation sont N A);
floue F; (28) = Cindz,ayena M (2, 26) - ind (24, 20);

2.(z) = moyenne des z (z;) € [zk, zr41] proches de z;
fin

2*(z) = Zi\ 0 2:(@) - [Ff (zr41) — F (z1)];

Figure 2 — Algorithme soft kriging selon [3]
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Il convient d’adapter cet algorithme (Figure 2.)

associées a chaque point de l'espace. Une

aux distributions de possibilité et notamment surface analytique pour une valeur salaiest
pour la plage de valeurs correspondant a générée puis bruitée, sur laquelle un ensemble

I'intérieur de l'intervalle ou il ne peut statuer.
Une proposition d'un algorithme prudent
d’interpolation floue est fournie (Figure 3.): la

n points est choisi (Figure 4.). La génération
des distributions de possibilité est obtenue a
partir du bruit, qui utilise un tirage aléatoire de

premiére étape consiste a tirer une collection loi normale centrée et de variance 5%. Les

de a-coupes pour chaque distribution de
possibilité afin de travailler sur intervalles puis

distributions de possibilité sont construites
autour de ces valeurs bruitées, de type

utiliser les mesures précises pour prendre entriangulaire, de support de longueur égale a
compte les mesures imprécises. Il faut donc 10% de l'intervalle des valeurs et d’'un noyau

adapter la valeur ZFigure 2.). Cette valeur est
une valeur moyenne deg précis sur un
voisinage du calcul du point: elle doit étre

remplacée par un intervalle soit une borne
inférieure et une borne supérieure. Le principe

de I'algorithme (Figure 3.) est le suivant : pour
chaquea et en chaque point de mesueon
calcule unex-coupe £_(%, a), Z (x, a)]. Ces

O-coupes sont agrégées sur chaque voisinage ® *

Vx du point xselon :
{ z_ (x,@) = minge, z_(x, )
z" (x,a) = maxy ey, 2" (X, Q)

3)

Algorithme 5: Algorithme prudent d’interpolation floue

Données : n points z; et leurs distributions de possibilité associées 7; (z)
On définit les a pour lesquels les a-coupes seront déterminées;
/* Pour chaque valeur a on aura une a-coupe en chaque point de mes
z;, qui fournira un intervalle pour 1’interpolation
[2= (zi, ) , 2t (i, @));
pour tous les a faire
pour tous les zg € S faire
/* On travaille sur un voisinage V) de xzo:
z_ (z0, @) = mingey, 2— (z, @);
2* (20, @) = maxzey, 27 (2, @);
fin
fin

Figure 3 — Algorithme prudent d’interpolation
floue

3 Application sur cas test
3.1 Construction d’'un cas test

On souhaite, a partir de distributions de

ne contenant qu’un élément.

o
R ©

Figure 4 — Cas test : plan incliné de valeurs
bruitées échantillonnées en n points ; pour
chaque point,iconstruction d’'une distribution
de possibilité triangulaire.
Ce cas test est les deux
algorithmes proposeés.

utilisé pour

3.2 Résultats obtenus pour le krigeage par
échantillonnage flou

Les résultats de I'algorithme deigeage par
échantillonnage flou montrent qu’il est
difficile de reconstituer I'enveloppe convexe
de: la distribution de possibilité. La densité de
points n'est pas suffisante quel que soit le
nombre de tirages aléatoires réalisé (cas : 1000
et 5000 itérations — Tableau 1). Une limite est
que, pour chaque point et a chaque tirage est
recalculé le krigeage: plus le nombre de points
augmente plus le temps de calcul augmente.
D’autre part, la distribution de possibilité
serait I'enveloppe des points obtenus par tirage

possibilités connues en certains points d'une de Monte-Carlo or avec 5000 points on

surface S, constituant une perception
incertaine de la valeur de la surface en ces

n'obtient aucun point ayant une valeur de
possibilité de 0,35. Pour obtenir un point de

points, reconstruire les fonctions de possibilité valeur de possibilité de 1 il faut avoir en entrée
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que des points ayant cette valeur: la
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probabilité que ces conditions soient réunies, Tableau 2 — Interpolation floue par indicatrice
est fonction du nombre de points et du ratio avec 8 voisins pour différentes valeurs de Z.
noyau/support. Dans le cas étudié on a une Les 50 points de mesure sont indiqués par des

probabilité de (¥4f110°. Il est donc difficile croix (dont la valeur précise est également
de décrire l'enveloppe extérieure de la fournie ici), les 1Gx-coupes ont été calculées
distribution de possibilité en un temgu sur une grille de 10000 points. Le dégradé de
raisonnable. couleur prdonnég correspond a la valeur de

7€X) en tout point X
3.3 Résultats obtenus pour ['algorithme
prudent d’interpolation floue AT I N. T FRr— M

Les résultats de dlgorithme prudent
d’interpolation floue montrent qu’il est o Y
possible de construire une distribution de| . “. . L B Gl |

possibilité de I'ensemble de valeurs deen L e o | [ 02
tout point x e | L
Valeur dez= 8 Valeur dez =9

Tableau 1 — Krigeage par échantillonnage - p— -
aléatoire au point x de coordonn€86,50) ’ B G
avec 1000 et 5000 itérations.

Test avec 1000 Test avec 5000

Ll
{| to

5|

1
|

itérations itérations U

Valeur dez =10 Valeur dez =11

Une iso valeur de =10 selon une diagonale
coin-gauche bas vers coin-haut drodnnue a

la construction du cas test, conduit a des
valeurs de possibilité proches de 1 pour zles
L'objectif étant de représenter un champ comprises entre 9 et 11 (Tableau 2.). Ce qui
continu, la représentation cartographique des est concordant par rapport aux hypotheses.
résultats n'est pas aisée. Nous avons choisi deCeci permet de fournir une information
représenter des cartes de possibilités pour desmprécise mais selon une répartition spatiale ;
valeurs dez fixées, en chaque point la valeur ceci reste difficile a utiliser comme champ de
de la possibilité associée a une valeur dornée données continues pour des surfaaegriori
est affichée (Tableau 2.). mal connues mais réellement précises (voir
exemple suivant). Cependant pour un expert
L'interprétation des résultats obtenus ne peut en géosciences cherchant a faire un
se faire sans considérer une plage de valeurséchantillonnage, cela permet I'aide au choix de
possibles de successivement: en effet la carte points de mesure. Pour un point donné&a
de valeurs de possibilité pour un donné distribution de possibilité selon les valeurs
identifie les secteurs potentiels de valeurs possiblesz a été construite, et pour chaque
possibles plus ou moins proche de 1. valeur pour une valeur de possibilité, la
confiance(1-a) en cette valeur.z
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4 Application a un champ de

profondeurs du substratum Tableau 3 — Interpolation floue par indicatrice
avec 8 voisins pour différentes valeurs de z.

En hydrogéologie, les écoulements sont Les 1144 points de mesure sont indiqués par
modélisés par les équations de Darcy, résoluesdes €roix, les 1@-coupes ont ete calculées sur

par des codes de type éléments finis ou une grille de 10000 points.
différences finies. Dans tous les cas, des

données sur la géométrie de I'aquifére comme Valeur de z= 330| Valeur de z
la hauteur de nappe et profondeur du m 340 m

substratum sont nécessaires. Cette information
est souvent mal connue et pose des problemes
de recoupements de surfaces lors
d’interpolation de données de sondage de
profondeur d'une part, et de la hauteur
piézométriqgue d’autre part, qui n'ont pas de
réalité physique : la nappe aquifére ne peut se
localiser au-dessous du substratum
imperméable. L'imprécision sur les données
de la profondeur du substratum impose a
I'expert en fonction de sa connaissance du
phénomene local, de faire des choix sur les
valeurs possibles de la profondeur. On se
propose de représenter cette information par
une valeur floue et plus précisément associer Les résultats montrent (Tableau 3.) gu’il existe
une distribution de possibilité en chacun des un zonage longitudinale de la répartition des
points Xy et appliquer I'algorithmeprudent valeurs z de valeurs de possibilité les plus
d’interpolation flouea ce jeu de données. grandes, ce qui correspond effectivement a une
Les données sources utilisées sont des donnéestructuration selon a un axe N-NE S-SE du
de sondage fournissant une cOte Une substratum identifiee. On peut alors

fonction de distribution autour des valeurs raisonnablement penser que pour
possibles est construite en chacun ces pointsl'hydrogéologue, expert du site, en disposant
(Figure 5.) pour une valeur de donnée, de la possibilité

de cette valeur pour un point donné ou pour
une zone donnée, il pourrait conforter ou
infirmer ses hypotheses sur la répartition
spatiale de la profondeur du substratum. Il peut
alors choisir une enveloppe de référence qu'il
juge satisfaisante pour construire le modeéle
numeérique de terrain nécessaire aux modeles
d’écoulements hydrodynamiques.

Figure 5 — Localisation des points S Interpretation et discussion
d’échantillonnage de profondeur du . . .
substratum Quelques éléments sont a retenir de cette

étude. L’algorithmeprudent d’interpolation

On remarquera que 'échantillonnage est non floue permet d'obtenir une distribution de
uniformément réparti sur 'espace considéré ce POssibilite floue Dbien que sensible a la
qui aura un effet sur interpolation floue. répartition de points supports néanmoins vrai
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pour toute forme d’interpolation. L'un des
inconvénients de cette méthode est: si I'on
suppose deux points proches l'un de l'autre
centrés sur une méme valeur, mais dont I'un
est moins précis, c’est le point le moins
imprécis qui sera utilisé dans l'interpolation.

L'intégration de fonctions de pondération [2]

pourraient permettre de prendre en compte la
(dis)similarité pouvant exister dans les
méthodes de krigeage, ceci permettrait
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Résumé :

Dans cet article, nous présentons une stratégie pour
la mise en ceuvre d’un systeéme d’interrogation floue au-
tour d’un SGBD classique. Le systeme considéré repose
sur le langage SQLf qui permet d’exprimer une grande
variété de requétes floues. Les expérimentations menées
montrent que la stratégie d’implémentation choisie ap-
porte des gains de performances par rapport aux architec-
tures existantes fondées sur un couplage plus lache entre
une couche dédiée a 1’évaluation des requétes floues et un
SGBD, ce type de solution nécessitant une étape de post-
traitement pour calculer la relation floue produite par une
requéte. Nous décrivons également une interface convi-
viale visant a aider les utilisateurs non-experts a exprimer
leurs requétes floues de fagon intuitive.

Mots-clés :

Bases de données, requétes floues, optimisation de
requéte, SQL, PostgreSQL, interface.
Abstract:

In this paper, we present an implementation strategy
for a fuzzy querying system embedded in a regular
DBMS. This system relies on the language SQLf that
makes it possible to express a great variety of fuzzy que-
ries. Experiments show that this implementation strategy
induces performance gains with respect to existing stra-
tegies based on a loose (or milder) coupling between a
fuzzy querying layer and a DBMS, that necessitate an
external postprocessing so as to compute the result in the
form of a fuzzy relation. We also describe a user-friendly
interface aimed at helping nonexpert users express their
fuzzy queries in an intuitive manner.

Keywords:
Database fuzzy querying, query optimization, SQLf,
PostgreSQL, interface.

1 Introduction

Durant la derniere décennie, on a pu consta-
ter un regain d’intérét pour l’expression de
préférences dans les requétes de bases de
données. En réalité, les premiers travaux de re-
cherche sur ce sujet remontent aux années 80,
voir par exemple [12]. Les motivations pour
les requétes a préférences sont multiples [10].
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Tout d’abord, il est apparu souhaitable d’offrir
des langages de requéte plus expressifs, pouvant
traduire plus fidelement le besoin d’informa-
tion d’un utilisateur. En deuxiéme lieu, I’intro-
duction de préférences dans les requétes fournit
une base a I’ordonnancement des réponses, ce
qui est particulierement appréciable dans le cas
d’ensemble de réponses volumineux. Enfin, une
requéte classique peut produire un résultat vide,
alors qu’une version relaxée (et donc moins res-
trictive) de la requéte pourra peut-€tre etre satis-
faite par quelques éléments.

Dans cet article, nous considérons 1’approche
de requétes a préférences fondée sur la théorie
des ensembles flous [4, 6], qui bénéficie de la
grande expressivité de cette derniere quant a
la modélisation de différents types de criteres
graduels et a leur combinaison. Le cadre lan-
gagier considéré est SQLf [4, 14], une exten-
sion floue de SQL initialement proposée dans
les années 90 et complétée depuis par divers
opérateurs additionnels. Ce langage incorpore
de nombreux constructeurs flous et constitue
un outil puissant pour exprimer des requétes a
préférences dans un cadre de bases de données.
Cependant, deux questions n’ont pas trouvé
jusqu’a présent de réponses définitives, qui
concernent respectivement : i) la mise en ceuvre
efficace d’un systéme d’interrogation fondé sur
SQLf (ce qui souleve la question de 1’optimi-
sation de requétes floues), ii) la facon dont on
peut aider un utilisateur non-expert a spécifier
ses requétes floues (qui sont intrinsequement
plus complexes que des requétes classiques, ne
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serait-ce que parce que des fonctions d’appar-
tenance entrent en jeu). Dans cet article, nous
montrons qu’une architecture bien choisie per-
met d’atteindre de bonnes performances quant
a I’évaluation de requétes, et nous définissons
également une technique conviviale reposant
sur une interface graphique pour la spécification
des requétes floues. Ces deux résultats de-
vraient contribuer, du moins 1’espérons-nous,
a convaincre la communauté des bases de
données de la pertinence et de la faisabilité
de I’approche floue pour la modélisation de
requétes a préférences.

La suite de l’article est structurée comme
suit. La section 2 fournit quelques rappels sur
I’interrogation floue de bases de données et
présente les caractéristiques principales du lan-
gage SQLT. La section 3 discute différents types
d’architecture de systemes d’interrogation floue
et expose le principe qui a été retenu dans le
prototype que nous avons développé. La sec-
tion 4 porte sur ’expressivité du fragment de
SQLf qui a été implémenté dans ce prototype.
En section 5, des résultats expérimentaux sont
reportés, qui montrent que la stratégie de mise
en ceuvre choisie conduit a de bonnes per-
formances relativement a d’autres types d’ar-
chitecture. La section 6 présente une interface
conviviale qui peut étre utilisée pour spécifier
une requéte floue pas a pas. Enfin, la section 7
conclut I'article et esquisse quelques perspec-
tives de futurs travaux.

2 Rappels sur SQLf

Les opérateurs de 1’algebre relationnelle
peuvent étre étendus de facon assez directe
aux relations floues en considérant d’une part
ces dernieres comme des ensembles flous, et
en introduisant des prédicats graduels dans
les opérations appropriées d’autre part. En
guise d’illustration, nous donnons ci-apres la
définition de la sélection floue, ou r désigne
une relation (floue ou classique), 1) une
condition floue, et T une norme triangulaire
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(généralement min) :

Haoy(r) (t) = T(,ur(t)7 M¢(t>)

Une extension de SQL s’appuyant sur cette

algebre relationnelle étendue est présentée dans

[4, 14]. Nous nous limitons ici a la descrip-

tion du bloc de base. Par rapport a SQL, les

différences majeures concernent :

— le calibrage du résultat, qui peut étre réalisé
a l’aide d’un seuil quantitatif (nombre sou-
haité de réponses, noté k), d’un seuil qualita-
tif (degré minimal de satisfaction exigé, noté
«), ou les deux,

— la nature des conditions autorisées, qui
peuvent étre floues.

En conséquence, le bloc de base devient :

select [distinct] [k | « | k, o] attributs
from relations where cond-floue

ou cond-floue peut faire intervenir a la fois des
prédicats flous et des criteres booléens.

Par ailleurs, SQLf préserve (et étend) les
constructeurs spécifiques a SQL, par exemple
les opérateurs d’imbrication, le partitionnement
de relation, etc.

3 Architectures de systemes d’in-
terrogation floue

L’évaluation de requétes floues [7, 11, 9, 3]
souleve différentes difficultés, parmi lesquelles
les principales sont énumérées ci-dessous :

— les SGBD commerciaux n’offrent pas d’ou-
tils permettant de définir de facon simple
des fonctions d’appartenance, des connec-
teurs flous, etc.

— il n’est pas possible d’utiliser directement
les index existants lors de I’évaluation d’une
condition de sélection (ou de jointure) floue ;

— une étape additionnelle vouée au calcul
des degrés de satisfaction et au calibrage
du résultat (top-k ou seuillage qualita-
tif) est nécessaire, ce qui induit un coft
supplémentaire lors de 1’évaluation.

En conséquence, la mise en ceuvre d’un systeme

d’interrogation floue peut €tre abordée selon

trois types d’architecture [16] :
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— couplage ldche : les nouvelles fonctionna-
lités sont intégrées au travers d’une couche
logicielle au-dessus du SGBD. Le principal
avantage de ce type d’architecture réside dans
sa portabilité, puisque n’importe quel SGBD
peut étre utilis€ comme moteur de requéte
sous-jacent. Son principal point faible tient
a ses relativement médiocres performances,
qui rendent difficiles le passage a 1’échelle.

— couplage moyen : les nouvelles fonction-
nalités peuvent étre intégrées par 1’in-
termédiaire de procédures stockées, a 1’aide
d’un langage procédural appropri€ aux bases
de données tel que PL/SQL (dans le cas
d’Oracle). Une alternative consiste a recou-
rir a des fonctions externes. Avec ce type de
solution, les données sont directement gérées
par le noyau du SGBD, ce qui conduit a de
meilleures performances.

— couplage fort : les nouvelles fonctionnalités
sont incorporées dans le noyau méme du
SGBD. Cette solution, qui est évidemment
la plus efficace en termes d’évaluation de
requéte, implique de réécrire entierement le
moteur d’évaluation, y compris 1’analyseur
syntaxique et I’optimiseur du SGBD, ce qui
est une tache tres lourde.

Le type de mise en ceuvre que nous présentons
dans cet article est a la jonction entre le cou-
plage moyen et le couplage fort dans la me-
sure ou 1) les fonctions d’appartenance corres-
pondant aux prédicats flous spécifiés par 1’uti-
lisateur sont définies comme des procédures
stockées et 11) les extensions graduelles des
opérateurs (norme triangulaire pour la conjonc-
tion, conorme triangulaire pour la disjonction,
quantificateurs flous) sont implémentées en lan-
gage C et intégrées dans le moteur de requétes
du SGBD relationnel PostgreSQL.

En I’absence de SGBD commerciaux capables
d’interpréter des requétes floues, certaines ap-
proches de la littérature proposent de passer
par une étape de dérivation derivation step [5]
de facon a générer une requéte booléenne uti-
lisée pour préfiltrer la relation (ou le produit
cartésien des relations) concernée. L’idée est
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de restreindre le calcul des degrés de satisfac-
tion aux seuls n-uplets qui satisfont a un niveau
suffisant la condition de sélection (ou de join-
ture). Dans ce type d’approche, 1’évaluation de
requétes floues comporte trois étapes :

1. dérivation d’une requéte booléenne a partir
de la condition floue apparaissant dans la
requéte utilisateur,

2. évaluation de cette requéte booléenne et
production de la relation résultante,

3. calcul des degrés de satisfaction at-
tachés aux n-uplets de cette relation (et
élimination éventuelle des n-uplets non
suffisamment satisfaisants), ce qui produit
la relation floue constituant le résultat final.

En termes de performances, 'intérét d’utili-
ser une architecture de type “couplage moyen”
réside dans le fait que la relation floue résultante
est calculée durant la phase de sélection des
n-uplets (aucun programme externe n’a besoin
d’étre appelé pour effectuer I’étape 3).

De maniere a faciliter la maintenance et
la distribution du code, les fonctionnalités
nécessaires a I’évaluation de requétes floues ont
été mises en ceuvre sous la forme d’une ex-
tension (PGXS) du SGBD open source Post-
greSQL. Les fonctionnalités décrites dans la
suite en section 4 ont été implémentées par
des fonctions écrites en C ou des procédures
en PL/PYTHON ou PL/PGSQL. La mise en
ceuvre tire parti du fait que PostgreSQL auto-
rise ’appel a des modules externes au moment
de I’exécution.

4 Expressivité du langage

Dans un premier temps, nous avons implémenté
les principales fonctionnalités du langage
SQLf, en modifiant légerement la syntaxe
définie dans [4, 14] de fagcon a éviter tout conflit
avec la syntaxe SQL et le moteur de requéte de
PostgreSQL.

Prédicats flous : Des fonctions d’appartenance
trapézoidales peuvent étre définies sur des at-
tributs numériques en utilisant la procédure
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suivante, ou le premier parametre définit
I’étiquette linguistique attachée au prédicat et
les autres correspondent aux bornes de la fonc-
tion :

select newTrapezoidalFuzzySet(‘autour_de_2007’, 2004,
2006, 2008, 2010).

La définition de prédicats flous sur des attributs
catégoriels peut se faire a 1’aide de 1’instruc-
tion suivante, ou le premier parametre définit
I’étiquette linguistique attachée au prédicat, le
deuxieme énumere les valeurs un tant soit peut
satisfaisantes, et le dernier spécifie les degrés de
satisfaction associés :

select newDiscreteFuzzySet(‘French’, ['Peugeot’, ’Ci-
troen’, 'Dacia’], [1.0, 1.0, 0.6]).

Conditions floues. Des prédicats flous peuvent
étre introduits dans la clause de sélection
(where), ou ~= correspond a I’opérateur noté
is dans [5] :

select * from cars where year ~= ‘recent’.

Modificateurs. Des modificateurs flous peuvent
étre utilisés pour altérer le sens de certains
prédicats. Les modificateurs disponibles par
défaut (et définis a priori dans le systeme)
sont very (modificateur renforcant) et rather
(modificateur relaxant), définis comme suit :
tmod P(2) = (pp(x))™ ot n = 2 (resp. 0.5) si
mod est very (resp. rather)

select * from cars where year ~= ‘very recent’.

Conjonctions et disjonctions. Comme dans le
cas classique, une condition de sélection peut
étre définie comme une conjonction ou une dis-
jonction de prédicats flous ou booléens. Les
connecteurs SQL and et or ont été étendus res-
pectivement par les opérateurs && et || . La paire
t-norme/t-conorme sousjacente a ces opérateurs
peut étre choisie au moyen de I’instruction :

select set_norm(‘norm’);

ou norm peut prendre les valeurs : Zadeh, pro-
babiliste, Lukasiewicz ou Weber. Une fonction
qui convertit les booléens en nombres réels est
utilisée pour combiner des prédicats flous et
booléens. Un exemple de requéte floue conjonc-
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tive dans ce formalisme est :

select * from cars

where year ~= ‘very recent’ && km ~= ‘low’.

Seuils : Un seuil qualitatif (o) ou quantitatif
(k) peut étre défini pour contrdler le niveau de
satisfaction ou la cardinalité du résultat. Leur
spécification s’effectue comme suit :

select set_alpha(0.4) ; select set_k(20).

Quantificateurs flous. Outre la conjonction et
la disjonction, un quantificateur flou peut étre
utilis€ pour combiner des prédicats booléens
ou flous. Trois interprétations sont disponibles
dans le prototype : celle de Zadeh (fondée sur
un Sigma-count de I’ensemble flou impliqué),
CTA (Competitive Type Aggregation, qui cor-
respond a ’utilisation d’une intégrale de Su-
geno) et OWA (Ordered Weighted Aggregation,
fondée sur une intégrale de Choquet) [2]. Le
choix s’effectue au moyen de I’instruction :

select set_quantifier(‘quantifier’) ;

ou quantifier prend 1’une des valeurs zadeh, cta
ou owa. Un exemple de requéte est :

select * from cars where most(year ~= ‘very recent’,
km ~= ‘low, brand = ‘Peugeot’, consumption ~= ‘low’,
price ~= ‘reasonable’).

Opérateurs graduels. Des lors qu’une fonction
de distance a été définie sur un domaine d’attri-
but, des opérateurs graduels peuvent étre em-
ployés pour effectuer des comparaisons avec
des scalaires (opérateur ~) ou tester une inclu-
sion graduelle (opérateur in ~). Une variante
de ces opérateurs a aussi été définie de facon
a exprimer des comparaisons/inclusions gra-
duelles vis-a-vis du résultat d’une sous-requéte
(voir [14] pour plus de détails). Un exemple
dans le cas non-imbriqué est :

select * from cars where year ~ 2008 && brand in ~
(‘Peugeot’, ‘Renault’).

5 Evaluation de requéte

Afin d’estimer le gain en termes de perfor-
mances induit par la stratégie d’implémentation
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que nous proposons, par rapport a des systeémes
fondés sur un couplage lache [13] avec et
sans étape de dérivation, nous avons utilisé
une relation appelée randomtable de cardina-
lit¢ 100,000. Les n-uplets de randomtable ont
été générés de facon pseudo-aléatoire sur trois
attributs, a savoir id, attnum, et atttext. Le pre-
mier est la clé primaire, le deuxieme un attribut
numérique dont le domaine est I’intervalle [0,
200], et le troisieme un attribut catégoriel dont
le domaine est I’ensemble des vingt chalnes
de caracteres correspondant aux vingt premiers
nombres entiers (“un”, “deux”, “trois”, etc).
Nous avons ensuite défini deux prédicats au
moyen des instructions :

select newTrapezoidalFuzzySet(‘low’, 0, 0, 10, 15);
select newDiscreteFuzzySet(‘around_10’, [‘huit’, ‘neuf’,
‘dix’, ‘onze’, ‘douze’], [0.6, 0.8, 1.0, 0.8, 0.6]);

L’ objectif de cette expérimentation préliminaire
était de comparer, a 1’aide du prototype Post-
greSQLS, le temps d’exécution associé a trois
stratégies d’implémentation différentes : cou-
plage lache sans dérivation (LCND), cou-
plage lache avec dérivation (LCD), et cou-
plage moyen avec dérivation (MCD). Le temps
mesuré integre la construction de la relation
floue résultante. Pour réaliser ces mesures, trois
requétes ont été soumises aux trois moteurs
d’évaluation correspondants. Cet échantillon,
quoique limité, est représentatif des différents
types de requétes floues pouvant €tre traitées
par PostgreSQLf. La requéte 1 est composée
d’un seul prédicat de sélection sur un attribut
numérique, la requéte 2 d’une conjonction de
deux prédicats flous, et la requéte 3 utilise un
quantificateur flou pour agréger deux prédicats :
— Query 1:

select * from randomtable where attnum ~= ‘low’ ;

qui se dérive en

select * from randomtable where attnum between 0

and 15;
— Query 2:

select * from randomtable

where attnum ~= ‘low’ && atttext ~= ‘around_10’ ;

qui se dérive en

select * from randomtable where attnum between 0

£ 300 LCND
uLCD

5 MCD
(SRS -
Query 1 Query 2 Query 3

Figure 1 — Temps de calcul / stratégie de mise
en ceuvre

and 15 and atttext in (‘huit’, ‘neuf’, ‘dix’, ‘onze’,

‘douze’));
— Query 3:
select * from randomtable
where most(attnum ~= ‘low’, atttext ~=
‘around_10) ;

qui se dérive en

select * from randomtable where attnum between
0 and 15 or atttext in (‘huit’, ‘neuf’, ‘dix’, ‘onze’,
‘douze’)).

Les résultats sont reportés dans la figure 1. Il

s’avere que la solution “couplage moyen™ a les

deux principaux avantages suivants :

— elle permet une meilleure gestion des rela-
tions floues puisque ces dernieres sont direc-
tement retournées par le SGBD ;

— elle apporte un gain significatif en termes de
performances.

Nous travaillons actuellement a optimiser 1’uti-

lisation des index pour évaluer plus effica-

cement les fonctions utilisateur associées aux
prédicats flous.

6 Interface conviviale
6.1 Introduction

A T’évidence, un langage tel que SQLf n’est
pas tres facile a utiliser pour des utilisateurs
novices, non familiers avec les concepts de la
théorie des ensembles flous. C’est pourquoi il
est nécessaire de définir une interface intuitive
pour les aider a formuler leurs requétes.
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Figure 2 — Définition de prédicats flous numérique (gauche) et catégoriel (droite)

Le prototype que nous avons développé agit
comme une interface avec le SGBD et génere
des requétes SQLf directement exécutables par
ce dernier par I’intermédiaire d’appels a des
fonctions stockées. L’interface est connectée a
la base de données de facon a stocker les pro-
fils utilisateurs, composés d’informations d’au-
thentification et rassemblant les prédicats et
requétes flous précédemment définis. De cette
facon, il est possible de construire un voca-
bulaire personnel composé d’ensembles flous
et de requétes soumises antérieurement. Cette
base de données contient également les infor-
mations de connection aux bases accessibles et
la liste des attributs sur lesquels des prédicats
flous peuvent étre définis.

6.2 Définition intuitive de prédicats flous

Comme la sémantique d’un prédicat flou repose
sur sa fonction d’appartenance, tout sysytéme
d’interrogation flou doit fournir aux utilisateurs
un moyen commode de définir de telles fonc-
tions. En pratique, la fonction d’appartenance
associée a un ensemble flou /' est souvent choi-
sie de forme trapézoidale. Dans ce cas, F' est
exprimée par un quadruplet (A, B, C, D) ou
noyau(F) = [B, C] et support(F) = [A, D].
Si la fonction est une “€paule droite” (resp.
gauche), elle peut étre codée par (A, B, ks, ko)
(resp. (k1, k1, C, D)) ou [ky, ks| représente le
domaine de I’attribut concerné.
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Diverses méthodes ont ¢été proposées
précédemment pour définir des termes flous
dans un cadre d’interrogation flexible de bases
de données. Dans [11], les auteurs décrivent
un prototype construit au-dessus du SGBD
commercial Microsoft Access, ou la définition
des prédicats, comparateurs et quantificateurs
flous s’opere via une interface graphique.
Cependant, le type d’interface considéré est a
notre avis encore trop exigeant dans la mesure
ou il implique une certaine connaissance de
ce qu’est une fonction d’appartenance (I’uti-
lisateur doit en effet spécifier directement les
bornes des fonctions qu’il souhaite utiliser).

Dans [9, 8], Goncalves et Tineo introduisent des
commandes permettant de définir des prédicats
(create fuzzy predicate) et des comparateurs flous
(create comparator) dans SQLf, mais leur usage
apparait encore plus difficile pour un utilisateur
non-expert.

Pour des requétes floues simples, une autre so-
lution, proposée dans [15], est d’inclure les
définitions des prédicats flous dans la requéte
elle-méme. Cependant, I’inconvénient de cette
méthode est qu’elle peut mener rapidement
a des expressions de requétes assez encom-
brantes.

Dans [1], les auteurs suggerent d’utiliser la no-
tion d’ordre flou pour spécifier des prédicats
flous définis sur des domaines numériques. Ils
considerent trois opérateurs, a savoir vaut au
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moins, vaut au plus, et appartient a, rendus
tolérants au moyen d’une clause tolerate up
to. Bien qu’intéressante, cette méthode a une
expressivité limitée puisqu’elle ne permet de
spécifier que des termes flous atomiques sur des
attributs numériques. De plus, elle apparait tout
de méme d’une convivialité limitée.

L’interface que nous avons développée propose
une méthode intuitive et simple pour définir des
prédicats flous. Le panneau d’édition illustré en
figure 2 permet a I'utilisateur de spécifier des
prédicats sur des attributs numériques (gauche)
ou catégoriels (droite). Dans le premier cas, la
fonction d’appartenance peut étre définie en uti-
lisant deux curseurs pour fixer les intervalles de
valeurs acceptables et idéales, ou en déplagant
les bornes de la fonction trapézoidale dans
la représentation graphique. Pour les attributs
catégoriels, I'utilisateur peut placer les valeurs
de I’attribut concerné dans les boites correspon-
dant aux degrés de satisfaction d’une échelle
prédéfinie. L’interface permet aussi de raffiner
des prédicats flous définis par d’autres utili-
sateurs sur ’attribut considéré (coin inférieur
droit de la figure 4), ainsi que de sauvegarder
les prédicats flous (dans le profil de I’utilisateur
courant) de fagon a pouvoir les réutiliser ou les
modifier par la suite.

6.3 Construction de requéte

Les prédicats flous peuvent ensuite &tre
déplacés et déposés dans la panneau d’édition
de requéte floue. La figure 4 montre comment
la représentation graphique du prédicat ‘well-
Paid’, qui est nié pour obtenir la condition sa-
lary is not ‘wellPaid’, est déplacée dans la boite
d’édition qui contient déja le prédicat job is
‘lowSkilled’. De cette fagon, 1'utilisateur peut
créer de nouveaux groupes de prédicats ou aug-
menter un groupe existant. Dés qu’un groupe
contient plus d’un prédicat, 1’utilisateur doit
choisir le connecteur qu’il souhaite utiliser pour
effectuer 1’agrégation des degrés. Les requétes
sont stockées dans le profil de I’utilisateur cou-
rant sous la forme d’un document XML.
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Figure 3 — Parametres additionnels pour une
requéte floue
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Figure 4 — Vue globale de I’interface

Le coin supérieur droit de I’interface propose un
ensemble de boutons permettant de réinitialiser
la requéte, de se déconnecter, d’exécuter la
requéte, ou de fixer certains parametres addi-
tionnels (figure 3) tels que : 1) la liste des at-
tributs a introduire dans la clause de projection ;
i1) un seuil qualitatif o ou quantitatif k.

Quand I’exécution de la requéte est déclenchée,
les prédicats flous sont transformés en fonctions
pl/pgsql, la requéte est traduite en SQLT, et le
code est alors soumis au SGBD. L’exécution
d’une requéte floue () retourne une relation
floue ou chaque n-uplet ¢ se voit associer un
degré de satisfaction fi(¢) (noté simplement
mu dans le panneau de résultat). Comme les
n-uplets sont présentés par ordre décroissant
de leur degré de satisfaction, 1’utilisateur peut
aisément identifier les réponses qui satisfont au
mieux sa requéte et peut également ajuster le
parametre k pour réduire la taille du résultat s’il
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le souhaite.
7 Conclusion

Dans cet article, nous avons présenté une
stratégie de mise en ceuvre d’un fragment du
langage SQLf permettant 1’interrogation floue
d’une base de données. Cette stratégie, fondée
sur un couplage moyen avec un SGBD relation-
nel, permet d’atteindre de bonnes performances
en termes de temps d’exécution. De nombreux
domaines d’application pour lesquels 1’inter-
rogation flexible apporte une valeur ajoutée
significative en termes d’expressivité peuvent
bénéficier d’un tel systeme, sans qu’il soit be-
soin de faire appel a un module externe pour
compiler une requéte booléenne dérivée. Nous
poursuivons actuellement le développement du
prototype présenté dans 1’article, de fagon a
intégrer davantage de fonctionnalités de SQLf
et a améliorer encore les performances en ex-
ploitant des structures de données internes (in-
dex) plus efficaces.

Nous avons également congu et développé une
interface utilisateur pour la spécification de
requétes floues, avec 1’objectif de montrer que
les €éléments principaux d’une requéte floue
peuvent étre définis aisément par un utilisateur
novice. Ceci nous a conduit a déterminer les
limites entre ce qui peut €tre compris et ma-
nipulé par un utilisateur non-expert (prédicats
flous, propositions quantifiées floues, etc) et ce
qui doit étre réservé au mode expert d’édition
de requéte (questions impliquant un partition-
nement flou de relation, par exemple). Nous
travaillons actuellement a de nouvelles fonc-
tionnalités pour le mode non-expert, telles que
la possibilité offerte a un utilisateur de définir
ses propres quantificateurs flous, d’assigner des
poids aux prédicats d’une condition complexe,
ou d’exprimer des requétes floues imbriquées.
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Résumé :

Nous allons présenter dans cet article une procédure
d’évaluation de I’apprenant au sein d’un environnement
d’apprentissage. Cette évaluation prend en compte le
degré de certitude associ¢ a la réponse par I’apprenant.
Le score obtenu suite a cette évaluation refléte le degré
de compréhension d’un concept par un apprenant. Nous
avons proposé un modéle de contenu pédagogique et un
modéle de systéme de gestion de formation a distance
adapté aux problémes d’évaluation et de guidage des
apprenants dans leur apprentissage.

Mots-clés :
Elearning, QCM, Evaluation diagnostique, valeurs
floues, degré de certitude, guidage.

Abstract:

In this article, we are going to give a clear
presentation of the students’ evaluation procedure
within a learning environment. The target evaluation
considers a certainty degree that is mainly accomplished
by the students themselves. Besides, the obtained
evaluating score that gives a precise statement about the
degree of student comprehension concept. Also, we
gave the conception of e-learning system that introduces
the evaluation process and guidance.

Keywords:

Elearning, MCQ, evaluation diagnostics,
fuzzification, guidance, specification UML,
dependency.

1 Instructions générales

Plusieurs méthodes d’évaluation ont été
adoptées afin de valider les connaissances
acquises par I’apprenant durant une session
d’apprentissage. En effet, les enseignants
proposent  différentes questions afin de
mesurer le degré d’acquisition des différents
concepts d’un cours. Aprés chaque session
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d’apprentissage d’un concept, I’environnement
d’apprentissage constitue dynamiquement un
QCM a partir des questions associées au
concept et évalue le degré d’acquisition de
I’apprenant afin de le diriger correctement vers
le concept suivant. Pourtant, les scores obtenus
suite aux QCMs classiques ne sont pas
significatifs car ils ne prennent pas en
considération la certitude des apprenants dans
leurs réponses. A cet effet, nous proposons
une méthode d’évaluation de réponses qui
intégre le degré de certitude précisé par des
apprenants en pourcentage. Le score est
calculé¢ en fonction des degrés de certitude
fournis par les apprenants. Or, I’étre humain a
I’habitude d’exprimer son doute par des
valeurs floues telles que: pas sir, sir, trés sqr.
En fait, ’introduction de la logique floue, lors
de D’évaluation de I’apprenant devient une
nécessité et non seulement un choix. Pourtant,
le score obtenu doit étre exprimé en nombres
réels d’ou la nécessité¢ de défuzzification du
degré de certitude. En plus de I’introduction,
ce papier comporte trois sections: la 2°™
section est consacrée a la présentation du
modéle de contenu. Dans la 3™ section, nous
présentons notre approche d’évaluation qui
introduit la logique floue et les certitudes des
apprenants dans leurs réponses. Dans la 4°"¢
section, nous proposons une procédure pour
guider les apprenants dans leurs
apprentissages. Nous terminons une
conclusion et des perspectives.

par


mailto:Adil.haddi@gmail.com
mailto:ab_naji@yahoo.fr

22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

2 Modéle de contenu
Pédagogique
Dans un environnement d’apprentissage,

I’objectif principal est de transmettre des
connaissances aux apprenants et vérifier leurs
degrés d’acquisition. A cet effet, durant cette
section, nous présentons un mod¢le de contenu
pédagogique.

Comme le précise Pernin [Pernin et al, 2004],
il est important de découper le contenu
pédagogique en fragments élémentaires pour
assurer un enchainement pertinent des objets

et des concepts pédagogiques. Afin de
localiser facilement les situations bloquantes
d’apprentissage, nous procédons au

découpage des cours en trois entités (concept,
objectif pédagogique, cours) qui peuvent &tre
mis en ceuvre a 1’aide des activités élémentaire
et des scénarios (Fig 1):

Caurs

L.

Ohjectif Pédagogigue

Apprenant

0.*

Reépondre =

1.* n.*

Concept

Guestion

Fertinence : Integer

Impaortance : Integer

Dependance

Figure -1- Mod¢le de contenu pédagogique

Enseighant Scénatio
" Prupnse>1_.* 1+ Liers 1
gditeur procui
Activite
1.* Concerne= 1.7
Importance : Integer
Un cours comporte plusieurs objectifs

pédagogiques organisés dans des différentes
séquences. Chaque objectif pédagogique O;
comporte plusieurs concepts C; organisés dans
des séquences [3]. Les séquences des objectifs
pédagogiques et des concepts sont décrites
par :

e les ensembles PR(Oy) et PR(C) qui
décrivent respectivement les objets
pédagogiques et les concepts pré-requis
de O; et de C; vers lesquels le systéme
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de FOAD peut diriger D’apprenant
dans le cas ou il ne donne pas
satisfaction dans l’entité en cours
[11,[2].

e les ensembles SV(0y) et SV(C) qui
décrivent respectivement des objets
pédagogiques et des  concepts
successeurs de O; et de C; vers lesquels
le systtme de FOAD peut diriger
I’apprenant, en cas de réussite de
I’entité en cours.
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Dans le cadre d’évaluation le degré
d’acquisition d’un apprenant, il est nécessaire
de:

e préciser le degré de pertinence DP(0O;)
de [l’objectif pédagogique O; par
rapport au cours,

e préciser le degré de pertinence
DP(C;,0y de concept Cj par rapport a
I’objectif pédagogique O;,

e lier chaque concept et chaque objectif
pédagogique a un ensemble de
questions qui peuvent étre utilisées par
le systtme FOAD afin de générer
automatiquement des QCMs. Chaque
question Qg est caractérisée par les
degrés de dépendance DD(Q:,C) et
DD(Qy, Oy au concept C; et objectif
pédagogique O;.

Dans notre modele, chaque concept C;

introduit par des activités organisées dans des
scénarios. Ainsi, il est lié a :

e Un ensemble de questions d’entrées et

de sorties utilisées dans 1’évaluation

diagnostique et I’évaluation
sommative. Chaque question est
caractérisée par le degré d’importance
DI(01,C;),

e Un ensemble des concepts pré-requis
PR(Cy,

e Un ensemble des concepts successeurs
SV(C),

e le degré de pertinence DP(C,0;) de
concept C; par rapport a l’objectif
pédagogique O;

Dans notre modéle, chaque objectif
pédagogique O; introduit par des concepts
organisés dans des séquences. Ainsi, il est 1ié
a:
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e Un ensemble de questions d’entrées et
de sorties utilisées dans 1’évaluation
diagnostique et I’évaluation
sommative. Chaque question est
caractérisée par le degré d’importance
DI(Qx 0y,

e Un ensemble des concepts pré-requis
PR(0y,

e Un ensemble des concepts successeurs
SV(0y,

e le degr¢ de pertinence DP(0; de
concept O; par rapport au cours

3 Modele d’évaluation

Dans cette partie, nous  proposons une
procédure d’évaluation qui permet de répondre
a la question suivante: a quel degré
I’apprenant atteint-il les objectifs tracés par
I’enseignant?. A cet effet, ’apprenant est
invité a passer des tests durant la session
d’apprentissage (Fig 2). Ces tests sont
éffectués soit au début de la session
d’apprentissage (test d’entrée ou évaluation
diagnostique), pendant I’apprentissage
(contréle continu ou évaluation formative), ou
a la fin de la session d’apprentissage (test de
sortie ou évaluation sommative). Chaque test
est représenté par un QCM qui se compose
d’un ensemble de questions associées au
concept ou a I’objectif pédagogique sur lequel
I’apprenant doit s’évaluer pour calculer son
degré d’acquisition et des informations de
guidage (Fig 3). Chaque question proposée
doit étre caractérisée par le degré d’importance
DI(Qy, Oy et DI(Q4,C; ) a objectif O; et au
concept C; [2].
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Enwirannement d'apprentissage|

==include==/ Evalustion diagnostigue

- . #=includes==

-

—————— " Creation de TEST
Apprenant :

=zinclude==

SGD

\

Evaluation sommative

®
A

Enseignant

Ajouter des supports pédagogiques

==gutend==

Ajouter des guestions

Figure -2- Diagramme des cas d’utilisation pour un environnement d’apprentissage

Questions d'évaluation
; Reponses exactes
Enseignant
Réponse \
s Score + ) ;
Systeme devaluation  rrreree e Systéme de quidage
message d'échec

Apprenant [€ —
| message de réussite

Figure-3- Diagramme de flots de données entre les acteurs et sous-systeme d’évaluation et guidage

3.1 Création du QCM les utiliser pour générer automatiquement des
QCMs.

Pendant la création de cours, I’enseignant
propose plusieurs  questions pour chaque
objectif pédagogique et chaque concept afin de
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St Generatewr
Systéme
- de QCMs
FOAD J
Enseignant
.‘|
\
A
\\.
.\\ -
s Ieponse - caz
Apprenant ‘I? > Eiﬁj‘ﬁ;;;ﬁ

Fichiers
d'mfommation de
auidage

Figure -4- diagramme de contexte de systeme d’évaluation

L’environnement d’apprentissage crée  des
QCMs par un choix aléatoire de 5 questions
parmi les questions liées a I’entité (concept ou
objectif pédagogique) en question (Fig 4).
Afin de calculer le score (voir I’algorithme
calcul de score pour un QCM), les degrés
d’importance des questions doivent étre
spécifiés par [I’enseignant. Au moment
d’agencement des questions I’enseignant doit
prendre en compte les critéres suivants :

e Chaque question est reliée a un ou
plusieurs concepts pédagogiques.

e Chaque question est accompagnée par
le degré d’importance par rapport au
concept.

e Chaque question est accompagnée par
une série de réponses Ry, parmi
lesquelles 1’apprenant doit choisir la ou
les bonnes réponses.

e Préciser pour chaque question la ou les
bonnes réponses.

Nous rajoutons aux réponses proposées les
propositions suivantes:
e aucune solution proposée n’est correcte
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Systéme
de guidage
Evaluation de
réponss an J.'
QCMs ;
e les données de 1’énoncé sont
insuffisantes

e 1’énoncé contient une absurdité

Ces trois propositions diminuent la chance
d’arriver a la bonne réponse au hasard, en
incitant I’apprenant a réfléchir davantage avant
la confirmation de son choix.

calcul de score pour un TEST

Variables
SDegrelmportance, score, res :réels ;

Début
SDegrelmportance €0 ;
score €0 ;
Pour (chaque question Qy de TEST) faire
res €0 ;
Pour (chaque réponse Ry possible au question Qy ) faire
Si (la réponse est exacte) alors
res €restdegréCertitude (Ry) ;
Sinon
res €res-degréCertitude (Ry) ;
FinSi
FinPour
score €scoretdegrelmportance(Qy) *res ;
SDegrelmportance €SDegrelmportance+degrelmportance(Qy)

FinPour
score €score/SDegrelmportance ;
Fin
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3.2 Evaluation Diagnostique, formative
et sommative

Les environnements d’apprentissage
présentent leur support pédagogique de
maniere séquentielle. Dans des cas critiques
I’apprenant se retrouve en face d’un concept
ou objectif pédagogique qui dépasse ses
capacités cognitives. En effet, il faut mesurer
les connaissances pré-requises de ’apprenant
qui est mené a 1I’évaluation au début de chaque
session d’apprentissage. Le score de
I’évaluation permet au systeme de guider
I’apprenant vers un concept ou un objectif
pédagogique pré-requis ou de le laisser
continue sans difficulté son apprentissage (Fig

auvrir une session

objectifs (concepts)

I

évaluation disgnostigue

)

score : réel / infoguidage : fichier xml

5). Cette évaluation est déclenchée juste apres
le choix de I’objectif pédagogique ou concept
par l’apprenant, ce type d’évaluation est
appelé évaluation diagnostique. Ce dernier
permet de déterminer le score et des
informations de guidage qui peuvent étre
utilisés par le sous-systeme de guidage afin
d’autoriser a I’apprenant de continuer son
apprentissage si le score est supérieur au un
seuil. Dans le cas contraire, le sous-systéme de
guidage utilise les informations envoyées par
le sous-systeme d’évaluation afin de diriger
I’apprenant vers des pré-requis nécessaire pour
comprendre I’entité (concept ou objectif) en
cours [3].

Ay

[score == seuil] [consulter l'objectif (concept}l}

score : réel / infoguidage : fichier xml

infoguidage :

= préreguis

T

uider ['apprenant
“_xordre de fermer
la session  pbjectif {(conce

[else] )
[score == seuil]

évaluation fornative I

[enregistrer la position de I'apprenant]

fermer session

C)

Figure-1- diagramme d’activités d’apprenant et environnement d’apprentissage
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Dans un environnement d’apprentissage,
I’apprenant doit s’évaluer afin de mesurer ses
connaissances, ses compétences, et déterminer
ses lacunes. En effet, il est souvent invité a
effectuer des tests de niveau et d’orientation.

A cet effet, le recours a une évaluation durant
la session d’apprentissage est important. Cette
¢valuation doit €étre congue de manicére a
fournir les informations suivantes :

o Le degré d’acquisition des concepts
définis dans les objectifs pédagogiques,

e Les lacunes et les problemes rencontrés
(voir Fig 4 et 5) par ’apprenant durant
le processus d’apprentissage.

e Garder un historique des problémes
rencontrés par les apprenants pour une
éventuelle intervention de I’enseignant
afin de réparer les concepts.

L’enseignant doit proposer un ensemble de
questions pour chaque concept afin de
calculer et contrdler I’efficacit¢ du contenu
pédagogique proposé par I’enseignant.
Il est nécessaire de savoir le niveau de
connaissances de I’apprenant a la fin de
chaque objectif pédagogique afin de dresser
un bilan de connaissances et de compétences
de l'apprenant a I’aide d’un test de sortie
appelé évaluation sommative.

3.3 Evaluation de la réponse des
apprenants : Procédure proposée

Dans cette partie, nous procédons a I’énoncé
d’une problématique que nous jugeons
importante de la prendre en compte lors de
I’¢laboration d'un QCM. C’est le cas ou
I’apprenant fixe son choix sur une réponse
avec un degré de certitude élevé et que la
réponse est fausse. Cela meéne a attribuer une
pénalité élevée a ce genre de réponses. Or, ce
n’est pas toujours le cas, si on suppose que
I’apprenant a fait une bonne analyse durant les
étapes de la réponse, et a la dernicre phase, il a
fait une simple erreur d’interprétation ou de
calcul.
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Une fois le QCM est généré a partir des
questions définies par I’enseignant (Fig 5),
I’apprenant peut sélectionner les bonnes
réponses pour chaque question.

Dans la plupart des cas, les apprenants hésitent
en choisissant les bonnes réponses. Dans ce
cas, l’apprenant ¢élimine les propositions
incorrectes, et choisit au hasard les bonnes
réponses ou les réponses tolérées parmi celles
qui ne sont pas ¢éliminée.

3.3.1. Degré de certitude

Le doute est une situation normale chez I’étre
humain et accompagne le savoir de
I’apprenant. En effet, la connaissance n’est pas
absolue et I'imprécision est liée a plusieurs
sciences. En fait, donner la possibilit¢ a
I’apprenant d’exprimer son doute devient
nécessaire [6].

La plupart des chercheurs ont intégré la notion
de certitude, en donnant la possibilit¢ a
I’apprenant d’accompagner sa réponse par un
degré de certitude [4]. En effet, juger un
apprenant, lors d’une évaluation diagnostique
ou formative, en tenant compte juste la
réponse, peut perturber tout le systéme
d’évaluation. En effet, Gilles [5] voit que
I’apprenant lors d’une évaluation doit
exprimer son doute de maniére précise afin
d’autoriser un diagnostique tres précis.

Dans ce cadre, Leclercq [4] propose une
procédure qui intégre 6 niveaux de certitude
exprimés par un pourcentage. L’apprenant
répond a la question en indiquant son degré de
certitude pour exprimer son doute lors de la
rédaction des QCM et qui se limitent a utiliser
soit des pourcentages ou degrés exprimés par
des chiffres réels.

L’étre humain a toujours recours a qualifier
plein d’attributs (variables) par des valeurs
floues. Par exemple, chaque jour on entend
dire afin d’exprimer la chaleur : pas chaud,
tres chaud, chaud, froid, trés froid ou pour
qualifier la vitesse : rapide, trés rapide, lent,
trées lent, méme dans un  milicu
d’enseignement, on entend les étudiant parler
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d’un examen, compliqué, trés compliqué,
facile, trés facile. Ce qui est habituel chez un
étre humain est d’utiliser des variables
linguistique. D’ou [l'utilit¢ d’introduire des
valeurs floues a la place des valeurs réelles ou
des intervalles, afin de faciliter I’expression du
doute pour ’apprenant [8], [9] et [10].

3.3.2. Degré de certitude : valeurs floues

Dans le but d’exprimer le doute par
I’apprenant, nous adoptons la logique floue
(voir Fig 6) pour établir notre approche
d’évaluation. Pour cela, nous définissons les
¢léments suivants :
e Univers de discours : pourcentage de
certitude allant de 0% a 100%.
e Variable linguistique : certitude
e Valeurs linguistiques : pas du tout sir,
pas siir, moy sir, assez sUr, tres str

r | Pas du
toutsd

_\

0 |

=

|
10% 30% 50%
Figure-2- degré d’ appartenance des valeurs

linguistiques

Chaque valeur floue appartient I’'univers
défini par un degré d’appartenance p allant de
0 a1 (voir la Fig 5).

Dans les études précédentes [4] et [5], la
certitude est exprimée une seule fois pour
chaque question. Dans la pratique, on constate
que dans la plupart des cas, 1’apprenant est en
face a une question ou il hésite entre plusieurs
choix. En effet, nous allons enrichir notre
méthode en donnant la possibilit¢ a
I’apprenant de préciser un degré de certitude
(pas du tout sur, pas sur, ..., trés sur) pour
chaque réponse sélectionnée et non
sélectionnée. Cette méthode permet de
minimiser le recours au hasard, et elle permet
davantage de préciser le degré d’acquisition
des concepts, et détecter les lacunes que peut
avoir I’apprenant lors des évaluations durant
la session d’apprentissage. A cet effet, chaque

cermude
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réponse correcte ou incorrecte proposée doit
étre liée a un ensemble d’informations pour
indiquer les acquisitions que peut avoir
I’apprenant suite a sa réponse. Ces
informations peuvent étre utilisées par le sous-
systéme de guidage afin de guider 1’apprenant
vers I’entité suivante (Fig 5).

3.3.3. Détermination du score de
I’apprenant lors d’une évaluation

Afin de vérifier le degré d’acquisition d’un
concept par un apprenant, un score lui est
attribué. Le score est calculé a partir des
degrés d’importance des questions de test
d’évaluation, les réponses et les certitudes des
apprenants suivant 1’algorithme de calcul de
score pour un QCM .

Ainsi, afin de vérifier le degré d’acquisition
d’un objectif pédagogique O; par un apprenant,
un score lui est attribué. Ce score est calculé a
partir des scores obtenus dans les concepts C;
constitués suivant I’objectif pédagogique O; et
leurs degrés de pertinence DP(C;,0;) par
rapport a cet objectif pédagogique, a cet effet
une formule est mise en place :

5, 0(c,0,) *sc(c)
s, 0P(C,.0,)

5c(0,) =
(1)

Le score, défini ci-dessus (équation 1), inclut
le degré de certitude en pourcentages,
cependant, le systéme utilise les valeurs floues
pour interpréter les certitudes des apprenants
d’ou la nécessité de défuzzification du degré
de certitude.

3.3.4. Défuzzification du degré de
certitude

I faut associer les wvaleurs floues
(linguistiques) aux valeurs réelles en se basant
sur:

e Pas du tout sir :10%
e Passir 1 30%
o Sir 50%
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1 70%
: 100%

e Assez sUr
e Trés sir

Dans notre étude, nous utilisons le tableau
suivant pour calculer le score.

Tableau-1- Tableau de définitions des scores
selon les degrés de certitude

| Baréme  Réponse DC Score
1 Correcte Pas dutoutsir 0.1
1 Correcte Pas sOr 0.3
1 Correcte Moy sir 0.5
1 Correcte Assez slr 0.7
1 Correcte Tres sOr 1
1 Incorrecte Tres sOr -1
1 Incorrecte Assez slr -0.7
1 Incorrecte Moy sQr -0.5
1 Incorrecte Pas sOr -0.3
1 Incorrecte Pas du tout sir -0.1

Le tableau 1 permet d’identifier la décision
que va prendre le systeme suite aux valeurs
linguistiques de degré de certitude fixé par
I’apprenant afin de calculer le score d’un
concept.

3.4 Modéle d’information de guidage

Les scores et les informations obtenues, soit
lors d’une évaluation diagnostique, formative
ou sommative, sont importants a la prise d’une
décision. Ces informations peuvent éEtre
exploitées par 1’enseignant et le sous-systéme
de guidage afin de déterminer les défauts des

supports pédagogiques et de guider les
apprenants dans leur apprentissage. La
question qui se pose: comment peut-on

détecter les concepts ou I’apprenant a des
lacunes ?

Pour consulter un concept C;, I’apprenant doit
effectuer un test de validation (évaluation
diagnostique (Fig 5)) sur les concept pré-
requis PR(C)={C,, C5, C;, C4}. Pour cela, le
générateur dynamique de QCMs génére un
QCM a partir des questions liées aux concepts
pré-requis au concept C;. Dans ce QCM, le
générateur introduit pour chaque concept pré-
requis au moins une question y fortement liée.
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Puisque chaque question Oy peut étre liée a
plusieurs concepts avec un degré de
dépendance d;=DI(Q, C;), nous présentons
les degrés de dépendances de 5 questions qui
composent le QCM={Q;, O,, O3, Q4 QOs} aux
concepts pré-requis PR(C))={C;;, C;2 C;3 C;4
} dans la matrice D suivante :

B
-
e
r
b
e
r
[E3)
B,
=
+=

I:-‘!?1.5

D= I:1!12,1 dlﬂ dlE di 4 dlﬁ
I:1!13 1 dE 2 d3.3 dE 4 d.’i,j

I:1!1-1-,1 d#.ﬂ IQ?-LE d-’f,-’f dﬂ-.ﬁ

Supposons que le résultat de I’évaluation de
réponse d’un apprenant est :

Ou 1y est le résultat de I’évaluation de réponse
a la question Q.

Les degrés de certitude exprimés par
I’apprenant sont pris en considération dans le
résultat ry (voir algorithme de calcul de score).

Le score de [I’évaluation diagnostique est
calculé a I’aide de la formule suivante :

(dyp = 73)
Y od.

o i 1Y 4

4

z.(d,

sc(C;) =

Nous utilisons le vecteur V afin de déterminer
les concepts pré-requis qui doivent étre validés
par I’apprenant avant de passer au concept C;
dans le cas ou le score est inférieur au seuil S;.

Le vecteur V est représenté par :
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!
A
. 2
V=
Le
Yy
Ou:
e — E.‘«:(d_u..«: * ?.'«:j
E.‘c ﬂrJ kK

Dans le cas ou le sc¢(C) est inférieure au seuil
S, le sous-systtme de guidage dirige
I’apprenant vers les concepts pré-requis liés
aux questions a lesquelles I’apprenant n’a pas
répondu correctement. C'est-a-dire I’apprenant
doit reprendre le concept pré-requis C;, si
v, <S;.

Le vecteur résultat R et la matrice de
dépendance D doivent étre enregistrés dans
des fichiers structurés XML afin de ['utiliser
ultérieurement dans le diagnostique.

4 Conclusion et perspectives

L’objectif principal de ce papier est de
proposer un modele de contenu et une
procédure d’évaluation. Nous avons aussi
propos¢é une nouvelle méthode d’évaluation de
réponse qui intégre le degré de certitude
introduit par I'apprenant lors de la réponse.
Enfin, nous avons propos¢ une procédure de
guidage des apprenants lors de I’apprentissage.
Grace a cette méthode, le systeme lui propose
la meilleure séquence a suivre afin d’avoir un
bon score.

Dans notre prochain travail, nous allons
réaliser et améliorer notre procédure de
guidage en se basant sur les résultats des
¢valuations, dépendance entre concepts et des
questions.
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Résumé :

Dans cet article, on propose un systeme de base de
données pour la gestion des préférences symboliques
exprimées sous forme de déclarations conditionnelles.
Ces préférences sont représentées au moyen de formules
logiques possibilistes. Le processus de traitement de
requétes est discuté d’une maniere explicite, en partic-
ulier, I’étape de sélection des top-k réponses. Pour mon-
trer la faisabilité de notre systeme, une premilre série
d’expérimentations a été menée et certaines mesures de
performance sont effectuées et analysées.

Mots-clés :

Requétes a préférences, Logique possibiliste, Top-k
réponses.
Abstract:

In this paper, we propose a database system capable of
managing symbolic preferences expressed under the form
of conditional statements. Such preferences are translated
into logic formulas in a possibilistic logic manner. Pref-
erence query processing is discussed in an explicit way,
particularly, the step that consists in selecting the top-k
answers. Some preliminary experiments are conducted
to show the feasibility of our system.

Keywords:
Preference queries, Possibilistic logic, Top-k answers.

1 Introduction

In the last two decades, there has been a grow-
ing interest in preference queries in the database
community [15][13]. Indeed, the use of pref-
erences inside database systems has a number
of potential advantages. First, it is desirable to
offer more expressive query languages that are
able to express user’s requirements in a more
faithful way. Second, the use of preferences in
queries provides a basis for rank-ordering the
retrieved items, which is especially valuable if
aquery is satisfied by a large set of items. More-
over, a classical query may also have an empty
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set of answers, while a relaxed (and thus less
restrictive) version of the query can still be sat-
isfied by several items in the database, at least
to some degree.

Approaches to database preference queries may
be classified into two categories according to
their qualitative or quantitative nature [15]. In
the latter, preferences are expressed quantita-
tively by a monotone scoring function, and the
overall score is positively correlated with par-
tial scores. Since the scoring function asso-
ciates each tuple with a numerical score, tu-
ple t1 is preferred to tuple t2 if the score of tl
is higher than the score of t2. Representatives
of this family of approaches are top-k queries
[7] and fuzzy-set-based approaches (e.g., [4]).
In the qualitative approach, preferences are de-
fined through binary preference relations. Since
such relations can be defined in terms of scoring
functions, the qualitative approach is more gen-
eral than the quantitative one. Representatives
of qualitative approaches are those relying on
a dominance relationship, e.g. Pareto order, in
particular Preference SQL [14], Skyline queries
[2] and the approach presented in [8]. See also

[51[3].

As users’ preferences are more and more di-
verse and complex, the alternatives number de-
scribed by means of a set of attributes are of-
ten very large. Facing this situation, prefer-
ences are not generally expressed in terms of
explicit (pre)orders. It is then necessary to make
their specification in a compact way. Compact
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representation of preferences has raised a sub-
stantial interest in Artificial Intelligence [10][6]
and, more recently, in the database field [13][5].
Graphical models (as CP-nets [S] and GAI [12])
and logical models (as possibilistic logic [11])
are particularly adapted to this kind of represen-
tation.

Let us note that conditional preference state-
ments are often used for describing preferences
in local, contextualized way !. To illustrate this
approach let us consider the following example.

Example 1. Assume a schema instance of
a relation Phone (make, model, color), where
’make’, 'model’ and ’color’ take respectively
their values in: {Apple(a), Samsung(s), Nokia
(n), LG (1)...}, {iPhone 5, iPhone 4, iPhone
4s, iPhone 3g , iPhone 3gs, Galaxy s3, Galaxy
s2, Galaxy vy,..., N8, C7, C3} and {white(w),
black(b), red (1), grey (y),....}. To buy a phone,
a user can communicate her/his preferences as
a set of pieces of information as follows:

Q1 = (i) "(s)he prefers Apple (a) phones to
Samsung (s) phones,

(ii) For Apple, (s)he prefers iPhone 5 (i5) to
iPhone 4 (i,),

(iii) For Samsung, (s)he prefers Galaxy s3 (g3)
to Galaxy s2 (gs) and Galaxy s2 (g2) to Galaxy
Y (9y)s

(iv) s(he) prefers black (b) phones to white (w)
phones".

The problem of interest is how to help this user
to buy a phone by selecting and rank-ordering
a set of phones from a database that better fit
her/his preferences?

Statements of the above kind can be encoded
with graphical or logical representations. For
instance in [13], conditional preference state-
ments are translated into classical logic formu-
las associated with symbolic priority levels, in
a possibilistic logic manner. Only preferences
on binary database attributes are considered in

This means that preferences are (internal) context-
dependent. Context here captures conditions that involve
the data items stored in the database for which prefer-
ences are expressed.
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[13]. Starting from this work, we propose here a
database system, called SYMPAS 2 that allows
handling users’ preferences expressed in a com-
pact way under the form of conditional state-
ments. In particular, we investigate the issue of
selecting the top-k answers to the query at hand
in the case where the target database may con-
tain either binary or non-binary attributes.

The paper is organized as follows. Section 2
gives an overview of the SYMPAS architecture
where the main modules of the system are il-
lustrated and shortly described. Section 3 dis-
cusses the four steps (preferences translation,
alternatives building, alternatives ranking, top-k
answers selection) to query processing in SYM-
PAS. Section 4 addresses the empty answers
issue. In Section 5, some preliminary exper-
iments are provided to show the feasibility of
the system SYMPAS and evaluate some per-
formances. Section 6 concludes the paper and
draws some perspectives for future work.

2 An overview of SYMPAS archi-
tecture

This section outlines the main components of
the system SYMPAS (see Figure 1). As inputs,
the system takes a set of conditional preferences
statements and a number, k, of answers the user
desires. As for outcomes, it provides the top-k
databse tuples rank-ordered according to these
preferences. Four components are designed:

e A module for building the alternatives. Al-
ternatives are classes of tuples that can in-
terest the user according to her/his pref-
erences communicated to the system (see
Table 1). Two methods have been imple-
mented to build these alternatives: from
the preferences communicated or from the
content of the queried database.

e A module for building the preference for-
mulas. 1t aims at representing the con-
ditional preferences stated in possibilistic
logic formulas.

2SYMbolic Preferences mAnagment System.
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e A module for rank-ordering the alterna-
tives. First, it computes the satisfaction
level associated with each alternative by
leveraging its violation of the possibilistic
formulas. Then, a rank-ordering is estab-
lished between the different alternatives.

e A module for selecting the top-k answers.
For each alternative, an SQL query is built
and then a set of tuples that satisfy it is se-
lected. This evaluation process stops when
k answers is obtained.

; SYMPAS

: /v| Preferences clauses building|—>
| ePreferences

i « “| Alternatives building l—*

Top-K answers selecting |

Alternatives
ranking

Top-k [
answers |

Figure 1: SYMPAS architecture

3 Conditional
processing

preference query

In the SYMPAS system, the conditional prefer-
ences considered are in the form: "in context c,
ay is preferred to as, asy is preferred to ag, ...,
a,_1 is preferred to a,", where {a; ... a,} is a
subset of values of a database attribute. In Ex-
ample 1, the user prefers the models g3 to g» and
g2 to g, where ’g3’, ’g2’ and "g, are a subset of
values of the attribute "'model’. Note that a user
is supposed to not be aware of all the values of
an attribute to express her/his preferences.

The question of interest is how a set of answers
can be selected and rank-ordered according to a
set of preferences expressed in the above form?
The idea is firstly to represent the preferences
as possibilistic logic formulas using symbolic
weights, in the spirit of the approach proposed
in [13]. Secondly to identify the classes of
tuples (alternatives) that interest the user and
then to rank-order these alternatives according
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to their symbolic satisfaction levels w.r.t. the
logic formulas. Finally to select from the target
database the k best tuples that fit the possible al-
ternatives. Below we provide details about each
step for handling such conditional preferences.

3.1 Preference clauses building

As pointed out in [13], the possibilistic en-
coding of the conditional preferences of the
form "in context c, a is preferred to b", when
(b = —a), is a possibilistic formula of the form:
(mc V a,1 — «) * where the symbolic level
1 — « expresses a priority (rather than a cer-
tainly level). This encodes a constraint of the
form N(—c V a) > 1 — a, here it is equivalent
to a constraint on a conditional necessity mea-
sure N(a|lc) > 1 — «. This is still equivalent
to I1(—a|c) < a, where II is the dual possibil-
ity measure associated with N. It expresses that
the possibility of not having a is upper bounded
by a, i.e. —a is all the more impossible as « is
small. When a and b do not cover all the possi-
ble choices (b # —a), the possibilistic formula:
(meVaVvb1l—p),1—p>1-—q,should be
added.

More generally, the possibilistic encoding of the
conditional preferences of the form "in context
¢, ap 1s preferred to as, as is preferred to as, ...,
an—1 1s preferred to a,", with the assumption
that ay, ..., a, do not necessarily cover all the
possible choices, is equivalent to the following
n possibilistic formulas:
{(meVarV..Va,l—ay), (mcVa V..V
ap_1,l—ag), ... (meVay, 1—ay,) }, with 1—aq >
l—ay>...>1—q,.

Note that when a, V...V a,, cover all the possible
choices in the database, the first clause becomes
a tautology and thus does not need to be written.

In algorithm 1, we show how the possibilis-
tic clauses are computed from a user prefer-
ence query. In our system, each preference
p(i) is represented by a quadruple P(i) =
{Ac, Ay, Vi, Va,}, where A stands for the

30ne can check that the formula (—c¢ V a V b, 1) is
dropped since it is a tautology.
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context attribute, V4, the value of the context at-
tribute, A, preference attribute and Va, the set
of values of the preference attribute. For each
preference P(i), we compute |P;.Vy | 4 possi-
bilistic clauses, each clause is represented by a
quintuple C(j) = {Ac, Va., Ap, Va,, s} where
s represents a symbolic priority weight. As
can be seen, algorithm 1 returns both the set of
possibilistic clauses encoding the preferences of
the user and the induced partial order between
the symbolic weights associated with these pos-
sibilistic clauses.

Algorithm 1 Clauses building

I: Symbol = {«, 8,7,9...}
2: j < 0 — the first clause
3: for each preference P;, ¢: 1 to p do

4. fort=|P;.Vy,|downto1l do

5: C;.Ac < PLA,

6: Cj.Ap — P7Ap

7: C]‘.VAC — H.VAC

8: fork=1totdo

9: Cj.Va, (k) < Pi.Va, (k)

10: end for

11: Cj.s < Symbol(j)

12: O,; = Symbol(j) — the partial order
13: J < j + 1 —to generate the next clause
14:  end for

15: end for

16: return {Ch,...,C;}

17: return O

Example 2 (Example 1 cont’d). One can check
that algorithm 1 leads to the following encod-
ing of the preferences involved in the query ():
{(aVs,1—ay), (a,1—a), (maVisVig, 1 — 1),
(maVis, 1 —Ba), (msVgaVgaVg,l—m),
(s V g3 V g2,1 — 1), (08 V g3, 1 — 3),
(bVw,1—46y), (b,1—433), }, with the following
partial order between weights O = { oy < ao,
B < Ba, 11 <2 <73, 01 < 02 }.

3.2 Alternatives building

Alternatives correspond to the different inter-
pretations of the set of attributes stated in the
preference query. They represent the classes of
tuples that can interest the user. For instance, in

4This quantity stands for the cardinality of Va,, related
to the preference P(7).
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the query ()1, preferences are about three differ-
ent attributes: 'make’, 'model’ and ’color’ and
aisb is an example of alternative. The alterna-
tives are calculated from the preferences present
in the user query. This means that we consider
just the choices stated in the user preferences.
To do this, our system takes as input the con-
ditional preferences in the form of one or more
independent trees. Possible alternatives are ob-
tained by an in-depth scanning of the tree result-
ing from fusing all the independent trees (see
further Figure 2).

Example 3 (Example 1 cont’d). Let us con-
sider the preference query (J;. One can observe
that preferences can be represented by two inde-
pendent trees (as illustrated in Figure ??). The
first three preferences form the first tree and the
fourth preference constitutes the second tree. To
calculate the alternatives, we combine the two
trees by considering the alternatives of the first
tree as a context of the preferences of the sec-
ond tree. To do this, the fourth preference (i.e.,
the user prefers black phones to white phones)
can be replaced by the following preferences:
(i) for iPhone 5 (resp. iPhone 4), (s)he prefers
black phones to white phones ; (ii) for Galaxy
s3 (resp. Galaxy s2, Galaxy y), (s)he prefers
black phones to white phones.

Then, ten different types of phones are ob-
tained: 1" = { aisb, aisb, sgsb, sg2b, sg,b, aisw,
atqw, sgsw, sgaWw, SgyW }.
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3.3 Alternatives ranking

To rank-order the possible alternatives, we use
their satisfaction levels w.r.t. to the set of pos-
sibilistic formulas expressing the basic pref-
erences of the user. Such satisfaction levels
are calculated by leveraging the violation of
these formulas by each alternative. In Table
1, we summarize all the satisfaction levels cor-
responding to the set of alternatives T. For in-
stance, the vector of satisfaction of the alterna-
tive aighis (1,1,1,52,1,1,1,1,1) which means
that it satisfies all the formulas except the for-
mula (—a Vis, 1 — 5s).

=
‘ —
/: ‘_L g
i N N R
— - | &> & ~
$ |8 < T = =
S [ D> > > ]~
S > 7| s | s i i i > |~
S IO ECT NP NP B BN B R
aisb 1 1 1 1 1 1 1 1 1
aiqgb 1 1 1 B2 1 1 1 1 1
sg3b 1 (o2 1 1 1 1 1 1 1
sgab 1 s 1 1 1 1 v3 1 1
sgyb 1 g 1 1 1 Y2 | v3 1 1
aisw 1 1 1 1 1 1 1 1 02
atqw 1 1 1 B2 1 1 1 1 02
sg3w 1 a2 1 1 1 1 1 1 d2
sgow 1 g 1 1 1 1 v3 1 o2
Sgyw 1 a2 1 1 1 Y2 | V3 1 d2

Table 1: Satisfaction levels of T'

Alternative ranking is established using a tech-
nique called "extended Leximin" [13]: Let o =
(cvq,...,c0,) and B = (B4, ..., B,) be two lists
of weights attached, respectively, to two proofs
of the same proposition, say ¢q. Then a and
£ can be ordered using an "extended leximin"
defined as follows: First, o and S must be in-
creasingly reordered. Assume that the obtained
reordered lists correspond to (Aq,...,A,) and
(01,...,0,). Then the leximin ordering of the
lists v and [ writes: « =jepimin B iff A\ > 01
or 3¢ such that Vj = 1---4;\; = 6; and
Aig1 > Oig1.

Since the values of the weights (as, (51, 71,
deltay, etc.) are unknown, no particular order-
ing is assumed between them, this technique
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leads to a partial order between possible alter-
natives.

Now, by applying this technique on 7' of exam-
ple 3, we get the following pre-order:

aisb > { aish, sgsb, sgab, sg,b, aisw, aisw,
5g3W, SGoWw, SGyW }s aigh >k aiqw; alsw >k
at w; $G3b >pe 5g2b >pe 5gy0; SgzW > SGoW
ke SGyW.

Some alternatives as sgob, sgzw are incompara-
ble because the user prefers: (i) the model g3 to
go 1n case of Samsung and (i1) w.r.t color, black
phone b to white phone w. But, if we add a
pre-order between the symbolic weights by any
consistent set of ordering constraints, possibly
taking into account some priorities between the
user’s preferences, a supplementary pre-order
between the set of alternatives can be obtained.
Let us now consider available the priorities be-
tween the user’s preferences. For instance, the
priority order between the preferences is similar
to their order when stated by the user. Then, the
partial order between clauses is expressed with
the following constraints { s < 51, B2 < 71,
v3 < 07 }. Finally, we get the following order
between the set of alternatives for the query ():
atsh =jey AlsW =jeg Algh =jep AL4W ey SG3D
Zlex SG3W > lex 892b "lex SG2W > lex Sgyb " lex
5y W.

3.4 Top-k answers selection

Top-k answers are obtained by evaluating the
rank-ordered set of alternatives over the queried
database. To this end, we associate with each
alternative an SQL query. It is worth noticing
that in our system this evaluation process stops
when a maximal number of answers, k, is re-
trieved. This means that the alternatives are not
necessary all evaluated. See Algorithm 2 for the
top-k answers selection procedure.

Example 4 (Example 1 cont’d). For the rank-
ordered alternatives set 17 = {aisb, aisw,aisb,
atqw, sg3b, sgzw, sgab, sgaw, sg,b, sg,w}, the
corresponding SQL queries write:

For aisb: "select * from Phone where Make
"Apple’ and Model = ’iPhone 5’ and Color
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Algorithm 2 Top-k answers selecting

1: T = {t1,t2, ..., tn }: the rank-ordered set of n alter-
natives
2: k: the maximum number of tuples to retrieve
3: ¢ < 1 — the first alternative
4: while £ > 0 do
5: s ¢ Select(t;, K) — select s tuples correspond to
the alternative ¢;
6: k+k—s;
7: 1 <— 1+ 1 —next alternative
8: end while
black",

For aisw: "select * from Phone where Make
= "Apple’ and Model= "iPhone 5 and Color =
white",

And so on.

4 Empty answers case

One can observe that when the alternatives
(T) is calculated from the user preferences,
we have no ideas about the content of the
queried database. Then, it may be happen
that no tuples in the database correspond to
the computed alternatives and then no tuples
(partially) satisfy the (conditional) preferences.
To overcome this problem, one way is to cal-
culate the set of alternatives from the queried
database. We consider all the choices about the
attributes related to preferences stated, that may
exist in the database. This calculation can be
done by simply building an SQL query using
the different attributes stated in the preferences.
In the case of Example 1, to obtain the alterna-
tives, one can use the following SQL query on
the attributes *'make’, ’'model’ and ’color’:

Q)2 ="Select Make, Model, Color From BD
Group by Make, Model, Color".

One can, for instance, get alternatives that
exist in the database and not stated in user’s
preferences: black iPhone 3 (aizb), white
iPhone 3 (aizw), red Samsung g3 (sgsr), black
Samsung g4 (sg4b), white Samsung g4 (sgsw),
black Nokia ¢; (ncyb), white Nokia ¢; (ncyw).
Such alternatives partially satisfy the user
preferences and their satisfaction levels w.r.t
the logic formulas are: (1,as,1,1,1,1,1,01,02),

100

(1,1,41,52,1,1,1,1,1), (oq,009,1,1,1,1,1,1,1),
(1,0&2,1,1,’}/1,’)/2,’}/3,1,1), (061,062,1,1,1,1,1,1,62),
(1,c2,1,1,71,72,73,1, 02), (1,1,31,52,1,1,1,1,02)
By applying the leximin order, we get the
following order: aish >jc; i3W >jer SG3T > lex
594D =iex $GaW =ieq NC7D = ey NCTW.

S Experimentation study

Let us first precise that the system SYM-
PAS is implemented in Java and the experi-
ments are run on Intel Core i3 CPU 2.3GHz
with 4.0GB RAM under Windows 8. We
have used five databases of different sizes
2ko, 20ko, 50ko, 100ko, 500ko, 1000ko, on a
relation Phone with the schema, Phone (Make,
Model, Color, Memory, Operator, Price).

5.1 First experiment

This experiment aims at measuring the execu-
tion time of a preference query ° to select the
top-k answers over databases of different sizes
figure 3. As can be seen, the execution time
to select 30 to 200 tuples from the databases of
sizes 20ko, 50ko, 100ko is lower then the one
of size 2ko The execution time does not (sig-
nificantly) change from & = 200 tuples when
queried the database of size 2ko (This behavior
is also observed in the cases of sizes 20ko and
50ko).

To provide some explanation about the above
results, let us analyze the alternatives number
used (i.e., the number of SQL queries sent to
the databases) for satisfying the user preference
query in each case. This analysis is illustrated
in Figure 4.

From Figures 3 and 4, we have:

T (100ko) ~ TL(50ko) ~ T (20ko) ~ T2 (2ko).

TS (2ko) > Tdy(100ko) ~ T, (50ko) ~ T, (20ko).

As can be seen, there is some relationship
between the executed alternatives number

ST7(|DBY): The execution time to select the top &
tuples from the database of size |DB|, n is the number
of alternatives used or the number of SQL queries sent to
the database to select the k tuples.
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used for satisfy the preference query and the
execution time of the query. The higher the
number of alternatives, the higher execution
time is. This is due to the fact that in our
system the set of alternatives are built from
the preference query, and these alternatives are
used for retrieving the top-k tuples desired as
answers to the query at hand. This is why we
have: T9 (2ko) ~ T4 (2ko) ~ ... ~ T38,o(2ko).

2200
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——2ko

-7 |—=—20ko
50 ko
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1200

/ 100 ko
1000 —— 500 ko

—— 1000 ko
800 '/’//
600
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T T T T T
50 100 200 1000 1500 2000 3000 3500
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Figure 3: Different execution times
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number
=Y

N\
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Top-k

Figure 4: Executed alternatives number

5.2 Second experiment

The aim of this experiment is to compare the ex-
ecution time of preference queries w.r.t. the two
methods implemented in SYMPAS for building
alternatives (from the user preference query and
from the database content).

We use the following scenario: (i) we consider
the preference query (()1) used in the first ex-
periment, the alternatives calculated from the
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conditional preferences are {aisb, aisw,aisb,
atqw, sgsb, sgzw, sga2b, sgaw, sg,b, sgyw} ; (i)
we also consider a queried database of 50ko tu-
ples. This database may contain up to 200 dif-
ferent types of phones corresponding to the at-
tribute values stated in the preference query.

Figure 5 shows the execution time evo-
lution of the query (Qi,k), with k €
{5,10,15,20,50,100}. One can observe that
the execution time when we calculate the al-
ternatives from preference query is lower than
the one obtained by calculating the alternatives
from the content of the database. However, the
second approach could be useful in the case
where the first one results in empty answers.

550

o

500

450

—+—From Pr
—From DB

Time (ms)

—
-

350

300 T T T
5 10 15 20 50
Top-k

100

Figure 5: Second experiment

6 Conclusion

In this paper, the first foundations of a database
system capable of handling user preferences
expressed under the form of conditional state-
ments, are discussed where possibilistic logic
plays a key role for representing such condi-
tional preferences. The top-k answers selec-
tion to a user query is investigated as well.
Some preliminary experiments are conducted to
show the feasibility of our proposal and to make
some performance measures related to execu-
tion time. We plan to perform thorough exper-
iments, in the one hand, to study the effective-
ness and efficiency of the proposed system on
large real databases and, on the other hand, to
compare the system to other approaches. Sym-
bolic priority expressed in an imprecise way [1]
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will be also considered. A third line for future
research is to investigate the issue of revising
preferences in SYMPAS system in the spirit of

[9].

References

(1]

(2]

(3]

(4]

[5]

[6]

(7]

(8]

[9]

S. Benferhat, J. Hué, S. Lagrue, and
J. Rossik.  Interval-based possibilistic
logic. In Proc. IJCAI, pages 750-755,
2011.

and
In

S. Borzsonyi, D. Kossmann,
K. Stocker. The skyline operator.
Proc. of ICDE, pages 421-430, 2001.

P. Bosc, A. Hadjali, and O. Pivert. An ap-
proach to competitive conditional prefer-
ences for database flexible querying. In-
ternational Journal of Intelligent Systems,

26(3):206-227, 2011.

P. Bosc and O. Pivert. Sqlf: a rela-
tional database language for fuzzy query-
ing. IEEE Trans. on Fuzzy Sys., 3:1-17,
1995.

R-I. Brafman and C. Domshlak. Database
preference queries revisited. In Technical
Report TR2004-1934, Cornell University,
Comput. and Info. Science, 2004.

R-I. Brafman and C. Domshlak. Prefer-
ence handling - an introductory tutorial.

In Artificial Intelligence Magazine, vol-
ume 30, pages 58—86, 2009.

N. Bruno, S. Chaudhuri, and L. Gra-
vano. Top-k selection queries over rela-
tional databases: mapping strategies and
performance evaluation. ACM Trans. on

Database Sys., 27:153—-187, 2002.

J. Chomicki. Preference formulas in re-
lational queries. ACM Transactions on
Database Systems, 28(4):1-40, 2003.

J. Chomicki. Database querying under
changing preferences. In Annals of Math-
ematics and Artificial Intelligence, pages
79-109, 2007.

102

[10]

[11]

[12]

[13]

[14]

[15]

C. Domshlak, E. Hiillermeier, S. Kaci, and
H. Prade. Preferences in artificial intel-
ligence: An overview. Artificial Intelli-
gence Journal (In Special Issue on Rep-
resenting, Learning, and Processing Pref-
erences: Theoretical and Practical Chal-
lenges), 175:7-8, 2011.

D. Dubois and H. Prade. Possibilis-
tic logic: a retrospective and prospective
view. Fuzzy Sets and Sys., 144:3-23,
2004.

C. Gonzales and Perny P. Gai networks
for utility elicitation. In Proc. of the 9th In-
ter. Conf. on Principles of Knowledge Rep.
and Reas., pages 224-234, 2004.

A. Hadjali, S. Kaci, and H. Prade.
Database preference queries - a possibilis-
tic logic approach with symbolic prior-
ities. Annals of Mathematics and Al,
63:357-383, 2011.

W. Kiessling and G. Kostler.  Prefer-
ence sql— design, implementation, expe-
riences. In Proc. of VLDB, pages 999—
1001, 2002.

K. Stefanidis, G. Koutrika, and E. Pitoura.
A survey on representation, composition
and application of preferences in database
systems. ACM Trans. on Database Sys.,
36, 2011.



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

Projection extensionnelle pour la réduction d’un treillis de concepts
formels flous

Fuzzy formal concepts lattice reduction based on extensional
projection

Hakim Radja’

Yassine Djouadi’

1. UMMTO, Univ. de Tizi-Ouzou, Dept. Informatique, BP 17, RP, Tizi-Ouzou, Algérie, Hakim.Radja@hotmail.fr
2. USTHB, Université des Sciences et de la Technologie d’ Alger, BP 32 El Alia, Algérie, djouadi @irit.fr

Résumé :

En analyse de concepts formels, les connaissances in-
duites (appelées concepts formels) sont hiérarchisées et
représentées sous la forme d’un treillis de Galois. 1l
s’avere que dans le cas d’applications réelles, le nombre
de concepts formels est trés important ce qui augmente
considérablement la taille du treillis de Galois engendré
et par voie de conséquence la complexité de la manipula-
tion de ce treillis. Les treillis de Galois alpha sont appa-
rus récemment pour répondre a ce probleme. Néanmoins,
les approches proposées en ce sens prennent uniquement
en considération des relations Booléennes. Dans la conti-
nuité de ces approches, nous proposons dans ce papier
une méthode permettant de réduire la taille du treillis de
Galois dans le cas de relations binaires floues. L’intérét
de notre contribution se trouve d’autant plus justifié que
le nombre de concepts formels est d’autant plus impor-
tant lorsque la relation est floue. Pour ce faire, nous uti-
lisons un partitionnement de I’ensemble des instances en
classes de base. Un tel partitionnement est obtenu en as-
signant a chaque instance une classe de base en fonction
de son type. Nous introduisons ensuite une projection ex-
tensionnelle consistant a définir une nouvelle extension
pour chaque intension floue. Cette nouvelle notion d’ex-
tension est basée sur un certain critere de satisfaction al-
pha (relatif a la partition) en classes de base. L’approche
ainsi proposée permet de réduire le nombre de concepts
formels et par conséquence la taille du treillis de Galois.

Mots-clés :

Treillis de Galois alpha, analyse de concepts formels
flous, réduction de treillis.

Abstract:

A Galois lattice is a representation of knowledge as a
hierarchy of concepts. In the case of real application the
number of formal concepts is very important which signi-
ficantly increases the size of the Galois lattice generated.
We propose in this paper a method to reduce the size of
concept lattice in the case of fuzzy binary relationship,
inspired by Galois alpha lattice. For this purpose, we use
a partitioning of the set of instances to base classes. Such
partitioning is obtained by assigning to each instance a
basis class according to its type. We will then make an
extensional projection consisting of defining a new exten-
sion for each fuzzy intension. This new notion of exten-
sion is based on a criterion of alpha satisfaction relating
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to the partition to base classes, which helps to reduce the
number of formal concepts and therefore the size of the
Galois lattice.

Keywords:

Galois alpha lattice, fuzzy formal concept analysis, lat-
tice reduction.

1 Introduction

L’analyse de concepts formels (ACF),
introduite par Wille [1], consiste a ap-
prendre des paires de sous ensembles
({objets} {\propriétés}), appelés concepts

formels, a partir d’une relation binaire (appelée
contexte formel) entre un ensemble d’objets
et un ensemble de propriétés. Rappelons que
dans la proposition initiale de Wille, la relation
considérée est Booléenne (un objet possede
totalement la propriété ou ne la possede pas
du tout). Dans le cas de I’analyse de concepts
formels classique (non flou), plusieurs ap-
proches ont été proposées pour réduire la
taille du treillis de Galois. Dans [4] les au-
teurs proposent une méthode qui se base sur
I’élimination d’une partie des nceuds du treillis.
Dans [5] un treillis de concepts fréquents
représente la partie supérieure d’un treillis de
concepts : seuls les nceuds dont I’extension est
suffisamment grande (relativement a un seuil)
sont représentés. Dans beaucoup d’applica-
tions, il est parfois utile de représenter une
grande quantité de données en les regroupant en
une hiérarchie de classes. Partant de cette idée,
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Ventos & Soldano [3] ont proposé des treillis
réduits appelés treillis de Galois alpha apres
une projection extensionnelle. Ce modele qui
permet une représentation réduite de connais-
sances s’avere efficace. Néanmoins, il est limité
a des contextes formels Booléens. Il s’avere
que I’ ACF est souvent amenée a considérer des
réalités concretes (mesures, observations, juge-
ments, etc...) ou peuvent apparaitre des notions
de gradualité. De pareilles réalités ont déja
été modélisées par des contextes formels flous
[6]. Cependant, le nombre de concepts formels
induit par un contexte formel flou est largement
plus important que par un contexte formel
Booléen ce qui augmente considérablement la
taille du treillis de Galois engendré. La quasi
majorité des travaux existant dans le cadre de
la réduction de treillis ceuvrent sur la globalité
du contexte formel (sans partitionnement de
celui-ci). A ce titre, nous présentons dans ce
papier, une approche permettant de réduire un
treillis de concepts formels flous inspirée des
treillis de Galois alpha [3]. Dans cette approche
nous contrdlons le nombre de nceuds du treillis
en tenant compte, dans une certaine mesure
associée a un degré alpha (@), d’une partition a
priori des données. Cette partition est constituée
d’un ensemble de classes de base : chaque
classe est associée a un type de base : celui
des instances qui la constitue. Donc, dans cette
approche, uniquement les instances appartenant
a des classes de bases satisfaisant I’intension
floue a un taux alpha seront maintenues dans
I’extension alpha. Le cadre général des treillis
et de I’analyse de concepts formels floue est
donné dans la section 2. En section 3, nous
présentons et illustrons sur un exemple simple
la procédure nous permettant d’étendre les
treillis de Galois alpha au cas de relations
floues ainsi que 1’algorithme alpha permettant
de calculer pour chaque intension floue son
extension alpha.
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2 Analyse de concepts formels flous

L’analyse de concepts formels consiste a
apprendre des paires de sous ensembles
({objets} {\propriétés}) appelés concepts formels
a partir d’une relation binaire appelée contexte
formel. Dans la proposition initiale de Wille [1],
la relation considérée est Booléenne (un objet
possede totalement la propriété ou ne la possede
pas du tout). Dans I’analyse de concepts for-
mels flous, un contexte formel flou est un tuple
K = (L,0,P,R) ou la relation floue R € L%
est une fonction R : O X P € L (généralement
L = [0,1]). La fonction R assigne a chaque
objet x € O et a chaque propriét€ y € P un
degré R(x,y) exprimant le degré de satisfac-
tion de y par x. Cette relation est représentée
sous forme d’une table. Généralement les lignes
représentent les objets et les colonnes les attri-
buts, chaque cellule exprime une valeur appar-
tenant a [0,1] , comme le montre 1’exemple sui-
vant :

Table 1 — Contexte formel flou

RIyvi|»|w»m

x1031]0.1]0,1
x | 0810400
x3 108106100
x4 1 104100
xs| 1 104105

Soit K = (L, 0, P,R) un contexte formel flou
et soient X € LY , Y € LP. Les opérateurs de
dérivation ()1 : L9 = [P et ()! : 1P = 1O
sont définis par Belohlavek [7] comme suit :

X' () = Ao X () = R(x, )
P = Ayep (Y () = R(x, 7))

X" (y) (resp.Y*(x)) désigne le degré d’apparte-
nance de I’attribut y (resp. I’objet x) dans 1’en-
semble flou de propriétés X' (resp. ensemble
flou d’objets ¥*). Etant donné X € L9 et ¥ e
P , une paire (X, Y) est un concept formel flou
ssi X = Yet ¥ = X. Lensemble de tous
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les concepts formels flous peut étre muni d’une
relation d’ordre (notée <) définie comme :
(Xl,Y1) < (Xz, Yz) ssi X] - X2 (ou Yz - Yl
). Cet ensemble muni de la relation d’ordre <
forme un treillis complet. Les opérateurs Meet
et Join sont décrits par le théoreme fondamen-
tal de Ganter et Wille [2]. Il existe plusieurs
méthodes permettant de construire un treillis de
Galois dans le cas de 1’analyse de concepts for-
mels flous [6], [7], [8], [9] et [10]. Dans ce
qui suit nous donnons I’ensemble des concepts
formels flous extrait du tableau 1 en utilisant
I’algorithme présenté dans [11]. La Figure 1
représente le treillis de Galois correspondant

Cl : (xls XZ,X3,X4,X5) (Yl ,y(z)]ay3 )

C,: (x x%,8x3,x4,x5) O ,y(z”,y3

Cs : (7,98, xl, x), xb), (yl,yz ,y3 %)
C4 : (x()] xél-x:l;ax470x5) (yl ,)’2 ’y’; )
CSZ(x x%4’x878x4 7-x5 ) (y] ’)’2 ’y’i )
Co: (x)! gc% ,x3 L3 X0, (01, 599,359)
C;: (x(l),lxzo,ox3 O,Ox4,x5) LY ,y(z”,y3

CS : (-x01 -x2 ax3 9-x4’-x5) ()’1,)’2 ,)’3 )
C9 : (X x2 ,x3 ,x4,x5 ) (yl»y2'4’y(3).l)

0,3 0,0 0.1 0.1
(-xl 7x2 7-x3 7-x4’x5) (ylayz ,y3 )

(xl axz 7x3 ’x4’x5) (yl’yz ’y3

0.1 0.0 04
20 () ,x2 ,x3 2 Xy ,x5 )(yl’yZ’yB

Figure 1 — Treillis de concepts formels flous

Dans le cas d’applications réelles, le nombre de
concepts formels flous est tres important, ce qui
augmente considérablement la taille du treillis
de Galois engendré. La suite de ce papier pro-
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pose une approche par partitionnement permet-
tant de réduire la taille du treillis tout en gardant
son informativité.

3 Proposition

3.1 Partitionnement en classe de base

Les classes de bases sont un regroupement
d’objets partageants un méme type. Ces classes
sont obtenues par un partitionnement non flou
de ’ensemble de tous les objets. Ce partitionne-
ment est généralement obtenu a I’aide d’un ex-
pert du domaine (Knowledge Engineer). Cette
activité ne pouvant étre décrite de maniere for-
melle, nous proposons de I’illustrer a travers un
exemple concret relevant du domaine médical.
Cet exemple a été construit en collaboration
avec un médecin spécialiste du Centre Hospi-
talo Universitaire Nedir Mohammed de Tizi ou-
zou. Nous avons ainsi mis en évidence les ma-
ladies suivantes :

— Hypertension artérielle (o),

Insuffisance cardiaque (0,),

Rétrécissement mitral (03),

Dilatation des bronches (04),

Asthme (05).

Il a été constaté que les manifestations de ces
maladies se font généralement a travers les
symptomes suivants :

— Dyspnée (D),

— Douleurs thoraciques (H),

— Expectoration (E).

Le contexte formel illustré a travers le Ta-
bleau 2 quantifie les corrélations (relations)
entre les maladies et les symptomes correspon-
dants. Ce contexte formel relie un ensemble
de maladies a un ensemble de symptomes. A
titre d’exemple, un patient ayant de 1’hyperten-
sion artérielle possede le symptome d’expec-
toration a un degré égal a 0,1. Tandis qu’un
patientatteint d’insuffisance cardiaque présente
le symptome de dyspnée a un degré 08. L'ex-
pert a constaté que chaque maladie appartient
a une classe de base. Ainsi, les trois premieres
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Table 2 — Contexte formel flou

Classede base | R | D | H | E
0;103]0.1]0,1

CLI 0, 1081041 0,0

03 108106100

os| 1 104100

CL2 os | 1 (04105

maladies (hypertension artérielle, insuffisance
cardiaque, rétrécissement mitral) appartiennent
a la classe des maladies cardio-vasculaires, et
les deux dernieres (dilatation des bronches,
asthme) appartiennent a la classe des maladies
respiratoires. Le partitionnement des maladies
a ainsi donné lieu a deux classes de base, a sa-
VOIr :

— Maladie cardio-vasculaires (CL;)

— Maladies respiratoires (CL;)

3.2 projection Extensionnelle

Dans [13], les auteurs formalisent 1’extension
de I’analyse formelle de concepts a des lan-
gages plus sophistiqués. La notion de projec-
tion est utilisée pour réduire le langage et
ainsi réduire la taille du treillis de Galois.
Indépendamment, [14] utilise la méme notion
de projection pour faire varier le langage mais
I’utilise également en la nommant projection
extensionnelle, pour modifier la fonction d’ex-
tension ext. Nous allons proposer une pro-
jection extensionnelle pour déterminer, pour
chaque intension (terme) floue, une extension
dont les objets appartiennent tous a des classes
de bases qui satisfont ces termes a un pourcen-
tage alpha. Pour ce, nous allons d’abord rap-
peler la notion d’inclusion ensembliste floue
utilisée. Nous introduisons ensuite une mesure
de satisfaction alpha. Basée sur cette derniere,
nous proposons de quantifier I’appartenance al-
pha. Enfin, nous proposons une nouvelle no-
tion d’extension alpha basée sur les notions
précédemment définies. Dans [12], le degré
d’inclusion est défini comme suit :
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Définition 1. (subsethood degree )

Soit A, B € L* deux sous ensembles flous. Le
degré d’inclusion S (A, B) de A dans B est donné
comme Suit :

S(A, B) = A\ex((A(x) = B(x))

ou — désigne I’'implication floue

Il est a noter que nous utiliserons 1’'implication
de Godel dans la suite de ce papier. Nous utili-
serons aussi 1’application 7, pour désigner I’in-
tension T = 7(o0;) d’un objet quelconque o;,
définie comme suit :

I: X->LY

0i|—>T

ou T'(yr) = R(oi, yi)

3.2.1 Satisfaction alpha

Soient X = {01,0,,...,0,} un ensemble non
flou d’objets (instances) constituant une classe
de base, T un terme flou (intension floue) et
un nombre entre [0,100]. Nous définissons dans
ce qui suit la notion de satisfaction . Un en-
semble X = {0y,0,,...,0,} satisfait une inten-
sion floue 7" a un taux « (noté Xsar,T) ssi au
moins a% de ses objets (instances) satisfont 7" :

"o S(T, I(o;
X sat,T ssi Liz0 |(X| (©9)

x100>a (1)

N

ou :

|X| : 1a cardinalité de I’ensemble non flou X (la
classe de base).

S(T,Z(0))
dans 7 (o;).

: degré d’inclusion de I’intension T

Exemple :

L’ensemble X = {o0;,0,, 03} satisfait le terme
T = (D°8, H** E*%) pour @« = 70% car :
.[(01) — (D0’3,H0’1,E0’1)

S(T,J(o1)) =
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S((DO’S,HO’4, EO’O), (D0’3,H0’1, EO,I)) — 0, 1
De la méme maniére :

S(T,71(0y)) =1

S(T,1(03)=1

De ce fait, nous avons :

nS(T,I(o;
2 S(T.1(0) % 100 =

Xsat;oT car X

=70

Par contre, I’ensemble X = {01, 0,, 03} ne sa-
tisfait pas le terme T = (D', H**, E®®) pour
a = 50.

WXIOO

3.2.2 Appartenance alpha

Soit X = {01, 07,03, ...,0,} un ensemble d’ob-
jets (non flou) et CL désignant une fonction
telle que CL(0;) corresponde a la classe de base
de I’objet 0;. Soit T un terme (intension) flou
de L”.

o; app,T ssi CL(0;) sat,T 2)

Exemple :
Pour le terme flou 7 =
o1 appeo T car :

(DO’S, H0’4, EO’O),

Y1 S(T.1(0) _
el L] x 100 =
=70 > 60

Plus de 60% de la classe de base de o; (CL1 :
classe de I’objet 0y) satisfait le terme flou 7' =
(DO,S H0,4 EO’O).

3.2.3 Extension alpha

L’extension alpha (notée ext,(T)) d’un terme
flou T , relativement a la partition CL est définie
comme suit :

exto(T) = {0i/px(0)} 3)

Ou ux(o;) = S(T, L(0;)) si o;app,T , 0 sinon

Exemple :
Cet exemple illustre la  construction
de I’ensemble extso(7T) pour le terme

T =MD" H" EYeta=50
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— pour oy € CL1

S(T,1(01)) =0,1

S(T,1(0y))=0,0

S(T,1(03))=0,0

Pour que o, fasse partie de extsy(T), il faut que
sa classe de base satisfasse 7" pour @ = 50 :

3 S(T.I(o;
leooz(ulgﬂx100:3>50

Donc la classe de base CL1 = {01,0,,03} ne
satisfait pas le terme T = (D', H*!, E') 4 50%.
Ce qui fait que : 01 € extso(T) avec ux(o1) =0

— La méme chose pour les instances o, et 05 car
elles appartiennent a la méme classe de base
que o .

— Pouros € CL2 :

S(T,I(04) =1
S(T,I(os5)=0,5

5 .
ZoadTOD 5 100 = 409 % 100 = 75 > 50

ICL2]
Donc la classe de base CL2 = {o04,0s5}
satisfait le terme 7 = (D',H*,E") a

50%. De ce fait, o4extso(T) avec un degré
d’appartenance : ux(os) = S(T,1(04)) =
S(D',H*',EY, (D", H*"*E") =1

Donc o5 € extso(T) avec un degré d’ap-
partenance ux(0s) = S(T, 1(05)) =
S((DI,HOJ,EI), (Dl,HOA,EO’S)) — 0’5
Donc T’extension pour ¢ = 50 du terme

r = (Dl ’ H®! s El) est e.xtso(T) =
extso(D', H™', E') = (0", 0,°, 03", 0}, 05”)

3.3 Projection extensionnelle

Rappelons ci-dessous la notion générale de pro-
jection :

Un opérateur Proj est une projection d’un
treillis (E, <) ssi pour tout couple X, Y € E les
propriétés suivantes respectivement de minima-
lité, monotonie et idempotence sont vérifiées :

1. Proj(X) < X.
2. X <Y = Proj(X) < Proj(Y).
3. Proj(Proj(X)) = Proj(X).
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Soit E, I’ensemble de toutes les extensions
alpha d’un terme 7. En changeant I’extension
(ext), une projection extensionnelle trans-
forme un treillis de Galois en un Treillis
plus petit mais qui garde !’informativité du
treillis initial. A ce titre, la proposition sui-
vante permet d’établir une importante propriété.

Proposition 1.

Soit G = (L9, Int, L?, ext) un treillis de Galois.
Soient ext, = proj, o ext et E, = proj,(L°).
Alors Int : E, — L etext, : L¥ — E,
définissent une correspondance de Galois entre
E,etLF.

Preuve.
Pour prouver la Proposition 1, il suffit de
montrer que proj, est une projection :

— Minimalité :
projo(X) <X
proj.(X) est composée des objets de X qui
satisfont le critere @, ie proj,(X) est inclus
dans X puisqu’on élimine des éléments de X
, donc proj, est minimal.

— Monotonie :

X <Y = projo(X) < proj.(Y)

Si X est inclus dans Y, chaque élément de
X retiré par la projection sera aussi retiré
de Y, et ceux qui restent auront toujours les
mémes degrés d’appartenances proj,(X) est
donc inclus dans proj,(Y) et donc proj, est
monotone.

— Idempotence :

projo(projo(X)) = projo(X)

Dans la nouvelle extension (extension alpha)
il ne reste que les objets dont @% de la classes
de base satisfont le terme flou, donc une nou-
velle projection avec un méme @ nous don-
nera les mémes objets avec les mémes degrés
d’appartenance.
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3.4 Algorithme EXTALPHA

L’algorithme est concu pour générer, pour
chaque intension floue, son extension alpha.
Il est organisé comme suit : au départ 1’en-
semble des extensions alpha (EXT _SET)
est initialisé a I’ensemble vide Ensuite pour
chaque intension floue (7"), I’algorithme calcule
son extension alpha (ext,(T)) en parcourant
chaque ligne du contexte formel flou et en
vérifiant la condition de satisfaction alpha
pour chaque ligne, si la condition est vérifiée
I’objet correspondant a la ligne est ajouté a
ext,(T) avec un degré d’appartenance égale
au degré d’inclusion (ux(o;) = S(T,1(0;))
sinon px(0;) = 0. Enfin, pour chaque extension
alpha générée 1’algorithme vérifie si elle existe
déja dans I’ensemble EXT SET si ce n’est
pas le cas alors celle ci sera rajoutée a cette
ensemble sinon il garde uniquement la plus
grande intension parmi celles qui ont toutes
la méme extension alpha (ext,), les autres
seront enlevées de 1’ensemble des intensions
INTENT — SET. L’algorithme est organisé
comme suit :

INTENT _SET : Ensemble de toutes les inten-
sions floues.

EXT S ET : Ensemble des extensions alpha.

o; : Objet de la ligne i du contexte formel flou.

m : Le nombre de ligne du contexte formel flou.
CL(0;) : La classe de base de 1’objet o;.

|CL(0;)| : Cardinalité de la classe de base de
I’objet o;.

I (0;) : Intension de I’objet non flou o;.

T, T’ : Deux intensions floues appartenant a
I’ensemble des intensions floues.

ux(o;) : Degré d’appartenance de I’instance o; a
I’ensemble X.
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Algorithm. EXTALPHA

Imput : K = (L,0,P,R),INTENT _SET
Output : EXT SET,
Begin
EXT _SET = {0};
For each T € INTENT SET) Do
ext,(T) :=0;
i:=0;
While i < m Do

. n o S(T,I(o;
if Z=50L0OD 100 > o then

1X]
ux(0;) :==S(T, Z(01))
else
Hx(0;) =0
exto(T) :={o;/pux(0)} U exto(T)
i+ +
End While

if —(ext,(T) € EXT _S ET)then
EXT SET := EXT SET |Jext,(T)

else

if(ext,(T) = ext,(T"))and(T C T”)then

INTENT _SET := INTENT SET) —

else

INTENT SET := (INTENT_SET) —

End For
End.

Exemple d’application :

Nous reprenons I’exemple du contexte for-
mel représenté par le Tableau 2, en utili-
sant 1’algorithme proposé nous calculons
pour chaque intension floue 7 son ex-
tension alpha (extq(7)), nous obtenons
l’ensemble des concepts formels suivants

C2: (0 02,03,04,05) (D8, HO', E00)
C3: (0 02,02,04,05) (D8, H* E00)
C4: (o)’ 02 5,0l 01, 0), (D', H*!, E0)

C5: (001 02 ,028,04,0;),(D1,HO"‘,EO’O)
C6: (0° 02 003", oj,o;) (D', H**, E*)
C7: (o)’ 02 ,0(3)0,04,05 ) (D', H** E")
C8: (0)",05°,05°,007,02%), (D', H',E")

La Figure 2 présente le treillis de Galois alpha
(a = 60) équivalent :

Figure 2 — Treillis réduit (G60)

Notons que pour @ = 0, on obtient exactement
le treillis initial.

4 Conclusion

Dans ce papier, nous avons proposé une
méthode permettant de réduire un treillis de
concepts formels flous en se basant sur les
treillis de Galois alpha et le partitionnement
des objets. Nous avons vu qu’en modifiant la
notions d’extension en se référant a une parti-
tion de I’ensemble des instances O, nous mo-
difions le treillis des extensions tout en gardant
la structure en treillis de Galois. Comme pers-
pective, nous comptons déterminer la base mi-
nimale d’implications floues a partir du treillis
de Galois alpha flou résultant permettant ainsi
une représentation condensée de toutes les im-
plications floues qu’on peut induire a partir du
contexte formel initial. Ce travail peut étre aussi
étendu aux opérateurs de dérivation possibi-
listes proposées par Dubois et Prade [15].
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Information Fusion for a Multi-sensor, Multi-target Classification
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Résumé : haite estimer les trajectoires d’'un ensemble de

La redondance d'informations est une solution habi- cibles et les classer selon leurs propriétés dy-
tuellement proposée pour corriger I'incertitude des ins-

truments de mesure observant un systéme complexe. Namiques (ex : capacités de manceuvres). Plu-
Dans cet article, on s'intéresse au probleme de suivi et de sijeurs challenges sont a considérer dans ce pro-

classification de plusieurs cibles a 'aide d’'un ensemble N .
de capteurs plus ou moins fiables. Chaque capteur est bleme, notamment, la prise en compte de la

supposé équipé d’un calculateur lui permettant de suivre complexité des manceuvres que peuvent effec-

et de classer plusieurs cibles effectuant divers mouve- ; ' :
ments. Le suivi des cibles étant optimalement assuré par tuer les cibles et les répercussions que peuvent

des IMM (Interacting Multiple Models) a base de filtres  avoir les erreurs de mesures sur la qualité du

de Kalman, le résultat de la classification reste dépendant g,jyj et sur la classification des cibles. Le suivi
des erreurs de mesure. En vue d’avoir le meilleur résultat

de classification possible, on s’est proposé de fusionner du mouvement des cibles dans notre travail
les classifications locales des capteurs, suivant différentes est assuré localement (au niveau des capteurs)
regles de combinaison des cadres probabiliste et crédal, et . \ .
de comparer les résultats. par des algorithmes IMM a base de filtres de
Mots-clés : Kalman .(un IMM pour une cible). Les me-
Suivi multi-cibles, classification crédale, classification ~sures faites par les capteurs sont acheminées
Bayésienne, fusion de données, association de données. aux IMM par le moyen d’un algorithme d’asso-
Abstract: ciation bidimensionnel généralisé, notamment,

Information redundancy is commonly proposed as a |, : ;
solution to overcome the sensors uncertainty when ob- | algorithme GNN (Global Nearest Neighbor)

serving complex systems. In this article, we are interes- qui tend a minimiser la distance globale entre
ted in multiple targets tracking and classification using ;

a set of sensors with different reliabilities. Each sensor les Amesure:‘s et Ie_s .CIbIeS Connue_s' En plus .de
is equiped with a processor allowing to track and clas- la tache d’association, cet algorithme fournit
sify multiple maneuvering targets. Given that the tracking i i i R
task is optimally provided by Kalman filters based IMMs des mformatlops Concemant, les ?Ibles nou_vel
(Interacting Multiple Models), the classification task still lement détectées ou non detectées. Ces infor-

depends on the measurements errors. In order to have themations sont utilisées par des fonctions score
best classification result, it is proposed to fuse the sensors

local classifications following different combinationrules  [2] pour géerer les apparitions et disparitions de
of the Bayesian and credal frameworks, and compare the cibles au niveau des capteurs.

rKe;;vI\:Z.rds: A l'issue dl'J processus .d’estimatign,'et a l'aide
Multi-target tracking, credal classification, Bayesian des donnees cinématiques eStlmee_s’ C_haque
classification, data fusion, data association. capteur procede a une étape de classification lo-
cale en utilisant un formalisme Bayésien ou cré-
dal [9]. Les classifications locales étant dépen-
Cet article reprend le probleme de suivi et de dantes des erreurs de mesure faites par les cap-
classification de cibles qui est abondamment teurs, en terme de performance, ces dernieres
étudié dans la littérature [1, 2, 7], ou, a base sont fusionnées et des conclusions sont tirées
de mesures (ex : positions enet y du plan) guant a la robustesse de la classification globale.
prises par un ou plusieurs capteurs, on sou- Les classifications locales des capteurs sont fu-

1 Introduction
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sionnées selon un ordre obtenu par une algo- {1,2,...,m, }. La matrice d’'observation de di-
rithme GNN généralisé, ce qui permet de gérer mension { x p) est notéeH et v, (k) re-
le fait que les capteurs n'observent pas le méme présente I'erreur de mesure faite par le cap-
nombre de cibles. teur s;, elle est vue comme un bruit Gaus-
Le paragraphe 2 de cet article présente une des-sien de moyenne nulle et de matrice de co-
cription simplifiee du contexte de suivi multi- varianceR. On note que le nombre de cibles
cibles, le paragraphe 3 aborde la classification n,, connues par un capteuyy est variant dans
locale (Bayésienne ou crédale) faite par les cap- le temps et une mesurg (k) acquise a I'ins-
teurs, ensuite la maniére dont les classifications tant k peut étre issue d’'une cible connue (pré-
des capteurs sont fusionnées dans le paragraphedlite), une nouvelle cible ou bien du bruit. L'en-
4 et enfin, le paragraphe 5 est dédié a une appli- semble des mesures prises par un captgur
cation sur des cibles aériennes. avecs; = {si, $2, ..., S}, & un instank est noté
2 Suivi local des cibles Zs, (k) = {2, (k), 22, (k) .., z." (k) }, avecm,,

le nombre de mesures acquises par le capteur
Les cibles dans leur environnement peuvent [’ensemble des mesures acquises sont utili-
effectuer une multitude de manceuvres diffé- sées par chague capteur pour mettre a jour des
rentes (mouvements Uniformes, aCCélérationS, cibles déjé prédites par les IMM ou créer de
etc.), leur évolution peut étre vue comme un npoyvelles cibles. Les détails concernant I'algo-
processus Markovien commutant. Une modé- rithme IMM peuvent étre trouvés dans [1, 2].
lisation possible d'un tel processus consiste a A lissue de la phase d’association, les IMM
définir un nombre fini de modéles linéaires ou sont mis a jour et une estimation de I'état de

chaque modele représente un mode d'évolution tgytes les cibles est faite au niveau des capteurs.

particulier. Pour une cible adoptant un mode  On noteX,, (k) = {&! (k), 22 (k), ..., &5 (k)},
d’évolutionmy, avecl = {1,..r} etr étantle  pensemble des estimations faites par le capteur

nombre de modes d'évolution possibles, 'évo- . 3 linstantk.
lution du vecteur d'état peut étre décrite comme - _
suit : 3 Classification locale des cibles

@' (k) = F(my)a’ (k = 1) + Bu' (k) + w'(k) (1) Comme dans les travaux de Smets et Ristic
ou, z*(k) € Rr représente le vecteur d'état de [7,10], la classification des cibles dans ce travail
la ciblei & l'instantk, aveci € {1,2,...,n}. La est faite a base des données cinématiques esti-

notation F'(m,) représente la matrice d'état de mees des cibles. Les connaissareesiori sur
dimension f x p) qui dépend du mode d’évo-  es capacités de manceuvre des cibles nous per-
lution m, et u'(k) représente une entrée dé- mettent de définir un nombrg fini de classes
terministe qui peut modéliser les changements €' = {c1, ¢, ...,cx} ou, chaque classe re-
d’accélération par exemple, @t(k) estune er- ~ groupe un certain nombre de modes d’évo-

reur de modélisation considérée Gaussienne alution (ex : classe contenant le mode de vitesse
moyenne nulle ayarf comme matrice de co-  constante, classe contenant les modes d’accélé-

variance. La matrice d’entrée est not@eDif- rations moyennes, etc).
férentes modélisations possibles du mouvement A base des vraisemblances des modes d'évo-
des cibles peuvent étre trouvées dans [2]. lution m,; fournies par les IMM, le théo-

Par souci de simplicité, les mesures sont consi- 'féme de Bayes permet a chaque capteute
dérées linéairement dépendantes du vecteurclasser localement les cibles,. Le capteur
d'état et sont modélisées par : fournit un rapportp,, = {Pslﬂpfﬂ--.-,lpgf"}
3 (k) = Ha (k) + o, (k) ) contenant Ies_ probabilités de classification de
toutes les cibles, ou par exemplé;li =
ou, zJ (k) € R?représente lgém mesure re-  {P)(c1), P, (c2), ..., P} (ck)}. D'une maniere
cue a linstantk, par le capteus;, avecj € analogue, et grace au théoreme de Bayes gé-
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néralisé [5, 8], chaque capteur peut fournir une
masse de croyance concernant la classification
de chaque cible suivie. L'ensemble des fonc-
tions de masse provenant d’'un captew I'ins-

tant k est notéM,, = {ml, m?, .. ms"},
avecs; = 1,...,S etng, le nombre de cibles.
Les détails concernant les classifieurs (Bayé-
sien et crédal), utilisés par les capteurs peuvent
étre trouvés dans [6, 7, 10]. On note que les
masses de croyance contenues dans les rapport
M;, peuvent étre transformées en probabilités
pignistiques en vue de prendre des décisions de
classification locales, ou bien elles sont conser-
vées pour une classification globale, ou elles
sont fusionnées a l'aide des lois qui sont dé-
crites dans la section suivante. La transforma-
tion pignistique se fait comme suit :

BetP(c;) = Z ﬁ%, (3)

ou A C C etm() représente la masse de
croyance de I'ensemble vide.

4 Classification globale

Sachant que les capteurs sont en général sujets
a des erreurs de détections, et des performances
de classification amoindries a cause des erreurs
de mesure, cette section sera dédiée a la fusion
des informations provenant des capteurs afin
d’avoir une meilleure classification des cibles.
Etant donné que les capteurs n’observent pas
I'environnement des cibles de la méme maniere
(ce qui signifie que le nombre de cibles connues
peut étre différent d’un capteur & un autre) et
gue les différentes cibles ne sont pas suivies
dans le méme ordre par les capteurs (ex : la cible
2 vue par le capteus; correspond a la ciblg

vue par le capteus;), la fusion des classifica-
tions locales ne peut pas étre effectuée direc-
tement. Une étape d’association entre les esti-
mations faites par les différents capteurs est né-
cessaire (ex : ensemble d’estimations faites

par le capteuk; et ensemble d’estimation%sj
faites par le capteu;). Le processus de la clas-
sification globale est effectué selon les étapes
suivantes :
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. association entre les estimations des cap-

teurs (track-to-track) : soit une matrice de
distances Euclidienng®, ;] € R™:*"
entre lesn,, cibles connues par le capteur
s; et lesn,, cibles connues par le capteur
s;, et soit une matrice auxiliairg = [¢; ],

tel quey,; ; = {0,1}, le probléme d’asso-
ciation entre les deux ensemblgs et X,
peut étre posé comme suit :

minimiserz D j i j, (4)
=1

avec,

nsi

Z"/’i,j <1, Z"/’i,j <1 %)
i=1 j=1

ou, D, ; est la distance Euclidienne norma-
lisée séparant les estimatioifs et#] des
deux capteurs; ets;.

Les contraintes formulées dans (5) signi-
fient que les cibles estimées par un capteur
donné peuvent étre ou ne pas étre associees
aux cibles estimées par les autres capteurs
(les cibles ne sont pas toutes observees par
tous les capteurs). La solution au probleme
posé par I'équation (4), est obtenue a I'aide
de l'algorithme Munkres modifié [4], elle
donne une information sur les cibles com-
munément suivies par les capteurs et les
cibles qui ne sont pas suivies par tous les
capteurs. Comme cela est illustré par la fi-
gure 1, la ciblet, est suivie par les trois
capteurssy, s, et s3, la ciblets; est suivie
uniquement par le captesy, etc.

. préparation de la classification globale : la

fusion des informations suit les lois sui-
vantes : si une cible donnée est observée
par un capteus;, ce dernier contribue a
la classification globale, avec la classifica-
tion locale qu'il aura réalisée concernant la
cible en question. Si une cible donnée n’est
pas observée par un capteyrce dernier
contribue a la classification globale avec
une ignorance (équiprobabilité dans le cas
Bayésien et masse de croyance vide dans le
cas crédal). Pour la figure 1, par exemple,
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S1

(3
=

S2

FIGURE 1 — Exemple de trois capteurs obser-
vant partiellement cibles

le capteurs; fournit les classifications lo-
cales calculées pour les ciblgst, etts et
une ignorance pour la cibtg.

classification globale : une fois que la

mise en correspondance entre les estima-
tions des capteurs est faites, on procede a
une classification globale. Les stratégies de

combinaisons utilisées pour fusionner les

lités des classes de l'instaht

P51ﬂ52 (Cj)Pkil(cj)
Zciec Pslﬂsz (Ci)Pk_l(ci)7
avec,i = 1,..K et K, le nombre de classes
dans I'ensemblé€’.

PH(c;) =

()

Autres fusions Bayésiennes. Afin d’avoir un
meilleur résultat de classification globale,
d’autres opérateurs de fusion Bayésienne sont
utilisés [3], et les probabilités finales des classes
sont obtenues al'aide du théoreme de Bayes. La
probabilité P, ,,, donnée par deux capteurs in-
dépendants, gu’une cible donnée appartienne a
la classe; est calculée par :

Py, 5,(c;) = ®(Py, (), P, (c5)),

avec ® un opérateur tel que le minimum, le
maximum ou la moyenne. Une fois que les vrai-
semblances des capteurs sont fusionnées, le ré-
sultat est utilisé pour calculer les probabilités
des classes comme dans I'quation (7).

classifications locales sont présentées dans4-2  Classification globale crédale

les sections suivantes.
4.1 Classification globale Bayésienne

Selon la solution obtenue dans I'étape d’'asso-
ciation (track-to-track), les probabilités conte-
nues dans les ensembles, avecs; = 1, ..., 5,
sont fusionnées (conjonctivement, autres com-
binaisons), ensuite les probabilités globales fi-
nales des classes sont obtenues a I'aide du théo
reme de Bayes.

Fusion Bayésienne conjonctive. D’une maniére
générale, la fusion Bayésienne conjonctive des
probabilités provenant de deux capteurs indé-
pendants; ets, est définie comme suit : la pro-
babilité P,,~,, qu’une cible donnée appartienne
a la classe; est calculée par :

Ps, (¢j)Ps, (¢5)

Paynsy () = ’
1N 2(0.7) ZcieC Psl (Ci)Psz (Cl)

(6)

Une fois que les probabilités provenant des cap-
teurs sont fusionnéeB;, ,,, elles sont combi-
nées avec les probabilitégpriori P*~! a l'aide

du théoréme de Bayes pour obtenir les probabi-
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Selon la solution donnée par I'étape d’asso-
ciation (track-to-track), les masses de croyance
M, provenant des capteurs 1,...,5,
sont fusionnées conjonctivement ou disjoncti-
vement.

Fusion crédale conjonctive. La combinaison
conjonctive crédale simplifiee a la fusion
des masses de croyanee,, et m,, de deux

capteurss; et s; est donnée par la formule
suivante :

>

Al,AQ‘AlmAQZA

Mgy @Sz (A) = Mg, (Al )m52 (A2)7 (8)

ou,A C C.

Fusion crédale Disjonctive. La combinaison dis-
jonctive des masses de croyameg etm,, des

deux capteurs; ets, est donnée par la formule
suivante :

>

Al,A2\A1uA2:A

Mg O)s2 (A) = ms, (A1)ms, (A2)- 9

On note que toutes les probabilités conte-
nues dans les ensemblgs et les masses de
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croyance contenues dans les ensemilles 13 modes d’évolution représentant toutes les
avecs; = 1,...,.5, sont combinées selon les manceuvres qui peuvent étre effectuées dans les
lois décrites précédemment et selon l'ordre directionsz ety. Les différents modes d’évolu-
donné par I'association (track-to-track). Afin de tion sont répartis dans les trois classgsc, et
prendre une décision concernant la classifica- ¢; comme suit :
tion des cibles, les masses de croyance résultantM,, = [m4] : mode de la class].
des fusions (conjonctive ou disjonctive) sont M., = [my, ..., ms] : modes de la classsg.
transformées en probabilités pignistiques sui- M., = [m, ..., my3] : modes de la classsg.
vant I'équation (3). Suivant le modéle de I'’équation (15(m, ), par
.. \ e exemple, est équivalent & la matrice d’étain-
S Appllcatlo_n a la classification de fluencée par I'entrée déterminisie= [0 0]”,
cibles aeriennes ce qui correspond au mode d’évolution avec une
Cette section décrit un exemple de suivi et Vitesse constante. Les matrices d'état et d’en-
de classification de cibles aériennes (avion de tréeF et B sont données respectivement par :
ligne, bombardier, avion de chasse, etc). Les L AT o o ATZ2 o
cibles apparaissent et disparaissent aléatoire- F' = [ PO ] , B= [ o Atk ] ,
ment et effectuent différentes manceuvres. La o 0 AT
classification des cibles est basée sur la com- o(;, AT représente la période d'échantillon-
plexité des manceuvres effectuées (mouvementpage.
constant, accélérations moyennes, accélérationspans cet exemple, deux capteurs sont utilisés
fortes, etc). La relation entre les différents pour suivre et classer les trois cibles dont les
modes d’éyolution et les classes est donneée trajectoires enx, y) sont données par la figure
comme suit . 2. Leurs mesures sont prises selon le modéle de

e classecr; : classe des cibles ayant de faibles |gquation @), en utilisant la matrice d’observa-
capacités de manceuvre (ex : avion de ligne). tion suivante 7/ = [ 1 © © ©

o 1 0

o classer, : classe des cibles ayant des capa- | es deux capteurs sontentac!lés de bruits de va-
cités de manceuvre moyennes (ex : bombar-

dier)' 1400
e classe; : classe des cibles ayant des capaci-

tés de manceuvre fortes (ex : avion de chasse).
Le vecteur d’état de toute les cibles est donné
par:x =[x 4 y 49|, il représente la posi- >
tion et la vitesse des cibles dans le plany).
L'évolution du vecteur d'état suit le modele | /MM
donné par I'équation (1). Les différentes ma- )
noeuvres sont modélisées par une entrée déter- o 20 400 60 80 1000 1200
ministe variable: = [a, a,]", qui représente '
les différents modes d’accélération. La diffe-
rence entre les capacités d’accélération permet FIGURE 2 — Trajectoires des cibles
de distinguer les cibles et de les classer dans
'une des classes définies précédemment. Lesriances importantes, ce qui est censé altérer la
capacités d'accélération pour les classes défi- qualité des classifications locales. Dans ce qui

0 0

m— Cible 1
1200} Cible 2
* Cible 3

1000 -

800

nies sont exprimeées par-L; < {a,,a,} < L;, suit, on s’intéresse uniquement aux résultats de
ou L; = 0g,0.2g et 0.4g respectivement, pour classification de la cible (voir figure 2) qui est
les classes;, ¢, etcs, avecg = 9.81 m/s? observée par les deux capteurs utilisés.

I'accélération terrestre. Dans notre simulation, La cible 2 commence son évolution avec une
chaque cible est suivie par un IMM contenant vitesse constante, elle effectue une manceuvre
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moyenne (acceélération moyenne selgrentre
le 62¢me et le 65¢me pas de temps, elle effectue

les trois classes, les classifieurs Bayésiens
des deux capteurs ont tendance a favoriser la

une seconde manceuvre forte (accélération forte premiere classe. Cela est di au fait que les

selony) entre83emeet le 87¢me pas de temps et
elle termine son évolution en vitesse constante.

vraisemblances des classes sont des sommes
pondérées des vraisemblances des modes dans

Les résultats de classification attendus pour la les IMM, et que la classe; est celle qui en-

cible2 sont :

e doute entre les trois classes;,(c; et c3)
durant la premiere phase du mouvement
(tous les avions peuvent évoluer en vitesse
constante).

e doute entre les classes, (et ¢3) apres la

gendre le nombre minimum de modes et donc,
sa vraisemblance est moins influencée par des
modes non concernés par le mouvement actuel
de la cible (ce qui est le cas pour les classes

et ¢3 qui contiennent respectivemerit,et 13
modes d’évolution). La capacité du formalisme

premiere manceuvre moyenne (les avions de crédal a attribuer de la masse de croyance a

ligne sont supposés incapables d'effectuer
des manceuvres).
e classification de la cible dans la classge

des ensembles de classes lui permet de mieux
gérer les situations de doute (imprécision),
d’ou I'amélioration importante par rapport au

(avion de chasse) apres sa deuxieme ma- résultat Bayésien. Ce résultat a été démontré en
nceuvre forte.

FIGURE 3 — Classifications Bayesienne et creé-
dale faites par le capteuyr

cccccccc

FIGURE 4 — Classifications Bayesienne et cré-
dale faites par le capteuys

Les figures 3 et 4 montrent les résultats de
classification (Bayésien et crédal) obtenus par
les capteurss; et s, respectivement. Deux
remarques importantes peuvent étre faites
on peut voir que dans les situations de doute

premier dans [10] pour la classification d’'une
seule cible et étendu au cas de plusieurs cibles,
dans [6]. La deuxiéme remarque qui peut étre
faite est relative a la performance des capteurs
ou, on peut constater une détérioration des
résultats de classification, notamment, durant la
premiere et la deuxiéme phases du mouvement
pour les deux capteurs et s, (comportement
aléatoire des probabilités/probabilités pignis-
tiques des classes, la ou on est censé avoir
un doute parfait). Cette dégradation dans les
résultats de classification est due a des erreurs
de mesure importantes (variance : 0.6) qui font
gue les classifieurs favorisent les classegt

c3 au profit de la class@ par exemple (comme
cela peut se voir sur les résultats des figures
3 et 4). Cela signifie qu'avec des erreurs de
mesure importantes, un avion de ligne peut étre
pris pour un bombardier ou un avion de chasse.
L'objectif de la classification globale (fusion
des classifications locales) est de remonter a un
résultat de classification plus fiable.

Les figures 5 les résultats de la fusion conjonc-
tive dans les cadres Bayésien et crédal et la
figure 6 montre le résultat de la fusion disjonc-
tive crédale et le meilleur résultat Bayésien

- obtenu en fusionnant les vraisemblances des

capteurs a I'aide de I'opérateur minimum.

(premiére phase du mouvement par exemple) Lafigure 5 montre que la classification globale
la o, on est censé avoir un doute parfait entre iSSué de la fusion conjonctive n‘ameliore
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ment par les capteurs et par la combinaison
conjonctive. Cela s’explique par le fait que
la combinaison disjonctive transmet toute la
croyance sur l'union des classes et donc elle
tend a favoriser la prudence (ignorance) et
corriger les divergences occasionnées par le
bruit. Pour la classification crédale a l'instant

FIGURE 5 — Fusions conjonctives (Bayésienne 40, le resultat de la fusion disjonctive des
et crédale) masses de croyances 88l ., ({c1, ¢z, ¢s}) =
0.96, ms,©)s, ({c2, c3}) = 0.04, ce qui explique

] o la prudence du classifieur disjonctif et la
pas .Ies résultats de classification obtenus -orrection des divergence obtenues par les
au niveau des capteurs. En effet, comme la geyx capteurs au méme instant. Le classifieur
combinaison conjonctive transmet toute 1a gisjonctif ne classe une cible que lorsque cette
croyance (probabilités/masses de croyance) sur yerniare effectue de vraies manceuvres et que

les intersections, le résultat de la combinaison |e5 manceuvres sont observées par les deux
accentue la divergence causée par le bruit des capteurs comme a l'instagt.

capteurs. Prenons I'exemple de la classifica-
tion crédale a linstant0 : la croyance du
capteurs; a cet instant est,, ({c1, c2,c3}) =
0.65, ms, ({ce,c3}) = 0.35 et la croyance
du capteur s, est mg,({c1,c2,c3}) =
0.9, ms,({ce,c3}) = 0.1, le résultat de la com-
binaison conjonctive est,, @, ({c1, c2, cs}) =
0.59, ms,@s, ({c2, c3}) = 0.41, ce qui explique
I'accentuation de I'erreur de classification.

Le résultat de la classification Bayésienne

Les commentaires suivants concernent les
résultats de la classification crédale :

e Siune cible est détectée par les deux capteurs,
et que les résultats de classification des cap-
teurs sont plus ou moins détériorés, a cause
des erreurs de mesure, le meilleur résultat de
classification peut étre obtenu, en fusionnant
disjonctivement les résultats obtenus au ni-
veau des capteurs (résultat montré dans cet
article).

e si une cible n'est pas détectée par les deux
capteurs, le capteur qui ne la détecte pas
contribue a la classification globale par une
ignorance (proposé dans la section 4). Dans
ce cas le résultat de la fusion disjonctive est
tout le temps erroné (suit I'avis du capteur
qui ne détecte pas). Le mieux dans cette si-
tuation est de se contenter du résultat de la

FIGURE 6 — Autre fusion Bayésienne et fusion fusion conjonctive (résultat non montré dans

disjonctive crédale cet article).

La figure 7 donne [I'Erreur Quadratique
sur la figure 6 est obtenu en utilisant la vrai- Moyenne (EQM) de classification. Pour chaque
semblance du capteur qui s’engage le moins valeur de variance des bruit des capteurs,
(opérateur® =minimum), les performances [I'EQM est moyennée a traveg$ simulations,
des autres opérateurs sont moins bonnes, paravec différentes réalisations de bruits. LEQM
manque de place les résultats ne sont pasreprésente la différence entre les probabilités
mentionnés. La remarque la plus importante pignistiques attendues et celles obtenues par
est 'amélioration apportée par la fusion cré- les capteursl et 2 ainsi que celles obtenues
dale disjonctive ou le résultat obtenu s’avére a lissue des classifications globales conjonc-
beaucoup plus lisse que ceux obtenus locale- tive et disjonctive. LEQM est calculée par :

yyyyyyyy

117



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France
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m— Capteur 1

[ | = = =Capteur 2 PRY
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Variance des bruits des capteurs
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FIGURE 7 — Erreurs de classification

EQM = (Bétp — Betp)’(Bétp — Betp), ou
Betp représente les un vecteur contenant les
probabilités pignistiques attendues. La figure 7
montre que la classification la plus robuste est
celle obtenue a l'issue de la fusion disjonctive.

6 Conclusion

Cet article reprend un exemple de suivi et de
classification de plusieurs cibles a la fois. Nous
avons opté pour une architecture multi-capteurs
afin d’obtenir une meilleure classification des
cibles, cela, en considérant des capteurs non
fiables.

Chaque capteur, a l'aide d"un ensemble d’ob-
servations bruités, est en mesure de suivre lo-
calement une multitudes de cibles (nombre
de cibles peut différent d’'un capteur a un
autre) ainsi que de fournir une classification
locale concernant chaque objet. Les capteurs
sont considérés compléetement indépendants,
leur classifications locales, étant détériore par le
bruit, sont fusionnées, dans le but d’obtenir une
classification globale de meilleure qualité.

Pour les cibles qui sont communément obser-
vées par tous les capteurs, cet article montre que
la classification globale issue d’'une fusion dis-
jonctive donne une classification meilleure que
celle issue de la fusion conjonctive et celles ob-
tenues localement par les capteurs.
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Résumé :

La classification multi-label consiste a associer simul-
tanément a chaque individu x une ou plusieurs étiquettes.
L’ordonnancement d’étiquettes est un probleme d’ap-
prentissage dont le but est de relier des instances a
un ordre total défini sur un ensemble d’étiquettes pos-
sibles. Une technique de passage de 1’ordonnancement
d’étiquettes a la classification multi-label a été deve-
loppée dans la littérature. En se basant sur cette tech-
nique, nous utilisons la théorie des fonctions de croyance
afin d’élaborer une nouvelle méthode de classification
multi-label. Afin d’évaluer notre approche, nous compa-
rons les résultats obtenus sur les jeux de données clas-
siques avec ceux obtenus par d’autres méthodes de la
littérature.

Mots-clés :

Classification multi-label, ordonnancement
d’étiquettes, fonctions de croyance, k-PPV évidentiels,
étiquette calibrée, comparaison par paires.

Abstract:

In multilabel classification, the goal is to assign one or
more labels to each instance x. Label ranking is a lear-
ning task where the goal is to map instances to a linear
order on a finite set of predefined labels. An approach
was developed in the literature to move from label ran-
king to multilabel classification. Based on this technique,
we use the theory of belief functions to develop a new
method for multilabel classification problem. To evaluate
our approach, we compare the results with those obtained
by other methods in the literature.

Keywords:

Multilabel classification, label ranking, belief func-
tilons, evidential k-NN, calibrated label, pairwise compa-
rison.

1 Introduction

Ces dernieres années ont vu émerger différentes
extensions du probleme de classification clas-
sique : parmi ces dernieres se trouvent les
problemes de classification multi-label et les
problemes d’ordonnancement d’étiquettes. Soit
£ un ensemble fini d’étiquettes {Aj,\o,... N}
et soient X I’espace d’entrée et Y I’espace
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de sortie formé des sous-ensembles de £. Sur
la base d’un ensemble d’apprentissage D =
{(zs,y:)/z; € X,y € Y} formé de n
instances étiquetées, on recherche un classi-
fieur permettant d’associer a toute instance
x € X le y minimisant un certain critere
d’erreur. Dans la classification classique, 1’es-
pace de sortie est formé par des singletons
c.a.d. qu’une seule étiquette parmi les [ est as-
sociée a chaque instance x. Dans la classifi-
cation multi-label, une ou plusieurs €tiquettes
sont associées simultanément a z. Dans le cas
du probleme d’ordonnancement d’étiquettes, il
s’agit d’apprendre pour chaque instance x un
ordre total > sur I’ensemble d’étiquettes £.
Par exemple, prenons le cas d’'un document et
supposons qu’on désire le classer selon deux
criteres, le premier étant la langue et le se-
cond le champ d’application. Etant donné un
ensemble de trois langues possibles {frangaise,
anglaise, chinoise}, a tout document on ne
peut associer qu’une seule étiquette parmi les
trois étiquettes possibles. Ce type de probleme
est traité par la classification classique. Par
contre, pour un ensemble de champs d’appli-
cation (mathématiques, physique, chimie, bio-
logie, informatique) {M,P,C,B,I}, un do-
cument peut relever de plusieurs catégories
comme les mathématiques, physique et infor-
matique, soit y = {M, P,I}, donc pour une
instance on peut associer une ou plusieurs
étiquettes. Finalement, du point de vue du
probleme d’ordonnancement, on peut associer
a tout document un ordre sur ’ensemble des
champs d’application. Par exemple un docu-
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ment x peut appartenir plus a la catégorie M
que P que [ ... En utilisant I’écriture \; >, A;
qui signifie que, pour une instance z, I’étiquette
A; est préférée a I’étiquette \;, le résultat aura,
par exemple, la forme suivante : M >, P >,
I=,C»,B.

Ces deux problemes ont de nombreuses appli-
cations. Le probleme de classification multi-
label est rencontré, par exemple, dans la ca-
ractérisation d’une image (qui peut a la fois
contenir une ville, une montagne, une plage,
...), d’'une musique (qui peut &tre a la fois
douce, calmante, enthousiasmante) ou d’un
film (qui peut appartenir a plusieurs genres).
Le probléeme d’ordonnancement est rencontré,
par exemple, dans la recommandation d’ar-
ticles selon les préférences des consommateurs,
I’évaluation du profil d’expression d’un gene
(ou les forces d’expression peuvent se voir
comme un ordonnancement).

Nous traitons dans cet article du probleme
de classification multi-label en adoptant 1’ap-
proche proposée par Fiirnkranz et al. [3]. Cette
approche appelée ordonnancement calibré, per-
met de transformer tout algorithme résolvant
un probleme d’ordonnancement en méthode
pour la classification multi-label. Nous utili-
sons comme algorithme d’ordonnancement ce-
lui proposé¢ par Masson et al. [5]. Ce der-
nier, fondé sur la théorie des fonctions de
croyance, permet d’obtenir I’ordonnancement
le plus plausible a partir d’informations four-
nies par différents classifieurs binaires.

Afin de présenter les résultats de la classifi-
cation multi-label par ordonnancement calibré
dans le cadre de la théorie des fonctions de
croyance, nous proposons d’organiser cet ar-
ticle de la maniére suivante : tout d’abord,
nous commencons par quelques brefs rappels
sur la théorie des fonctions de croyance, puis
nous rappelons la méthode de 1’ordonnance-
ment d’étiquettes par fonctions de croyance in-
troduite dans [5]. Ensuite, nous présentons la
méthode de classification multi-label par ordon-
nancement calibré [3]. Dans le paragraphe 5,
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nous évaluons notre méthode en comparant les
résultats obtenus sur des jeux de données clas-
siques avec d’autres méthodes.

2 Quelques rappels sur la théorie
des fonctions de croyance

La théorie des fonctions de croyance (ou théorie
de Dempster-Shafer) [8] généralise a la fois la
théorie des probabilités (conditionnement, mar-
ginalisation) et les approches ensemblistes (in-
tersection, union, inclusion, etc.). Soit 2 =
{w1, wa, ...,wy} (cadre de discernement) un en-
semble fini de réponses possibles a une ques-
tion. Une fonction de masse sur {2 est une ap-
plication m : 2 — [0, 1] telle que :

> m(A) =1.

ACQ

ey

Tout sous-ensemble A de (2 tel que m(A) > 0

représente un ensemble possible de valeurs pour

w, et la quantité m(A) peut étre interprétée

comme la mesure de croyance exactement al-

louée a w € A. A partir de m, on peut définir
d’autres fonctions :

— Fonction de plausibilité : elle représente la
partie maximale de croyance qui pourrait
soutenir A.

pl(A)= > m(B) VACQ.

BNA#0D

2)

— Fonction de commonalité : elle représente
la somme des masses allouées aux sur-
ensembles de A, ¢(0) = 1,

q(A)= > m(B) VACQ.

BDA

3)

Soient €2 et © deux cadres de discernement. On
appelle raffinement de © vers () I’application p :
29 — 29 telle que :

— I’ensemble {p({0}),0 € ©} C 2% est une

partition de §2;

— p(A) = Upeop({0}) YA C ©

© est appelé un grossissement de (2 et {2 un
raffinement de ©. Pour transférer une masse
m® d’un grossissement © vers (), on utilise
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I’opération d’extension vide suivante :

m®(A)

m®1(B) = { ] B = p(A),

sinon.

S?

4)
Soient m; et my deux fonctions de masse sur
2 modélisant deux éléments d’évidence, on uti-
lise la régle de combinaison conjonctive pour
les combiner. La fonction de masse résultante
est, VA C Q:

(my ®mg)(A) = Z mi(B)mo(C). (5)

BNC=A

Cette regle peut s’exprimer facilement a 1’aide
des commonalités, VA C Q) :

(1 ® q2)(A) = 1 (A)q2(A). (6)

A noter que, avant d’appliquer cette regle de
combinaison, il faut ramener les informations
sur le méme cadre de discernement.

3 Ordonnancement d’étiquettes
par fonctions de croyance

3.1 Ordonnancement d’étiquettes

Le probleme d’ordonnancement d’étiquettes
consiste a apprendre, a partir d’exemples, une
application associant a toute instance z € X,
un ordre total >, sur £ = {A;, A\, ..., N}
L’ordre total >, peut €tre représenté de maniere
équivalente par une permutation 7, de 1’en-
semble des entiers {1, 2, ..., [} de telle sorte que
Ni =2 Aj e 1,(1) < 7(5) (la valeur 7,(7)
représente le rang de \; dans les préférences
de x). Pour résoudre ce probleme, différentes
méthodes existent. Une approche particuliere
est celle dite de préférence par paires [2].
Elle consiste a apprendre, pour chaque couple
d’étiquettes (\;, \;) tels que ¢ < j, un clas-
sifieur binaire )/;; permettant de prédire pour
une entrée x si \; est préférée ou non a A;.
Pendant la classification, chaque instance x est
alors soumise aux /([ — 1) /2 classifieurs, la sor-
tie du classifieur étant 1 si A\; > \; et 0 dans le
cas contraire. A noter que n’importe quel classi-
fieur binaire peut étre utilisé dans ce cas, et que
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la sortie n’est pas nécessairement dans {0, 1},
elle est généralement comprise dans I’intervalle
[0, 1]. Hiillermeier propose alors d’associer a
chaque entrée = une relation floue de préférence
R, :

1— MZJ(.Z') si

1< 7,

Ro(Mi Aj) = { L

Moyennant ces relations de préférences, on cal-
cule pour chaque étiquette )\;, la fonction score

J#i

Pour une instance z, 1’ordre total est obtenu en
triant par ordre décroissant les fonctions S, (\;)
calculées pour chaque élément de £.

3.2 Ordonnancement d’étiquettes par fonc-
tions de croyance

Plusieurs méthodes ont été proposées dans la
littérature pour traiter la problématique d’or-
donnancement d’étiquettes. Dans cet article,
nous adoptons 1I’approche d’ordonnancement
d’étiquettes dans le cadre des fonctions de
croyance [5].

Chaque classifieur binaire évidentiel M;; tra-
vaille sur un grossissement particulier ©,;; de
I’ensemble S’ contenant toutes les permutations
possibles de £ = {1,2,...,1}. Nous avons
©;; = {0;;,0;;} un grossissement binaire avec
6;; 'ensemble des permutations 7 € S pour
lesquelles \; est préférée a \; et éij I’ensemble
des permutations 7 € .S pour lesquelles A; est
préférée a \;. On suppose que chaque classi-
fieur évidentiel fournit, pour chaque instance =,

la fonction de masse suivante :
0,
maé’(%) = Qij,
o Y (0i5) = Bijs
mz (0y) = 1 — oy — Py

€))

A partir de ces masses, on en déduit les plausi-
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bilités suivantes :
O
plff ( Z])

{ pls? (0;5) =1—

Ces valeurs correspondent aux commonalités,

doncona:
{ g () = 1 — By
g5 0i) =1—«q
Un ordre total sur les étiquettes s’obtient fina-
lement par la méthode du maximum de plau-
sibilité. Ayant [(I — 1)/2 sources d’informa-
tions exprimées sur des référentiels différents,
on cherche une fonction de masse m3(.) ex-
primée sur S. La fonction de masse totale est
obtenue en combinant ces différentes masses
étendues a S grace a ’opération d’extension
vide :

B@]a (10)

(1)

S 1S
mg () = Bicymg (). (12)
En utilisant les opérations sur les fonctions de
croyance, la commonalité associée a une per-

mutation 7 de S peut s’écrire :

0(7) = H (1—5ij)

T(8)<7(j)

[T a—ow,
7(k)>7(l)
(13)

ou la notation 7(i) < 7(j) en indice désigne
I’ensemble des couples (\;, \;), ¢ < j pour les-
quels \; est placée avant A;. La permutation
7 étant un élément singleton de S, cette va-
leur n’est rien d’autre que la plausibilité pl, (7).
Le choix d’un ordre particulier dans S peut
consister a chercher la permutation 7* de plus
grande plausibilité. Pour maximiser pl,(7), il
est équivalent de maximiser son logarithme. La
permutation optimale s’exprime donc sous la
forme suivante :

* = argmax; Y.y« (1 — Byj)
+ ey In(1 — o).

Pour déterminer 7, on introduit pour chaque
classifieur binaire une variable x;; telle que :
I si A=A cad
0 si A=\ cad
On calcule les x;; optimaux par résolution d’un
programme linéaire en nombres entiers :

MaXy,; e(0,1} 2i<j Tij In(1 — Bij)
+ Xiej (1= 2i5) In(1 — ayy).

(14)

xij =

15)

T(A) < 7(A)),
T()\j) < T()‘z)
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v
v

sous les contraintes :
1< j <k,
1< <k.

{ Tij +xj — 1 < xy
(16)

Tip < Ty + T,
Ces contraintes permettent d’assurer la tran-
sitivité de la relation d’ordre recherchée. Fi-
nalement, a partir des valeurs z;;, on peut
déterminer la permutation optimale :

{ (1) < 7°(5),

(i) > 7())
4 Classification multi-label par or-
donnancement calibré

=
=

xij:]-
xij:()

7)

Nous exposons une approche pour résoudre le
probleme de multi-label calibré qui associe a
toute entrée x € X, caractérisée par des attri-
buts, un ensemble d’étiquettes pertinentes P, C

£ = {A1, \a, ..., \;} déduit a partir d’un ordre

sur £.

4.1 C(lassification multi-label comme
probleme d’ordonnancement

Dans la classification multi-label, chaque

exemple x est associé a un ensemble

d’étiquettes pertinentes P, et implicite-

ment a un ensemble d’étiquettes non per-
tinentes N, = £ \ P,. Ce probléeme peut
étre vu comme un cas particulier de I’or-
donnancement d’étiquettes. Obtenir F, et
N, a partir d’un ordre > sur £ revient
a choisir une étiquette \; et a considérer
la séparation P, N A = A} et
N, {X\;/ A = A;}. Pour résoudre le
probleme du choix de )\;, Fiirnkranz et al. [3]
proposent d’ajouter une étiquette pivot \g a £.

Soit SY ’espace des permutations possibles de
I’ensemble £’ avec £’ £ U N (£
{Xo, A, Ao, .., A ). Le modele h @ X — S°
associant a tout exemple un ordre sur £’ est ap-
pelé ordonnancement calibré. Le pivot A\g est
ensuite utilisé pour séparer les étiquettes perti-
nentes (F,) de celles non pertinentes.

Le probleme est alors réduit a un probleme d’or-
donnancement de [ + 1 étiquettes. Le résultat
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étant de la forme :

Aig = oAy = Ao = Ay = A (18)
Ceci induit a la fois un ordonnancement
Nig = oAy = Ay = A, (19)
et une partition bipartite :
19 ) 7 ) (20)
{ N$ = {)\ijJrl? .. .,)\il}.

4.2 Transformation de données multi-label
en données d’ordonnancement

Un individu de I’ensemble d’apprentissage d’un
probleme d’ordonnancement est une instance
x € X, caractérisée par des attributs, et sa
sortie y constituée d’une relation de préférence
R, = {(A,X')/A =, N'}. Dans un probleme de
classification multi-label, deux ensembles /V,, et
P, sont associés a chaque instance d’apprentis-
sage x. A partir de ces ensembles, on peut fa-
cilement construire I’ensemble de préférences
R, = {(\XN)/X € P,,N € N,}. En intro-
duisant le pivot )y, I’ensemble de préférences
devient alors :

R,m = Rmu{<>‘v )‘O)//\ S Pm}U{()‘Oa/\)/)‘ < Nz}

Nous traitons dans cette section la transfor-
mation d’un ensemble d’apprentissage multi-
label vers un ensemble d’apprentissage traitant
un probleme d’ordonnancement. Afin de rendre
plus claire la méthodologie, nous utilisons un
exemple. Supposons que 1I’ensemble d’appren-
tissage associé¢ au probleme de classification
multi-label d’un document (paragraphe 1) est
formé de trois instances :

xy: Py ={M,P I},
xy : P, = {C, B};
x3: P, ={M}.

Comme nous I’avons vu dans la partie
précédente, afin de résoudre le probleme de
classification multi-label, il faut ajouter un pi-
vot \ga £ = {M,P,C,B,I}. Suivant le pa-
ragraphe 3.1, les données d’apprentissage sont
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ensuite transformées pour obtenir un jeu de
données par paire d’étiquette. Nous devons
alors construire 15 classifieurs binaires M;;
(]\40]\47 .2\40]37 ey MMPa MMC, R ,MB]}). Par
exemple, pour le classifieur My,;, pour x; et
xs3, I'étiquette M appartient a P,, et P,,, d’ou
M >, X et M >, Mo, cependant, pour
x9, I’étiquette M n’appartient pas a F,,, d’ou
Ao >a, M. x; et x3 seront donc utilisés pour
apprendre M), mais pas zo. Pour le classi-
fieur My, p, pour x1, on ne sait pas laquelle des
étiquettes { M, P} est préférée, alors nous ne
prenons pas en considération cet exemple dans
la construction de la base d’apprentissage de ce
classifieur. Voici quelques transformations :

Tableau 1 — Classifieur My,

Ao >=s M | M =, X\
T 0 1
i) 1 0
xT3 0 1

Tableau 2 — Classifieur M, p

M>, P | P>, M
T3 1 0

5 Etude expérimentale
5.1 Jeux de données utilisés

Pour tester notre méthode, nous utilisons
trois bases de données {emotions, scene,
yeast}, téléchargées de la librairie MULAN
(http ://mlkd.csd.auth.gr/multilabel.html). Les
données emotions portent sur la classifica-
tion des chansons selon les émotions qu’elles
évoquent, le jeu scene porte sur l’indexa-
tion sémantique de scenes et, finalement, la
base yeast contient des données concernant
des analyses fonctionnelles des genes. Les ca-
ractéristiques de ces jeux sont données dans le
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tableau 3, et tous les résultats fournis dans ce
papier ont été calculés sur les examples de test
(fournis dans les jeux de données initiaux).

Tableau 3 — Caractéristiques des données :
nombre des exemples d’apprentissage et de test,
nombre d’attributs, nombre de classes.

Nom | # App. | # Test | # Attr. | # Classes
emotion | 391 202 72 6

scene 1211 1196 294 6

yeast 1500 917 103 14

Vu I’écart entre les valeurs des différents at-
tributs, nous utilisons des données centrées
réduites.

5.2 Les métriques d’évaluation

Pour évaluer la performance de notre classifieur
multi-label, plusieurs criteres existent dans la
littérature [9]. Nous rappelons dans ce qui suit
deux métriques d’évaluation utilisées : le coiit
de Hamming et la précision. Soit 1’ensemble
test 7' = {(x;,Y;),i = 1,..., N}, avec Y; le vrai
ensemble d’étiquettes associé a 'exemple test
x; et soit Y; ’ensemble d’étiquettes prédites par
le classifieur multi-label pour z;.

- Cout de Hamming : Ce critere évalue
combien d’étiquettes sont mal classées (une
étiquette n’appartenant pas a Y; est prédite ou
bien une étiquette appartenant a Y; n’est pas
prédite).

| YAY ] on

Z

A étant la différence symétrique entre deux en-
sembles. Plus petite est la valeur du Coiit de
Hamming, plus grande est la performance.

- Précision : Cette métrique mesure le degré de
similarité entre Y; et f/l :

Z

=1

|Y;NY, |

22
YUY | 22

Prec. =
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Contrairement au Coiit de Hamming, plus
grande est la valeur de la Précision, plus grande
est la performance.

5.3 Algorithme d’apprentissage et résultats

Comme on a déja vu dans les paragraphes
2 et 3, on a besoin de I(I + 1)/2 clas-
sifieurs binaires évidentiels, pour ceci nous
transformons les jeux de données multi-
label (paragraphe 4.2) et nous utilisons
comme classifieurs les k-plus proches voi-
sins (k-PPV) evidentiels de Denoeux [1] (Pro-
grammes matlab téléchargeables a 1’adresse
www.hds.utc.fr/ tdenoeux). Nous aurons en sor-
tie, pour chaque classifieur M;; utilisés sur
les jeux d’apprentissage transformés (voir pa-
ragraphe 4.2), les fonctions de masses as-
cy

ai; et myY (0;) ;. Ensuite, ayant pour
chaque instance x ’ensemble des valeurs ay;
et f3;;, nous cherchons la permutation optimale
7*(z). En utilisant I’étiquette )\, on peut pas-
ser de I’ordonnancement 7*(z) a I’ensemble
d’étiquettes pertinentes P, (paragraphe 4.1).
Nous avons fait varier le nombre de plus
proches voisins k£ de 1 a 13, et nous avons re-
porté les meilleurs résultats dans la derniere
ligne des tableaux 4, 5 et 6.

sociées a chaque exemple z :

5.4 Discussion

Pour tester la performance de notre méthode,
nous comparons les résultats expérimentaux
obtenus avec d’autres approches. Plusieurs
méthodes ont été proposées dans la littérature
pour traiter les problemes de classification
multi-label. Ces méthodes peuvent étre divisées
en deux catégories selon la facon dont on
traite ’ensemble de données d’apprentissage.
La premiere catégorie transforme le probleme
d’apprentissage multi-label en un ou plusieurs
problémes d’apprentissage a une seule classe,
tandis que la seconde catégorie se base sur
I’adaptation directe des algorithmes de classi-
fication mono-label pour I’apprentissage multi-
label. Notre approche faisant partie du premier
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groupe, nous comparons nos résultats avec des
méthodes appartenant a la premiere catégorie :

— Binary Relevance (BR) : [10] Elle consiste a
construire [ classifieurs binaires, chaque clas-
sifieur est utilisé pour séparer une classe des
autres. Pour une nouvelle instance z, la sor-
tie de BR est I’ensemble des étiquettes \;
prédites par chaque classifieur binaire.

— Label Powerset (LP) : [10] Cette approche
considere chaque ensemble P, dans I’en-
semble d’apprentissage comme une étiquette
pour un nouveau probleme d’apprentissage
mono-label. Pour une nouvelle instance z, le
classifieur monolabel fait sortir une étiquette,
qui n’est autre que I’ensemble P, prédit pour
I’instance x.

— Random k-labelsets (RAKEL) : [10] Elle
consiste a décomposer de manicre aléatoire
I’ensemble £ en des sous-ensembles et puis
a construire un classifieur LP pour chacun
de ces sous-ensembles. Pour chaque étiquette
A; une décision moyenne est calculée. La
décision finale est positive pour une étiquette
donnée si la décision moyenne est plus
grande qu’une valeur seuil ¢.

— RAKEL évidentielle (E-RAKEL) : [4] Elle uti-
lise la méthode RAKEL conjointement avec
la théorie des fonctions de croyance. L’ utili-
sation de la théorie des fonctions de croyance
rend possible 1’association d’une fonction
de masse a chaque classifieur. Ces fonc-
tions sont ensuite combinées par un opérateur
adapté dans le but de donner une décision fi-
nale sur I’appartenance d’un individu a un en-
semble d’étiquettes.

— Classifier Chains (CC) : [6] Comme dans
le cas de la méthode Binary Relevance, on
construit [ classifieurs binaires, mais afin
d’intégrer d’é_\{entuelles dépendances entre

étiquettes, le j1°™M€ classifieur utilise dans ses

attributs d’entrée les prédictions des j — 1

classifieurs précédents.

Pour I’approche RAKEL évidentielle, nous
utilisons les résultats figurant dans [4]. Pour les
autres approches, nous utilisons les résultats
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figurant dans [7] qui sont issus des algorithmes
se trouvant dans la librairie MULAN (http :
//mlkd.csd.auth.gr/multilabel. html#Software).
Nous considérons uniquement les résultats
issus de I'utilisation des k-plus proches voisins
comme classifieurs binaires.

En analysant les valeurs se trouvant dans les ta-
bleaux 4, 5 et 6, on voit que les résultats obtenus
en transformant un probleme de classification
multi-label en un probleme d’ordonnancement,
résolu en utilisant le cadre théorique des fonc-
tions de croyance, sont comparables par rapport
a ceux des autres méthodes de classification
multi-label. Il serait cependant nécessaire de
pousser cette comparaison pour inclure le cofit
de rang (ranking loss), potentiellement plus fa-
vorable a notre méthode basée sur I’identifica-
tion d’un ordonnancement entre étiquettes.

Tableau 4 — Résultats sur le jeu de données
emotions.

Approche | C.H. | Rang | Prec | Rang
BR 0.188 1 0.551 4
LP 0.215 5 0.56 3

RAKEL | 0.198 4 0.577 2

E-RAKEL | 0.235 6 0.519 6
CC 0.197 3 0.584 1
MC 0.1914 2 0.5404 5

Tableau 5 — Résultats sur le jeu de données
scene.

Approche | C.H. | Rang | Prec | Rang
BR 0.094 1 0.643 5
LpP 0.097 3 0.713 1

RAKEL | 0.095 2 0.694 3

E-RAKEL | 0.129 6 0.611 6
CC 0.100 | 4 0.701 2
MC 0.101 5 0.6469 | 4
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Tableau 6 — Résultats sur le jeu de données
yeast.

Approche | C.H. | Rang | Prec | Rang
BR 0.193 1 0.522 2
LP 0.213 4 0.523 1

RAKEL | 0.208 3 0.493 5
CcC 0.213 4 0.521 3
MC 0.1974 | 2 | 05157 | 4

6 Conclusion

Dans cet article, nous avons présenté une
nouvelle méthode pour la classification
multi-label. L’approche proposée utilise la
technique de transformation d’un probleme
de classification multi-label en un probleme
d’ordonnancement. Ce dernier est résolu par la
méthode de préférence par paires. Les sorties
des classifieurs binaires sont représentées par
des fonctions de croyance. Nous utilisons la
combinaison conjonctive et les commonalités
pour aboutir a I’ordonnancement optimal
(méthode de maximum de plausibilité). La
méthode développée a été testée sur des jeux
de données classiques. Les résultats obtenus
montrent que la méthode est compétitive par
rapport a d’autres méthodes de classification
multi-label.

Dans le futur, nous envisageons d’étendre
I’approche d’ordonnancement d’étiquettes par
fonctions de croyance a la prédiction d’ordres
partiels et de I’appliquer en particulier a la clas-
sification multi-label. En effet, les fonctions
de croyance sont bien adaptées au probleme
de prédictions partielles, et pourrait €tre avan-
tageuses dans le cas ou de telles prédictions
font sens. Dans les autres cas (prédictions
completes), notre approche apparait comme
coliteuse par rapport aux gains de précisions ob-
tenus.
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Résumé : compte donc 2/¢l éléments possibles, ce qui
Dans ce résumé, nous nous intéressons au probleme rend le probleme beaucoup plus complexe que

multilabel, qui se différencie de la classification clas- . ficati
sique par le fait que plusieurs étiquettes peuvent s ap- celui de classification usuelle. 11 est donc sou-

pliquer conjointement a une méme instance. Plus parti- vent impossible, méme pour un n de taille

culierement, nous nous intéressons au probléme de pro- dérée (plus de 10), d’ i les tech
duire non plus des prédictions completes mais partielles, moderee (plus de » d-apphiquer les tech-

avec I'idée que ces dernicres soient plus fiables. Nous niques usuelles a 1’espace 21£1. Pour résoudre
proposons une premiere méthode ainsi que des méthodes ce probléme, diverses méthodes ont été pro-

de mesure adaptées. - ) ] i
posées [5, 2], dont la méthode de pertinence bi-

Mots-clés : . . . P .
Pertinence binaire, prédictions partielles, multilabel. naire [4], retenue ici. Cette méthode consiste,
Abstract: pour chaque étiquette \;, a prédire si oui ou non
In this abstract, we are interested in the multilabel pro- elle est pertinente, et a retenir comme prédiction
blem, where multiple labels can jointly apply to a single P Tensemble des étiquettes déclarées perti-
instance (in contrast with multi-class problems, where
only one class apply to each instance). More precisely, nentes.
we are interested in the issue of making partial (but more o ]
accurate) predictions, rather than complete ones. La prédiction a réaliser étant de nature com-
Keywords: plexe, il peut étre intéressant de produire des
Binary relevance, partial predictions, multilabel. prédictions partielles mais plus fiable lorsque
I’information sur certaines étiquettes manque.
1 Introduction De telles prédictions reviennent a s’abstenir
lorsque I’information manque, et I’utilisation de
Le probleme usuel de classification consiste a théories de 1’incertain (comme la théorie des
associer a une instance x € X une classe A, € fonctions de croyances, utilisée ici) modélisant
L = {A,..., Ay} parmi n. Le probleme de I’imprécision semble indiquée pour identifier
classification multilabel consiste, lui, a associer les cas ol cette information manque.

a chaque instance un sous-ensemble }A{T CcC L
d’étiquettes pertinentes (nous omettrons 1’in-
dice x par la suite). Ce type de probleme sur-
vient quand plusieurs étiquettes peuvent s’ap-
pliquer a une seule instance, par exemple pour
classifier un film qui peut étre a la fois une
comédie et un drame, ou encore pour identifier
un type d’image qui peut contenir a la fois une
plage et une montagne.

Les problématiques liées aux prédictions ont
récemment été¢ étudiées pour le cas d’ordon-
nancement d’étiquettes [1]. Comme pour ce
dernier, il est nécessaire dans le cas multila-
bel de redéfinir les fonctions de cofit afin que
ces dernieres integrent la notion de prédicitons
partielles ou imprécises. Nous proposons dans
ce travail d’adapter le coit de Hamming.
Les prédictions partielles sont quand a elles
Dans le cas multilabel, I’espace de prédiction
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produites en utilisant la méthodes des kppv
évidentiels dévelopée par Denoeux [3].

2 Meéthode, mesures et résultats

Notre approche reprend I’'idée de la pertinence
binaire, mais nous proposons d’utiliser les
kppv évidentiels de Denoeuxpour réaliser les
prédictions. Pour chaque label )\;, le prédicteur
produira une fonction de croyance (fdc)! bi-
naire sur I’espace {0, 1}, qui permet de prédire
I’ensemble Y des labels pertinents, des labels
non-pertinents N et des labels [ pour lesquels
on s’ abstient de prédire :

— X\ € YsiBel({1}) = m({1}) > 0.5,

— X\ € Nsi Bel({0}) = m({0}) > 0.5,

-\ € I sinon.

En d’autres terme, plus notre ignorance
(m({0,1})) est grande, plus la prédiction est
partielle. Dans les KNN évidentiels, cette igno-
rance peut étre directement controlée par le pa-
rametre «, modélisant la fiabilité par défaut
des informations. Pour mesurer la qualité de
prédictions incompletes, nous proposons [1] de
diviser le score en deux aspects : le nombre
moyen de prédictions erronées (/) mesurant
la justesse et la complétude (C') mesurant la
précision. Etant donné une prédiction partielle
divisée en étiquettes pertinentes (Y), incon-

nues (f ) et non-pertinentes (N =Yul ), ces
dernieres sont calculées comme

H = (VOVHNOYD /() 7))

C=1-n

Quand la prédiction est complete (I = (), alors
H est le colit de Hamming. Les figures 1 et 2
montrent 1’évolution des divers criteres (la se-
conde figure comportant en plus les cofts de
Hamming maximaux et minimaux) pour le jeu
de données émotions (72 attributs, 6 labels, 593
données divisées en apprentissage/test).

Le comportement est bien celui attendu, c’est-
a-dire que le nombre de prédictions erronées

1. Une fdc Bel est définie par une fonction de masse
m : 2101 5 1 avec S m(F) = 1 et m(f)) = 0 comme
suit : Bel(A) =3 pc 4 m(E)

128

Prédictions erronées {H)

04 05 08 07 08 i 1
Complétude (C)

Figure 1 — Evolution prédictions erronées et
complétude

— HLmin
“| -~ Humax
—&— Complete
— ~ Incorr

Figure 2 — Evolution avec ades différentes me-

sures

tend a diminuer au fur-et-a-mesure que les
prédictions deviennent plus partielles (i.e.,
que nous sommes plus prudents dans nos
prédictions).
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Résumé :

Nous présentons une méthode de reconnaissance
phonémique de la base Timit en utilisant la logique
floue. Elle consiste en D’extraction de vecteurs de
référence flous : le vecteur maximal, le vecteur moyen
et le vecteur minimal. Pour classer un phonéme donné,
nous calculons son degré d’appartenance a toutes les
classes des phonémes, et nous choisissons par la suite le
plus haut degré d’appartenance. Nous évaluons cette
méthode avec différentes techniques de paramétrisation
du signal de parole telles que les coefficients Mel
Ceptre (MFCC), les coefficients de prédiction linéaire
cepstraux (LPCC) et la méthode de prédiction linéaire
perceptuelle (PLP). Nous avons introduit les dérivées
premiéres et secondes ainsi que I’énergie de signal afin
de modéliser ses caractéristiques transitoires pouvant
contribuer a I’amélioration de la tiche de
reconnaissance. Les taux de reconnaissance retenus sont
83.47%, 82.09% et 99.48% respectivement pour 36
MFCC, 11 LPC and 11 PLP.

Mots-clés :
Logique floue, LPC, MFCC, PLP, Timit.

Abstract :

We provide a phoneme recognition technique of Timit
corpus based on the concept of fuzzy logic. The fuzzy
method consists on the extraction of a three fuzzy
reference vectors : maximal, mean and minimal vectors.
To classify a phoneme request, we calculate his degree
of membership to all classes. The class of a phoneme
request is then the one which maximizes one degree of
membership calculated according to reference vectors.
We also compare the performance of our recognizer
using different speech parameterization techniques such
as MFCC, LPC and PLP. We extracted temporal
dynamic of the signal to improve recognition task. So,
we introduced first and second derivatives and energy.
Our experimental results indicate that the classifier
behaves differently depending on the number of
samples. Fuzzy logic gave a considerable matter since
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retained recognition rates were 83.47%, 82.09% and
99.48% respectively for 36 MFCC, 11 LPC and 11 PLP.

Keywords :
Fuzzy logic, LPC, MFCC, PLP, Timit.

1 Introduction

La reconnaissance automatique de la parole
comporte deux processus [1] [2] : le premier
est la paramétrisation de signal qui consiste a
représenter le signal de parole par un jeu de
parametres réduit, pertinent et robuste pour
réduire le flux d’informations a traiter par le
moteur de reconnaissance. La paramétrisation
est généralement suivie par le processus de
reconnaissance [3]. Un tel processus nécessite
l'utilisation  extensive  des  techniques
d'intelligence artificielle. Ces techniques, telles
que la logique floue, visent a résoudre les
problémes de la modélisation de données et de
classification.

Dans ce travail, nous présentons une nouvelle
technique de reconnaissance phonémique de la
base Timit basée sur la logique floue [4]. Elle
consiste en l'extraction de vecteurs de
référence flous utilisés ensuite pour calculer le
degré d'appartenance d'un phonéme donné a
toutes les classes définies des phoneémes. Le
classifieur a ¢été évalué avec différentes
techniques de paramétrisation de signal tel que
MFCC [5], LPC [6] et PLP [7]. Le but
principal est de déterminer le nombre optimal
des parametres de signal générant les taux de
reconnaissance les plus significatifs.
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Dans la section suivante, nous proposons un
apergu  général des  techniques  de
paramétrisation de signal utilisées. Par la suite,
nous définissons le concept de la logique floue
qui sera suivi par ’approche de
reconnaissance. Ensuite, nous discutons les
résultats expérimentaux et nous finissons avec
les conclusions et quelques perspectives.

2 Techniques de paramétrisation
2.1 MFCC

Le codage MFCC (Mel Frequency Cepstral
Coding) est une technique trés utilisée en
traitement de la parole.

Il est basé sur la variation des bandes critiques
de l'oreille humaine avec la fréquence, les
filtres espacés linéairement aux basses
fréquences et logarithmiquement a hautes
fréquences [5]. Ces filtres sont modélisés par
une échelle non-linéaire issue de
connaissances sur la perception humaine
I’échelle Mel.

Pour les MFCCs, on utilise la fenétre de
Hamming durant la transformation du domaine
temporel au domaine fréquentiel. Cette
transformation est faite en utilisant la
transformée de Fourier.

Un filtrage, est appliqué ensuite, par banc de
filtres triangulaires espacés selon 1’échelle de
Mel. Cette échelle reproduit la sélectivité de
I’oreille qui diminue avec 1’accroissement de
la fréquence.

Aprés le calcul de log, une transformée en
cosinus discréte est appliquée pour assurer un
retour au domaine temporel.

Figure 1 illustre 1’algorithme de calcul des
coefficients MFCC.

x(t) |—p| Hamming L) FFT Filtre Mel
Transformée en Log
MFCC < cosinus  discréte : [g—
TCD

Figure 1 — Algorithme de calcul des
coefficients MFCC
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22 LPCC

Les coefficients LPC cepstraux peuvent étre
calculés a partir de 'analyse LPC du signal [6]
par une procédure récursive. Autrement dit, ce
sont les coefficients LPC convertis en cepstres.

X0 | FT | ’|2 FFT inverse
LPCC e Récursion Récursion de
cepstrale Levinson

Figure 2 — Algorithme de calcul des
coefficients LPC

L’analyse LPC est illustrée dans [6].

2.3 PLP

La méthode de prédiction linéaire perceptive
(PLP), étudiée par Hermansky en 1991 [7],
essaye de simuler le systéme auditif humain en

introduisant  des  mécanismes  psycho
acoustiques de I’oreille humaine. Elle repose
sur I’analyse LPC;

En effet, la PLP modélise un spectre auditif
par un modele tout pdle d'ordre réduit en
utilisant la technique d'auto-corrélation de la
prédiction linéaire.

La PLP consiste en un filtrage en bandes
critiques du spectre de signal a court terme

suivi  d'une correction de l'intensité.
L'amplitude du signal est alors compressée et
enfin l'analyse par prédiction linéaire

intervient. Cette dernicre étape est en réalité
une technique de compression spectrale qui
modifie le spectre (ensemble de fréquences
constituant un signal) de puissance a court
terme avant son approximation par un modele
autorégressif.

L’algorithme de PLP est détaill¢ ci-contre :
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x(t) 2 Bandes .| Isotonie
—> | | »| critiques »
Récursion Modéle Compression
: - e € %
de Levinson Autorégressif | |
PLP

Figure 3 — Algorithme de calcul des
coefficients PLP

3 HMM: méthode classique de
reconnaissance de la parole

Les systemes de reconnaissance de la parole
sont généralement basés les modeles de
Markov cachés : HMM.

Les HMM sont des mod¢les statistiques riches
en structure mathématiques dont la sortie est
une séquence de symboles ou de quantités
[16]. IIs sont largement utilisés dans la
reconnaissance de la parole étant donné leur
puissante adaptation a la wvariabilit¢ des
observations. De plus, leur apprentissage
automatique des données vocales a amélioré
leurs performances de  reconnaissance.
D’autres parts, la formulation probabiliste
offerte par les HMM fournit un cadre unifi¢
pour les hypothéses de notation et les
combinaisons des sources de connaissances.
Cependant, les HMM présentent deux
limitations majeures: Tout d'abord,
I’hypothése de Markov d'indépendance
conditionnelle (étant donné qu’un état ne
dépend que de I'état précédent).
Deuxiémement, les HMM sont bien définis
uniquement pour les processus qui sont une
fonction d'une seule variable indépendante,

comme le temps ou la  position
unidimensionnelle.
Concernant la premicre limitation,

théoriquement il est possible de définir un
HMM dans lequel la dépendance peut
s’étendre aux états et aux sorties précédentes.
Néanmoins, de telles extensions compliquent
les modeles définis et peuvent impliquer
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rapidement a une ¢énorme complexité¢ de
calcul. Au méme temps, beaucoup de travail
reste a faire sur l'amélioration et l'utilisation
des modeles déja existants.

En outre, La deuxiéme limitation est
fondamentale. Il semble impossible de définir
un HMM dépendant de plus qu’une seule
variable indépendante. Par conséquent, pour
des problemes tels que la reconnaissance
vocale ou le signal est naturellement est une
fonction de deux variables, les chercheurs ont
da élaborer des méthodes de conversion des
problémes de deux dimensions en un probléme
d’une seule dimension avant d’utiliser les
HMM comme solution.

Finalement et en dépit de cette contrainte, les
HMM ont enrichi 1'état de l'art dans le
domaine de la reconnaissance vocale et se sont
répandus progressivement a d'autres domaines
comme la reconnaissance des formes électro-
encéphalographique EEG, la reconnaissance
des caractéres, le domaine musical et d’autres
[17].

Dans nos travaux de recherche, pour remédier
aux problémes présentés par les HMM, nous
avons essay¢é d’implémenter une nouvelle
approche de reconnaissance phonémique
fondée sur la logique floue. L’algorithme flou
utilisé a été testé dans la classification des
objets 3D, et a donné de résultats remarquables

[11].

4 Approche de reconnaissance
proposée
4.1 Base de données

La base TIMIT [10] est utilisée pour la
classification et la reconnaissance. Elle est
composée par 630 locuteurs de 8 dialectes
différents des FEtats-Unis. Chaque locuteur
pronongant 10 phrases ce qui donne 6300
phrases.

Le tableau 1 décrit la structure du corpus
Timit.
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Tableau 1 —Corpus Timit

Dialecte Désignation Locuteurs
H F

DR1 New England 31 18
DR2 Northern 71 31
DR3 North Midland 79 23
DR4 South Midland 69 31
DRS Southern 62 36
DR6 New York City 30 16
DR7 Western 74 26
DR& Army Brat 22 11

H : Hommes
F : Femmes

Nous avons organis¢ le corpus Timit en sept
classes homogenes de phonémes représentant
les affriquées, les fricatives, les nasales, les
semi-voyelles, les occlusives, les voyelles et
les autres comme 1’illustre tableau 2.

Tableau 2 —Distribution des classes de
phonémes de Timit

Classe Etiquette
(ou macro-
classes)
Affriquées |/jh/ /ch/
Fricatives |/s/ /sh/ /z/ /zh/ /f/ /th/ v/ /dh/
Nasales | /m/ /n/ /ng/ /em/ /en/ /eng/ /nx/
Semi- | i/ fwi Jy/ /bt /vl el
voyelles
Occlusives |/b/ /d/ /g/ Ip/ It/ /k/ /dx/ /q/
/bel/ /dcel/ /gel/ /pel/ /tel/ /kel/
Voyelles |/iy/ /ih/ /eh/ /ey/ /ae/ /aa/ /aw/
/ay/ /ah/ /ao/ /oy/ /ow/ /uh/
/uw/ Jux/ Jet/ /ax/ /ix/ /axr/ /ax-
h/
Autres | /pau/ /epi/ /h#/ /1/ 12/

De plus, la base Timit est divisée en données
d’apprentissage et de reconnaissance. Le
nombre des échantillons de ces données sera
présenté par la suite avec les résultats.
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Nous appliquons MFCC, LPC et PLP. Chaque
phonéme est représenté par un vecteur de 12
coefficients qui caractérisent les trois fenétres
du milieu. La fenétre d’analyse est de 256
¢chantillons extraits chaque 10 ms en utilisant
le fenétrage de Hamming de 25 ms. La
fréquence d’échantillonnage est égale a 16000
KHz.

4.2 Algorithme flou

L'algorithme de reconnaissance floue adopté
repose sur I’extraction des vecteurs : minimal,
moyen et maximal relatifs a chaque classe de
phonémes [11].

Le méme algorithme est utilis¢ pour la
classification et la reconnaissance.

Apres I’extraction des paraméetres MFCC, LPC
et PLP, nous obtenons pour chaque phonéme
une matrice de coefficients. Nous répartissons
tous les phonémes selon la distribution décrite
dans tableau 2 et nous commengons par la

classification comme suit :
Soit Vinax , Vmoy €t Vmin le vecteur maximal,

le vecteur minimal et le vecteur moyen d’une
classe «c» ;

Le degré d’appartenance Dy d’un vecteur

« Vy» ala classe «c» est donné par :

]:)r . _ _ max _Vmoy si
’ V -V < <
roomy Vmoy - Vr Vmax
D Vv, . (1)
r,c V V S1
oy ' Vmin - Vr < Vmoy
D =0 sinon

En effet, la comparaison entre le vecteur « Vin

et les vecteurs de références Vimax , Vmoy €t Vmin

est une comparaison des normes de chacun de
ces vecteurs. Donc, I’expression

€V, SV SV » désigne

« norme(v, ) <norme(V,) < norme(v ».

moy max )
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Ainsi, nous obtenons pour chaque échantillon
un degré d’appartenance relatif a chaque
classe. Nous choisissons la classe relative au
plus haut degré d’appartenance.

MFCC Vmin
LPC
PLP > Vmax
Vmovy
Cl1 Dr,cl

C2 Dr,cZ
Vi /v ’ .

Cn Dr,cn
Reconnaissance de Max(D; . )
la classe du < Tr¢(l-m)
phonéme

Figure 4 — Algorithme de classification floue

Notons que la classification d’un phonéme en
entrée signifie son identification par rapport
aux macros classes ; Par exemple, pour classer
le phoneme /aa/, il suffit d’affirmer que c’est
une voyelle. Ceci est établi si son degré
d’appartenance a la classe des voyelles et
supérieur aux degrés d’appartenance des autres
classes. Ce phoneéme sera attribu¢ a la classe
du plus haut degré d’appartenance. Le méme
raisonnement est suivi dans [’approche de
reconnaissance.

Pour développer les différentes techniques de
paramétrisation utilisées (MFCC, LPC et
PLP), nous avons utilis¢ 1’'implémentation de
Dan Elis décrite dans [12].

De plus, la simulation du classieur a été
effectuée sous 1’environnement Matlab.

5 Résultats expérimentaux

Dans nos expériences, 1'objectif principal était
de déterminer le nombre optimal des
coefficients qui offrent les meilleurs taux de
reconnaissance.

Pour cette raison,
d'expériences  ont

certain nombre
effectuées dans

un
éte
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lesquelles les  coefficients dynamiques
(dérivées premicres et secondes) ainsi que
I’énergie du signal ont ét¢ introduits avec les
coefficients statiques des MFCC, LPC et PLP.
Les résultats préliminaires ont montré que les
dérivées premicres et secondes n’ont ¢&té
avantageuses que pour MFCC. Bien que cette
amélioration a confirmé que I'augmentation du
nombre de  caractéristiques  améliore
significativement les performances du systeme
de reconnaissance (en notant que les meilleurs
taux ont été obtenus avec 36 coefficients) ;
Cette conclusion a été confirmée strictement
pour MFCC. Comme ce n'était pas le cas pour
les LPC et PLP, nous avons cherché a
déterminer le nombre optimal de coefficients
pour ces parametres pour obtenir de meilleurs
résultats. Certains récents travaux confirment
qu'un nombre réduit de LPC et PLP peut
entrainer meilleure représentation de signal de
parole [13] [15]. De ce fait, plusieurs
expériences ont ¢été établies dans ce sens. Nous
avons vari¢ le nombre des coefficients a partir
de 5 coefficients cepstraux + énergie jusqu'a
13 coefficients cepstraux + ¢énergie. Les
résultats retenus ont été obtenus par 11
coefficients cepstraux + ¢énergie comme
I’illustrent les tableaux 3 et 4.

Tableau 3 —Taux de classification

Dialecte | Nombre des | MFCC | LPC PLP
échantillons | (%) (%) (%)
DR1 40084 |96.87|86.62|99.14
DR2 81343 |197.01 77.02|99.38
DR3 80686 |97.1284.05|99.45
DR4 73092 |96.16 | 83.23 | 99.60
DRS5 75978 196.85|83.94 | 99.56
DR6 37263 |98.93]82.30|99.19
DR7 82419 |98.81(80.73|99.38
DRS 23105 |97.08 | 86.48 | 99.68
Taux | 493970 |97.32|82.39|99.43
moyen
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Tableau 4 —Taux de reconnaissance

Dialecte | Nombre des | MFCC | LPC PLP
échantillons | (%) (%) (%)
DRI1 11598 | 73.09|84.37|99.57
DR2 27884 | 86.66|71.43|99.44
DR3 27519 | 85.61(86.1199.30
DR4 34119 |81.90|95.8899.42
DR5 29719 82.96|74.91|99.64
DR6 11680 |89.73|72.32(99.66
DR7 25254 | 81.53(82.59|99.52
DRS 11766 |84.93|82.49|99.39
rgg;:n 179539 |83.47 | 82.09 | 99.48

Nous remarquons que les taux d'erreur les plus
faible pour la classification et la
reconnaissance ont été obtenus pour 11 PLP
suivis par les 36 MFCC et ensuite par les 11
LPC. Une observation intéressante est que les
taux de classification et de reconnaissance
sont comparables ce qui indique une souplesse
certaine du systéme de reconnaissance.

En outre, les meilleurs résultats ont été obtenus
pour PLP et MFCC indépendamment du
nombre de coefficients. De plus, nous pouvons
déduire le bénéfice sir et évident de
I’intégration du coefficient d'énergie.

Nous pouvons noté ¢galement que les résultats
varient d'un dialecte a un autre ce qui ouvre un
important sujet de recherche pour étudier la
cause de cette différence et d’évaluer chaque
dialecte séparément.

6 Conclusions

Un nouveau systéme de reconnaissance de
phonémes basé sur la logique floue a été
examin¢ dans ce travail. Des techniques
classiques de paramétrisation de signal de
parole ont été utilisées telles que MFCC, LPC
et PLP.

Une ¢tude comparative a ¢été opérée pour
déterminer le nombre adéquat des parametres
pour chaque technique utilisée.
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Les résultats illustrent que les coefficients
MFCC et PLP ont été les plus adéquats pour la
classification et la reconnaissance floue
présentées.

Cette ¢tude préliminaire montre que notre
méthode est une approche prometteuse pour la
construction d'un moteur de reconnaissance
phonémique. D'autres travaux se concentreront
sur I’évaluation de cette reconnaissance floue
dans un environnement bruit¢ comme la base
Aurora.

Références

[1] M.A. Anusuya, S. Katti. Front end analysis of
speech recognition : a review. International Journal
of Speech Technology, 99145, 2011.

B.H. Juang, L.R. Rabiner. Automatic speech
recognition - A brief history of the technology
development. Elsevier Encyclopedia of Language
and Linguistics, 2005.

I. Mporas, T. Ganchev, Mihalis, M. Siafarikas, N.
Fakotakis. Comparison of Speech Features on the
Speech Recognition Task. Journal of Computer
Science, 608-616, 2007.

I.B. Fredj, K. Ouni. Study of speech analysis
techniques for the phonemes classification using
fuzzy logic. 8th International Multi-Conference on
Systems, Signals & Devices (SSD11), 1-5, 2011.
B.T. Meyer, B. Kollmeier. Complementarity of
MFCC, PLP and Gabor features in the presence of
speech-intrinsic variabilities. Interspeech, 2009.

[6] Thiang. S.Wijoyo. Speech Recognition Using Linear
Predictive Coding and Artificial Neural Network
for Controlling Movement of Mobile Robot.
International Conference on Information and
Electronics Engineering, 179-183, 2011.

[7] H. Hermansky. Perceptual linear predictive (PLP)
analysis of speech. Journal of the Acoustical
Society of America, 1738-1752 (1990).

[8] L. A. Zadeh. Fuzzy logic, neural networks, and soft
computing. ACM’94, 77-84, 1994.

[9] A.L. Pérez-Neira, M.A. Lagunas, A. Morell, J. Bas.

Neuro-fuzzy Logic in Signal Processing for

Communications : From Bits to Protocols. NOLISP,

10-36, 2005.

Linguistic

Pennsylvania,

http://www.ldc.upenn.edu/Catalog/readme_files/tim

it.readme.html

[11] A. Sadigq, R.O.H. Thami, M. Daoudi, J.P.
Vandeborre. Classification des Objets 3D Basée sur
la Logique Floue. Compression et Représentation
des Signaux Audiovisuels (CORESA'2004), 2004.

(2]

(5]

[10] Data Consortium, University of


http://www.ldc.upenn.edu/Catalog/readme_files/timit.readme.html
http://www.ldc.upenn.edu/Catalog/readme_files/timit.readme.html

22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

[12] D.P.W. Ellis. PLP and RASTA (and MFCC, and
inversion) in Matlab using melfccm and
invmelfcc.m, http://www.ee.columbia.edu/ ~dpwe/
resources/ matlab/ rastamat/

[13] M.A. Anusuya, S.K. Katti. Comparison of
Different Speech Feature Extraction Techniques
with and without Wavelet Transform to Kannada
Speech Recognition. International Journal of
Computer Applications, 19-24, 2011.

[14] L. Zadeh. Fuzzy sets. Information and Control.
1965.

[15] Prasad, K. Ravi, A.N. Mishra, S.N. Sharan. Text
Dependant Speaker Identification Using VQ and
DTW. VSRD-IJEECE, 453-459, 2011.

[16] LB. Fredj, K. Ouni. Optimization of Features
Parameters for HMM Phoneme Recognition of
TIMIT Corpus. Engineering and Technology, 90-
94, 2013.

[17] B. Askazad. Hidden Markov Model. University of
Engineering and Technology Lahore Pakistan,
2001.

135



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

136



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

Traitement de I’incertitude a I’aide des relations de préférence dans
une méthode de décision multicriteres

Handling uncertainty using preference relations in a multi-criteria
decision making method

A. Ennaceur!

Z. Elouedi!

E. Lefevre®

1 LARODEC, University of Tunis, Institut Supérieur de Gestion, Tunisia
2 LGI2A, Univ. Lille Nord of France, UArtois EA 3926, France

amel_naceur @yahoo.fr

zied.elouedi @ gmx.fr

eric.lefevre @univ-artois.fr

Résumé :

Cet article propose une méthode d’aide a la décision
multicritéres dans un environnement incertain, ot I’incer-
titude est représentée a 1’aide de la théorie des fonctions
de croyance. Dans ce cadre, nous présentons une nouvelle
méthodologie qui introduit I’imperfection au niveau des
préférences de 1’expert.

Afin d’évaluer I'importance des criteres et de déterminer
les priorités des alternatives, notre approche suggere
d’utiliser les relations de préférence binaires pour éliciter
les jugements du décideur. Pour ce faire, 1’analyse mul-
ticriteres hiérarchique (AHP) basée sur les fonctions de
croyance qualitatives est développée pour obtenir une
représentation numérique adéquate.

Mots-clés :

Analyse multicriteres hiérarchique (AHP), Théorie
des fonctions de croyance, Evaluations imparfaites,
pondération des criteres

Abstract:

This paper proposes a multi-criteria decision making
method in an uncertain environment, where the uncer-
tainty is represented using the belief function framework.
Indeed, we suggest a novel methodology that tackles the
challenge of introducing uncertainty in expert opinions.

In order to judge the criteria weights and the alternatives
priorities, our proposed approach suggests to use pre-
ference relations to elicitate the decision maker assess-
ments. Therefore, the Analytic Hierarchy Process with
qualitative belief function framework is developed to get
adequate numeric representation.

Keywords:

Analytic Hierarchy Process, Belief function theory,
Imperfect assessments, Criteria weights

1 Introduction

L’aide a la décision multicriteres a été lar-
gement utilisée pour modéliser des problemes
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de décision de différentes disciplines. Elle
s’impose de plus en plus comme étant 1’'un
des cadres les plus réalistes pour formuler et
résoudre des problemes de décision.

Pour ce faire, plusieurs méthodes ont été pro-
posées [1]. Leur principal objectif est de choi-
sir une ou plusieurs alternatives ou de procéder
au classement de celles-ci sur la base d’un cer-
tain nombre de criteres de différentes natures
[1]. Ainsi, deux approches d’agrégation sont
identifiées. D’un co6té, I’approche de surclasse-
ment introduite par Roy, ou certaines méthodes
comme Electre et Promethee sont développées
[2]. De l'autre coOté, une premiere méthode
basée sur la théorie de 1’utilité a été proposée
par Keeney et Raiffa [3]. Principe qui a été en-
suite repris dans un certain nombre de méthodes

[4].

Cependant, il est a noter que ces approches re-
posent sur un cadre certain. Elles ne permettent
pas de prendre en compte les différentes formes
d’imperfection (imprécision et incertitude) des
informations. En effet, ces incertitudes peuvent
provenir de données mal connues, non fiables,
ou encore de parametres non mesurables qui
doivent étre exprimés par un expert. Dans ce
cadre, il est nécessaire d’étendre 1’aide a la
décision multicriteres au contexte incertain et
de développer des méthodes capables de gérer
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ces imperfections au niveau des criteres mais
également au niveau des alternatives.

Par conséquent, des travaux reposant sur des
cadres plus généraux sont développés en com-
binant des modeles standards avec des théories
de I'incertain telles que : la théorie des proba-
bilités, la théorie des ensembles flous [5], [6],
la théorie des fonctions de croyance. Les pre-
miers articles, liant cette derniére et la méthode
d’analyse multicriteres hiérarchique (AHP), par
exemple, remontent aux travaux de Beynon et
al. [5]. Cette méthode a été par la suite affinée
et étendue dans de nombreux travaux [7] [8],
etc.

La méthode AHP possede deux avantages ma-
jeurs par rapport aux approches existantes. Tout
d’abord, elle apporte une procédure qui permet
de traduire les préférences du décideur en poids,
en utilisant une échelle prédéfinie. Elle introduit
aussi une démarche claire, qui doit permettre
d’éviter les incohérences lors de la définition
des poids des criteres et des priorités des alter-
natives.

En dépit de ses avantages, le processus AHP
peut avoir quelques défauts. En effet, le choix
de I’échelle de préférence est primordial et in-
fluence grandement le résultat final. Cepen-
dant, elle ne permet pas de représenter des
incertitudes liées aux préférences des experts.
Par exemple, la phase de construction des
criteres est une étape délicate qui nécessite une
compréhension du probleme posé et une in-
teraction avec les acteurs impliqués dans la
prise de décision. L’expert doit donc fournir ses
préférences a partir d’une certaine expérience et
ses jugements peuvent tre incertains, imprécis
ou méme incomplets.

Ainsi, une nouvelle méthode permettant de
prendre en compte des données incertaines
dans un cadre multicriteres est proposée. Cette
méthode est alors fondée sur la méthode AHP et
la théorie des fonctions de croyance. Contraire-
ment aux approches précédentes ol les compa-
raisons sont données par une échelle prédéfinie
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de valeur, nous allons essayer de modéliser cette
evaluation par des relations de préférence bi-
naires. En outre, on suppose également que
I’importance des criteres et la priorité des alter-
natives peuvent €tre exprimées au moyen d’une
fonction de masse de croyance afin de mieux
représenter ces imperfections. Notre proposi-
tion permet alors de transformer les préférences
obtenues a partir des jugements d’un expert, en
une valeur numérique avec certaines valeurs de
pondération, et ce, dans le cadre de la théorie
des fonctions de croyance.

Notre article est organisé de la manicre sui-
vante. Dans le paragraphe 2, les concepts de
base dont nous avons besoin sur les fonctions
de croyance sont rappelés. Dans le paragraphe
3, la méthode de fonction de croyance qua-
litative exploitée dans cet article est exposée.
Le paragraphe 4 propose une méthode multi-
critéres dans un cadre incertain. Cette méthode
est détaillée et illustrée par un exemple. Enfin,
le paragraphe 5 conclut et ouvre une discussion
sur ce travail.

de

2 La théorie des fonctions

croyances
2.1 Notions de base

Soit ©, appelé cadre de discernement ou uni-
vers, un ensemble fini de propositions ou d’hy-
potheéses exhaustives et exclusives. Une fonc-
tion de masse de croyance sur O est une appli-
cation m : 29 — [0, 1] telle que [10] :

> m(A) =1.

ACO

6]

La fonction de masse m représente la part de
croyance attribuée a A sans que celle-ci puisse
étre répartie sur les propositions qui la com-
posent. Un ensemble A tel que m(A) > 0 est
appelé élément focal. Soit F(m) C 2° I’en-
semble des éléments focaux.

La fonction de croyance associée a une fonction
de masse m est définie par :
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bel(A) = > m(B)etbel(D) = 0.

0+BCA

2)

La quantité bel(A) représente le degré de
croyance en A. Elle mesure a quel point les in-
formations données par une source soutiennent
la proposition A.

2.2 Combinaison

Deux fonctions de masse m; et ms issues de
deux sources d’information fiables et distinctes
peuvent étre combinées en utilisant la regle de
combinaison conjonctive définie par [9] :

(m1@m2)(A) =

Y B,cco,Bno=a Mi(B)ma(C),

vaco. ©

2.3 Affaiblissement

Un doute sur la fiabilité d’une source ayant
fourni une information m est parfois possible.
L’opération d’affaiblissement [11] de m par
une constante o € [0, 1], appelée taux d’affai-
blissement, permet de prendre en compte cette
métaconnaissance sur I’information m. Cette
opération de correction de m est définie par :

m*(A)=(1—-a)m(A),YACO, @
m*(0O) =a+ (1 —a)m(O). ®)

2.4 Les mesures d’incertitude

Les mesures d’incertitude relatives a un
événement caractérisent la nature de 1’infor-
mation, celle-ci pouvant étre imprécise ou in-
certaine. De nombreux travaux ont été réalisés
sur ces mesures. Ces travaux ont abouti a la
définition de plusieurs mesures. Dans cet ar-
ticle, nous nous focalisons sur la mesure com-
posée H [12] définie par :
|A]

S m(A)loga( )

AeF(m)

H{(m) (6)

Cette fonction présente I’avantage qu’elle a un
maximum unique.
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2.5 Niveau décisionnel

Lorsqu’une décision doit &tre prise, la fonction
de croyance éventuellement obtenue doit donc
étre transformée en une mesure de probabilité.
Une solution consiste a utiliser la transforma-
tion pignistique en calculant la probabilité pi-
gnistique définie par [13] :

AN B
| B|

m(B)
(1 —m(D))

BetP(A) = >

BCO

VA € ©.
(7

3 Méthode de fonction de croyance
qualitative

Le probleme de I’élicitation des opinions des
experts dans le cadre de la théorie des fonctions
de croyance a été abordé par de nombreux tra-
vaux [14] [15] [17].

Dans cet article, nous utilisons 1’approche de
Ben Yaghlane et al. [14]. Cette méthode a
été choisie car elle gere le probleme d’in-
cohérence dans les comparaisons par paires.
Aussi, I’originalité de ce modele est sa capacité
de générer des informations quantitatives a par-
tir des préférences qualitatives.

L’idée principale de la méthode est donnée
comme suit.

Soient deux alternatives a et b, un expert
peut exprimer laquelle des propositions est
la plus susceptible d’étre vraie. Ainsi, il uti-
lise deux relations de préférence binaires : la
préférence (>) et I'indifférence (~), définies
réspectivement par :

a > b< bel(a) — bel(b) > ¢,
a~b<s |bel(a) —bel(b)| < e.

®)
€))

Dans ces équations, ¢ est considéré comme le
plus petit écart que 1’expert peut discerner entre
le degré de croyance de deux propositions a et
b, sachant que ¢ est une constante spécifiée par
I’expert avant de commencer le processus d’op-
timisation.
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Par la suite, une technique mono-objective a été
utilisée afin de résoudre ce probleme d’optimi-
sation :

Maz,, UM (m)
s.t.
bel(a) — bel(b) > ¢
(a est préféré a b)

bel(a) — bel(b) < ¢

(a et b sont indifférents)
bel(a) — bel(b) > —¢

(a et b sont indifférents )

> m(a) =1,m(a) =0,
a€F(m)
Va C ©;m(0) =0,

(10)

ou les trois premieres contraintes sont dérivées
des équations précédentes. La dernicre
contrainte garantit que la somme des masses
allouées aux éléments focaux est égale a 1
(masse normalisée). Elle impose également que
les masses soient positives.

4 Meéthode multicriteres basée sur
des évaluations qualitatives

4.1 Introduction

L’ objectif principal de cette section est d’établir
une méthode liant la méthode AHP avec la
théorie des fonctions de croyance et de per-
mettre de formuler un probleme de décision
multicriteres en utilisant des relations de
préférence binaires.

Un probleme de décision multicriteres est
défini par un ensemble d’alternatives © =
{ai,...,a,} et un ensemble de criteres notés
respectivement 2 = {cy,...,¢,}. Le pa-
ragraphe suivant donne une présentation du
modele proposé.

4.2 Définition du modele

La méthode AHP (Analytic Hierarchy Pro-
cess) a été développée par Saaty [16] [4].
Cette méthode propose de découper un
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probleme de décision complexe en une struc-
ture hiérarchique. Cette hiérarchisation se
déroule selon plusieurs niveaux, débutant
par 1’objet du probleme, suivi des criteres et
qui se termine par les différentes alternatives
possibles.

Cette méthode est basée sur [I’évaluation
par paires, ou I’ensembles des comparai-
sons forment des matrices de jugement.
Ainsi, chaque matrice est construite a par-
tir de comparaisons basé€es sur une échelle
numérique de priorité avec certaines valeurs
de pondérations (Tableau 1). Cette échelle tra-
duit les préférences du décideur en valeurs
numériques. Ensuite, la méthode du vecteur
propre est appliquée pour déterminer I’impor-
tance de chacun des criteres et des alternatives.

Tableau 1 — Echelle de mesure de Saaty

Valeur numérique Définition
1 Importance égale
3 Importance faible
5 Importance forte
7 Importance attestée
9 Importance absolue
2,4,6,8 Valeurs intermédiaires entre
deux appréciations voisines.

Par conséquent, notre modele repose sur les
mémes caractéristiques que I’ AHP standard (ni-
veau hiérarchique, comparaison par paire) mais
en considérant des relations de préférence a la
place de nombres exactes.

Comme pour la méthode classique, nous
commencons par construire la matrice de ju-
gement des criteres. Ainsi, pour exprimer ses
préférences, le décideur donne des opinions
qualitatives, a partir de ces connaissances et
de ces expériences plutdt que des informations
quantitatives directes. La procédure est illustrée
dans le Tableau 2.

Cette matrice est alors construite a partir des re-
lations de préférence. Dans ce tableau, F;; peut
étre :

1. une relation preference stricte > : SSI
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Tableau 2 — Matrice de Préférences

C1 | C2 Cm
&1 - | Pro Py,
Co - - Py,
Cm | - - - -

(ci = ¢;) N=(cj = )

2. une relation indifference ~ : SSI (¢; >
¢;) A (¢ - i)

3. une relation inconnue : (-).

Une fois cette matrice construite, nous
procédons comme dans le cas classique. Nous
construisons tout d’abord la valeur correspon-
dante a chaque critere c;, ce qui correspond
dans la méthode classique a la construction du
vecteur propre. Ces valeurs obtenues sont une
fonction de masse de croyance. En effet, notre
modele cherche a transformer les relations
obtenues en valeurs numériques en utilisant les
fonctions de croyance. Pour ce faire, nous avons
adopté 1’approche de Ben Yaghlane et al. [14]
afin de convertir toutes les relations obtenues
en un probleme d’optimisation (Equation 10).
Sa résolution, selon certaines mesures d’incer-
titude (UM) telle que H (Equation 6), permet la
génération d’une fonction de croyance la plus
incertaine et la moins informative.

Cette fonction de masse de croyance se calcule
selon la formule suivante :

Maz,,o H(m'?)
s.t.
bel*({c;}) — bel*({c;}) > ¢
(c; est préféré a c;)

bel*({c;}) — bel*({c;}) < e

(¢; et ¢; sont indifférents )

bel({c;}) — bel({c;}) > —¢
(¢; et c; sont indifférents )

> m({a}) = 1,m"({e;}) >0,
ck€F(m)
Ve, € ©;m(0) =0,

Y

Sachant que la premiere contrainte traduit
la relation de préférence et la deuxieme et
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troisieme contraintes modélisent la relation
d’indifférence. D’ou, chaque paire de criteres
doit vérifier une de ces deux relations.

Avec cette formulation, nous supposons que le
poids des criteres est décrit par une fonction
de masse de croyance notée m$, issue de la
résolution du probleme d’optimisation (Equa-
tion 11).

Finalement, pour obtenir I’importance relative
de chaque critere, nous proposons de transfor-
mer les probabilités pignistiques Bet P, issue
de la fonction m, en coefficients 3; de la facon
suivante :

BGtPQ (Cl)
max,Bet P2(c;,)

B = (12)

Pour les m matrices (nombre de critéres) de
jugement des alternatives par rapport au m
criteres, qui elles aussi sont représentées avec
des fonctions de masse de croyance, le calcul du
vecteur propre s’ effectue de la méme maniere
que pour le calcul du vecteur poids.

Maintenant, I’étape suivante consiste a intégrer
la Bet P9 relative aux critéres avec celles rela-
tives aux alternatives.

A ce niveau, notre principal probleme est que la
fonction de masse correspondance aux criteres
est définie sur un cadre de discernement ()
différent de celui des alternatives ©. Pour
résoudre ce probleme, on suppose que chaque
poids de critere peut-étre vu comme €tant une
mesure d’affaiblissement. Ainsi, chaque fonc-
tion de masse de croyance relative a un en-
semble d’alternatives est affaiblie par la mesure
correspondante :

mey ({a;3) = Br-me,(1a;}),

me () = (1= Br) + Brme, (O).

Vaj € @,
(13)
(14)

ot m,, ({a;}) est la masse de croyance relative
a D’alternative a; sachant le critere c; et 3, est
le degré de fiabilité (sachant que o, = 1 — ).
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Une fois les fonctions de masse de croyance
affaiblies, il est possible de les combiner par
I’intermédiaire de la combinaison conjonctive.
Nous obtenons alors :

Mfina = @mer, k={1,...,m}. (15)

La derniere étape consiste alors a prendre une
décision concernant la meilleure alternative. La
technique la plus utilisée dans le cadre de la
théorie des fonctions de croyance est de rete-
nir I’alternative ayant la plus grande probabilité
pignistique (Equation 7).

4.3 Exemple

L’exemple présenté dans cet article est re-
latif au choix d’une voiture. Trois voitures
sont candidates et il s’agit de choisir celle
qui convient le mieux, en fonction de trois
criteres. Ce probleme sera traité selon deux
méthodes. D’une part, une analyse multi-
criteres hiérarchique crédibiliste, dans laquelle
les criteres et les alternatives seront exprimés
par des relations de préférence, et d’autre part
une analyse multicriteres hiérarchique standard

[4].

Les résultats permettront d’évaluer 1’apport de
la méthode d’analyse multicriteres crédibiliste
proposée. Sa pertinence, d’un point de vue
décisionnelle, sera également discutée.

Une étude préliminaire a identifié 3 criteres pos-
sibles : Q@ = {Confort (c;), Style (c3), Puis-
sance (c3)}. Apreés avoir obtenu les réponses
a I’issue d’un questionnaire, 1’expert établit la
matrice de comparaison donnée par le Tableau
3.

Tableau 3 — Matrice de comparaison par paires

Criteria | ¢1 | ¢ | 3
C1 - | >
(&) - - ~
C3 - - -

D’apres ce tableau, nous remarquons que 1’ex-
pert préfere {c1} a {co} et aussi {1} a {cs3}.
Pour compléter cette matrice, 1I’expert doit rem-
plir uniquement la moitié de la matrice sans
quantifier la diagonale et la matrice réciproque.

Maintenant, pour appliquer la méthode établie
dans ce papier, nous devons transformer les
relations obtenues en un probléme d’optimi-
sation, dont la résolution permet d’obtenir les
poids des différents criteres. Nous considérons
que ¢ = 0.01 et nous choisissons // comme
mesure d’incertitude. Nous obtenons alors les
contraintes suivantes :

1. ¢ = ¢y < bel?({c1}) — belY({cp}) > &
2. c1 = c3 & bel?({c1}) — bel*({c3}) > ¢
(

3. cg ~ ez & bel*({ca}) — bel({cs}) < eet
bel*({ca}) — belt({c3}) > —¢

et le modele suivant :

MameH(mQ) = —mﬂ({ﬁ}) * l092(1/m9({01}>

—m?({c2}) * loga(1/m®({c2}))
—m*({cs}) x loga(1/m®({cs}))

—m*(Q) * loga(3/m™(Q));

s.t.

bel*({c1}) — bel*({cp}) > ¢
bel*({c1}) — bel*({c3}) > ¢
belt({ca}) — bel*({c3}) < &
bel*({ca}) — belt({c3}) > —¢
> m?({a}) = Lm({c;}) 2 0,

ci€F(m)

Ve, € Q;mS (D) = 0,

Finalement, les poids correspondants sont
donnés dans le Tableau 4.

Tableau 4 — Pondération des critéres
Criteria | ¢ Co C3 Q

m®  10.238 | 0.208 | 0.208 | 0.346
BetP® | 0.352 | 0.324 | 0.324
B 1 0.92 | 0.92

Ensuite, la méme procédure est répétée pour
comparer chaque alternative par apport a
chaque critere.
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Soit © = {Peugeot(p), Renault(r), Ford(f)}
I’ensemble des alternatives. L’approche avec
les relations de préférence appliquée aux al-
ternatives donne les priorités entre alternatives

présentées dans le Tableau 5.

Tableau 5 — Priorités des alternatives

Alternatives c1 Ca C3
{p} 0.336 | 0.3 | 0.207
{r} 0.18 0.1 | 0.304
{f} 0.242 | 0.195 | 0.039

{p,r, f} 0.242 | 0.405 | 0.45

Une fois les matrices des priorités obtenues,
notre objectif est alors d’intégrer ces priorités
avec le poids des criteres. Nous commengons
par la procédure d’affaiblissement ou les va-
leurs de 3 sont données dans le Tableau 4. Le
résultat est présenté dans le Tableau 6.

Tableau 6 — Priorités des alternatives affaiblies

Alternatives 1 Co C3
{p} 0.336 | 0.276 | 0.1904
{r} 0.18 | 0.092 | 0.2796
{f} 0.242 | 0.1794 | 0.0358
{p,r, [} 0.242 | 0.4526 | 0.4942

L’étape suivante consiste donc a combiner les
différentes masses obtenues (Tableau 7).

Tableau 7 — Fonction de masse de croyance fi-

nale
a; {r} | {r} | {f} 0 ©
Minar | 0.2317 | 0.174 | 0.025 | 0.5153 | 0.054

Finalement, la probabilité pignistique (Equa-
tion 7) est utilisée afin de choisir 1’alternative
préférée (Tableau 8).

Afin de comparer notre modele a une méthode
classique, nous avons utilisé la méthode AHP
standard pour traiter ce méme probleme. Les
mémes résultats ont été obtenus, comme in-
diqué dans le Tableau 9. Il est clair que le choix
de I’alternative p est le plus approprié.

D’apres les deux approches cette alternative
a I'importance la plus élevée. Notre méthode
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Tableau 8 — Classement des alternatives

Alternatives | {p} | {r} | {f}
BetPfing | 0.552 | 0.322 | 0.126

a l'avantage d’étre facile a expliquer a des
non spécialistes. En effet, les experts sont te-
nus d’exprimer leurs préférences qualitative-
ment sans avoir besoin de se familiariser avec
la méthode.

Tableau 9 — Classement des alternatives selon

AHP standard
Alternatives | {p} | {r} | {f}
priorités | 0.609 | 0.217 | 0.174

5 Conclusion

Une méthode d’aide a la décision multicriteres
basée sur la théorie des fonctions de croyance
a été présentée. L'idée fondamentale de cette
approche est de permettre au décideur d’expri-
mer ses opinions en utilisant des relations de
préférences binaires. Ensuite, ces relations sont
traduites en valeurs numériques suivant 1’ap-
proche de Ben Yaghlane et al. [14] afin d’ob-
tenir le poids des criteres et la priorité des alter-
natives.

Enfin, la méthode proposée est facile a com-
prendre et simple a utiliser. Mais, elle ne permet
pas de modéliser les différentes formes d’im-
perfection. Ainsi, en exprimant ces préférences,
I’expert peut utiliser d’autres types de relation
comme la préférence faible et I’incomparabilité.
Cette piste est laissée en perspective.
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Résumé :

Motivés par les sémantiques modales induites par des
jeux de majorité, nous considerons la classe des fonctions
a seuil. L. Hellerstein a montré que cette classe peut
étre caractérisée par des contraintes relationnelles (ou,
de facon équivalente, par des équations fonctionnelles),
mais aussi qu’il faut un nombre infini de ces contraintes
pour la caractériser. Dans cet article, nous présentons une
classification complete des classes de fonctions a seuil
induites par des clones booléens, en identifiant ceux qui
ont une caractérisation finie. De plus, nous présentons les
ensembles des contraintes relationnelles qui caractérisent
chacune de ces classes.

Mots-clés :

Fonction booléenne, fonction a seuil, clone, car-
actérisation, contrainte relationnelle, équation fonction-
nelle.

Abstract:

Motivated by modal semantics induced by majority
games, we consider the class of threshold functions. It
was shown by L. Hellerstein that this class is characteriz-
able by relational constraints (or equivalently, by func-
tional equations), but that there is no characterization
by means of finitely many constraints. In this paper,
we present a complete classification of classes of thresh-
old functions induced by Boolean clones, into whether
they are characterizable by finitely many relational con-
straints. Moreover we provide sets of constraints charac-
terizing each of such classes.

Keywords:

Boolean function, threshold function, clone, character-
ization, relational constraint, functional equation
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1 Introduction and preliminaries
1.1 Introduction

Two approaches to characterize properties of
Boolean functions have been considered re-
cently: one in terms of functional equations
[9], another in terms of relational constraints
[19]. As it turns out, these two approaches
have the same expressive power in the sense that
they characterize the same properties (classes)
of Boolean functions, which can be described
as initial segments of the so-called “minor” re-
lation between functions: for two functions f
and g of several variables, f is said to be a minor
of g if f can be obtained from g by identifying,
permuting or adding inessential variables (see
Subsection 1.3). Furthermore, a class is charac-
terizable by a finite number of functional equa-
tions if and only if it is caracterizable by a finite
number of relational constraints.

Apart from the theoretical interest, these ap-
proaches were shown in [4] to be tightly re-
lated to frame definability within modal logic,
and a complete correspondence between classes
of Boolean functions and classes of Scott-
Montague frames (W, F'), where W is a fi-
nite set and F: P(W) — P(W), for modal
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logic was established. This correspondence
is based on the natural bijection between
maps F': P(W) — P(W) and vector-valued
Boolean functions f: B! — BI"I. For basic
background on modal logic see, e.g., [1].

An attractive aspect of this correspondence is
that equational theories (or, equivalently, con-
straint theories) of classes of Boolean functions
translate straightforwardly into theories of the
corresponding classes of modal frames. This
setting was refined to several correspondences
between important classes of Boolean functions
(such as clones and other noteworthy equational
classes) and classes of Kripke-like structures by
considering several variants to classical modal
semantics.

Motivated by modal semantics based on major-
ity games, in this paper we consider classes of
threshold functions, that is, Boolean functions
that have the property that the true points can
be separated from the false points by a hyper-
plane when considered as elements of the n-
dimensional real space R". Such functions have
been widely studied in the existing literature
on Boolean functions, switching theory, system
reliability theory, game theory, etc.; for back-
ground see, e.g., [12, 16, 17, 18, 20, 22].

This property is known to be expressible by re-
lational constraints (or equivalently, by func-
tional equations) but no finite set of such objects
is able to capture this property (see [11]). How-
ever, by imposing additional conditions such
as linearity or preservation of componentwise
conjunctions or disjunctions of tuples, the re-
sulting classes of threshold functions may be-
come characterizable by a finite number of re-
lational constraints. In fact, these examples
can be obtained from the class of threshold
functions by intersecting it with certain clones
(i.e., classes of functions containing all projec-
tions and closed under functional composition),
namely, those of linear functions, conjunctions
and disjunctions, respectively. Another note-
worthy and well-known example of such an
intersection is the class of “majority games”,
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which results as the intersection with the clone
of self-dual monotone functions. The natural
question is then: Is the class of majority games
characterizable by a finite number of relational
constraints?

In this paper we answer negatively to this ques-
tion by determining which intersections 7' N C'
of the class 7' of threshold functions with a
clone C' are characterizable by a finite set of re-
lational constraints. Moreover, we provide fi-
nite or infinite characterizing sets of relational
constraints accordingly. Such characterizing
sets can then be used to axiomatize classes of
“weighted median Kripke frames” that can ac-
count for modal semantics induced by majority
games. Essentially, a weighted median Kripke
frame is a structure K (W, D) where W
is a nonempty finite set and D is a function
W? — N satisfying the condition: for each

w € W, the sum ) D(w,v) is odd. A
veW
weighted median Kripke model is then a struc-

ture M (K, V) where K (W,D) is a
weighted median Kripke frames and V' is a val-
uation & — P(W). In these models, the truth-
value of propositional formulas is given as usual
but the truth-value of modal formulas of the
form O¢ is given by: M w = O¢ if and
only if

> D(w,v) +1
Z D(U},’U) > veW

ve||glIM

where ||¢||M := {v € W : M, v | ¢}.

2 Y

This model-theoretic approach to modal logic
was considered by Virtanen in [21] where the
basic modal language is used to reason about
knowledge and belief. Here, Virtanen proposes
a variation of epistemic logic and introduces a
model-theoretic approach in which weights rep-
resent probabilities of possible events.

Given the page limit for this contribution, we
will only focus on the former aspect, namely,
constraint characterizations of classes of thresh-
old functions. The latter aspect is the subject
of a manuscript being prepared in collaboration
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between the authors and L. Hella and J. Kiveld
at the University of Tampere.

The paper is organized as follows. In the re-
mainder of this section, we recall basic notions
and results that will be needed throughout the
paper. The main results are presented in Sec-
tion 2, namely, the classification of all intersec-
tions C'NT" as well as the corresponding charac-
terizing sets of relational constraints. The Ap-
pendix provides further background on the the-
ory of Boolean clones.

1.2 Boolean functions

Throughout the paper, we denote the set
{1,...,n} by [n] and the set {0, 1} by B.

We will denote tuples in B™ by boldface letters
and their entries with corresponding italic let-
ters, e.g., a = (ay,...,a,). Tuples a € B™
may be viewed as mappings a: [m| — B, i —
a;. With this convention, given a map o: [n] —
[m], we can write the tuple (ao(1), - - . , Go(n)) S
aog,orsimply ac.

A Boolean function is a map f: B" — B for
some positive integer n called the arity of f.
Typical examples of Boolean functions include

e the n-ary i-th projection (i € |[n])
). gn B, (ay,...,a,) — ag;

i

e

e the n-ary O-constant and 1-constant func-
tions 0, 1 : B" — B, 0(x) = 0 and
1(x) = 1 for all x € B";

e negation-: B —B,0=1,1=0;

e conjunction \: B> — B, x Ay = 1 if and
onlyifr =y =1;

e disjunction V: B> — B, z Vy = 0 if and
only if x =y = 0;

e modulo-2 addition ©: B> — B,z ®y =
(x 4+ y) mod 2.

The set of all Boolean functions is denoted by
(2 and the set of all projections is denoted by /..
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The preimage f~'(1) of 1 under f is referred
to as the set of true points, while the preimage
f71(0) of 0 under f is referred to as the set of
false points.

The dual of a Boolean function f: B" — B is
the function f9: B” — B given by

fd(l'l, e ,In) = f(fl, e ,fn)

A variable x; is essential in f: B" — B if there

are ay,...,Qa;—1,at+1,---,a, € B such that
f(ab ce 7ai71707ai+17 te 7an) 7é
f(ah sy i1, 17ai+17 s 7an)'

Variables that are not essential are said to be
inessential.

Fact 1. A variable x; is essential in [ if and
only if it is essential in f<.

A Boolean function f is self-dual if f = f9.
1.3 Minors and relational constraints

A function f: B™ — B is a minor of an-
other function g: B" — B if there exists a map
o: [n] — [m] such that f(a) = g(ao) for all
a € B™; in this case we write f < g. Func-
tions f and g are equivalent, denoted f = g,
if f < gand g < f. In other words, f is a
minor of g if f can be obtained from g by per-
mutation of arguments, addition and deletion of
inessential arguments and identification of argu-
ments. Functions f and g are equivalent if each
one can be obtained from the other by permuta-
tion of arguments and addition and deletion of
inessential arguments. The minor relation < is
a quasi-order (i.e., a reflexive and transitive re-
lation) on the set of all Boolean functions, and
the relation = is indeed an equivalence relation.
For further background see, e.g., [5, 6, 7].

In what follows, we shall consider minors of a
particular form. Let f: B" — B, leti,j € [n]
(i # 7). The function f;—;: B"~! — B given by

fi:j(al, .
f(al, ..

- Q)

. 7an>7

<y Qi1 Qg 15 - -

ey Ai—1,Aj, Ajq 1, - -



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

for all ay,...,a;_1,a;11,...,a, € B, is called
an identification minor of f.

Classes of functions that are closed under tak-
ing minors are known to be characterizable by
so-called relational constraints. This was shown
by Pippenger [19]. We will briefly survey some
results which we will use hereinafter. An m-ary
relational constraint is a couple (R, S) of m-
ary relations R (the antecedent) and S (the con-
sequent) on B (i.e., R, S C B™). We denote the
antecedent and the consequent of a relational
constraint () by R((Q)) and S(Q), respectively.
The set of all relational constraints is denoted
by O.

A function f: B"™ — B preserves an m-
ary relational constraint (R,S), denoted f >
(R, S), if for every a',... a" € R, we have
f(a',...,a") € S. (Regarding tuples a
as unary maps, f(a',...,a") denotes the m-
tuple whose i-th entry is f(a',...,a")(4)
fla}, ... a%).)

The preservation relation gives rise to a Ga-
lois connection between functions and rela-
tional constraints that we briefly describe; for
further background, see [2, 7, 19]. Define
cPol: P(©) — P(Q), clnv: P(Q) — P(O)
by

i

cPol(Q) ={f € Q: frQ forevery Q € Q},
clnv(F)={Q € © : f>Q forevery f € F}.

We say that a set F of functions is charac-
terized by a set Q of relational constraints if
F = cPol(Q). Dually, Q is characterized by F
if @ = clnv(F). In other words, sets of func-
tions characterizable by relational constraints
are exactly the fixed points of cPol o cInv, and,
dually, sets of relational constraints characteriz-
able by functions are exactly the fixed points of
clnv o cPol.

The Galois connection cPol-cInv refines the
well-known Galois connection Pol-Inv be-
tween functions and relations, which is induced
by a similar preservation relation: function
f: B"™ — B preserves an m-ary relation R if for
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everyal ... a" € R, wehave f(al',... a") e
R. (In other words, f preserves a relation R
if and only if f preserves the relational con-
straint (R, R).) Here, the Galois closed sets
of functions coincide exactly with clones, i.e.,
classes of functions that contain all projections
and that are closed under functional composi-
tion; for further background see, e.g., [8].

The following result reassembles various de-
scriptions of the Galois closed sets of functions,
which can be found in [7, 9, 19].

Theorem 2. Let F be a set of functions. The
following are equivalent.

(1) F is characterizable by relational con-
straints.

(i1) F is closed under taking minors.

(ii1) F is of the form

forbid(A) :=
{feQ:g«L fforallg e A}

for some antichain A (i.e., set of pairwise
incomparable functions) with respect to
the minor relation <.

Remark 3. From the equivalence of (i) and (i1)
in Theorem 2, it follows that the union and the
intersection of classes that are characterizable
by relational constraints are characterizable by
relational constraints.

Remark 4. Note that the antichain A in Theo-
rem 2 is unique up to equivalence. In fact, A
can be chosen among the minimal elements of

Q2 \ F; the elements of A are called minimal
forbidden minors for F.

Remark 5. The Galois closed sets of relational
constraints were likewise described in [19].

As we will see, there are classes of functions
that, even though characterizable by relational
constraints, are not characterized by any finite
set of relational constraints. A set of functions
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is finitely characterizable if it is characterized
by a finite set of relational constraints. The fol-
lowing theorem is a refinement of Theorem 2
and provides a description for finitely charac-
terizable classes.

Theorem 6 ([7, 9]). Let F be a set of functions.
The following are equivalent.

(1) F is finitely characterizable.

(ii) F is of the form forbid(A) for some finite
antichain A with respect to the minor re-
lation <.

2 Main results: classification and
characterizations of Galois closed
sets of threshold functions

2.1 Motivation

An n-ary Boolean function f: B" — B

is a threshold function if there are weights

wi,...,w, € R and a threshold t € R, such
that

f(a:l,...,xn) =1 < Zwlxl > t.
=1

In other words, an n-ary Boolean function
f: B™ — B is a threshold function if there is
a hyperplane in R” strictly seperating the true
points of f from the false points of f. The set
of all threshold functions is denoted by 7'.

The class of threshold functions has remarkable
invariance properties. For instance, it is closed
under taking negations and duals. Moreover,
the class of threshold functions is also closed
under taking minors of its members; hence it
is characterizable by relational constraints by
Theorem 2. However, it was shown by Heller-
stein [11] that no finite set of relational con-
straints suffices.

Theorem 7. The class of threshold functions
is not finitely characterizable. Consequently,
there exists an infinite antichain A such that for
every f € A, f ¢ Tand g € T forevery g < f.
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Imposing some additional conditions on thresh-
old functions, we may obtain proper subclasses
of T' that are finitely characterizable. Easy ex-
amples arise from the intersections of 7" with
the clone L of linear functions, the clone A of
conjunctions or the clone V' of disjunctions (see
Appendix). However, other intersections may
fail to be finitely characterizable. This fact gives
rise to the following problem.

Problem. Which clones C' of Boolean func-
tions have the property that C' N T is finitely
characterizable?

In the following subsection we present a solu-
tion to this problem.

2.2 Complete classification and corre-
sponding characterizations of sub-
classes of threshold functions

For any clone C' contained in one of L, V' and
A, the intersection C' N T is a clone. For,
LNT =Q(1),

ACT, VCT.

Hence, the characterization of C' N 7" for any
clone C contained in one of L, V and A is given
by relational constraints of the form (R, R) for
those relations R characterizing C' (as given in
the Appendix).

We proceed to characterizing the remaining
subclasses 7' N C' of threshold functions that,
as we will see, are not finitely characterizable.

A characterization of the class 1" of threshold
functions (i.e., for C' = (Q), is given by the fol-
lowing family of relational constraints. Define
for n > 1, the 2n-ary relational constraint B5,,
as

R(B,) = {(x1,...,79,) € B*:
n 2n
D= w
i=1 i=nt1
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(Note that in the definition of R(B,,) we employ
the usual addition of real numbers.)

Theorem 8. The set cPol{B,
class of all threshold functions.

:n > 2} is the

Moreover, for every clone C, the subclass CNT
of threshold functions is characterized by the set
{B, : n > 1} U R¢, where R¢ is the set of
relational constraints characterizing the clone
C, as given in the Appendix.

Theorem 8 provides an infinite set of relational
constraints characterizing the set C'N7" for each
clone C. As the following classification re-
veals, the characterization provided is optimal
for the clones not contained in L, V or A in the
sense that for such clones C, the class C N'T
is not finitely characterizable by relational con-
straints.

Theorem 9. Let C' be a clone of Boolean func-
tions. The subclass C'NT of threshold functions
is finitely characterizable if and only if C' is con-
tained in one of the clones L, V, A.

Appendix. Description of Boolean
clones and corresponding character-
izing sets of relational constraints

We provide a concise description of all Boolean
clones as well as characterizing sets of rela-
tions R — or, equivalently, relational constraints
(R, R) — for some clones; the characterization
of the remaining clones is easily derived by not-
ing that if C; = cPol(Q;) and Cy = cPol(Qs),
then C7 N Cy = cPol(Q; U Q). We make use
of notations and terminology appearing in [10]
and [13].

e (2 denotes the clone of all Boolean functions.
It is characterized by the empty relation.
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e 7y and T denote the clones of 0- and 1-
preserving functions, respectively, i.e.,

T, ={feQ:f0,...,0) =0},
T, ={feQ:fQ1,..,1) =1}

They are characterized by the unary relations
{0} and {1}, respectively.

e 7. denotes the clone of constant-preserving
functions, i.e., T, = Ty N 13.

e )M denotes the clone of all monotone func-
tions, i.e.,

M={fe€Q: f(a) < f(b)whenever a < b}.
It is characterized by the binary relation

<= {(Oa0)7 (07 1)7 (17 1)}

L] MgzMﬂTo,Ml :MﬂTl,MC:MﬂTC.

e S denotes the clone of all self-dual functions,
1.e.,

S={feq:fi=f}

It is characterized by the binary relation
{(0,1),(1,0)}.

e S.=SN1T.,SM=S5nNM.

e [, denotes the clone of all linear functions,
1.e.,

L={feQ:f=c®cari® - & cpan}.
It is characterized by the quaternary relation

{(a,b,c,d):a@b@c:d}‘
.LU:LmTo,leLﬂTl’LS:LmS,
L.=LNT.,.

Leta € {0,1}. Aset A C {0,1}" is said to be
a-separating if there is some ¢ € [n] such that
for every (ay,...,a,) € A we have a; = a. A
function f is said to be a-separating if f~'(a)
is a-separating. The function f is said to be a-
separating of rank k > 2 if every subset A C
f~Y(a) of size at most k is a-separating.
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e For m > 2, U,, and W,,, denote the clones
of all 1- and O-separating functions of rank
m, respectively. They are characterized by the
m-ary relations B™ \ {(0,...,0)} and B™ \
{(1,...,1)}, respectively.

e U, and W denote the clones of all 1- and
0-separating functions, respectively, i.e., Uy, =
ﬂk22 Uk and WOO = meQ Wk

o I.U,=T.NU,,and T.W,, =T.NW,,, for
m=2,...,00.

o MU,, = MNU, and MW,, = M N W,

form=2,...,00.

e M.U,, =M.NU,, and M.W,,, = M.NW,,,
form=2,...,00.

e A denotes the clone of all conjunctions and
constants, i.€.,

A:{fGQf:I“/\/\ZEM}U
0™ :n>13u{1™:n>1}.
It is characterized by the ternary relation

{(a,b,c)

caANb=c}.

® AozAﬂTO,AleﬂTl,AC:AﬁTC.

e |/ denotes the clone of all disjunctions and
constants, i.e.,

V={feQ:f=x, V-V, U
0™ :n>13u{1™:n > 1}
It is characterized by the ternary relation

{(a,b,c)

caVb=c}.

o Vo=VNT),Vi=VnNnT,V,.=VnNT.

e ()(1) denotes the clone of all projections,
negations, and constants. It is characterized by
the ternary relation

{(a,b,c)

ca=b or

b=c}.

o I'=0(1)NS, I=0(1)N M.
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[ ] ]OZIﬂTo,IlzlﬂTl.

e /. denotes the smallest clone containing only
projections, i.e., I, = I NT..
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Résumé :

Nous étudions la propriété algébrique d’associa-
tivité barycentrique pour les fonctions d’agrégation.
Cette propriété, bien connue dans I’axiomatisation
des moyennes quasi-arithmétiques par Kolmogoroff-
Nagumo, est souvent considérée comme trés naturelle
lorsque le procédé d’agrégation rappelle celui d’une
moyenne (arithmétique, géométrique, harmonique...).
Nous rappelons la définition de cette propriété et nous
en proposons quelques généralisations. Nous présentons
aussi quelques résultats, dont certains assez surprenants,
liés a ces propriétés.

Mots-clés :

Fonction d’agrégation, fonction moyenne, associativité

barycentrique.

Abstract:

We investigate the algebraic property of barycentric as-
sociativity for aggregation functions. This property, well-
know in Kolmogoroff-Nagumo’s axiomatization of the
quasi-arithmetic means, is often considered as very natu-
ral whenever the agreggation process is of an (arithmetic,
geometric, harmonic...) mean type. We recall the defini-
tion of this property and propose some extensions. We
also present some results, some rather surprising, related
to these properties.

Keywords:

Aggregation functions, mean function, barycentric as-
sociativity.

1 Fonctions d’agrégation

En général, les fonctions d’agrégation sont
définies et utilisées pour combiner, fusionner et
résumer plusieurs valeurs numériques en une
seule, de telle sorte que le résultat final de
I’agrégation prenne en compte, d’'une maniere
prescrite, toutes les valeurs individuelles. De
telles fonctions d’agrégation sont largement
utilisées dans de nombreuses disciplines bien
connues comme la statistique, I’économie, la fi-
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nance, I’'informatique, etc.

Pour donner un exemple, supposons que plu-
sieurs personnes forment des jugements quan-
tifiables sur la mesure d’un objet (poids, lon-
gueur, surface, hauteur, importance ou autres
attributs) ou méme sur le ratio de deux telles
mesures (combien plus lourd, plus long, plus
grand, plus important un objet est-il par rap-
port a un autre). Pour atteindre un consensus
sur ces jugements, des fonctions d’agrégation
classiques ont été proposées : la moyenne
arithmétique, la moyenne géométrique, la
médiane et bien d’autres encore.

Pour choisir un mode d’agrégation raisonnable
et satisfaisant dans un probleme donné, il est
utile d’adopter une approche axiomatique et
sélectionner ainsi les fonctions d’agrégation qui
vérifient certaines propriétés. De telles pro-
priétés peuvent étre dictées par la nature des va-
leurs a agréger. Par exemple, dans un probleme
classique d’analyse multicritere, un des objec-
tifs est d’évaluer le score global d’une alter-
native a partir de scores partiels obtenus sur
différents criteres. Dans ce cas, il ne serait pas
tres naturel de donner au score global une va-
leur inférieure au plus petit des scores partiels
ou supérieure au plus grand des scores par-
tiels. Ainsi, seule une fonction de type “inter-
ne” (une moyenne) peut étre utilisée. Pour don-
ner un autre exemple, supposons que 1’on sou-
haite agréger des opinions dans une procédure
de vote. Si les votants sont anonymes, la fonc-



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

tion d’agrégation doit €tre symétrique.
2 Associativité barycentrique

Une des propriétés algébriques les plus
intéressantes et les plus naturelles dans de
nombreux problemes est celle d’associativité
barycentrique. En effet, celle-ci est vérifiée par
la plupart des moyennes telles que la moyenne
arithmétique, la moyenne géométrique, la
moyenne quadratique, la moyenne exponen-
tielle, etc.

Considérons une suite de fonctions réelles
Fi(xy), Fo(xq1,x9), F3(x1, 29, 23),... et sup-
posons que chacune de ces fonctions soit
symétrique, c’est-a-dire invariante par permu-
tation des variables. Dans sa formulation ori-
ginale introduite par Bemporad [2], la pro-
priété d’associativité barycentrique se traduit
par I’équation

, Tn)

>xn)

Fo(xy, .. Thy T,y - - -
= Fu(z,..., 2,241, ..

oux = Fy(xy,...,zp)etk=1,...,n.

Cette propriéré a été utilisée indépendamment
par Kolmogoroff [3] et Nagumo [5] dans
une caractérisation des moyennes quasi-
arithmétiques. Ce résultat s’énonce comme
suit.

Théoreme. Considérons une suite de fonctions
réelles  Fy(x1), Fa(xy, z2), F3(x1, 29, x3), . ..
vérifiant [’associativité barycentrique et sup-
posons que chacune de ces fonctions soit
Symétrique, continue, Strictement croissante
sur chacune de ses variables et réflexive (c’est-
a-dire Fy(z,...,x) = x). Alors, et seulement
alors, il existe une fonction réelle ¢ d’une
variable réelle qui est continue et strictement
monotone telle que

Fu(w,...,a,) = qs—l(%zn:(p(xi))

pour tout entier n.
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Depuis son introduction, la propriété d’associa-
tivité barycentrique a été utilisée par différents
auteurs [1, 3-5] et sous différents noms tels
que I’associativité des moyennes, 1’associativité
pondérée, la décomposabilité, et I’associativité
barycentrique.

Cette propriété est en fait un cas particulier
d’une propriété plus générale, que nous appel-
lerons pré-associativité barycentrique, et qui se
traduit par I’implication

Fe(xy, ... xx) = Fp(2), ..., x)
J
Fo(xy, .o Tk, Thg1y - oo, Tn)
= Fo(2%, . . %, Tty s Tn).

Lorsque les functions sont réflexives, cette
derniere propriété se réduit a 1’associativité

barycentrique. De nombreuses fonctions
d’agrégation sont barycentriquement pré-
associatives sans &tre barycentriquement

associatives. Citons par exemples les fonctions
classiquement associatives telles que la somme

> x;etle produit [ ]I, ;.

Dans notre exposé, nous présentons un cer-
tain nombre de propriétés, certaines assez
étonnantes, qui relient la pré-associativité bary-
centrique a 1’associativité barycentrique. Nous
présentons également des généralisations de ces
propriétés au cas ou les fonctions ne sont pas
symétriques, permettant ainsi que considérer
des fonctions d’agrégation pondérées.
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Résumé :

Une question couramment posée en robotique mo-
bile est : Comment concevoir et commander un véhicule
urbain capable de naviguer dans des espaces étroits ?
D’un point de vue mécanique, le concept a deux roues
semble étre une bonne solution en raison de son encom-
brement réduit et de sa capacité a manceuvrer dans des
espaces restreints. Cependant, la commande de ce type
de véhicule nécessite deux niveaux de contrdle : le pre-
mier pour I’auto-équilibrage et le second pour assurer un
suivi de consigne de vitesse. Ce travail a pour objective
la synthese d’une loi de commande robuste capable de
stabiliser le passager autour de son équilibre naturel ainsi
que d’assurer son déplacement le long d’une pente. Une
approche quasi LPV, a travers un modele flou TS et les
contraintes LMI, sera proposée. L’approche sera basée
sur la forme descripteur du systeme mécanique dans le
but de réduire le conservatisme des contraintes LMI.

Mots-clés :

Modele descripteur, fonction de Lyapunov non quadra-
tique, contraintes LMI, véhicule a deux roue, pendule in-
versé.

Abstract:

A commonly asked question in the field of autonomous
robotics and intelligent vehicles is : How to design and
control an urban transporter able to investigate narrow
spaces ? From a mechanical point of view, a two wheeled
transporter seems to be a good alternative due to its small
footprint and its ability to manoeuvre on tight turns. The
aim of this work is to design a robust controller able to
stabilize the transporter on its natural equilibrium along
an unknown slope. A quasi LPV approach, through the
so-called TS fuzzy model and LMI constraints will be
proposed. This latter is based on the descriptor form of
the mechanical system in order to reduce the conserva-
tism of the LMI constraints.

Keywords:

descriptor model, non-quadratic Lyapunov function,
LMI constraints, Two wheeled vehicle, inverted pendu-
lum.
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1 Introduction

De nos jours, la croissance spectaculaire des
outils informatiques, de la théorie de la com-
mande ainsi que des technologies de fabrica-
tion [1] permet aux chercheurs pour d’explo-
rer de nouveaux concepts de véhicules plus
adaptés a nos besoins quotidiens. Par exemple,
le déplacement dans une rue piétonne, le trans-
port des personnes handicapées, la réduction
de I’énergie consommée et des espaces de sta-
tionnement. Le robot mobile a deux roues est
devenu tres populaire cette derniere décennie
grace a son faible encombrement et sa bonne
maniabilité dans les espaces étroits [2]. Plu-
sieurs prototype a deux roues ont vu le jour
comme : B2 [1], JOE [3], Nbot [4], Legway [5]
et Segway, qui est le concept le plus connu par
le grand public [6]. D’un point de vue théorique,
le robot mobile a deux roues est un systeéme
complexe sous-actionnée [7] [8]. Ces systemes
dynamiques instables ont attiré I’attention des
chercheurs dans le domaine de la théorie de
la commande, car ils constituent un trés bon
exemple d’application [1], [3], [7], [8], [9].

La stabilisation d’un tel véhicule avec les
mémes conditions qu’un véhicule convention-
nel, telles que le déplacement en pente ou le
franchissement d’une petite marche, reste un
enjeu scientifique. Dans le cadre du projet VHI-
POD (véhicule de transport en station debout
individuel auto-équilibré pour personne handi-
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capée avec aide a la verticalisation) financé par
I’ANR (Agence Nationale de la Recherche),
quelques questions concernant la robustesse de
la loi de commande apparaissent. La variation
de la masse et de I’inertie de ’utilisateur influe
énormément sur les performances du véhicule,
spécialement si ce dernier se trouve en pente.
En effet, le point d’équilibre du pendule in-
versé a 2 roues dépend directement de la pente,
non mesurée a priori. L’ objectif de ce travail
est de proposer une solution pour la commande
des véhicules a deux roues type Segway, en
se basant sur I’approche descripteur Takagi-
Sugeno (TS) floue [16]. La méthodologie de
synthese sera basée sur la forme descripteur
du modele du véhicule, issue naturellement
de la modélisation mécanique. L’avantage de
cette technique est de réduire la complexité du
modele TS flou ainsi que le conservatisme des
solutions LMI [13], [22].

Ce papier est structuré comme suit : la section
2 présente le modele mécanique du véhicule
sur une pente. Le modele non linéaire obtenu
sert alors de base a I’obtention d’un modele TS
sous forme descripteur; la section 3 décrit la
loi de commande PDC étendue (Parallel Distri-
buted Compensation) ; la section 4 présente les
résultats de simulation obtenus en stabilisation
et poursuite de trajectoire ; Finalement, la sec-
tion 5 contient quelques conclusions.

2 Modélisation
2.1 Modele mécanique

Le véhicule est schématisé dans le plan par une
roue connectée a un solide en libre rotation sur
I’axe de la roue. La masse et le centre de gra-
vité (situé a une distance [ de 1’axe de la roue
) du solide constituent les caractéristiques iner-
tielles du systeme “utilisateur + robot”. La fi-
gure 1 montre la structure du systeme, ou ¢ et
6 sont respectivement, 1’angle de basculement
du solide et la vitesse angulaire de la roue. Sup-
posant que le systeme se déplace sur une pente
d’angle «. Les notations utilisées sont définies
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comme suit :
My, My - masses de la roue et du solide.
I, I, - moments d’inertie de la roue et du
solide.
[ - distance entre le centre de gravité du solide
et I’axe de rotation de la roue.
R - rayon de la roue.
C' - coefficient de frottement visqueux.
[ - couple moteur.

Figure 1 - Vue dans le plan du pendule inversé
a 2 roues.

Le modele mécanique est obtenu a I’aide des
équations d’Euler-Lagrange [10] sous la forme :

J10 + Jip cos(p + )i + CH
—J12sin(¢) + a)¢® + Ki(a) =T

Ji9 cos(v + oz)é + Jﬂﬁ — Kysiny = -T

(D
ol

Ji = muR? +mp R+ 1,

Jo = mbl2 + I

J12 = mle

Ki(a) = (my, + mp)gRsina

Ky = mygl

Dans I’équation (1), la dynamique est forte-
ment liée aux caractéristiques du solide (my, )
supposées incertaines. Sur un plan horizontal
I’équilibre statique est la verticale (¢» = 0) et
en pente, 1’équilibre change (¢ = §) avec [2] :

(mw + mb)R

Mol

d = arcsin sin(a) (2)

cette equation montre que 1’équilibre est fonc-
tion de la pente et des parametres du so-
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lide (généralement inconnus). En revanche, il
est compliqué de calculer I’angle d’équilibre
au préalable. De méme, il est difficile de
synthétiser une loi de commande sachant que
I’angle d’équilibre n’est pas déterminé, surtout
si le controleur est basé sur un modele linéarisé

[8].

Soitz” = [¢p 0 <] le vecteur d’état, la forme
descripteur du systemes est donnée par :

E(z)i(t) = A(z)x(t) + BT'(t)+ D (3)
avec
1 0 0
E=10 Jl J12 COS(@Z) + Oé)
0 Jizcos(v + «)
0 0
A= 0 —C J12SH11/1+OC
- sin v
K5 > 0
0
B=1|1],
-1

2.2 Forme TS descripteur

La modélisation floue de Takagi-Sugeno est une
représentation mathématique des systeémes, elle
appartient a la famille des quasi LPV [11].
A Tlintérieur d’un ensemble compact de va-
riable d’état, un modele flou TS peut représenter
exactement un systeme non linéaire par une
collection de modeles linéaires pondérés par
un ensemble de fonctions non linéaires issu
des non-linéarités du systeme [12]. L’avantage
de cette représentation est qu’elle fournit une
méthodologie systématique pour la conception
de lois de commande a 1’aide des techniques
d’optimisation convexes (LMI) [13]. Dans ce
travail, le modele TS est déterminé directement
a partir de la forme descripteur du systeme ce
qui réduit la complexité de synthese [14], [15],
[18], [21].

Considérons 7. and r respectivement le nombre
de fonctions non-linéaires pour la partie gauche
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et droite de I’équation d’état. Notons X (t) €
R” le vecteur d’état, u(t) € R™ le vecteur des
entrées, Y (t) € RY le vecteur des sorties, z(t)
le vecteur des prémisses, A;, B;, C; des ma-
trices de dimensions appropriées représentant le
i-eme modele local appartenant au modele TS
flou. Sous hypothese que les Ej sont des ma-
trices régulieres de dimensions appropriées, le
modele continu Takagi-Sugeno sous forme des-
cripteur s’écrit comme suit [15] :

{&X@=mx@+3w@ @
(t) = CrLX (1)

avec la relation

ve(2(0) B An = 3 hi(2(£) As

=1

Te

Efu:Z

k=1

T

S hi((8) By G = - ha(2(1))C

=1 i=1

By, =
et les fonctions scalaires h;(z(t)) > 0, i €
{1, ...}, ve(2(t)) > 0,k € {1, ..., 7.} vérifient
une propriété de somme convexe :

Te T

Sunet) =1
k=1

La forme TS descripteur du véhicule peut Etre
obtenue en considérant les deux non-linéarités
suivantes de I’équation (3).

NiL($) = cos(¥ + a), Ni(y) = 2,
et en négligeant la troisieme non-linéarité

Nls(1p, 1)) = sin(¢) 4+ a)i) puisque ¢ est non
mesurable.

Le modele TS descripteur est alors composé de
(2"¢ x 2"=4 regles) contrairement au modele TS
qui était composé de 8 regles [1]. Les modeles
linéaires sont obtenus en utilisant 1’approche
par secteur non-linéaire [13]. Les fonction d’ap-
partenances sont :

N1,

_ Nla(¢)—NI _ NI,—Nla(v)
=Ry, Nes he= T N

__ Nli(4)—Nl _ NL,-NL(¥)
U1 = TN 1NV V2 = TRTCN Ni,
5
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ou NI., NI; sont respectivement les bornes
supérieur et inférieur de la i-éme fonction non-
linéaire.

Pour prendre en considération la non-linéarité
négligée, le modele (4) est réécrit sous la
forme d’un modele TS avec des incertitudes de
modélisation :

(E,+AE,)x(t) = (Ap+AAR)x(t)+(Br+ABy)u

(6)
avec les incertitudes : AA, = H,Aap(t)W,,,
AB}L = HbAbh(t)th, AEU = H8A6v(t)Wev,
owm H., H,, H,, W, W,,, Wy, des ma-
trices constantes Ael(t)Ae,(t) < 1,
Aal (t)Aay(t) < T et AbI () Aby(t) < 1.

Considérant }es bornes des variables suivantes :
9] < 32°, [¥] < 100°/s

la non-linéarité a3(t) = Jio - Nig(v, ) peut
étre décomposée en
(7

avec ag, = (3 + 03)/2, ag, = (a3 — ) /2
et 5(t) € [—-1 1]. Enfin, les matrices correspon-
dant aux incertitudes sont les suivantes :

1

as(t) = agm + B(t)as,

and W,=1[0 as 0].

3 Loi de commande PDC étendu

De facon classique, le systeme (4) peut étre re-
formulé dans sa forme augmentée avec le vec-

teur augmenté X*(¢) = [ X7 (¢) XT(t)]T :

BX(0) = (4, X°(0)+ Bu(t) o
Y(t) = CrX*(1)

Ay = 2 52 B0 ul=(0) A

Bi = S (0B Ci = L h0)C;

. [ o] ., o 1

b= [0 0] - A= [Ai —EJ
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* 0 *
B = {BJ and Cr=[C; 0]

3.1 Stabilisation

Considérons la fonction candidate de Lyapunov
suivante [16] :

V(X*) = X*TE*Q(2)X* )
la condition de symétrie E*Q(z) = QT (z)E*
impose la structure suivante

QQ)Z{%QQ di}

(10)
avec Q'(2) = (Q'(2))" > 0 et Q*(2) une ma-
trice réguliere, I'inverse de (Q(z) s’écrit alors
comme Suit :

(Q(2)) ™" = Pup =

{ (Q'(2)~" 0
(@)@ ()(Q(2) 7" (Q4(2))™

Par conséquent, pour relacher les contraintes
LMI, la matrice inverse s’écrit sous la forme
suivante :

o 0
Phy = {pé‘h 4}

avec : Yy, = > > hihY,.
Phh

i=1j=1

Notez également que

Q' (2) = (Pp) 1 QY (2) = (Py,) " et Q*(2) =
(Pon) (o) (Py)

La loi de commande proposée est [14] :

r Te

u=Fu@) X =) hi(z)u(z) Fy(ph) T X

i=1 k=1

(11)
avec Fj; les matrices de gains. En boucle
fermée, le modele (8) peut tre réécrite comme :

(12)

E*X*(t) = (A;, + BjF,) X (1)
Y(t) = CrX (1)

ou

Eyy = [F(PH)™ 0]
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3.2 Stabilisation robuste

Compte tenu des incertitudes, le systeme étendu
(8) peut étre réécrit avec les matrices suivantes :

e 0 I
kT A+ AA; —(Ey + AEy)

. I 0 . 0
p={o 05 = 5 an)
Considérons la propriété suivante [24]
S=28T>0
XTY +YTX < XTSX + YISy
(13)

A partir de la loi de commande contrdleur PDC
modifié (11), la fonction de Lyapunov (9), la re-
laxation [20], la propriété (13) avec T((:)) >0
matrice diagonal et le complement de Schur, les
conditions robuste de stabilisation sont données
directement par le corollaire 1 [14].

Corollaire 1 le modele floue robuste sous
forme descripteur (6) sous la loi de commande
(11) est asymptotiquement stable s’il existe des
matrices P! > 0, Pz‘i, P;;, F. et des matrices
diagonales T}, il;k, i tel que :

P! >0, (14)
Giik < O, (15)
2 ) )
:Giik + G tGiin <0, i#j5  (16)
pouri,j € {1l,...r}, ke {l,...r.} et
Gijk =
T
P} +(P}) (*) =) ) (%)
ijk Qiji 0 0 (*)
W,, P! 0 -5 0 0
W, Fi 0 0 —rh 0
WP WPy 0 0
(17)
Aigi = AiP' + BiFje — Ex P + (Pj)"
Qijr = —EkP4 — (EkP4) + T zng H +
”kHbH ""ngkH HT
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3.3 Boucle de commande du véhicule avec
action intégrale

Afin d’atteindre 1’équilibre naturel sans er-
reur statique, une partie intégrale a été
ajoutée (figure 2). Théoriquement, cette boucle
supplémentaire est une extension du vecteur
(X7 X[, avec X;

d’état du systéme X
définie par [12] :

=Y;— ) hi(2)C:X
=1

La forme descripteur du systeme étendu est :

{EY( )=
Y (1)

E, =

(18)

A]M,X( ) + Ehu(t) + B()Yd
X(t)
(19)
E, 0]

— A, 0
OIAh_{ ]

0 I
B [Boh} T = [Ch 0]

-ls

priées.

: 0 et I matrices de dimension appro-

Par conséquent, la loi de commande PDC
étendue peut s’écrire :

(20)

avec

L, X, (1)

Figure 2 — Boucle de commande avec I’action
intégrale
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4 Résultats de simulation

Les tests de simulation sont basés sur les pa-
rametres du véhicule a 2 roue B2 [1], (tableau
1). Un contréleur PDC robuste avec une boucle
intégrale a été synthétisé. Pour vérifier la robus-
tesse du controleur, les incertitudes sont sup-
posées étre de 1’ordre 40% des parametres no-
minaux du solide. La dynamique du systeme est
donnée automatiquement en réglant le rayon de
faisabilité sur la boite a outils Matlab LMI Tool-
box [23]. Les gains calculés sont donnés comme
suit :

[Fii | Lu] =[1621.3 39.4 499.1 | —10.0]
[Fia | Lio] =[2592.6 712 8781 | —17.9]
[Fo1 | La| = [1568.4 38.0 4820 | —9.60]
[Faz | Lo =[2579.3 70.8 874.1 | —17.8]

Tableau 1 — Parametres estimé du B2 [1]

Symbole Valeur
My 25kg
I, 0.78kg - m?
I 52.93kg - m?
R 0.25m
l 1.09m
C 0.1N -m-s/rad

4.1 Stabilisation

Dans cette partie, il est suppos€ que le systeme
se déplace sur une surface plane. L’ objectif est
de stabiliser le solide a I’origine 9,y = 0, tout
en maintenant le véhicule sur sa position initiale
6 =0.La figure 3 montre I’évolution de 1’état

a(t)=[y 0 gﬂT, la commande T et la fonc-
tion de Lyapunov V' (x) a partir des conditions

initiales Xo = [-20° Orad/s Omd/s]T.
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O(rad/s)

i |
n : i 0 is
Time(s)

WU(rad/s)

Time(s)

I(N/m)

Time(s)

'1‘1.;;(‘\) ; H “ 5
Figure 3 — Stabilisation du véhicule a 1’aide
d’une loi PDC

4.2 Poursuite de trajectoire

Dans cette section, un profil de sol a été imposé.
Le but est de simuler un scénario de navigation
pour le véhicule. Ce test permet de vérifier la
robustesse de 1’approche TS flou sous la forme
descripteur.

Le scénario contient cinq étapes de 20 secondes
chacune (figure 4). Premicrement, stabilisation
du véhicule. Puis, le véhicule se déplace jusqu’a
atteindre une vitesse angulaire O, s €quivalente
a une vitesse de translation de 10km/h. Une
fois cette vitesse atteinte, le véhicule monte sur
une pente de 30%. Dans la quatrieme étape, il
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Figure 4 — profile de sol

se stabilise sur un plan pour un moment puis il
descend la pente. Les résultats sont représentés
sur la figure 5. Dans tous les cas, le véhicule
est asymptotiquement stable, la vitesse désirée
est atteinte, le solide atteint son équilibre natu-
rel donné par (2).

10—

v()

_ | | |
o 10 20 30 40 50
Pime(s)

I A )
10 f [l = v
= oU-\»————-—- ;
_1o i i i =0
(0 10 20 0 W0 50 o0 70 50 %0 100
Time(s)
I .
=
0.8
0.6]
= 04
Z, n
=
i\ N\ I\

i i j
50 0 70 50 % 100
I'ime(s)

—200f =

I(N/m)

400)

—600[~

i i i
50 60 70 50 % 100
I'ime(s)

Figure 5 — Poursuite de trajectoire

5 Conclusion

Dans le cadre du projet VHIPOD, plusieurs
questions ont été soulevées concernant les per-
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formances des véhicules a deux roues, par
exemple, le déplacement a domicile/extérieur,
le déplacement sur une pente ou le franchis-
sement d’une petite marche. Le but de cette
réflexion est d’étudier la possibilité d’étendre
I’utilisation de cette technologie au profit des
personnes handicapées. Dans ce travail un
modele a deux dimensions du véhicule sur une
pente a été présenté afin de mettre en €vidence
I’effet de I’angle de la pente ainsi que celui
des parametres inertiels de 1’usager sur ’angle
d’équilibre naturel. Pour faire face aux pa-
rametres non mesurables, une approche basée
sur le modele TS sous forme descripteur ainsi
que la formulation d’un probleme LMI a été
proposée. L’intérét de cette méthode est sa sim-
plicité de synthese basée sur la forme naturelle
d’un systeme mécanique. La premiere simula-
tion concernant la stabilisation du pendule dans
un espace réduit montre qu’il est possible d’en-
visager son utilisation a domicile. Le second
test a montré 1’efficacité de 1’approche utilisée
en appliquant une consigne de vitesse pour se
déplacer sur un sol prédéfini tout en assurant la
stabilité de I’usager vers I’équilibre naturel. Les
résultats de ce travail vont servir a la définition
du cahier des charges du projet VHIPOD. le
prochain travail va porter sur I’amélioration des
performances du systeme en intégrant des ob-
servateurs afin de pouvoir estimer les variables
non mesurables. Une autre partie du projet a été
lancée dans le but d’analyser le comportement
biomécanique des personnes handicapées puis
de fournir un modele biomécanique qui sera par
la suite intégré dans la boucle de commande.
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Résumé :

De nos jours, pour ’analyse non-quadratique des
systtmes flous de type Takagi-Sugeno (T-S), les
résultats successivement proposés sous forme LMIs
tendent a des conditions de plus en plus complexes avec
une réduction de conservatisme parfois discutable. Cet
article présente une exploration de techniques
alternatives aux approches LMIs dans le contexte non-
quadratique. Dans la majeure partie des travaux
existant, les conditions non-quadratiques LMIs souffrent
de la présence de parametres de synthese difficiles a
obtenir dans la pratique ou conduisent a I’obtention de
conditions locales. L’objectif de ce travaille consiste
donc a montrer qu’une approche tirée de I’optimisation
polynomiale (formalisme “Sum-Of-Squares”) peut étre
employée afin de synthétiser un contréleur non-
quadratique valide sur I’ensemble de I’espace de
définition du modele T-S considéré. Cependant, il est
également souligné que ces approches souffrent de
restrictions de modélisation mais ouvrent la porte vers
de possibles perspectives.

Mots-clés :
Modeles flous Takagi-Sugeno; Stabilisation non-
quadratique; commande Non-PDC; Sum-Of-Squares.

Abstract:

Nowadays, when dealing with non-quadratic
controllers design for continuous-time Takagi-Sugeno
(T-S) models, LMIs-based successive conditions
become more and more complex for a conservatism
reduction that is sometime questionable. In this paper it
is assumed that it is interesting to explore what can be
done, else than LMIs, in the non-quadratic framework.
In most of the cases, non-quadratic LMIs suffer from
the requirement of unknown parameters or lead to local
stability analysis. The aim of this paper is to show, at a
first attempt, that the Sum-Of-Squares formalism is
suitable to design non-PDC controllers which stabilizing
T-S models on their whole definition set. However, it is
pointed-out that the SOS formalism requires a
restrictive modelling assumption but opening some
possible further prospects.

Keywords:

Takagi-Sugeno  fuzzy  models;
stabilization; Non-PDC controller design;
Squares.

Non-quadratic
Sum-Of-
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1 Instructions

Les mode¢les Takagi-Sugeno (T-S) ont fait
I’objet de nombreuses études ces dernicres
décennies. En effet, initialement introduits en
1985 [1], les modeles T-S sont décrits par une
collection de regles floues de type SI-ALORS
et dont les conclusions  permettent
d’approximer fide¢lement la dynamique de
systémes non linéaires. Depuis, par le biais des
techniques de décomposition en secteurs non
linéaires [2], I’intérét de la communauté pour
ce type de systemes s’est accru en raison de
leur capacit¢é a représenter fidelement un
modele non linéaire sur tout ou partie de son
espace d’état. Ainsi, de maniére similaire aux
systémes Quasi-LPV (Linéaires a Paramétres
Variants), les modéles T-S constituent des
représentations polytopiques convexes des
systtmes non linéaires, c’est-a-dire des
collections de modeles linéaires interconnectés
par des fonctions convexes non linéaires. Basés
sur ces propriétés de convexité, de nombreux
travaux ont été réalisés pour I’analyse de leurs
stabilités ou de leurs stabilisations au travers de
I’optimisation d’inégalités linéaires matricielles
(LMIs) obtenues par [D’application de Ila
méthode direct de Lyapunov, [3-6].

La plupart des résultats sur I’analyse, la
synthése de lois de commande ou
d’observateurs pour les systemes T-S, ont été
obtenus a 1’aide d’une fonction candidate
quadratique de Lyapunov. Néanmoins, ces
résultats souffrent de conservatisme dans la
mesure ou elles requierent la recherche de
variables de décisions communes a un
ensemble de contraintes LMIs [7]. Afin de
réduire le conservatisme, des schémas de
relaxation ont été proposés [8-9] et de récents
travaux se sont concentrés sur 1’emploi de
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fonctions candidates non-quadratiques de
Lyapunov (NQLF), e.g. [10-11]. Malgré tout,
ces approches restent difficiles a mettre en
ouvre dans le cas des systémes décrits en temps
continu. En effet, dans ce cas, un terme
dépendant des dérivées temporelles des
fonctions d’appartenances apparait au sein des
conditions de stabilité, rendant difficile
I’obtention de conditions LMlIs. Afin de
contourner ce probléme, I’emploi de fonctions
candidates de Lyapunov sous forme
d’intégrales curvilignes a été proposé au prix
de restrictions liées aux  contraintes
d’indépendances du chemin parcouru [12-14].
D’autres travaux récents ont également été
proposés en reconsidérant les objectifs de
synthése a un cadre local, e.g [15].
Néanmoins, la formulation de ces conditions
s’avere quelque peu complexe et I’obtention de
conditions globales demeure un probléme
ouvert. Parallelement aux résultats sur
I’analyse des modeles T-S a base de LMIs, des
travaux préliminaires ont récemment vu le jour
sur ’analyse et la stabilisation des modeles T-S
polynomiaux par le biais de techniques
d’optimisation « Sum-Of-Squares » (SOS) [16-
17]. Ainsi, similairement aux approches LMI
dans le cadre non-quadratique, ces premiers
résultats SOS pour 1’analyse de la stabilité ont
¢té étendu, afin de réduire le conservatisme,
par l’emploi de fonction candidate de
Lyapunov polynomiale multiples [ 18-20].

A ce jour, concernant les approches LMI, un
constat s’impose : les résultats successifs sont
de plus en plus complexes pour une réduction
de conservatisme qui est parfois minime. Il
semble donc opportun de reconsidérer les
approches proposées et d’explorer les
alternatives possibles dans ce contexte.
L’objectif de cet article consiste donc a
explorer une alternative possible aux
conditions de synthése de contrdleurs non-
quadratiques a base de LMI pour les modeles
T-S sans pour autant prétendre, a ce stade,
réduire le conservatisme. Ainsi, des conditions
SOS, dédiée a la synthése globale de
contréleurs non-quadratique, sont proposées
pour les modeles T-S conventionnels [22]. En
effet, ces derniers peuvent étre vus comme des
cas particuliers des modeles T-S polynomiaux.
L’avantage de cette approche repose sur le fait

164

qu’elle ne nécessite pas la connaissance a priori
de paramétres difficiles a obtenir dans la
pratique (comme c’est le cas pour les
approches LMI), méme si, a ce jour, une
hypothése de modélisation restrictive reste
requise (cf. hyp. 1 ci-dessous) [16-17, 22].

La suite de cet article est organisée comme
suit: Tout d’abords, les approches usuelles de
synthése non-quadratique de contrdleurs pour
les modeles T-S sont présentées et discutées.
Ensuite, de nouvelles conditions SOS sont
proposées comme alternative aux approches
LMI. Finalement, un exemple numérique
illustre la validité de 1I’approche proposée.

2 Formulation du probleme de
synthese  non-quadratique et
discussion sur les approches LMI

Soit la classe des modeéles non linéaires
représentée par:

i(1)= A(x(t))x(t)+ B(x(t))u(t)

ou x(1)eR" est le vecteur d’état, u(r)eR” est
A(x(t)) eR™

(D)

le vecteur d’entrées, et

B(x(t))e‘ﬁ"x’" représentent des matrices dont

les arguments peuvent contenir des fonctions
non linéaires bornées sur un espace compacte
Qc R" de I’espace d’état.

Par [Dapplication de la méthode de
décomposition en secteurs non linéaires [2], les
modeles représentés par (1) peuvent étre réécrit
exactement sur Q sous la forme de modéeles T-
S donnés par:

r

S0 (o) (4x(0)+ ()

i=1

(2)

ou z(t)eR” est le vecteur de prémisses,

A eR™ et BeR™ sont des matrices

constantes et 4 (z(¢))>0 sont les fonctions

d’appartenance positives et vérifiant la

propriété de somme convexe ihi (z(e))=1.
i=1
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Considérons maintenant la loi de commande
non-PDC donnée par [10]:

()=EnG0)E(ShE) ] ) 0

ou FeR™ et X eR™ sont les matrices de
gain a synthétiser.

Remarque 1: A partir de la décomposition en
secteurs non linéaires [2], le modéele T-S (2) est
réputé valide localement (sur Q) si des non
linéarités contenues dans (1) ne sont pas
bornées sur I’ensemble de I’espace d’état.
Néanmoins, si toutes les non linéarités sont
bornées sur Q, (2) représente (1) dans sa
globalité. De ce fait, dans la suite (tout comme
d’ailleurs pour I’ensemble des travaux sur la
commande des systemes T-S), un contrdleur
non-PDC 3) est dit globalement
asymptotiquement stabilisant (GAS) pour un
modeles T-S donné (2) s’il le stabilise sur
I’ensemble de son espace de définition Q,
plutot que sur ’ensemble de 1’espace d’état du
modele non linéaire initial (1).

Notations: Dans ce qui suit, afin d’alléger les
expressions mathématiques, le temps ¢ est
omit lorsqu’il n’y a pas d’ambiguité. De plus,
pour une matrice M donnée, on note

He(M)=M+M", M, = Zh(z(t)) M, , ou encore
i=1

M, = Z{;hl (z([))hj (z(t)) M[j
En substituant (3) dans (2), la dynamique en
boucle fermée peut étre exprimée par:

x=iihi(z)hj(z)[z4i+B,_Fj(izr:‘hi(z)X[J_]} 0

i=1 j=I

Il convient donc maintenant de proposer des
conditions de synthése du controleur (3) de
telle sorte que la dynamique en boucle fermée
(4) soit stable. Dans cette optique, la méthode
directe de Lyapunov a trés largement été
utilisée pour aboutir a des conditions sous
forme de LMI, e.g.[10]. Parmi les fonctions
candidates de Lyaponuv, les fonctions floues
de Lyapunov (fonctions non-quadratiques,
NQLF) ont fait 1’objet d’une attention
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particuliere puisqu’elle partagent la méme
structure d’interconnexion floue que le systeme
a stabiliser et conduisent a une réduction
substantielle du conservatisme [3]. Ainsi, afin
de stabiliser (4), on considére la NQLF donnée
par [10]:

-1
v(x):xT [Zhi(z))(i] x &)
i=1
qui est strictement positive pour x(r)=0 avec
X =X >0.
Le schéma de relaxation donné par le
lemme suivant sera utilis¢ dans les preuves des

théorémes pour réduire le conservatisme des
conditions de synthése de controleurs.

Lemme 1 [9]: Soient Y, des matrices de

dimensions appropriées, 1’inégalité:

zzh' (Z)hj(z)Y[j <0

=1 j=1

(6)

est vérifiee si, V(i j)e {1,...,r}2 /j#i, les
inégalités (7) et (8) sont vérifiées.

Y. <0, (7)

ﬁrﬁé(rﬁrﬁ)w

(8)

Le théoréme suivant, inspiré de [11],
exprime des conditions non-quadratiques LMI
pour la synthése de controleurs non-PDC (3).

Théoréme 1: Soient Vie{l,...r}, | (z)<6,. Le

modele T-S 2) est localement
asymptotiquement stabilis¢ par le controleur
non-PDC (3) s’il existe les matrices F,,

X =X >0 et R,

telles que,
V(ijk)ellr} /j#i, les LMIs (7), (8) et
X, +R, >0 soient satisfaites, avec:

Y, = He(AX, + B,_Fj)—iek (x,+R) (9

g
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La preuve du théoréme 1 est ommise dans
cet article dans la mesure ou elle suit les méme
étapes que celles proposées dans [11].

Remarque 2: Le lemme borné réel donné au
théoreme 1 constitue une légere amélioration
des conditions LMI proposées dans [11]. En
effet, les conditions de cette derniére étude
peuvent étre obtenues en simplifiant le
théoreme 1, i.e. en posant les variables de
décision libres R =R communes. De plus, en

posant R =0, on obtient les conditions non-

quadratiques proposées dans [10]. Enfin, en
posant X, =X et R =-X communes, on

retrouve les conditions quadratiques classiques
[3][9]. Par conséquent, le théoréme 1 inclue a
titre de cas particuliers ces résultats antérieurs
et conduit donc a wune réduction du
conservatisme.

Remarque 3: Le théoréme 1 requiert, pour
I’implémentation des LMIs, la connaissance a
priori des bornes 6, des dérivées temporelles

des fonctions d’appartenance # (z(t)) Ce point

fait ’objet de nombreuses critiques dans la
mesure ou les fonctions d’appartenances
dépendent souvent de I’état dont la dynamique
ne peut étre, par définition, connue a 1’avance.
De ce fait, dans la pratique, il est souvent
impossible d’estimer ces bornes avant méme
d’avoir synthétisé la boucle fermée. De plus, en
I’absence de connaissances sur la dynamique
en boucle fermée, il est incorrect de parler de
conditions asymptotiques globales sur Q dans
la mesure ou il est hypothétique de dire que

|h,- (z)| <6 pour toutes conditions initiales
X (O) eQ.

Remarque 4: D’autres approches permettant
de s’affranchir du probléme des bornes des
dérivées des fonctions d’appartenance ont été
proposées. Tout d’abord, 1’emploi d’une
fonction candidate de Lyapunov sous forme
d’intégrale curviligne (LIFLF) a été proposé
dans [12-14]. Néanmoins, méme si de récents
travaux conduisent a des conditions LMIs en
stabilisation [14], cette approche nécessite de
conditionner les variables de décision X,

(matrices de Lyapunov) a un cas particulier ou
les termes anti-diagonaux sont communs et
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donc source de conservatisme. Plus
récemment, un résultat local a été proposé pour
contourner le probléme du choix des bornes
des dérivées des fonctions d’appartenances
[15]. En effet, I’idée est de maximiser un

Zh}.Pj. < l}

J=1
garanti. Bien que ce résultat soit LMI (avec une
formulation LMI quelque peu complexe), il
reste néanmoins local dans la mesure ou le
domaine d’attraction D ne recouvre pas
I’ensemble Q dans sa globalité.

domaine d’attraction D= {x xeQ,

A ce stade, les critiques soulignées aux
remarques 3 et 4 peuvent étre interprétées
comme des inconvénients des approches LMI
non quadratiques pour les modéles T-S. De
plus, les améliorations successives des travaux
sur les approches LMI non quadratiques
conduisent a des conditions de plus en plus
complexe pour un gain de conservatisme qui
est parfois discutable. II semble donc
intéressant d’explorer les alternatives possibles
pour formuler le probléme de synthése non
quadratique pour les modeles T-S. Ce point fait
I’objet de la section suivante qui constitue la
contribution principale de cet article ou des
conditions SOS  (Sum-Of-Square)  sont
proposées comme alternative possible aux
conditions LMI.

3 Conditions non-quadratiques SOS

pour la synthese de lois de
commande pour les modeles T-S
Dans cette section, [’objectif est de

présenter de nouvelles conditions de synthese
non quadratique de contrdlleurs non-PDC (3)
pour les modéles T-S (2) conduisant a la
stabilisation globale (sur Q) de la dynamique
en boucle fermée (4). Ces conditions sont
basées sur le formalisme SOS [23] et une
fonction candidate de Lyapunov non
quadratique (5) [22].

Pour faciliter la compréhension du résultat
et clarifier les preuves mathématiques,
quelques préliminaires (Définitions,
Hypothéses et lemmes) sont présentés ci-
dessous.
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Hypothése 1: Dans la lignée des travaux
existants sur la stabilisation des modeles flous
polynomiaux [16-17] et afin d’éviter
I’obtention de conditions non convexes, on
suppose que le vecteur de prémisses z ne
dépend uniquement que des variables d’état qui
ne sont pas directement affectées par la
commande. C’est-a-dire, les variables d’état
dont les lignes correspondantes dans les
matrices d’entrée B, sont nulles. Ainsi, on note

A° la £k ligne de 4. K={kl,k2,...,kp} est
I’ensemble des indices des lignes de B dont
les arguments sont nuls. On peut donc écrire:

i, = ih[(z)A[kx, VkeK (10)
et Vse{l,...,r},

algx(z) =0, Vse{l,..,n} /K (11)
Hypothése 2:  Vie{l..r}, #(z) sont

continlment dérivables selon chaque variable
d’état x (avec seK) sur Q. De ce fait,

oh,(z)
d

29

g (z)= est une fonction bornée sur Q

telle que ‘Vt, g (z)e[of

kl,ockJ et, ces bornes

sont toujours connues sur € alors que
h(z) <6, ne peuvent étre déterminées a

I’avance. Aussi, il est possible d’appliquer a
nouveau une décomposition en secteur non
linéaire sur g;(z) permettant de définir deux
fonctions convexes, o] (z)20 et ], (z)=0

avec o) +o;, =1, telles que:

oh, (z)
ox,

2
_ s K
- zwk‘r (Z)akr

7=1

g (z)= (12)

Afin d’illustrer
la fonction
Sa

h (x,)=2% cosx sinx, dépend de x et donc ses

Exemple:
considérons
h1 (xl ) = sin? X, .

I’hypothese 2,
d’appartenance
dérivée  temporelle

bornes ( |i,(z)|<6,) sont inconnues avant la

synthése d’un contréleur puisque la dynamique

167

en boucle fermée i n’est pas encore
. oh (x

synthétisée. ~ Cependant, g (x )= #
2

1

1

_ . 1 r .
=2cosx, sinx, € [au,alJ est bornée quelque soit

x, et, a,=-1 et o, =1 sont des parameétres
.. 1 .
connus! Ainsi, avec a)lll(x])zz—cosxl sinx, >0

't =1,

11 12 on

et o, (x])z %-{‘COSXI sinx, 20, @
peut écrire ¢'(x,)= aha—)(cx) =Y ol (2)er,
1 7=1

Le théoréme suivant exprime les conditions
non-quadratiques SOS pour la synthése de
contréleurs non-PDC  (3)  globalement
stabilisants pour la classe de mode¢les (2) sur Q
sous I’hypothese 1.

Théoreme 2: Le modéle T-S (2) est
globalement asymptotiquement stabilisé (sur
Q) par la loi de commande non-PDC (3) s’il
existe les matrices F, X = X' >0 et R, ainsi
eu(x)>0, 82;(’“)2()’
£, (x) >0

que les polynomes

83,](x)20
V(i jk)ellr), jzi, VseK et vrel1],

les conditions (13), (14), (15) et (16) soient
satisfaites.

et tels que,

x" (X, ~¢,)x est SOS (13)
3" (X, +R ¢, )x est SOS (14)
'[P +g,1]x est SOS (15)

1 1
=" ( p! +—(P‘_’, +P7 )+e3..l]x est SOS
1 s 2 ijps Jips ij

o
(16)
avec P!, = He(AX +BF )-a; Ax(X +R ).

Preuve: Soit la fonction candidate non
quadratique de Lyapunov (3). Le modele T-S
(2) est stable si, Vx:

x" (He(4,X,+BF)-X,)x<0  (17)
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Concentrons nous maintenant sur le terme X, ,

on peut écrire:

cee 0 (2) (19
=Z=4kz=;zghj(z) ng xS(Xk+RJ,)

De plus, sous I’hypothése 2,

Vi, g)(z)e[o). e, ] possédent des bornes

connues sur Q. De ce fait, il existe toujours
® (z)>0 et o), (z)>0 avec o +w},=1, tels

s

k1
que (12) soit définie. Ainsi, 1’équation (18)
peut étre réécrite sous la forme:

X, =333 30 (=)ol (2)es, (X, + &) (19)

En substituant (10) dans
I’hypothese 1, on obtient:

(19) et sous

¥, =233 () (2o, (e 4x(x, &)
(20)

Ainsi, sous I’hypothése 1 et 2, en considérant
(20), I’inégalité (17) est strictement équivalente
sur Q a:

YIS S S () (2)ol, ()P, x <0 (21)

i=1 j=1 k=1 seK 7=1
avec P, = He(AX +BF,)-o; Ax(X, +R))

s
x' P x

Notons e

que sont des polyndmes

scalaires en x. Par conséquent, la négativité de
(21), et donc de (17), peut étre vérifiée par les
outils d’optimisation SOS tools. Ainsi, en
appliquant le lemme 1 sur (21), on obtient les
conditions SOS exprimées au théoréme 2.

Remarque 4: Les principaux avantages de
I’approche SOS proposée (théoréme 2) vis-a-
vis des approches LMI (e.g. théoréme 1) sont:

e Les conditions du théoréme 2 sont libres de
tout paramétres inconnus tels que les bornes
des dérivées temporelles des fonctions
d’appartenances. En effet, les bornes de
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et o

. ne dépendent pas

g(z), o,
directement de x et sont toujours connues et
définies sous 1’hypothese 2 (cf exemple ci-
dessus).

e [’ensemble des paramétres du théoréme 2
étant connus, I’approche SOS proposé
permet de garantir, lorsqu’une solution
existe, la stabilisation globale sur le domaine
de validité du modele T-S Q. Notons que ce
point ne peut étre garantit par les résultats
LMI tels que [10-11] et [15], hormis les
conditions LMI obtenues au travers d’une
fonction candidate de Lypapunov sous forme
d’intégrales curvilignes [14]. Cependant,
dans ces derniéres, un cas particulier avec des
matrices de décisions dont les termes anti-
diagonaux sont communs est requis.

Enfin, il apparait clairement que le principal
inconvénient des approches SOS pour Ila
stabilisation des  systéme repose  sur
I’hypothese 1. En effet, le vecteur de prémisses
z ne doit dépendre uniquement des états qui ne
sont pas affectés directement par la commande.
Cette hypothese est bien entendue restrictive et,
comme cela est précis¢é dans [16], il est
souhaitable d’employer un changement de base
permettant, autant que faire se peut,
d’introduire le maximum de lignes nulles
possibles au sein des matrices d’entrées B,. Ce

point peut étre considéré comme le verrou
principal des approches SOS et devrait faire
I’objet de futurs travaux.

4 Exemple de simulation

Soit le modele T-S donné par:

2

z h, (z)(A‘_x (t) +Bu (t))
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Rappelons que, en appliquant le théoreme 1,
un contréleur non-PDC garantissant la
stabilisation non-quadratique globale ne peut
étre synthétisé, hormis les travaux employant
une fonction candidate de Lyapunov sous
forme d’intégrale curviligne [14]. De plus,
comme l’illustre le portrait de phases tracé sur

la figure 1, le modéle T-S en boucle ouverte
(22) est instable.

D’apres les définitions de 4, et h,, ona:

oh, (xz) 1 11

T —cosx, € {—5,5} (23)
oh,(x,) 1 11
—8x2 = ECOS X, € {—5,5} 24)

Ainsi, le théoréme 2 peut étre implémenté avec

1 :a] :_l

11 21 2 et

les parameétres connus «

1 1 1
o, =0, =—.
2

L =0, Notons que les variables de

décision ¢, ¢,, g, et g, ont éte fixées

2i 2 3jj

comme des polynomes d’ordre zéro (variables
scalaires). Le résultat, obtenu via la boite a
outils SOSTOOLS pour Matlab [23], est donné
par les matrices:

20.608 -2.9356 |,

F=] —20.8868 -1.0598 |
¥ | 79772 -2.068

"l —2.068 061071 |’

¥ =| 79773 —2.0683

2| -—2.0683 0.60992 |’

et permettent alors de synthétiser la loi de

commande non-PDC donnée par:

()= 20 (0)E (Sl ] <) @9

qui stabilise globalement (22) comme cela est
illustré par le portrait de phases de la figure 2.
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Fig. 2. Portrait de phase en boucle fermée.

5 Conclusion

Dans cet article, une alternative aux
approches LMI pour la stabilisation non-
quadratique globale des modeles Takagi-
Sugeno a été proposée. En effet, ’efficacité des
approches LMI a maintes fois ét¢ démontrée
pour D’analyse des mod¢les Takagi-Sugeno.
Cependant, dans le cadre non-quadratique, ces
dernicres souffrent de conservatisme. De plus
les récentes et successives améliorations dans
le cadre non-quadratique conduisent a des
conditions de plus en plus complexe avec un
gain de conservatisme qui est parfois
discutable. L’objectif était donc ici d’explorer
ce qui peut étre fait, de maniere alternative,
pour synthétiser une loi de commande non-
quadratique globale. Ainsi des conditions
issues de 1’optimisation polynomiale et plus
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précisément des techniques SOS ont été
proposées. Il convient toutefois de souligner
qu’il s’agit ici d’une premicre tentative et
qu’en aucun cas ’approche proposée prétend
fournir de meilleurs résultats en termes de
performances et de conservatisme que les
derniére approches LMI proposées. Ceci-dit,
I’approche SOS proposée présente 1’avantage
de fournir une méthodologie de synthése
globale lorsque la plupart des approches LMI
non-quadratiques  existantes ne  peuvent
prétendre a cet objectif. Néanmoins, cet
avantage est obtenu au prix d’une hypothése de
modélisation restrictive, pouvant étre entendue
comme I’inconvénient majeur des approches
SOS, qu’il conviendra de lever dans de futures
études.
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Résumé :

Dans ce papier une assistance a la conduite pour un
maintien de voie est proposée. Cette derniere est basée
sur un contrdleur de type Takagi-Sugeno (T-S) optimal.
Les nonlinéarités dues a la variation de la vitesse lon-
gitudinale sont prises en compte comme des parametres
variants pour obtenir une description quasi-LPV du mod-
¢le du véhicule. L’outil LMI est utilisé pour la synthese
du contréleur T-S. Les résultats obtenus en simulation et
tests sur simulateur de conduite montrent la pertinence de
I’approche proposée.

Mots-clés :

Systeme Avancés d’Aide a la Conduite, Controleur
Takagi-Sugeno, Commande Optimale, LMI.

Abstract:

In this work a driver assistance system based on a fuzzy
Takagi-Sugeno optimal controller is proposed. A quasi-
LPV model of the lateral vehicle dynamics is driven con-
sidering the longitudinal velocity variation than the LMI
tool is used to reach the T-S controller. The proposed
approach is validated with human driver in SHERPA dy-
namic simulator.

Keywords:

Advanced driver assistance systems, Takagi-Sugeno
controller, LMI, optimal control.

1 Introduction

La place qu’occupe la voiture aujourd’hui
dans la vie quotidienne est d une importance
capitale, elle est une garantie d’autonomie de
déplacement des personnes [8]. Néanmoins,
le nombre d’accidents de circulation reste
assez important (67288 accidents corporels
en France [12] ), et ce, malgré les efforts
déployés par la politique en maticre de préven-
tion, d’information, de répression ou de ceux
des constructeurs automobiles en matiere de
sécurité passive (ceinture de sécurité, structure
deformable, airbags...) et active (ABS, ESP,
etc).

Avec les progres réalisé dans 1’automatique,
I’informatique, les télécommunications et
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la miniaturisation des composants électron-
iques (capteurs, calculateurs), la recherche
est en mesure, aujourd’hui, de développer
des systemes avancés d’aide a la conduite
(ADAS) pouvant réduire d’avantage le nombre
d’accidents [6].

Plusieurs solutions ont été proposées dans la
littérature, pour 1’aide au maintien de voie
[15, 11, 2, 3, 14, 4]. Dans un premier temps,
I’automatique est introduite afin d’aider le
conducteur a mieux maitriser son véhicule ou
bien améliorer ses performances. Dans [1] les
auteurs proposent un systeme de maintien de
cap de véhicule soumis a une perturbation de
freinage asymétrique en agissant sur 1’angle
de braquage. Les auteurs [13] proposent une
stabilisation du véhicule en agissant sur le
freinage différentiel puis ’angle de braquage
dans le cas ou la premiere correction n’est pas
suffisante. Mais cette solution -stabilisation
du véhicule- seule ne peut combler les erreurs
humaines. C’est dans cette optique que des
systemes avancés d’aide au maintien de la
voie agissant directement sur la trajectoire du
véhicule, commencent a émerger. Dans [11],
une automatisation partielle de la conduite
basée sur le controleur adaptatif développé
dans [9] est proposée en considérant les varia-
tion des différents parametres. [15] proposent
un systeme de maintien de voie basé sur un
controleur H avec un retour complet de I’état.
Pour remédier a I’effet de la variation de la
vitesse longitudinale sur la dynamique latérale,
dans [14] les auteurs représentent la dynamique
latérale du véhicule en systtme LPV (Linear
Parameter Varying) ou la vitesse longitudinale
est le parametre variant. Dans [2] une un
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contrdleur T-S pour un suivie de trajectoire est
proposé.

Le travail présenté dans cet article propose une
approche pour le controle latéral du véhicule en
tenant en compte la variation de la vitesse lon-
gitudinale, et ce, en utilisant 1’approche multi-
modeles Takagi-Sugeno.

Ce papier est organisé comme suit. La mod-
élisation T-S ainsi que le concept de la PDC
est introduit en section 2. Dans la section 3, le
modele T-S du véhicule et le contrdleur T-S as-
socié sont exposés. Les résultats de simulation
et d’expérimentation sur simulateur de conduite
sont rapportés dans la section 4. La section 5
conclut les résultats obtenus.

2 Modélisation T-S et controle PDC

La modélisation T-S est un outil puissant pour
la représentation des systémes nonlinéaires, a
parametres variants ou incertains sous forme
d’un ensemble fini de regle floues de la forme
[17]:

Regle;: Si py est Mj; ... et p; est M Alors:

x(t) = Aix(t) + Biu(t)

y(t) =Cix(t) +Du(t), i=1..r )

Avec : x(t), u(t) et y(t) représentent le vecteur
d’état, les signaux d’entrées et de sorties, re-
spectivement. A;, B;, C; et D; represent les ma-
trices aux dimension appropriées du " sous-
modele linéaire et r le nombre de regles floues.
Le vecteur p contient les parametres variants
qui peuvent dépendre (ou pas) des variables
d’état ou bien une perturbation externe et doit
étre connu ou mesurable a chaque instant [7].
M;; sont les fonctions d’appartenance floues des
termes d’entrés.

En utilisant la méthode de centre de gravité pour
la défuzzification de (1), la dynamique globale
du systeme s’exprime :

i(t) = ihi(p) [Apx(z) + Biu(r)]
l:rl (2)
y(t) = ghi(P) [Cix(t) + Diu(r)]

1

Tel que: hi(p) = % et wi(p) =

! :
[T Mi;(p;) est le degré de validité de la i re-
j=1

gle.
Il est clair que :

hi(p(1)) >0Vi=1l.rety_ hi(p(t)) =1

Le systeme non linéaire est ainsi représenté
sous forme d’une somme convexe de sous-
systemes linéaires. La compensation parallele
distribué¢ (PDC) est une technique de concep-
tion simple et naturelle pour un modele type T-
S décrit par (2) [21].

Dans le concept PDC, chaque regle de con-
trole est congue pour la regle correspondante
du modele T-S. Ainsi les théorie des sys-
temes linéaires peuvent €tre utilisées pour con-
cevoir les conséquences des regles de com-
mande floues.

Soit K; le retour d’état correspondant au i€
sous-systeme linéaire de la regle correspon-
dante, alors I’expression du contréleur T-S est
donnée par :

u(t) =~ Y hi(p)Ki(p)x(r) €)

i=1

Il a été démontré que dans le cadre de mod-
ele T-S et la conception de contréle PDC, les
conditions de conception pour la stabilité et
les performances du systeme peuvent étre for-
mulées en termes de faisabilité d’un ensemble
d’inégalités matricielle linéaires (LMlIs) [21,
18, 19, 5].

3 Modele du véhicule et controleur
T-S

3.1 Modéele T-S du véhicule sur route

Afin d’étudier la dynamique latérale du
véhicule dans un plan horizontal, le modele bi-
cyclette (Fig.1) est utilisé. Ce modele s’obtient
en négligeant la dynamique du roulis et du tan-
gage et en remplacant chaque essieu par une
roue équivalente. Avec les hypotheses posées,
le modele nonlinéaire simplifié est donné par
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Figure 1: Représentation du modele bicyclette
sur route.

[16]:
. Fyf+Fyr_CyV§
Vy = - — Vet
4
o LrFyp — rFyr @
I

Ou: vy, vy, r sont, respectivement, la vitesse
longitudinale, la vitesse latérale et la vitesse du
lacet. I et I, sont, respectivement, les distances
de I’essieu avant et arriere du centre de grav-
it€ du véhicule, ¢, est le coefficient latéral de
la trainée aérodynamique, m et I, sont, respec-
tivement, la masse du véhicule, et le moment
d’inertie autour de I’axe du lacet. Fys et Fy, sont
les forces latérales équivalentes des roues avant
et arriere.

Considérant des faibles angles de braquage et
de dérive du véhicule, les force latérales des
pneumatique sont données par:

!
Fyp =2C,(8 - 27
Vx
vy —Lr ©)
F,=-2C~>—

Vx

Avec 6: l’angle de braquage équivalent des
roues avant.

Le positionnement du véhicule sur la route est
étudié par deux variables supplémentaires (yr)
et (yr) qui sont I’erreur latérale par rapport au
centre de la voie a une distance (/) a I’avant du
véhicule et ’erreur du cap. Leurs dynamiques

sont données par:

(6)

VL= vy + lsr +veyr
Y =1 —VK

Kk étant la courbure de la route.

Ces deux variables peuvent étre fournie par un

systeme de vision (voir [10] par exemple).

Afin de quantifier le ressenti du conducteur aux

couples sur la colonne de direction (couple de la

commande et de 1’autoalignement), la colonne

de direction est modélisée. La dynamique sim-

plifiée d’un systtme de direction assister est

donnée par [4]:

_vy—i—lfr

L6 =Ty +T.—nCp(8 )—Bsd (7)

X
Avec T, est le couple de la commande, 7; celui
du conducteur, /; est le moment d’inertie équiv-
alent du systeme de direction et B son coeffi-
cient d’amortissement (frottement) équivalent.

En négligeant les forces aérodynamiques (i.e
cy = 0) la representation d’état de (4) augmenté
avec le positionnement sur route (6) et le sys-
teme de direction (7) est :

vy =Cx ®)

{xv —Ax,+Byu+ B,k
Tel que: x, = [vy 7wz y2 8 8|7 le vecteur d’état
du systeme, I’entrée du systeme u est le couple
délivré par la commande (7;) additionné a celui
du conducteur (7).

ail apn 0 O bl O O
ay ap 0 0 by O 0
O 1 00 O O 0
A= 1 i, v O 0 O Bu= 0
0 0O 00 O 1 0
To Ty 0 0 Ty Ty A
T
By=(0 00 —v 0 0)
Avec :
C.+C .C,—1:C
011——2L, app = —vy+2 ! f,
173 mvy mvy
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1,C, —1;Cy FC+13Cy
ay =2—————,ap=-"2—7-—"",
Lvy Lvx
2Cfn, 2Cflfn; 2Cf11t
TSI:zJR—’ n=—F5—Ta=— ;
sIsVx JsRsvy JsR;
B C [C
Ts‘4 = __Sy bl = 2_f7 b2 = 2u7
Js m I

En considérant la vitesse longitudinale comme
parametre variant dans la dynamique latérale
dans l’intervalle [5,25|m/s et définissant par
p1 =vVvyet pp = v—lx, on obtient les quatre fonc-
tions d’appartenance suivantes :

b1 — 25—

Ml =PLZPL_ 2Pl iyl
pP1—p1 20
= 1

mi=P2ZP2 _5TP gy
P2—=P2 35—

La dynamique globale du modele T-S obtenu
s’écrit alors :

i
.

I
_

h,‘(vx) (A,-x + B,'u)
)

<
I
™=
=
—
T

Il
—_

)Cix

Avec :
hy =M} x M}, hy =M} x M3

hy = M3 x M}, hy = M3 x M3
et les matrices A;, B et C (i = 1..4) sont les
matrices obtenu dans (8) pour les quatre sum-
mums [p1,p2], [P1,p2], [P1,P2], [P1,p2], avec
p =min(p) et p = max(p).

Une comparison des sorties du systeme non-
linéaire (4) et celles données par son modele
T-S (9) est rapportée sur la Figure (2). Les
sorties sont le résultat de I’excitation des deux
modeles avec un couple de braquage sinusoi-
dal et pour une variation de la vitesse longitu-
dinale en palier. Comme on peut le constater la
modélisation T-S donne une représentation ex-
acte du modele non linéaire.

Le controleur T-S correspondant est discuté
dans la section suivante.
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Figure 2: Comparaison des sorties du modele
nonlinéaire et du modele T-S

3.2 Controleur T-S

Le but premier du contrdleur, recherché, est
le maintien du véhicule sur la route, cela se
traduit par la minimisation de I’écart latéral (y;)
ainsi que de I’erreur de cap (yz). Le confort
du conducteur comme second objectif: confort
corporel par la minimisation de 1’accélération
latérale (ay) et au volant par minimisation de
la vitesse de braquage (8). Le vecteur de
performance a minimiser est donc z = C,x =

[ay7 YL, YL, 6]

Pour atteindre les objectifs cités, on propose
un contrdleur T-S optimal de la forme (3) min-
imisant le critere quadratique donné par :

J:/ZTQz+uTRu dt (10)
0

Avec : Q = diag(qa,,qy;,qy,,95) €t qx est la
pondération de la variable x et R la pondération
sur le signal de commande.

Le probleme a résoudre, a présent, est de retrou-
ver les gains K; permettant de minimiser J sous
la dynamique A;, B, C,i=1..r.

Soit V(x) = x'Xx avec X > 0 et le sig-
nal de commande u(r) satisfaisant 1’équation
Hamilton-Jacoby [20]:

V(x(t)) +2()T Qz(t) +u(t)" Ru(t) <0 (11)
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Par le calcul de V(x(t)) et remplacement de
u = —Kpx, en utilisant le compliment de Schur
(voir I’annex) le probleme peut se réécrire :

PAf +ApP—(BpMp +MJBj) PCL,  Mj

CypP -0;' 0
M, 0 -R'
(12)
Avec: P=X"'et M, =K,P

Les gains K; du contrdleur T-S sont obtenus par
la résolution des LMIs suivant [20]:
Minimiser 7 :

FE AR

etpour 1 <i<j<r:

IT; <0
1ll | (14)
i+ 5 [T + 03] <0

Tel que
iy P M)
Ilj=| C4P Y 0
M; O S
L; PCh PCl, Ml M]
C,P Y 0 0 0
I;j=1| C;P O Y 0 0
M; O 0 S 0
M; O 0 0 S
(15)
Avec Gji:Ai—Bin,Y:—Q_I,S:—R_l

Tij = P(Gij+Gji)" +(Gij+Gji)P

Et enfin :
K, =MP~! (16)

On suppose dans cette étude que le vecteur
d’état x(¢) est disponible.

4 Simulations et résultats
4.1 Validation sur Matlab/Simulink

Une premiere série de tests est réalisée en sim-
ulation sur Matlab/Simulink afin d’ajuster le

vy (mfs)
Yy (m)

15 0.5
1 °MAJ\/-W*
5 -0.5
0 50 100 150 200 250 100 150 200 250
t(s)

4 2
2
E s °
£ 0 =
2] =2
F -2
-2
4 74

50 100 150 200 250 100 150 200 250
t(s)

Figure 3: Résultats de simulation, haut gauche:
vitesse du véhicule (vy), haut droite : écart lat-
eral (y.), bas gauche : couple du contrdleur (7¢),
bas droite : erreur de cap (yr.).

contrdleur qui sera, par la suite, implémenté sur
le simulateur de conduite SHERPA.

Le modele d’écrit en (4) est utilis€ pendant
les simulations. La vitesse longitudinale est
régulée par le contrOleur mode glissant simi-
laire a celui développé dans [16], tandis que le
controle latéral est assuré par le contrdleur T-S
développé ici. Comme rapporté sur la Figure
(3), le véhicule reste sur la voie avec un écart
latéral inférieur a 40cm, et ce, malgré la varia-
tion de la vitesse longitudinale.

4.2 Test en conduite

Apres un bon réglage de la loi de commande en
simulation, 1’approche proposée est testée sur le
simulateur SHERPA (Fig.4).

Dans cet essai, le contrdle latéral du véhicule est
assuré a la fois par un conducteur humain et le
controleur proposé tandis que la vitesse longitu-
dinale est gérée uniquement par le conducteur.
Comme déja souligné précédemment, le but
principal est de tester la capacité de 1’approche
proposée a assurer un bon maintien de voie.

Comme on peut le voir sur la Figure 5
I’approche proposée permet de maintenir le
véhicule sur la route avec un écart latéral in-
férieur a 0.5m et une erreur de cap inférieure
a 10? sur toute la trajectoire réalisée avec une
faible intervention du conducteur (voir couple
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Figure 4: Le simulateur SHERPA .
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Figure 5: Résultat d’un test de conduite sur
simulateur, haut: vitesse du véhicule v, et er-
reur latérale y,, le bas: couple de 1’assistance T,
et erreur de cap Y.

conducteur dans la Figure 6).

Afin de mettre en avant le ressenti du conduc-
teur, une representation des couples délivrés par
le conducteur (7y;), I’assistance (7;) ainsi que
le couple d’auto-alignement (7'al) est rapportée
sur Fig.6.

Par calcule des normes des différents couples,
on trouve que le conducteur fournit I’équivalant
de 5% du couple total nécessaire pour réaliser
le trajet et le reste est fourni par I’assistance.

y [m]

Torque[Nm]

I I
0 50 100 150 200 250

Figure 6: Ressenti du conducteur en conduite
sur simulateur, haut: erreur latérale y;, le bas:
couple conducteur 7y, couple de I’assistance T,
couple d’auto alignement 7.

5 Conclusions

Une assistance au maintient de la voie est
proposée dans ce papier. Cette assistance est
basée sur un contrdleur T-S correspondant a
la modélisation T-S du modele bicyclette non-
linéaire du véhicule. L’objectif est le maintien
du véhicule au centre de la voie, sans autant
rejeter les actions du conducteur.

L’approche proposée est validée dans
un premier temps en simulation avec
Matlab/Simulink puis implémentée sur le
simulateur dynamique SHERPA afin de mieux
quantifier le ressenti du conducteur. Les
résultats obtenus jusqu’a present sont assez
prometteurs.

L’objectif qui sera exploré dans les travaux
futures concerne 1’étude des interactions du
contrOleur proposé avec le conducteur a la
fois pendant la conduite normale -maintien de
la route- et dans des cas d’urgence; présence
d’obstacles non détecté, changement de voie...
etc. Une piste consiste a prendre en compte
le conducteur dans 1’étape de synthese du
contrOleur, et ainsi, améliorer la coopération
entre le systeme d’assistance et le conducteur.
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Annex

Dérivé de la fonction de Lyaponov :

V(x(1))

=x(1)" (Ap —BpKp)" Xx(1)
+x(t)" X (Ap — BpKp)x(t)

)
x(1)" ((Ap — BpKp)"X +X(Ap — BpKp)) x(1)
a7

2(1)7 Qz(t) +u(t)" Ru(t) = x(1)" C QC:px(r)

+x(t)" (BK,)"R(BK,)x(t)"

— x(0)" (CZT,, 0C., + (Bpr)TRBKp) x(1)
(18)

Complément de Schur :

R>0 Y 19
=4
{Y+XTRX<O [X (19)
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Résumé :

Vue le grand volume de calcul que présente un
asservissement de vitesse du MAS, sans capteur
mécanique utilisant : i) un reconstructeur de vitesse type
MRAS, ii) un contréleur FLC standard pour la vitesse,
et iil) une commande DRFOC. Dans ce papier, nous
proposons de remplacer ce controleur flou FLC standard
(a deux entrées) par un autre a entrée unique noté
SIFLC, et d’éliminer la rotation de Park directe de la
commande DRFOC. Ceci va permettre une grande
réduction du temps de calcul d’un tel asservissement et
facilitera par la suite son implémentation.
L’asservissement proposé et classique sont comparés
par simulation dans ’environnement Matlab/Simulink.
Les résultats montrent une équivalence impressionnante.

Mots-clés :
Moteur asynchrone, contrdle
vectorielle, observateur adaptatif.

flou, commande

Abstract:

View the high computation time that request an
induction machine speed drive without mechanical
sensor using : 1) a MRAS based speed observer, ii) a
standard FLC speed controller, and iii) a DRFOC
scheme. In this paper, we propose, to replace the
standard fuzzy controller FLC (with two inputs) by
another single input fuzzy controller noted SIFLC, and
remove the direct Park rotation of the DRFOC scheme.
This will allow a large reduction in computation time of
such a drive and then facilitate its implementation. The
proposed and classical drives are compared by
simulation in Matlab / Simulink environment. The

results show an impressive equivalence.

Keywords:
Induction motor, fuzzy control, field oriented control,
adaptive observer.

I. Introduction générale

Ces dernieres décennies, et pour des raisons
économiques et technologiques, la suppression du
capteur mécanique et la réduction du temps de calcul,
sont devenus une priorit¢é primordiale dans les
asservissements de vitesse du Moteur ASynchrone
(MAS) [1].

En fait, peut importe qu’ils utilisent un modéle
mathématique du MAS ou pas : Filtre de Kalman [2],
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Observateur de Luemberger [3], ou Filtrage Adaptatif et
Transformation de Fourier Rapide et Injection de Signal
Haute Fréquence [4], I’exigence de moyens performants
en termes de traitement du signal, et par fois
d’information sur le nombre d’encoches dans le rotor,
sont les inconvénients néfastes de ces différents
reconstructeurs de vitesse [1]. A D’encontre de ces
derniers, 1’approche Systeme Adaptatif utilisant un
Modele de Référence (MRAS) se présente comme une
technique plus attractive, car elle est trés simple et facile
a implémenter [5]. Suivant le signal d’erreur adopté,
nombreux types d’MRAS peuvent étre distingués, a
commencer par l'approche classique : utilisant I’erreur
entre les flux rotoriques estimés par les modéles en
tension et en courant [6], [7]. En fait, cet approche est
trés simple, mais souffre des problémes d’intégration en
boucle ouverte de la f.c.é.m. Citant aussi, ’MRAS basé
sur D’erreur résultante de 1’estimation de la puissance
réactive [8], qui présente I’avantage d’étre indépendant
de la résistance statorique. Pourtant, reste peu utilisé, du
fait qu’il se heurte au probléme d’amplification du bruit
de mesure, résultant de D’application de la fonction
dérivé au courant mesuré. Pour remédier a ces
problémes, un autre type d’MRAS est souhaitable. En
effet, cet MRAS exploite l’erreur résultante de la
multiplication croisée entre l'erreur des courants
statoriques (mesurés et estimés) et les flux rotoriques
estimés [9]. Encore, le modele de référence, qu’il utilise,
est le MAS entrainé ; ceci le rend relativement, plus
robuste aux changements des paramétres du MAS [1].
Ce type d’MRAS a été implémenté, derniérement par
[5], [10], pour I’asservissement de vitesse du MAS et
ces performances reflétent un grand succes.

D’autre part, indépendamment du reconstructeur de
vitesse adopté, les blocs principaux dans 1’algorithme
d’asservissement de vitesse, sans capteur mécanique du
MAS sont: le contréleur de vitesse et la commande
adoptée pour le contréle du couple.

En effet, le controleur PI, est classiquement employé
comme contrdleur de vitesse pour le MAS, vu que sa
synthése repose sur des méthodes tres simples
(placement de pdles, Ziegler Nichols) [11]. Cependant,
il ne peut pas faire face a I’identification imprécise du
moment d’inertie, aux dérives des paramétres
électriques, aux dynamiques non modélisées (filtres,
actionneur...), et a la forte non-linéarité du couple [12],
[13]. Afin d’évité ces imperfections, beaucoup de
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stratégies de controle a base d’intelligence artificielle,
ont été proposées dans la littérature pour le controle de
la vitesse du MAS. Notamment [I’utilisation du
controleur flou (FLC) trés proche du résonnement
humain, et n’ayant pas besoin de modeles
mathématiques des systémes non linéaires [5], [14] [15].
En réalité, I’utilisation du FLC au lieu du PI, améliorera,
sans doute, les performances du contréle de vitesse du
MAS, mais c’est au détriment d’une augmentation
considérable du temps de calcul [16], [17].

Aussi, contrairement a la Commande Direct de Couple
(DTC), la commande Directe par Orientation du Flux
Rotorique (DRFOC), présente I’aptitude de controler a
la fois le flux, le couple et le courant tout en gardant une
fréquence de commutation fixe. En effet, des
performances trés élevées, en plusieurs points de
fonctionnement, ont été obtenu via cette commande
pour le contrdleur du couple du MAS [10]. Cependant,
la commande DRFOC, présente un temps de calcul,
relativement élevé, effet dii principalement au calcul
inévitable des termes en sinus et cosinus: premiers
consommateurs de temps de calcul et indispensables
pour effectuer les deux rotations (directe et inverse) de
Park.

Dans ce contexte, vue le grand volume de calcul que
présente un asservissement de vitesse du MAS, sans
capteur mécanique utilisant : i) un reconstructeur de
vitesse type MRAS de courant, ii) un contréleur FLC
standard pour la vitesse, et iii) une commande DRFOC.
Dans ce papier, nous proposons de remplacer ce
controleur flou FLC standard (a deux entrées) par un
autre a entrée unique noté SIFLC, et d’¢liminer la
rotation de Park directe de la commande DRFOC ; ce
qui va permettre une grande réduction du temps de
calcul d’un tel asservissement. En réalité, les auteurs
dans [18] ont pu montrer que les performances du FLC
standard peuvent étre retrouvées par un SIFLC
équivalent. Cette équivalence a été validée pour un
convertisseur de tension, type hacheur-élévateur. Les
résultats pratiques ont montré la division par dis du
temps de calcul, nécessaire pour I’exécution du
controleur flou, sans dégradation de performances.
D’autre part, un simple calcul issu de la conservation de
puissance, que nous présentons dans ce papier, montre
que les courants statoriques, direct et quadrature,
peuvent étre retrouvé sans rotation de Park.
L’asservissement proposé et classique sont comparés
par simulation dans I’environnement Matlab/Simulink.
Les résultats montrent une équivalence impressionnante.

I1. Notations

i,v ety Courant, tension et flux.

R, R, Résistance statorique et rotorique

L, L, Inductances  cyclique statorique et
rotorique.

M Inductance cyclique mutuelle stator-rotor.
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Coefficient de fuite de Blondel.

o

0} Vitesse de synchronisme.

0, Angle de Park.

@, Pulsation de glissement.

(] Vitesse électrique du rotor.

Q Vitesse mécanique du rotor en (rad/sec).

W Vitesse mécanique du rotor en (tr/min).

n, Nombre de paires de pdles.

J Moment d’inertie.

f Coefficient de frottement visqueux.

C,, C, Couples électromagnétique et de charge.

0",0,et(") Note des grandeurs de références,
nominales et estimées.

044t 04p Note des composantes directes et

quadratures dans les reperes liés, au
champ tournant et au stator.

Note des grandeurs statoriques et
rotoriques.

II1. Modélisation dynamique du MAS

Sous certaines hypothéses habituelles, le modéle
dynamique du MAS dans le repére (d, q) [19], peut se
présenter sous la forme d’équations suivantes :

OsetQ,

d. 1 MR M
—iy=——| —R,i +o0Li, +— @g+— 0@, +V,
dtl‘sd ds|: R\rl\d s Al‘sq er Drd L,, Wq sd}
d. 1 . M MR
—i,=—|-wad.i,—R i, ~—0O@;+— @, +V,
dr sq ds[ s stsd RAI sq L,, [7%] er (orq sqi| (1)
d__MR. R
d tq)dr Lr sd L,~ Dra g¢rq
d MR. R
E Drg= Tr lsq _Z Drg ™ OgPrd
M . .
Ce = np L_(wrdlsq - (qulsd) (2)
d
Jo 0+ Q=C,-C, 3)
t

M? M?
Wy =0,—®; R, =|R +R.—|; o=|1-

L, L.L,
En effet, modéliser le MAS de cette manicre, permet de
réduire le nombre de grandeurs qu'on a besoin de

connaitre pour simuler son fonctionnement [20].

V1. Asservissement de vitesse du MAS sans
capteur mécanique.

Le schéma général d’un asservissement de vitesse du
MAS sans capteur mécanique, a base d’une commande
DRFOC et d’'un MRAS de type courant, peut se
présenter comme suit [21] :
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Figure.1 : schéma général d’un asservissement de
vitesse du MAS sans capteur mécanique

Dans cet algorithme de commande, des controleurs
linéaire (type PI, ou IP), de flux et de courants
statoriques, assurent de trés bonnes performances. Alors
qu’un contrdleur non linéaire (type flou) est souvent
souhaitable pour 1’asservissement de la vitesse [17].

VI.1. Commande vectorielle directe a flux
rotorique orienté (DRFOC).

La commande DRFOC reste la commande par
orientation de flux la plus utilisée [22], car elle seule
permet le contrdle du couple de la MAS, le plus
similaire a celui de la MCC a excitation séparée. Selon
F. Blaschke, inventeur de la commande DRFOC [23],
I’achévement d’une telle commande par références de
flux et de couple, commence par estimer ou observer les
composantes du vecteur flux rotorique dans le repére (o,
B): (@.q0up,5). A partir de ces composantes, on

estime les valeurs de I’amplitude du flux rotorique (¢, )
et de sa phase par rapport au repere (o, f) : (és ), comme
traduit par les équations suivantes :
6r =0 )+ f
Prp

—) )

La premiére valeur sera utilisée comme retour pour la
. .k [
boucle de flux dont la sortie est i,; . La deuxi€éme sera

“4)

és = arctg(

prise comme angle de Park. On calcul ensuite igs” qui, a
partir des équations du MAS dans le repére (d, q) et
sous I’hypothése d’orientation de flux ; ¢, = ¢, et Org=
0, peut s’écrire [22] :
* « L
i, =C, —r—

sq : (6)
M o,
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L% Lk ege s rer

isq -€t igs sont enfin utilisés comme références pour les
boucles de courant. Les sorites de ces dernieres
représentent les tensions de référence.

VI1.2. Reconstruction du flux et de la vitesse
(MRAS).

L’asservissement de vitesse du MAS exige d’ajouter a
I’algorithme de la commande DRFOC une boucle de
vitesse dont la sortie est Ce*, et afin que sa soit un
asservissement sans capteur mécanique, 1’addition d’un
reconstructeur de vitesse est obligatoire. En fait, il s’agit
ici d’un observateur type adaptatif (MRAS), qui permet
a la fois la reconstruction du flux et de la vitesse.
L’MRAS que nous avons opté d’utiliser, exploite
Perreur résultante de la multiplication croisée entre
l'erreur des courants statoriques (mesurés et estimés) et
les flux rotoriques estimés [9]. Le schéma bloc de cet
observateur se présente comme suit [10] :

Modeéle de référence

Meécanisme

d’adaptation

Modéle aiustable

Figure.2 : Le schéma bloc du MRAS (de courant)

En fait, cette technique garantie des performances et une
stabilité assez satisfaisante [orl 10]. Comme I’illustre la
figure ci-dessus, la vitesse est estimée en utilisant un
modeéele de référence et un modéle adaptatif. Le modéle
de référence est la MAS en elle-méme. Alors que le
modele adaptatif, dépendamment de la vitesse, est
congu de deux estimateurs; de courant et de flux,

données respectivement par les deux systémes
d’équations suivantes [5] :
diy, _R,M>+ LR, o
dt O'L‘L% sa O'LA. sa
R,M . M,
+ —= + @ .
O'LSLz Pra O'LA.LS (pzﬂ (7)
diy,  R,M?2+ LR, - 1
= 5 ip + Vg
dt oL, L’ oL,
L RM M
oL 2 YL, e
dg, R, ;. . -
d—ta:|:L_y(Mlsa —Pra )_ w¢rﬁ:| (8)
.
d(ﬁr‘ﬂ R . N A a
T = |:L_V(Ml sa wrﬂ )+ OP,q
.

Notons que ces estimateurs exigent, en plus de la
connaissance de la vitesse électrique (®), la mesure des
courants et tensions statoriques. La vitesse é€lectrique
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estimée, n’est rien que la sortie d’un mécanisme
d’adaptation (souvent un controleur PI). Les gains de ce
contrleur PI sont généralement retrouvés via la
méthode essaie-erreur, tenant en compte des limitations
causées par les bruits provenant des mesures [24].
Notons que la vitesse mécanique estimée se déduit de
celle électrique de la fagon suivante :

Q=n,o )
VL.3. Contréleur flou standard de vitesse (FLC)

La figure (3), montre le schéma bloc d’un contrdleur
FLC (noté aussi PIFLC), qui peut étre utilisé pour
I’asservissement de vitesse du MAS [25]

i'b—’ />F<L>C<\ Ll

Figure.3 : le schéma bloc d’un contréleur FLC standard

Ce controleur flou est constitué d’un contrdleur flou
basic, un intégrateur et des Facteurs d’Echéle (FEs). Les
entrées du bloc flou sont les valeurs de I’erreur de
vitesse et sa dérivée (e et ¢) multipliées respectivement
par les FEs (K)) et (K)), et sa sortie est la variation du
couple de référence ((7), qui aprés intégration et
multiplication par le FE (Kj), donne le couple de
référence C,". Les cinq Fonctions d’Appartenances
(FAs), que nous avons utilisées pour fuzzifier les
entrées et la sortie du FLC, type Sugeno, sont
respectivement présentées par les figures (4) et (5). En
effet, les FAs des entrées sont prisent triangulaires a
répartition non-uniforme, tel que (N) signifie négatif,
(P) positif, (Z) nul, (M) moyen et (G) grand.

1LNB NM zE PM PE
os| ]
o.e
0.4
0.2+ —
o
-1 —0.5 o 0.5 1

Figure.4 : FAs, utilisées pour les entrées du FLC

NG NM z PM PG

-1 -0.35 0 035 1

Figure.5 : FAs, choisies pour la sortie du FLC

La table (1) regroupe les différentes régles, établies en
se basant sur la structure de Toeplitz qui reste valable
pour tout les FLCs qui utilisent I’erreur et sa dérivée
comme variable d’entré [26], [27].
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Table.1 : Table des régles du FLC

) CING |NM |Z PM | PG
NG | Z | NM | NG | NG | NG
NM | PM | Z | NM | NG | NG
Z PG | PM | Z | NM | NG
PM | PG | PG | PM | Z | NM
PG | PG | PG | PG | PM | Z

Dans notre cas, le contrdleur flou comporte 25 régles, et
la méthode de défuzification utilisée est la méthode des
sommes pondérées. Les choix que nous avons effectués
sur la répartition des FAs et pour la table des régles
donnent lieu a une surface, des régles floues, de forme
non-linéaire comme I’indique la figure suivante :

C.
e Toaa e
Figure. 6 : Allures de la surface des regles floues
du FLC

Pour exploiter tout I'univers de discours, K; est choisi de
telle sorte que le produit (ex K;), demeure a I’intérieur de
I’intervalle [-1, 1]. En effet, K; a été choisi égal a
I’inverse de la variation maximale de la vitesse de
référence (Q max=157 rad/sec). Parce que 1’un dépend de
I’autre, K, et K; ont été ajustés manuellement lors de
plusieurs essais (test-erreur). Les valeurs adoptées sont
ceux qui ont aboutis a un temps de réponse en vitesse,
égal a 0.4 (sec). Ce choix a permis, en fait, de limiter la
sortiec du controleur FLC a une valeur égale a
CE*II.SXCE,,IIS (N.m). Les valeurs numériques des FEs
utilisés, sont les suivantes : K; =6.37 ¢, K, = 1 € et
K=1.5¢".

V. Elimination de la rotation de Park
directe

Comme indiqué dans la figure (1), les boucles de

courants  statoriques, indispensables dans une
commande DRFOC, sollicitent 1’utilisation de la
rotation de Park directe tel que :
iy, =sin(8, )iy, —cos(6, )i (10)
isd = COS( é.r )isa + SiIl( és )lvﬂ (1 1)

L’¢élimination de ces fonctions trigonométriques, ne
peut étre que favorable en terme de réduction de temps
de calcul. En réalité iy, et iy, peuvent étre calculées
d’une autre fagon ; selon le repére ou les calculs sont
effectués, et on se basant sur le principe de la
conservation de puissance, le couple électromagnétique
peut s’écrire sous différentes formes équivalentes. En
effet, les équations suivantes présentent deux d’elles :
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.L, T =e Ly o~ e,

r ¥

12)
= p'([‘m /Lr )(q’}rdisq iy @rq )

<\ N . .. =RC A . A
oU: i =(iy, +jip)et ¢, =(P,y = jPrp)

A partir de ces égalités de couple et sous la condition

d’orientation du repére (d, ¢) suivant le flux rotorique

g?)rq =0, on conclu que iy, peut aussi s’écrire :

_ (@raisﬁ _isaqsrﬂ) _ (éraisﬂ _isaérﬂ)
@rd @r

En procédant de la méme fagon, mais en considérant
cette fois la partie réelle au lieu de la partie I’imaginaire

(13)

du méme produit (;, ;; ) nous retrouvons :
_ (éraisa + isﬂérﬂ)

(2% (14)
Notons que ce calcul n’introduit que des opérations
arithmétiques simples et ne fait pas appel aux fonctions

trigonométriques ; comme dans le cas de la rotation de
Park directe qui exige leur calcul.

Lsa

VI. Controleur flou a entrée unique de
vitesse (SIFLC)

En se basant sur 1’étude effectuée par [18], il est
possible de remplacer le contréleur FLC a deux entrée
(Ierreur et sa dérivée), de type Sugeno, et dont la table
des regles respecte la structure de Toeplitz, par un autre,
équivalent, mais a entrée unique (SIFLC). En fait, cette
étude basée sur la méthode de distance signée, permet
de transformer la dimension de la surface des régles
floue de trois a deux. Le schéma bloc du SIFLC que
nous avons utilisé est présenté par la figure suivante :
SIFLC

Figure. 7 : Le schéma bloc du SIFLC

ou d est I’entré unique du bloc flou, appelée distance
signée.

On note que I’entrée du contrdleur flou et sa sortie sont
respectivement, fuzzifiée, défuzzifiée et misent en
échele par les mémes FAs et FEs utilisés pour les
variables du FLC standard. Alors que la table des régles
floues se réduit a :

Table.2 : Table de régles du SIFLC
d NG NM | Z PM | PG
c. NG NM | Z PM | PG

Ainsi la surface des régles se réduite a une fonction
bidimensionnelle comme 1’illustre la figure qui suit :
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C: -u.z /
E 05 d 0 05 1
Figure. 8 : Allures de la surface de control flou du
SIFLC

L’avantage principal du contréleur SIFLC, c’est qu’il
permet de réduire le nombre des régles floues de (nxn) a
(n) : dans notre cas c’est de 25 a 5. Ceci va, siirement,
réduire largement le temps de calcul [18].

VII. Résultats de simulation

Dans le but de wvalider séparément I’effet de
I’élimination de la rotation de Park directe, de celui de la
substitution du FLC par le SIFLC. Nous avons effectué,
séparément, deux tests de simulation dans
I’environnement Matlab/Simulink, sur un modéle d’un
MAS (1.5 KW) déja identifié dans notre laboratoire
(voir table 3). Nous avons aussi choisi pour ces
simulations une fréquence de Modulation de Largeur
d’Impulsion (MLI) égale a fiz;= 8 (KHz). Alors que le
pas de simulation (7;) est pris 25 fois plus petit que
période de la MLI: T, = 5¢™ (sec). Ce choix est en fait
dict¢ par la nécessité de bien reconstruire le signal
modulant (triangulaire) de la MLI et assurer un bon
fonctionnement de ’actionneur (onduleur).

Le premier test concerne 1’équivalence entre la rotation
de Park directe, et les équations a base de la
conservation de puissance, dans le calcul de iy, et iy,. En
effet, il s’agit d’un test par référence de couple (en
boucle ouverte de vitesse), qui dure 3 (sec). Le flux
rotorique de référence est pris égal a sa valeur nominale
¢, =0.4713 (Wb) et une séquence d’échelons aussi bien
positifs que négatifs [7.55, 0.8, -6.35] (N.m) est prise
comme référence de couple. Les résultats de ce test sont
présentés par les figures (9-16).

e Tl ——iggm [
—_— isd ref
F- Y ISR S SRS S S N L. S 4
g L S S
3

a i rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
=Ry

2

o
o 0.5 1 1.5 2 2.5 3

Temps‘ (sec)
Figure. 9 : Courants statoriques directs (DRFOC-
avec rotation de Park)
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Figure. 10 : Courants statoriques
directs (DRFOC-sans rotation de Park)
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Figure. 11 : Courants statoriques quadratures
(DRFOC-avec rotation de Park)
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Figure. 12 : Courants statoriques quadratures
(DRFOC-sans rotation de Park))
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Figure. 13 : Flux rotoriques
(DRFOC- avec rotation de Park)
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Figure. 14 : Flux rotoriques
(DRFOC- sans rotation de Park)
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Figure. 15 : Couples électromagnétiques (DRFOC-
avec rotation de Park))
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Figure 16. : Couples électromagnétiques (DRFOC-
sans rotation de Park)

A partir des figures (9-12), nous remarquons une
équivalence parfaite entre les deux méthodes de calcul
les courants iy, et ig,. Cette équivalence est renforcée par
les résultats identiques obtenus pour les couples et les
flux ; voir figures (13-16). En fait, aprés un régime
transitoire trés court, nécessaire pour 1’établissement du
flux, il est trés claire que toutes les grandeurs mesurées
suivent parfaitement leur références, validant ainsi le
bon fonctionnement de la commande DFOC et la
similitude entre les deux méthodes de calcul des
courants iy et ig,.

L’objectif du deuxiéme test est de mettre en épreuve, les
deux correcteurs FLC et SIFLC et de comparer leurs
performances lors d’un asservissement de vitesse du
MAS sans capteur mécanique. Cette comparaison
comporte deux essais : un en poursuite et 1’autre en rejet
de perturbation. Dans le premier essai, effectué a vide,
une sinusoide d’amplitude égale W,=1500 (tr/min) et de
période égale a 5 (sec) est prise comme référence de
vitesse. Alors que, dans le deuxiéme essai, la séquence
de référence pour la vitesse est prise égale a [1300, 400,
-540] (tr/min), et le couple de charge est choisi comme
fonction de la vitesse, de tel sorte a avoir un couple
charge nominale a vitesse nominale. Pour mieux tester
le rejet de perturbations, un autre couple de charge de 4
(N.m) est insérer a I’instant t=2.3 et enlever a t=3.5
(sec). Les résultats du premier essai sont illustrés par les
figures (17-19), tandis que les figures (20-22) présentent
ceux du deuxiéme. Notons que nous avons effectué ce
test sans rotation direct de Park.
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Figure. 17 : Allures des vitesses avec FLC,
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Figure. 19 : zoom sur les allures des différentes
vitesses, 1'" essai
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Figure. 20 : Allures des vitesses avec FLC, 2°™ essai
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Figure. 21 : Allures des vitesses avec SIFLC, 2°™
essai
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Figure. 22 : zoom sur les allures des différentes
vitesses, 2°™ essai

A partir de ses réponses, nous pouvons voir que les
performances des deux contrdleurs : FLC et SIFLC sont
semblables, dans tous les points de fonctionnement
choisis. En réalité, que sa soit une poursuite ou une
régulation : a vide ou en charge, le contréleur SIFLC
arrive a simuler le comportement du contréleur FLC
avec une erreur qui ne dépasse en aucun cas 0.5 (tr/min)
0.033% xWn. En effet, pour visualiser cette erreur, il a

fallu faire plusieurs agrandissements

VIII. Conclusion & perspective

Dans ce papier, un asservissement de vitesse du MAS,
sans capteur mécanique, utilisant un reconstructeur de
vitesse type MRAS de courant, un contréleur FLC
standard pour la vitesse et une commande DRFOC.
Nous avons proposé¢ de substituer respectivement la
rotation de Park directe et le contréleur flou standard
(FLC) de vitesse, par un simple calcul issu de la
conservation de puissance et un contrdleur flou a entrée
unique (SIFLC). Les résultats de simulation ont montré
une équivalence immense entre les performances des
deux asservissements, classique et proposé, en poursuite
comme rejet de perturbations. Sans doute, cette
proposition permettra de diminuer largement le temps
de calcul et faciliteras ainsi I’implémentation d’un tel
asservissement surtout quand il s’agit d’un
asservissement sans capteur mécanique utilisant un
reconstructeur de vitesse consommateur de temps de
calcul. Notre perspective c’est d’implémenter cette
commande en temps réel sur une carte DSPACE afin de
quantifier ce gain en temps de calcul et valider
pratiquement cette théorie.

Table. 3: Valeurs des paramétres du MAS

n, 2

Ry 4.75 Q

R, 1.20

Ly 04H

L, 0.07H

M 0.162 H
J=I v tioad 0.025 Kg.m’
S=fa Vfioaa 25 x10™* Kg.m*/sec
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Résumé :

Dans cet article, une technique de commande basée
sur observateur est proposée pour controler les flux d’air
et la quantité de fuel d’un moteur diesel dans le but de
réduire 1’émission de particules polluantes et de réduire
la consommation de carburant. La performance H, est
utilisée pour garantir le suivi de certains signaux de
références. La modélisation de la boucle d’air utilise I’ ap-
proche floue de type Takagi-Sugeno (T-S). Des condi-
tions suffisantes pour assurer le suivi de références sont
établies et écrites sous forme d’inégalités linéaires matri-
cielles (LMI).

Mots-clés :

Moteur diesel ; Takagi-Sugeno ; Inégalités Matricielles
Linéaires (LMIs) ; observateur ; H,

1 Instructions générales

Les constructeurs automobiles sont confrontés
a un réel défit : concevoir des véhicules rejetant
un minimum de polluants. IIs sont contraints a
équiper leurs véhicules de dispositifs de plus en
plus performants dont I’unique objectif est de
minimiser toujours plus les émissions de pol-
luants. Ce qui engendre I’augmentation du prix
d’un véhicule. D’autres stratégies consistent
d’agir sur le processus de combustion. En ef-
fet, les moteurs Diesel sont dorénavant équipés
d’actionneurs contrdlables tels que les turbo-
compresseurs a géométrie variable VGT (Va-
riable Geometry Turbine) et les vannes de re-
circulation des gaz d’échappement EGR (Ex-
haust Gas Recirculation). Le principe de 'EGR
est de réinjecter des gaz briilés dans le collec-
teur, qui viennent se mélanger a I’air frais et
permettent de diminuer la formation de certains
polluants (en particuliers les oxydes d’azote
NOz) en abaissant la température de combus-
tion. C’est dans ce contexte que se situent les
travaux présentés dans cet article qui consiste

a développer des techniques de commande afin
de controler les deux vannes EGR et VGT.
L’idée est d’agir sur le processus de combus-
tion, c’est a dire sur la boucle d’air : contrbler
les masses aspirées dans les cylindres (air frais
et gaz brlilés) en agissant sur les ouvertures des
deux vannes VGT et EGR. L’objectif du tra-
vail est de construire un contréleur qui permet
le suivi de trajectoires de certains signaux de
références. Ces signaux doivent étre construits
expérimentalement de facon a optimiser les
émissions de polluants et la consommation de
carburant . Dans la littérature, le contrdleur le
plus populaire c’est le PID [3], [9]. Pour ce
type de contrdle, il faut régler les gains du PID
pour chaque marge de fonctionnement du mo-
teur. D’autres lois de commande basées sur des
versions linéarisées du modele du systeéme mo-
teur diesel sont adoptées et la encore les colits
de calibration sont importants, on peut citer la
commande prédictive [5].

Différents modeles du systeme moteur diesel
sont proposés dans la litérature [11], [2], [1].
La modélisation de type T-S a été récemment
adoptée [4]. Dans cet article, en se basant sur la
modélisation T-S du modele de Jankovic [8], un
controleur flou est proposé. Des conditions suf-
fisantes sous forme de "LMIs” sont établies afin
d’assurer le suivi des signaux de références.

Ce papier est organis€ comme suit : dans la
section 2, le modele de Jankovic de la boucle
d’air est présenté. Dans la section 3, nous abor-
dons la procédure de modélisation du systeéme
sous forme T-S. Dans la section 4, la méthode
de commande basé€e sur observateur pour les
systemes flous de type T-S est présentée. Des
résultats de simulation pour illustrer la valida-
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tion de I’approche proposée sont présentés dans
la section 5.
Notations : O et I désignent réspectivement la
matice nulle et la matrice identité de dimensions
appropriées.

2 Modélisation du circuit d’admis-
sion d’un moteur diesel

Un schéma de principe d’un moteur diesel
turbo-compresseur avec EGR est représenté sur
la Fig.1. Dans la littérature, la modélisation

= = T, pa, iy
W | | Intake Manifold
Tie.p EGR N
~ L T

L T.p - - - -
Intercooler |:§:| A C_j (ju C} |:__j|
> = ——
Cooler \-—___ 7____—-/
P
T, p VAL Tepe,me

Exhaust Manifold
Wi J,

Turbine
VGT i

1 Ti, pu

Orxicat

C(JIHPJ'L:SS(JJ'

Figure 1 - Schéma de principe d’un moteur die-
sel Turbo-compresseur avec EGR

du moteur Diesel peut étre classée selon deux
grandes familles : les modeles basés sur des
cartographies réalisées a 1’aide de mesures sur
des lois physiques ou des modeles dynamiques.
Dans cet article, on considere le modele appar-
tenant a la deuxieéme famille. Dans ce travail, le
modele adopté est celui de Jankovic [8], c’est un
modele a valeur moyenne décrivant 1’évolution
de trois variables d’état : la pression dans le
collecteur d’échappement et la puissance du
Turbo-compresseur

RT;
pi = V. (Wcz + Wm - VVie)
RT,
Pz = (VVie — Wai = Wa + Wf) (1

Ve
. 1

Avec T, n,, V; et V,, représentent la constante du
temps, le rendement mécanique du turbocom-
presseur et les volumes des deux collecteurs
(admission et échappement). Ces parametres
sont constants : 7 = 0.11, n,,, = 0.98, V; =
0.002m? et V,, = 0.002m?.

Les équations du modele sont écrites en fonc-
tion des différents débits a I’entrée et a la sortie
des cylindres.

Le débit d’air entrant dans les cylindres n’est
pas mesurable. La solution est d’estimer la
masse d’air admise dans les cylindres a chaque
cycle de fonctionnement du moteur a partir des
variables disponibles a la mesure. Il existe des
approximations, plus ou moins complexes de
cette variable par exemple

NVa

Wie(N, p;) = T]V(N7pi)mpi

2)

ou V; est la cylindrée totale du moteur, N
est le régime moyen du moteur, Le coeffi-
cient 7,(N,p;) représente le rendement vo-
lumétrique, 7; est la température dans le collec-
teur d’admission.

Le débit d’air en provenance du compresseur
W.; est donné par I’expression suivante :

ne  F
ohigyr—1 Y

Pa

Wci =

ou 7. et T,, représentent respectivement 1’ef-
ficacité du turbocompresseur et la température
ambiante. 7. = 0.61, T, =298 ° C

Cps Cy, sont les chaleurs massiques de I’air a vo-
lume constant et a pression constante.

= % est le rapport des chaleurs et p, est la
pression ambiante.

W, le débit a travers la vanne EGR s’écrit :

AegT (xegr)¢egr (pi ) px)
RT,

ol Aegr(Teqr) est la surface effective fonction
de la position de la vanne EGR, 7T} est la
température dans le collecteur d’échappement.
R = 287(@%) est la constante modele des gaz
parfaits.
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Le débit vers la turbine en sortie du collecteur
d’échappement s’écrit :

Pz Pz Tref
Wt = Apoe(y ——1)+d
t gt(T gt)(C(pa )+ )pref T
2pq Pa
(1—-—)
Pz Dz
)

ou c et d sont des parametres constants tels
que : ¢ = 0.4 etd = 0.6. P. est la puissance
consommeée par le turbocompresseur et donnée
par la relation :

: 1

P.= —(=P.+ 1P, ©)
Pour faire tourner le compresseur, la turbine
permet de récupérer 1’énergie fournie par les
gaz a I’échappement et la réinjecter a 1’entrée
du moteur.
La puissance fournie par la turbine est donnée
par cette équation

N
P, = Wthmeﬁt(l - <p_) )

T

)

ou 7} et p, sont respectivement la température
et la pression a I’échappement, 7, = 0.76
est le rendement de la turbine. W; =
%N NeyiVs est le débit massique du carburant
dans les cylindres. I¥; est controlé par vs. La
donnée nécessaire pour assurer une combustion
complete est le débit d’air. La masse d’air en-
trant dans le moteur est un mélange d’air frais
et de gaz briilés, le débit d’air en provenance du
compresseur I, peut étre mesuré (en utilisant
un débitmetre massique en amont du compres-

seur).

Remark 2.1

En réalité, les débits aspiré par les cylindres
sont contdler en agisant sur les surfaces d’ou-
verture des vannes A.q. et A,g. Dans cet ar-
ticle, les débits sont directement controlés et les
surfaces sont déduites a partir de (4) et (5).
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3 Modele flou du moteur diesel sous
forme T-S

Considérons X1 = Pis X2 = Pg, T3 = Pcs uy =
Wi, ug = Wy et uz = vs. Notons : a; = EL,

Vi
_ 1 1 _ RT: —
61’ - ﬁ‘/dm’ Oy = Ve ? 61 - nmnthTx et
—6
ay = L]V?”Lcyl.
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Le systeme non-linéaire (1) devient :

Ty = —0;Bin, Nxq1 + auy + p1(21)X3
To = gz fin, NX1 — 01 — Qg Ug + agarug

T3 = —CpXg + p2(22)uz

®)

Les fonctions non linéaires sont données par :

Loy = cuBull — (jj—zm

€))

Le systeme non-linéaire (8) peut étre €crit dans
I’espace d’état tel que :

p1 = Oéiaci(x_l)#—_l

Pa

Di Di Wi

br | = Alx1,22) | P | + B(z1,22) | Wa

P, P Us
(10)

Les non linéaritées p;(p;) and ps(p,.) sont sup-
posées bornées.

Dans cet article, Le débit dans la vanne EGR et
le débit de la turbine sont directement contrdlés,
ce qui implique n = 2 non linéarités et r =
2" = 4 sous modeles linéaires.Le modele flou
du systeme moteur diesel s’écrit :

Regle 7,

Si p1(t) est Fip et pa(t) est Fio Alors

x(t) = Aiz(t) + Byu(t) (12)
y(t) =Ciz(t), i=1,..,4
ou z(t) € RN" est le vecteur d’état, i = 1,...,7.
r est le nombre de regles, F,; sont les fonctions
d’appartenance des ensembles flous, u(t) € R™
est le vecteur des entrées, y(t) € R? est le
vecteur des sortie. A; € R"*", B; € R"*™.
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p1(t) and py(t) sont les variables de prémisses
qui sont des fonctions des variables d’état. A
chaque régle est attribué un poids w;(p(t)) qui
dépend du vecteur p(t) = [p1(t) p2(t)] et du
choix de I’opération logique.

uh(ﬂ(t))

HFﬂ (p;(t

=1, vt

(13)
Dans notre cas, x; et o correspondent aux sor-
ties mesurées, ce qui rend possible 1’utilisation
des fonctions h;(p(t)) pour I’estimation d’état
et la commande.
On obtient :

E:h

t){A;x(t) + Bu(t)}

(14)
Posant :
Jf(t) — [ Di Dz Pc ]T et u(t) =

T ) ) .
[ Wy Wi ] , les matrices d’état, de sortie et
de commande deviennent

[ —a;BmuN 0 P1
A3y = Oé:zﬁg%N 8 0 |,
I —Ck
*OaﬂﬂlvN 0 p1
Aoy = | a@zBimyN 0 0 |,
0 0 —Cgk
I (67 0 0 T
Bifioy = | —0x —0n agay |,
A B
(67 0 0
Bi{374} = Qg  —Qyp Qgaf |,
0w 0
1 0 0
¢= [ 010 } '

La loi de commande floue sera calculée a partir
du modele T-S.

4 Commande H., basée sur obser-
vateur

L’idée est de forcer les états de suivre les si-
gnaux représentés par un modele de référence.

En fait, la dynamique de la référence est donnée
par [10] :

i () = Ay, (1) + (1) (15)

ol z,(t) est la référence d’état, A, est une
matrice asymptotiquement stable, r(t) est la
référence. x,.(t) représente, pour tout t > 0,
une trajectoire souhaitée de x(¢). Donc, I’objec-
tif est de concevoir un contrdleur floue basée sur
un modele TS stabilisant le systeme flou (14) et
fait converger ’erreur de suivi z(t) — x,.(t) vers
z€ro.

La section suivante est consacrée a la synthese
d’un observateur floue basée sur H,,. En ef-
fet, la puissance du turbocompresseur n’est pas
mesurable, I’observateur d’état pour le systeme
(14) est de la forme :

R, : Sipi(t) est Fy; et Si po(t) est Fy;, Alors
i(t) = A& (t) + Bi u(t) + Li(y(t) — 9(t))
i=1,2, .7
(16)

ou L; est le gain de I’observateur pour la 7¢me
regle flouet gy = C'z(t).
L’ observateur flou est représenté comme suit :

= Z#i(z)
{Ad0a(0) + Bi(t)u(t) + Li(y(t) — (1)) }

a7

L’erreur d’observation est définie par :

e(t) = z(t) — &(t) (18)

On obtient

é(t) = a(t) — &(t)
=33 ) A — LiCle()
i=1 j=1

(19)

Le signal de commande est donné par :
R, : Sipi(t) est Fy; et Si po(t) est Fy;, Alors

u(t) = K;[z(t) —z.(t)], j=1,2,...,7
(20)
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A partir de (20), le controleur flou global est
donné par :

u(t) = Z pi(2) K5l (t) — 2 (1)] 21

En intégrant la dynamique de I’erreur d’obser-
vation et la dynamique de la référence, On ob-
tient le systeme augmenté suivant :

B() =Y ) w2y (2)[AyE(t) + Evb(t)]
i=1 j=1
(22)
ol

) A; — LiC; 0 0
0 0 A,

e(t) . 0

= | at) |, o=[r@®)], E=|0

(1) I

Considérons la performance H,, pour traiter le
probléme de suivi de référence x(t) — z,(t)
comme suit [7] :

/Of{[x(t) — (O] QL (t) — ()] Yt <
o’ / 7 i adi

L’ objectif est d’atténuer 1’effet de @ sur z(t) —
x,(t) en dessous d’un niveau désiré p. () est une
matric définie positive. Considérons 1’état ini-
tiale, nous obtenons

(23)

(24)
ol P est une matrice de pondération symétrique
) 0 0 0
définie positiveet Q@ = | 0 @ —Q
0 -Q @

Le but est de concevoir un contrdleur flou (21)
pour le systtme augmenté (22) avec la perfor-
mance H ..
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Theorem 1 [10] Pour tout ¢ > 0,
pi(z(t))pi(2(t)) # 0, et i,j=1,2,....r, s’il existe
une matrice symetrique, définie positive, P =
PT > 0, une matrice @ et un scalaire positif p
tels que les conditions suivantes sont vérifiées :

OO |

AP+ PA;+ SPEEIP+Q<0 (25
P

Alors, la performance H., pour le suivi de

référence est garantie pour une atténuation p.

(25) doit étre écrit sous forme d’inégalités
matricielles linéaires. Alors, on considere la
fonction de Lyapuvov comme suit :

. pu O O
P = O pp O (26)
O O pss

Substituant (26) dans (25) et en utilisant le
Lemme de Schur, on obtient

S Sz O O
*  Spy Sag @)
. « Su P <0 27
* * x  —p’l
ou
511 = AlTPH + PHAZ' — ZZCJ — (ZzO])T
Sig = —(B;K;)T Py
Soo = (A; +Bin)TP22 + Poo(Ai+ B, K;)+Q

Sz = —PnBK; — Q

Ss3 = Al P33 + Py A, + Q

et Zz = PHLI'

Dans ce qui suit, I’inégalité matricielle (27) est
exprimée en termes d’LMI. Les conditions sont
résolu en deux étapes. (27) implique que Sy <
0.

(A; + B;iK;)" Pao + Poo(A; + BiK;) + Q < 0
(28)

Prenons X = Pyl et Y; =
équivalent a

K;X, (28) est

XAT + AX +BY;+YBl + XQX <0
(29)



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

En appliquant le Lemme de Schur, (29) de-
vient :

{H” X <0 (30)

X Q!

X and Y; sont obtenus par la résolution de (30).
En déduit K; = Y; Py avec Py = X 1.

En second étape, On remplace Py et K; dans
(27). Alors, (27) devient LMI. De méme, P,
Ps3 et Z; sont déterminés a partir de (27) et L; =
P Z.

5 Reésultats de simulation

Dans cette section et afin d’illustrer 1’approche
proposée, nous appliquons les résultats du
théoreme précédent au modele non linéaire (8).
Considérons le modele du moteur diesel avec
r = [pi,pe, Po)T le vecteur état du systeme et
U = Wi, Wy, vs)T le vecteur d’entrée.

Le modele de référence est choisi comme suit :

0 1 0
i (t) = 103 x 0 0 1| () +
-11 —-11 -10
ri(t)
ra(t)
r3(t)

r1(t), ro(t) et r3(t) sont des fonctions si-
nusoidales. Fig. 2 montre I’évolution des si-
gaux de commande respectivement, 1, le débit
via la vanne EGR en [kg/s], uy le débit a tra-
vers la vanne VGT en [kg/s] et ug la masse du
carburant injecté en [mg/cycle]. Fig.

3 montre I’évolution des variables d’état res-
pectivement : les deux pressions d’admission et
d’échapppement en [Pal] et la puissance du Tur-
bocompresseur en [IV]. Les surfaces effectives
des deux Vannes EGR et VGT sont données par
Fig. 4. Pour démontrer I’efficacité de notre ap-
proche nous comparons sur la méme figure la
trajectoire de la référence, la réponse en sortie
de I’observateur et la réponse du modele non-
linéaire. En examinant les résultats représenté
par Fig. 3, nous pouvons concluse que 1’obser-
vateur floue fournit une bonne estimation des
états du systeme. En outre, la commande pro-

0.04

0.03 g
57 0.02 5
001 g

0.03

0.025

0.02

0015 I I I I I I I I I
0

250

T T T T T T T T
200 q
150 N

)

=1

100 1

50

Figure 2 — Les trajectoires des entrées

posée permet d’assurer le suivi des trajectoires
des signaux de références.

La résolution des LMI précédantes en utilisant
LMI toolbox ” de MATLAB, ces matrices sont
obtenues :

5.3513 —0.0000 0.0149
P, =10* x | —0.0000 5.3513 0.0085
| 0.0149  0.0085  6.6949
[ 0.0161 —0.0041 0.0052
P, =10" x | —0.0041 0.8234 —0.6528
| 0.0052  —0.6528  5.5940
[ 1.8850 0.9974 0.0393
Py =10% x | 0.9974 1.9066 0.1302
| 0.0393 0.1302 0.0563
et
2.0847 —0.0000 —0.0000
Q =10* x | —0.0000 2.0847 —0.0000
—0.0000 —0.0000 2.0824

5.1 Travaux antérieurs

Tous nos travaux mené sur le systétme moteur
diesel utilisent le modele de Jankovic mis sous

192



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

16

! o pup—
7~ \\ v \\ P N L
\\ "\, R \\ ‘/
14l ~ N— ~
-=-p estimé
1.2} - — - préférence
-=-p
1 L L L L L L L !
0 2 4 6 8 10 12 14 16 18 20
t
x10°
25 T
2#—4""t\“"¢“‘§“-“‘¢-“=\\t .“"
- — -p,estimé
15} - — -p, référence
---p
1 L L L L L L L X
0 2 4 6 8 10 12 14 16 18 20
t
2500
bagbon S =TS~ P -1
2000+ \\\.l___—’: ~~:_-:’/ ~Js==2-
' — — -P_estimé
’ c
1500 (+ ---P référence
I
I -=-P

1000 i i i i i i i
0 2 4 6 8 10 12 14 16 18 20

Figure 3 — Les trajectoires des états

forme T-S. Le probleme de contrdle est un
probleme de suivi de références. Dans [6], le
modele de Jankovic a été validé en utilisant le
logiciel AMEsim et une loi de commande par
retour d’état pour le modele flou T-S du moteur
diesel avec placement de pdles et D-stabilité est
proposée.
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Résumé : c'est-a-dire la dynamique lente du moteur et le
La technique, dite downsizing, consistant a réduire la manque de couple & bas régime.

cylindrée du moteur tout en préservant ses performancesc(:),[,[e étude présente la conception de

devient aujourd'hui incontournable pour diminuer la A , \
consommation et ainsi que les émissions de G@s controleurs basés sur des modeles de type

l'industrie automobile. Dans ce contexte, de nombreuses Takagi-Sugeno (TS) [19] pour gérer le circuit
études se sont focalisées sur le controle du systeme d'aird'air d'un moteur essence turbocompresseé.
it e oo syabms orse o mopece ime oS lechnicue 2 déja été appliquee. ave
stratégie de commam):i/e basée suf les mod%lers) flous desucc.eS dans le me,me contex_te [13] et [14]
type Takagi-Sugeno. En comparaison avec les Larticle est organisé en 6 sections. La Section
approches existantes, la stratégie choisie permet del introduit le travail en présentant le systeme
traiter plus facilement les non-linéarités, d'alléger étudié et la stratégie de commande. La Section
(?_onsiQérabler_nent I'effort de calibration ainsi que 9 rappelle les éléments principaux concernant
limplémentation. la modélisation du moteur turbocompresseé.
Mots-clés : - Dans la Section 3, la conception de contrdleurs
Moteur essence, modélisation, turbocompresseur, f|5;g pour modéles TS est décrite. Cette

commande PDC, LMI. L. L ~

théorie est appliquée pour contréler les

actionneurs du circuit d'air dans la Section 4.
1 INTRODUCTION Les résultats obtenus avec I'approche proposée
1.1 Motivation sont reportés dans la Section 5. Finalement,
Aujourd'hui, les moteurs modernes doivent quelques conclusions et perspectives sont
affronter les défis souvent antagonistes. D'une données.
part, les normes d'antipollution imposées aux 1.2 Description du systeme et stratégie de
constructeurs  automobiles a  I'échelle controle
internationale deviennent de plus en plus Dans un moteur turbocompresse, ['énergie
séveres a cause des préoccupationscontenue dans les gaz d'échappement (sous la
environnementales. D'autre part, les demandesforme d'enthalpie) est récupérée pour
des automobilistes au niveau de performancescompresser l'air dans le collecteur d'admission
et de rendement sont toujours plus exigeantes.et donc augmenter le debit d'air entrant dans
Tous ces objectifs doivent étre réalisés a basles cylindres o.,;,. La Figure 1 illustre
colt pour les véhicules de série. Le [architecture du moteur essence
downsizing (réduction de la cylindrée du turbocompressé a 4 cylindres étudié. Il est
moteur) est une solution tres prometteuse pour fortement recommandé de ne pas descendre en
atteindre ces objectifs. Cette technologie dessous de deux niveaux de titre. Les
s'appuie sur l'utilisation d'un turbocompresseur paragraphes ne sont pas décalés. Les sections
permettant d'augmenter la densité des gaz aet sous-sections sont numérotées comme dans
I'admission du moteur et d'améliorer ses cette page. Un saut de ligne est disposé avant et
performances. Malheureusement, sa présenceapres les titres de section et sous-section.
provoque le phénoméne appelé "turbo lag",
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Papition permet de faciliter I'analyse de la stabilité, et
. d'implémenter I'ensemble avec co(t en calculs
réduit.

L'architecture de commande en couple du
moteur essence turbocompressé est présentée
dans la Figure 2. Le couple moteur est lié
directement a la demande du conducteur. Le
superviseur (non décrit dans ce travail) a pour
but de fournir des consignes (la pression
P_(man,ref)) en tenant compte de tous les
. compromis faits par les motoristes au niveau
o s de consommation, de polluants, d'agrément de
Figure 1 — Schéma du moteur essence  qnqyite, etc. Le schéma de contrdle proposé

_ lurbocompresse _ combine deux modules de controle séparés,
Le fonctionnement du moteur essence a la mais CoordonnéS, pour deux actionneurs.
stcechiométrie (dG0 aux contraintes de Puse

pollution) implique la relation directe entre le
couple moteur et la masse d'air enferme dans
les cylindres. Cette masse d'air, quant a elle, —
dépend fortement de la pression au collecteur w.
d'admission. L'objectif du contrdle du circuit
d'air est donc de contrdler cette pression. Les
pertes de pompage sont minimisées lorsque
I'ouverture du papillon est maximale possible
dans la zone de suralimentation [6]. En
l'occurrence, la pressiof,,,..; ¥ Pna.n €St
contrélée par la wastegate. Seulement a bass

pression, le papillon est activé pour contrbler 92 MODELISATION
la pression de collectew, ., .

Cuverture papillan

c floue du
papillon |

s o, [ P
- " Observateurdu !

Dy

uojsimadng

Commande floue de |

lawastegate

Farmature wastegate

Inajow np Jie,p swajsis

Powa

Figure 2 — Schéma général de contrble du
systeme d'air

Dans cette section, les équations principales
gouvernant le comportement du circuit d'air
Concernant le controle du systeme d‘air, sont rappelées. Pour plus de détails, le lecteur
jusqu’a présent, les lois de commande peut se référer a[5], [7], et [16].

proposées dans la littérature restent 2.1 Dynamiques de I'air aux collecteurs
majoritairement basees sur des Versions pang cette partie, nous cherchons a modéliser
linearisées du modele non lineaire ([3], [4] et |es pressions dans les collecteurs d'admission
[11]). Linconvenient persistant de ce type de ot ¢'échappement. Pour cela, ces collecteurs
controleur est que le compromis entre la ggont supposés a volumes fixes et
performance et la robustesse dans toute lajndéformables et ol les  conditions
plage de fonctionnement du moteur est thermodynamiques sont supposées

difficile a satisfaire De plus, l'effort de homogénes. De plus, la variation de
calibration est tres colteux car les contrbleurs température (i.eT = 0) est négligée, alors le

d0|ve_nt €tre regles pour chaque Po.'nt de modele deemplissage-vidageroposeé par [9]
fonctionnement. Seule une stratégie de A e

. X peut étre utilisé.
commande basée sur le modele peut permettre . .
de surmonter ces limites. Dans ce travail, nous La dynamique de la pression dans le collecteur
adoptons un modéle similaire a celui de [17] d'admission est déduite a partir de la relation
qui propose une planification de trajectoire et des gaz parfaits :
une linéarisation par retour d'état. Dans notre
cas, une commande basé sur un modele TS
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. RT, .. niveau de masse dair enfermee dans le
Bnan = (Pyap — Doyt) (1) cylindre lorsque la wastegate agit. Pour régler
e ce probléme, il est possible d'introduire un

ou la pression?,..,. et la températurd,,., terme de compensatiomn,,,. Le débit

sont mesurées par des capteurs dans lecylindre devient donc
collecteur d'admission. La commande de

papillon est la secton douverture p_, = (,,, +ﬂﬂyp:)nc"’f; an Yoy gaﬂ

Upan = 5,0, L€ debit a travers le papillon man 5)
D,., est calculé par I'equation Barré de Saint- | ‘objectif est de reconstruire I'état du systéme
Venant  Dpup = tyanPpap(TLay) (voir x =[xy 5,]7 = [ o AT, ] en  supposant

ANNEXE). Ce modele de débit papillon est
utilisé pour développer un observateur de débit
d'air cylindre D, (Sous-section 2.2) et pour
contréler le papillon par la suite.

que le terme de compensatiﬂinm: ne varie
pas beaucoup (i.e. An,,; =0), nous
aboutissons au modele de référence

x

De la méme facon, la dynamique de la 1= @man (Dpap — (Moo + x2)

pression a I'échappement s'écrit : x, =0 (6)
_ ach .
Psch - v [Dﬂdm - Dachj (2) ol a s ETman etﬁ Vopr N )
: man =7 " SlWBman = o 0

OU Dygy £ Doy + Digry le débit d'admission | 'observateur adaptatif du débit d'air cylindre
et D ;£ D, + Dw le debit d'échappement. est donné par [15]
Nous avons donc

RTﬂsh
seh Vqrh [D

.ff:-‘j_: amﬁn[ﬂ‘pﬂ'p — (M, T %5)
_ sy 7
eyl +Dcrzrb_ﬂt_ﬂwg) " ﬂmnﬁman :{i[ 1 IJ ( )
(3) K = Ko (% - y)
ol le débit traversant la wastegaly,, est ~ ou K;, K, sont les deux gains constants a
calculé par I'équation Barré de Saint-Venant calibrer.

Dyg =, P, (IL), avec u, £5,. la Par ailleurs, le moteur essence doit fonctionner
section d ouverture de la wastegate. a la stoechiométrie pour la raison

d'antipollution. Le débit de carburant injecté
1

B

?‘J‘lﬂ?iﬁmﬂ?'!

2.2 Modele de remplissage du moteur

e . eut déduire don@ ==D .
Le débit a travers de la soupape d'adm|SS|onp carb 4, 7 evl
D.,, peut étre calculé par [10] 2.3 Modélisation et performance du

P V..N turbocompresseur
— eyl man " oyl 8
Deyt = Nvor RT,.. 120 (4) La vitesse de rotation du turbocompresseur est
modélisée en utilisant la seconde loi de

Avec n,, =4 nombre de cylindres et Newton:
Myt = TI,,E.L v Brgn) rendement P
volumétrique donne par une cartographie. Pour d_(_;m,n,rgb) =P —P (8)

un moteur essence turbocompressé a turbine a

géometrie fixe, ce terme est également | g puissance consommée par le compresseur
dépendant du fonctionnement de la wastegateegt -

[1]. En fait, plus la pression a I'échappement

est importante, plus les gaz résiduels restent 1 E';:—l

abondant, limitant le flux d'air entrant dans le Fe=DeCpeTamy —| 1L —1 9)
cylindre. Une incertitude réside donc au i
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ol II, = Peural =1 est le ratio de pression du 2.4 Réduction du modéle pour la

Pram 3 . e commande
compresseur. La puissance délivree par la
turbine s'écrit En regroupant toutes les équations (1),
~ (3), (8), (9), et (10), nous avons les

1y . . R g

P = DC.T 1—TI ¢ 10 trois dynamiques gouvernant le systéme d‘air
t = Yilpedeon: i ( ) A
du moteur essence turbocompressé

: : -y
ouTl, épj; < 1 estle ratio de pression de la [ % Ghb”fb) = DG Tecn™: (1 - Hr_tt)
turbine.

¥l
Les caractéristiques du compresseur et de la —,{::EL:MTWM—(HE}'E — 1)
turbine sont souvent présentées sous forme de; c
cartographies. En général, nous disposons tres p = RT cn (D, + D -D,-D,,)
peu de points de fonctionnements de ces deux [ =* p_ “Te¥t o Tearr e g
composants (qui sont fournis par les | . RT o
fabricants), des phases dinterpolation et Bran = 7 [D'pﬂ*p - Dc:»-:)

~

man

d'extrapolation sont indispensables afin
d'obtenir des cartographies complétes. (11)

Compresseur La prise en compte des Ce modele peut permettre de tenir compte des
variations des conditions thermodynamiques Parametres tels que la temperature et la
en amont du compresseur se fait en corrigeantPression du turbocompresseur. Pour simplifier

les variables (débit, régime) du compresseur la mise en ceuvre de la commande, nous
[16] adoptons la meéthodologie de réduction du

modele (11) utilisée dans [17]. L'objectif est

D _p ﬁ,‘lm de préserver les dynamigues dominantes ainsi
CEeT Py gue les couplages. L'idée principale est de
N, négliger les dynamiques rapides des pressions

Nibcor = F— par rapport a la dynamique lente du
v ams turbocompresseur suivant la théorie de

Ces grandeurs sont obtenues via des perturbations singulierefl2].
cartographies qui ne peuvent étre fournies pour

; - PERVET ( d /1 .
des raisons de confidentialité. o (: fmbﬂﬁ;wbo)
a &
Turbine De facon similaire, les i
. ., . —_ |4
variables corrigées de la turbine [7] ! = Dl Teente | 1 — 10,
( [ . ol
| 1 o i)
D - '\Il [Tgch.-"'rTr_rsf] _DE}'iC’p,GTﬁmb _(Hs}ﬁ: _ 1)
t.oor Tt \ c
4 (_Pach"fpr_raf) (12)
N — Nrb Dcy:+Dcarb: Dr+Dwg
rb,cor ll— . , . .
{ |[Tacth:_mf) La premiere equation Ic,iu systeme (12)
N représente le bilan d'énergie entre le

ou P,,set T, sont les conditions compresseur et la turbine et qui donne la

thermodynamiques de  référence  pour dynamlque dominante dq systéme.' La seconde
linterpolation et  I'extrapolation  des €quation représente le bilan massique des gaz
cartographies. De méme que précédemment,dans I(,es 'co'IIecteurs a laquelle les dynamiques
ces grandeurs cartographiées sont sont négligees.

confidentielles.
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3 MODELISATION ET {YH <0, iefl,...,r) (15)
STABILISATION DES Y;+Y;<0 1=i<j=<

SUGENO

3.1 Modéle flou Takagi-Sugeno Dans le cas de poursuite de trajectoire, une

structure intégrale est ajoutée pour annuler
De maniere générale, il est possible d'obtenir I'erreur statique.
un modele TS de la forme [19], a partir d'un

modele ngn linéaire affine en la commande : i(8) = EZ hi[z[r])}%.[z(t])(ji B EE-F:]-):F(::]
x(r) = Z }tE[z(tj)[Az:r[:t] + gzﬂ(tj) i=1 j=1
=1 +B}rr.=|f (16)

y(£) = ) h(=z())Cx(t) -
Z‘ 13) ¥ = E h(z(0)Cx(x)

ou x(t) £ R™ le vecteur d’'états du modele, i=1

u(t) eR™le  vecteur des entrées, avec le vecteur d'état étendu
¥(t) € R¥ le vecteur des sorties, 2(t) € R® (1) — [2(0) x5 (D]7, v,.r(1) la consigne,
le vecteur des prémisses dépendantx (). Xime = Vyer(£) —v(t), et les matrices du

Les matrices A, e R™", B, € R™™, . ] _ A o1 _ B.
C,eR™™ i{ef{l,...r} représente un Modele etendud; = [_E'E_ 0]’ B; = [02]1
ensemble de = 2*¥ modeles linéaires ok est - 0 .
le nombre de non-linéarités dans le modele. & = [C; OlandE = [[] Par consequent, la
Les modéles TS sont composés d’'un ensembleloi de commande PDC étendue est donnée
de modeles linéaires interconnectés par des .
fonctions  non linéaires (dites fonctions 5(4) = —Z hi(z(8))Fx(8)
d’appartenancei;(z(t)) positives et verifiant —
la propriété de somme convexe -

=1, (2(£)) = 1. Pour obtenir ces fonctions _ _Z R (zO)E — L1
d’appartenance, nous avons choisit ici £
l'approche de découpage en secteur non

linéaire [18]. Pour prendre en compte la saturation des

o . actionneurs et le réglage de performance des
3.2 Stabilisation des modeles flous TS controleurs des contraintes LMI sont ajoutées
Pour la stabilisation systtme (13), nous [TanakaetWang, 2001].
utilisons une commande appeléearallel

Distributed Compensation (PD@31] : 4 APPLICATION: CONTROLE
e DU SYSTEME D'AIR DU
u(t) = —Z hi(z(t))Fx(t) (14) MOTEUR ESSENCE
=1 TURBOCOMPRESSE

Les matrices de gaifi; € R™" sont alors & 4.1 Contréle du papillon
Elze(;[]ermlner pour assurer la stabilisation globale ilmp = £i( szmp — Al jxlm

Theéoreme [18]:.Le modéle flou TS (13) avec ;. = i{u Y — Xy )
la loi de commande PDC (7) est globalement %% Tpgp = 0 TFaP
asymptotiqguement stable s'il existe une matrice ., _ .

i P—
X = x7 > o telle que: nar
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avec véhicule série, elle peut étre approximée par
or o T : :
fi( )= %D’ﬂﬂﬁ[xlﬁﬂw’xi_ﬂﬂw) une fonction Imgaweq du ratio de pression du
pop man compresseur, i.e.N, =A,Il_+ B, [17],
— man H
L0 )= 20 —Dey (%1 pap X2 pap) comme le montre la Figure 3.
N w107
Dans ce modele, nous tenons compte la 4 A A
dynamique du papillon avec le constant de S _ S
temps 1, =0.02s et ¢, représente P T N S 0 . . . N

I'ouverture en pourcentage du papillon. Le
modéle non-linéaire, affine en la commande a

=
T
<

Nturbo? [rad/s)?]
+

cette quantité n'est pas mesurable sur les

i e e s B gt Fs)
— R 2 &* 2750 rpm
fi=fi()=f, i€{12}. Le modele flou TS o + o
correspondant a donc 4 modéles linéaires. ) O O O O O s
Avec la structure intégrale, I'état du systeme TeteE Ry o o
, o roo. 2
étendu devientx,,, = [%; %, %, yap]  OU Figure 3 — Vitesse au carré du tulha en
Xint map — 'P?'J"I.E?'!_?"E_f — Foen € les matrices du fonction denc
modele flou TS augmenté sont données par : Aprés quelques transformations du modéle
—f , la dynamique du turbocompresseur sous
2 ) 12), la dy que du turb p
- 3 la forme de représentation d'état est obtenue :
Al_"-“l].“ - ':' - D (1
] Tpap II_= II.4+g,(")u
_1 |:| '] gl[:nc] :+g‘[] WE 7)
~f; £ 0 - romt
Az pap — | 0 1 0 gl(nﬂj::(l_HtL )_%(HE L. _1)
Tpagm __...t' ’
-1 0 0 . - N
_F f;l_ 0 Bz L.J =0 (1 _J'lt ! )q}wgultj
A _ 1 ou les paramétreta,,a,, a;) sont positifs et
dpap o T 0 dépendent des conditions environnementales
1 5’“’ 0 (voir Annexe). Comme dans le cas de contréle
£ £ 0 du papillon, les deux non-linéarités du modele
2 11 sont bornéesy, = g,(:) =g, i € {1,2}. Une
Aspap = | 0 T 0 structure intégrale est ajouté, I'état du systéeme
a , . — T N
_1 o o étendu devientx,, (t) = [II, x,,..,,] oU
0 17 Xipewy =1 .. — 1, €t les matrices du
_ _ _ |1 modele flou TS sont données par :
El_ﬂﬁ'ﬂ_gf_ﬁﬂ'ﬂ_ﬁﬂ_ﬂﬂ'ﬂ_84_ﬂﬂ'ﬁ_ T
pap _ _[4 O
I:I "‘11_\-'..'3' _‘42_\'.-'3 - |::1 D:I
Cipep = C2.pap = Capap = Capap = [1 0] i —a _ [El 0}
4.2 Contrdle de la wastegate S A S
. . g2
Dans I'équation dynamique du Biwg =B3uwg = [_n ]
turbocompresseur (12), I'état du systéme est la
vitesse au carré du turbocompress¥gyr. Or, By g = Bayy = 02]
C

¢, wg Ci‘_w{.r = Cﬁ_wﬂ = Lawg T [1 D]
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5 RESULTATS DE
SIMULATION

Dans cette partie, la stratégie de contréle

proposée est testée avec les données d'un

moteur essence 1.2| turbo a 4 cylindres. La
partie de modélisation est développée sous la
plateforme LMS Imagine.Lab AMESifnavec

la possibilité de cosimuler avec
Matlab/Simulink® ol la stratégie de contrdle

est implémentée. Une série de test est realisée

pour montrer les performances des contréleurs.
5.1 Test 1: Rejet de perturbation

La Figure 4 montre le suivi de pression en
fixant le régime du moteur a 2000 tr/mn. A

basse pression, la wastegate reste quasiment

fermé. Cela permet une vitesse maximale
possible du turbocompresseur et donc une
amelioration nette au niveau de temps réponse.
Maintenant, si nous rajoutons les perturbations
statiques aux instants 5s et 7.5s.

S

Pran SP
Pman mes

b

o
=)

Intake Manifold Pressure (har)

[=]

0B K
) s s N S S SN N N
] 1 2 3 4 5 G 7 8 9 10
Temps is)

100 . —
_&® e
£ ! é 5
2 B0t 1 : :

z B0 Wastegate : : :
£ Panill : : :
E A0E apifion { B R
3 : ; -
< 2 N

7 g 9

Temps (s)

Figure 4 — Suivi de trajectoil®, .., et
commandes associées.

=

i

Proan ref
Pman mes

o
=)

o
m

Perturbations |7

o o
oo

Intake Manifold Pressure {bar)

(=]

i I i i
1 2 3 4

o

g
Temps is)
Figure 5 — Rejet de perturbations
statiques
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La Figure 5 montre bien la capacité de rejet de
perturbation du contrbleur.

5.2 Test 2: Variation du régime moteur

2

181

161

=
T

a
T

Pression Collecteur (bar)

—Pmanref | |
— = -2500 tr‘mn
3000 trimn
—=—"-3500 tr‘mn ||
B : 4000 trimn
0.4 i I i i L i T T T
0 g a

=
=]
T

=
m

10
Temps (s)
Figure 6 — Suivi de trajectoire d,,,,
en fonction dev,

Pour cet essais, le régime du moteur varie sur
une large gamme, a haut régime, la commande
est souvent tres agressive, nous pouvons regler
le taux de décroissance pour éviter les
dépassements. La convergence est assurée
pour tous les régimes.

6 CONCLUSIONS

Cet article présente tout d'abord un
modéle complet du circuit d'air d'un moteur
essence turbocompressé. Le modéle est ensuite
simplifié en négligeant les dynamiques rapides
des pressions dans les collecteurs. Aprés avoir
été mis les modéles sous la forme de
représentation de type Takagi-Sugeno, une loi
de commande PDC avec structure intégrale est
utilisée pour controler le papillon et la
wastegate. Les résultats de simulation
montrent de bonne performances de Ila
stratégie proposée avec un effort de calibration
tres limité sur toute la zone de fonctionnement
du moteur.
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Résume de grandes dimensions consistent en un en-
o _ . semble de sous-systemes interconnectés, ce qui
L'objectif de ce papier concerne la synthese d'un al-

gorithme de controle-commande pour une classe de peuF les eI0|.gner le_S uns des au_tres’ c eS,t pour-
systémes continus de grande dimension dans le cas ou lesquoi nous introduisons la notion de réseau

fonctions de mesures et de contrble sont distribuées sur ; : ; P
des organes de calcul pouvant étre partagés avec d’autresde communication pour les relier, et ainsi les

applications et connectés sur un réseau de communica- données sont échangées entre les differents

tion numeérique. Dans un premier temps, le systéme non- gq5-systémes via le réseau de communication.
lineaire de grande dimension est décrit par un modéle

flou Takagi-Sugeno (TS). Ensuite, en utilisant une fonc- Bien que, I'utilisation de ces réseaux pour la

tionnelle de Lyapunov-Krasovskii floue, des conditions commande décentralisée présente des avantages
suffisantes de stabilité asymptotique du comportementdu s , .
systéme commandé en reseau decentralisé (DNCS), sont€N termes de flexibilite et de réduction des

développées et formulées en termes d’'Inégalites Matri- co(its d’installation et de maintenance, Il est

cielles Linéaires (LMIs). Enfin, pour illustrer I'approche . ) ; PR
proposée, un exemple numeérique et des résultats desimu-blen connu qu'en raison de la limitation des

lation sont présentés. ressources du réseau, les retards induits par le
réseau et les pertes de paquets de données a

. - . , ; travers le réseau pourraient dégrader les per-
décentralisée, Systeme commandé en réseau (NCS)’formanceS du DNCS et le conduire a Iin-

fonctionnelle de Lyapunov-Krasovskii, Inégalités Matri-
cielles Linéaires LMI.

Mots-clés : Systeme de grande dimension, Commande

stabilité. Le retard de communication, qui a
des caractéristiques variant dans le temps, est
'une des questions importantes a prendre en
considération dans I'analyse et la synthese des
NCSs [6], [7], [9], [10], [12], [13] et [14].

1 Introduction

La commande décentralisée des systemes de
grande dimension ( appelés aussi systemes in-Ce travail rentre dans ce cadre et vise a
terconnectés dans certains ouvrages) a recudévelopper un contrbleur décentralisé par retour
une attention considérable au cours des trois d'état qui prend en compte les problemes du
dernieres décennies en raison de ses di-retard dans la transmission et la réeception des
verses applications tels que les systemes données et les pertes de paquets d’information
électriques, les systemes aéronautiques, lespour les systemes de grande dimension. En uti-
réacteurs nucléaires et les systemes de contrdlelisant une fonctionnelle de Lyapunov Krasovs-

de processus, etc. En effet, diverses tech- kii floue, nous proposons des conditions de sta-
nigues de commande décentralisée utilisant les bilisation par une commande décentralisée en
inégalités matricielles linéaires (LMI) ont été réseau de type PDC (Parallel Distributed Com-
recemment etudiées [2, 3, 4, 11]. Les systemes
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pensation ), formulées en termes des LMIs, in- s’écrire sous la forme :

cluant les problemes liés au retard et aux pertes vy

d'information dans le réseau de communica-  i;(t) = > hi(0;(1))[Alx;(t) + Blu(t)
tion. =1

7 2)
La structure de ce papier est comme suit, la + > fij(z; (1))
deuxieme partie consiste a décrire le systeme =1
et préliminaires . La troisieme section donne Qy
les principaux résultats, en décrivant la stratégie Yot
de commande en réseau et en présentant les WL (6;(t) = M7
conditions de synthese de la loi de com- =1 vi(0:(1)) 3)
mande décentralisée qui fonctionne a travers ! -
un réseau de communication. La 4eme section ul6:(t)) = ql:[lF (0:4(1))
est consacrée a la simulation. Finalement une
conclusion est donnée dans la section 5. Ou F,(6;,(t)) est le degré d’appartenance de
_ . ] 0iq(t) dans I'ensemble flou},. nl(6;(t)) est
Notations W + W est noté pasym(IV). la fonction d’appartenance pour chaque régle

floue, qui représente le degré d’appartenance

* A c =, . .
Le symbole (*) représente les entrées normalisé, et satisfait

symeétriques dans une matrice.

2 Description du syseme e
préliminaires

l _ . . lip. _
t 0 < hL(6;(t) <1, forl =1,2,....,m, ;hi(él(t)) =1

On suppose que le systeme S sera commandé a

. R : . travers un réseau. La Fig. 1 suivante représente
Soit un systeme flou de grande dimension S la struct de | d i q

composé par J sous-systemes interconnectes@ Structuré ce la commande en reseau daun
Sii=1,2,..., J. Lei®™ sous-systeme flog, systemes; induisant des retards, at.; est le

est décrit par le modele flou T-S suivant : retard entre le capteur-controleuref; est le
retard contrdleur-actionneur. On suppose que le
temps de calcul du contréleur pour chaque sous-
systeme peut étre absorbée sgit ou 7.

Si 0y (t) estr), est..sif;y(t) est,

J
Alors ;(t) = Al;(t) + Blui(t) + Y fij(a; (1))

1)

Echantillonneur

Bloqueur
d'ordre zéro

Pouri = 1,2,....,J,1 = 1,2...,r;, oU x;(t) e ———— '
représente le vecteur d'état,(t) est le signal . S —
d’entrée de commande eyl et B! sont des P

H ~ H 1 _ Contréleur Ill(t)
matrices réelles constantes de dimensions ap

propriées,d;;(t), 0;2(t), ..., 0i4(t), sont les va-

riables de prémisse pour chaque sous-systémeFigure 1 — Schéma du systéme commandé en
Si, Fl(¢ = 1,2,..,9) représentent les en- réseau pour chaque sous-systéne

sembles flous linguistiques de la regle floue

et fi;(z;(t)) représentent les interconnections

entre le sous-Systenté et sous-systéms,, et Dans ce tr_avail, nous considérons les hy-
r; représente le nombre des régles floues dans lePotheses suivantes :
sous-systems;. En utilisant la défuzzification 1. Toutes les pairesdl, BY) (i =1,2,...,J

du centre de gravité, le systeme flou T-S peut etl =1,2,..,r;) sont stabilisables.[8]
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2. Linterconnection  fi;(z;(1)) sa- 3 Resultats principaux
tisfait les conditions suivantes
fij(x;(t) = Blfiu(z;(t))) et Dans cette section, notre attention sera focalisée
L1 (5 ()l fLllz; ()], ou fl = 0, sur la synthese d’'un controleur retour d’état
4i(i # j) est une constante positive Bf pour stabiliser le systeme. En effet, on sup-
est une matrice réelle avec des dimensions pose que les états du systeme (2) sont mesu-
appropriées. [8] rables pour réaliser une commande par retour
3. Les capteurs sont commandés par une hor- 9 €tat, 1& schema de commande de type PDC
loge, le contrdleur et les actionneurs sont SEra considére pour chaque sous systémiee
pilotés par des évenements. controleu\r flou PE)C glgbql en reseau_ qui cor-
) respond &; peut étre décrit comme suit :
4. Les données sont transmises dans un seul
paquet, soit a partir de la mesure ou de la !
commande et les variables d’état sont me- Z (st Kt = 7).
surables. . . ,
- _ En utilisant le BOZ, le signal d’entrée pour
5. Leffet _de la quantification c_iu s_lgnal et le chaque Sous-systenté pourt, < t < tyu
mauvais code de communication ne sont oct qonné par
pas pris en compte.
6. La commande réelle;;(¢t) pour chaque Zhl le( K —Tri)  (6)

sous-systeme est réalisée grace a un blo-

queur d'ordre zéro. — Retard induit par le réseau() : Le re-

Il est a noter que la période d’échantillonnage

d’un capteur est pré-déterminée pour la concep-

tion d’algorithme de contrdle, et donc le capteur

peut étre supposé étre commandé par une hor-

loge. Toutefois, un dispositif d’action ne change

pas sa sortie a partir du systeme sous le controle

jusqu’a ce qu’un signal de commande mis a jour
soit recu, ce qui implique que I'actionneur est
piloté par des événements.

Afin d’obtenir les principaux résultats de cette
étude, les lemmes suivants sont nécessaires :

Lemme 1 [5] Pour tout vecteur rée] et p, il
vient que

2Tp<CTZC+p"Z7p (4)

avecz >0

Lemme 2 [8] L'inégalité suivante est vérifiee
pour tout vecteur réel; € R"

m T m
> vl ZVZ <mZV ;. (5)

=1
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— Paquets perdus :

tard induit par le réseau existe toujours
quand la donnée est transmise a travers
le réseau, et évidemment, il possede deux
bornes supérieure et inférieure. Alors, une
représentation claire du retard serait une
fonction variant dans le temps. Une hy-
pothese naturelle de; peut &tre faite comme
suit :

0<Tmi < 7wi <Twmii (7)

Leffet de paquets per-
dus dans la chaine de communication peut
étre décrit par le fait que le BOZ n’est
pas mis a jour pendant lintervalle de
temps de cet évenement, qui est désigné
comme I'échantillonnage vacant. Ainsi, I'ef-
fet de perte de paquet dans la transmission
n'est qu'un cas ou le délai d’'une période
d’échantillonnage est induite dans linter-
valle de la mise a jour du BOZ.

terr — te = (Opit1 + DA+ Thigr — s (8)

ou h représente la période d’échantillonnage
etoy; 11 est le nombre de paquets perdus ac-
cumulés dans cette période. En utilisant les
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équations (2) et (6), le sous-systeme com-

Applications (LFA 2013), 10-11 octobre 2013, Reims, France
Théoreme 1 Soientles scalaireg; > 0, 17; >

mandé en réseau en boucle fermée peut &tre 0 , (1, /12, €t uz, le systeme en boucle fermée

écrit comme suit :

(40 = A0+ Bt =)
+ f(zi(t)), te <t <tppa
Avec

A(t) =D _miAl, B(t) =) IBj,
=1 =1

(9)

H(t) = B(t) )_hi K],
s=1

ﬂmm=§MQM@»

SOlt?]Z(t) =t —1t, + This tr <t < tk+1,

alors

Tmi < T < 1i(t) < (63 + 1)h + Tiga
(10)

Oug; représente le nombre maximum de pa-

(12) est asymptotiquement stable , s’ils existent
des matrices symétriques positivies Q1;, Q.

Qsi, Zvi, Zs; et des matricess; inversibles, et
Y?, L;, W; avec des dimensions appropriées,
vérifiant la condition suivante :

@1y Proijis Zui +1rilie —0riWh
*  DPogijis nriloi - —nriWai
* * Q2 — Z1; 0
Bo=| * * : @si (13)
* * * *
* * * *
* * * *
| x * * *
Di5u Ly Wi GO
Dosijis 2 Wa 0
0 0 0 0
0 0 0 o0
s 0 0 o |<0
* Des; 0 0
* * By 0
* * * (i)ggl‘j i

quets perdus dans les periodes de mise a jour,

Mi = Tmi et N = (6Z + 1)h -+ Tar- Ainsi
nous obtenons a partir de [1] que

ni(t) < ha;

Comme> 2 ,[tk, tk+1) = [0, 00), alors nous
avons

()

i < ni(t) < na, (11)

A(t)x;(t) + H(t)x;(t — ni(t))
+ f((t))
zi(t) = ¢i(t),t € [to — 12, to]

(12)
Ou ¢;(t) peut étre considérée comme la condi-
tion initiale du systeme de contrdle en boucle
fermée. En prenant en compte (11), il est
a noter que le NCS (12) est équivalent a
un systeme avec un retard a temps variant

D114 = Qi + Qai + Qs — psym(ALGy) — Zy; — i,
B0 = —paGT(AYT — 1y B + nyi(— L + Wha),
Pogits = —N2Sym(37lzyis) = (1= hai)Qui

— i (Sym(La; — Wa;)) — p31,

Dy5 = P + 111Gy — psGT (AT,

‘i)25ijls = ,UQGi - ,UB(Yz‘S)T(Bg)T
P55 = 03 Z1i + 0oy Zoi + pasym(Gi) — p3l,
Poei = (—12imri) " Zai, Prri = (—n2inwi) ™ Zas,

J
Dggij = (3']2 SlIBylI*)
=1

3

Nei = i — i, fiy = mazi fl;, | Bill = mazy|| B

avecY; = K:G.

Dans cette section, nous allons présenter notre

résultat principal basé sur I'analyse de la sta-
bilité du systeme en boucle fermée contrdlé en
réeseau (12) en utilisant une fonctionnelle de
Lyapunov-Krasovskii floue. D’ou, la synthese
des controleursK; est développée par le
Théoreme suivant :

Preuve 1 Soit la fonctionnelle de Lyapunov-
Krasovskii donnée pai/ Yl 0=
1,2,...,J, ouw; représente la fonctionnelle de
Lyapunov-Krasovskii correspondante au sous-
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systemes;. Chaquev; est définie comme suit :

V; (t)

=] () P;(t) + /t 2l (8)Q1iwi(s) ds
t—n:(t)
t
—|—/tn” xiT(s)Qgixi(s) ds

t
+/tn2¢ xl (5)Qzixi(s) ds

0 t
+ M / (/ x7T (V) Zyii(v) dv) ds
—Mi t+s
—M1i t
+ N / (/ J',‘;I(U)Zgijﬁi(v) dv) ds
—N2i t+s

(14)

b (t) < 2d] (t) Piai(t) +
— (1 — hm)x

— Tl (t

T
€Z;

+x;f

z] (£)(Q1i + Qi + Qsi)xi(t)
Lt = mi () Quimi(t — mi(1))

— 1) Qi (t — n14)

t—m2i) Q3 (t — 12:)

) (15 20 + 17 Zai )i (t)

t

A/_\
~—

&7 (v) Zysis (v) dv
—Mi
t—n1s
Z‘T (U)Zm],‘z (’U) dv

—Mn2i

— M

—

— Mhri
(15)

Notonsyr; = (1) — zi(t — 1), oy = @t —
i) — zi(t — mi(t)) etebs = x;(t — ni(t)) —

x;(t — n2;), en appliquant I'inégalité de Jensen,
nous trouvons

t
_nli/ il (v) Zydi(v) dv < =], Ziabr; (16)
t—n1s

D’autre part, en utilsant le Lemme 1 nous
avons :

t—n1i

20l L [
t—mi(t)
<mi(O)VT(4)L; Z5 LYW, (t)

t—n1;
+/ x?(a)Zlel(a) do
t—mni(t)

() dev

t—n1i

:ElT (a)Zzi;ti (a) da

(17)

< W (0L Z5 LYW (8) + /
t—n;(t)

et
t—n:(t)
— 2\I/7T(t)Wz .237 (Oé) da
t—n2;

< (m2i — mi(0)OT ()W Zs' W4 (2)

t—n;(t)
+ / i (0) Zogivs(a) dan

t—"n2i
t "]z(f)
< nuUT (W Zy, Wy, ()+/ il () Zosii () dex
t—n2;
(18)
D'ou

t—n1i
- nrz/

t=m2i
< (! () Zas (8) + s (OLiZ3* LT W40

+ U (Wi Za W W4(1)
+207 ()L [0 —T 1 0 0 0] W(t)

$?(U)ZQZ$Z (U) dv

20T (OWio 1 0 ~I 0 0 \Ifi(t)>
(19)
A partir de (12) et pour toute matrice de dimen-

sion approprieé€;;, nous avons I'equation nulle
suivante

2[zf ()G, + 2] (t -
X [a(t) — A(t)wi(t) — H(t)z(t —ni(t)) —

ni(t))Gy; + i (£)G3;]

fzi(t)] =0
(20)

oo L =[5 L5 00 0 0],

W=[WZ WL 00 0 0] eter-

[af (1) af (t—ni(t)) 2l (t—mi) @] (t—n2) @ (1)

Basee sur les Lemmes 1, 2, I'hypothese 1, et

I'hypothése 2, et en définissafit = max, f! L

et | B;|| = max||B!||, et soientGy; = mGz,

Goi = G, etGs; = 3Gy, avecyy, fiy, i3

des scalaires positifs, la dérivée (14) au long de

la trajectoire du systeme en boucle fermée (12)

peut s’écrire comme suit

J M ri 7

V= Zvl <3S SSTS Hleg

i=1j=11=1 s=1
Ul ()T Wy (t)
OU Ty, = B + Mo LiZ3; LT + oW Z5 W

7

Dr1ijis  Proits  Z1i + il Wi Pisg
* Dooirs NriLo; —nriWai  Pasijis
O, = * * —Q2i — Zu; 0 0
* * * Q3 0
* * * * [OXey
(21)
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D140 = Qui + Q2 + Q33 — sym(Gi D= Zy
J
— GG — Z Jig(as )T Z Jig (z5(1))
: =~
D945 = —(Al)TGzz GTBIK; 4 npi(— Ly + W),
Dogits = —sym(GELBIK?) — (1 — hgi)Q1i — GE.Go;
— 0pi (Sym(La; — Way)),
50 = P+ G, — (AHT G,
Dosijis = Ga; — (K7)" (B} G,
Bs5; = 03 Zvi + 02 Zai + sym(Gs;) — GL,G3;

Sous les conditions du Théoreme 1, une so-
lution est faisable si et seulement si la condi-
tion ®55; < 0 est satisfaite, ce qui |mpl|que que
G, est inversible. Définissong,; = G;*
GTPGZ’ le - G leGza QQl - G QQz iy
QBZ = Q3Z i le GT leGza Z22 =
G"Z5xG; Ly, = GTL;Gi, Ly = GTLyG;

Wy = GTW,G; et Wy = GTW,,Gy. En ap-
pliquant la transformation de congruence a (13)
par diag{G;, Gy, G:, Gi, Gi, Gy, Gy, G}, et en
utilisant le complément de schur, nous obtenons
T}, < 0. Par conséquent, nous avanéz(t)) <
0 si Al > 0, donc, le systeme (12) est asympto-
tiguement stable.

4 Resultats de simulation

Pour illustrer la méthode proposée, nous
considérons I'exemple donné dans [8], com-
posé par trois sous-systemes flotis i
1,2,3, comme suit, dans lequel chaque état de

ou Ne estle nombre de pertes de paqukis—
0.1, M1 = 1 y o = 0.5 et,u;g =0.9.

En appliquant le Théoreme 1, les solutions des
LMIs peuvent étre obtenues comme suit :

K! [—10.9839  —6.8409)],
K? [—2.9569 —1.6003], K3
[—1.3481  —0.6249)]
systeme S1,K;

pour le sous-
[—0.8492 —3.0854},

K3 = [-14386 —0.7997| pour le sous-
systeme S2, ef(} = [-1.2208 —18195],
K2 = L—2.8164 ~2.9984] pour le sous-
systeme S3.

Pour la simulation, les conditions initiales sont

T T
71(0) = [15 —1] ,2(0) = [-0.5 0.5] , et
x3(0) :JO 7 0.3]". L'évolution des variables
d’états des systemes NCSs et les entrées de

commande sont illustrées dans les figures 2, 3,
4 et 5 a partir des quelles nous pouvons consta-
ter que tous les états convergent vers zéro et les
retards introduits par le réseau et les pertes de
paquets de données sont générés aléatoirement
et sont montrés dans les figures 6 et 7. Par
conséquent, selon le Théoreme 1, le systeme
global flou de grande dimension en boucle
fermée composé de trois sous-systemes S1, S2
et S3 est asymptotiquement stable. Les résultats
de simulation sont conformes avec l'analyse
et soutiennent l'efficacité de la stratégie de

chaque sous-systéeme possede deux dimensionssynthese développée.

Les fonctions d’appartenance pour chaque état
sont montrées dans la figure 1 de larticle [8].
Les parametres liés au réseau pour chaque
sous-systemes; sont supposés éegal ah: =
5ms, le retard mimimumy,; = 6ms, le re-
tard maximums; 20ms et le nombre
maximum de pertes de paquets est = 3.

Les retards variables entre les capteurs et les
controleurs aussi bien entre controleurs et ac-
tionneurs sont générés aléatoirement tels que
MiIN(Toe; + Teai) = Thiy €IMAX(Tee; + Teai + (0 +

1)h) < m; et les pertes de paquets sont aussi
générés aléatoirement tel quenz(Ne) < 3,

e

| | | |
o 05 1 15 2
Time (5)

Figure 2 — Réponse de I'étatdanss;
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[y

02f ¢

Iy
01f- v

_________
_____

—01l

“02k

—03l

—04l

-05

Time (s)

Figure 3 — Réponse de I'étatdanss, .

08

o2l

-04

Time (s)

Figure 4 — Réponse de I'étatdanssS; .

a1 1uy(0)
05 o o —_—u0[]

L
25 3

Figure 5 — Trajectoires des signaux de com-

mandesu; ().

05
Time (s)

Figure 6 — Retard induit par le réseau.

Figure 7 — Pertes de paquets de données.

5 Conclusion

Dans cet article, nous avons présenté une mé-
thode de synthése du contrbleur flou de type

PDC pour le systeme de grande dimension com-
mandé en réseau en considérant le retard et les
pertes de paquets dans la communication en
réseau. Nous avons montré que le retard opti-
mal admissible dans le réseau et les gains du
contrdleur peuvent étre déterminés en résolvant
un ensemble de contraintes LMIs. Un exemple

numeérique ainsi que des résultats de simula-

tion sont présentés pour valider I'approche pro-

posée.
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Commande Multi-Actionneurs du Chassis en Situations Critiques Par
I’Approche Takagi-Sugeno

Multi-Actuator Chassis Control in Critical Situations Using
Takagi-Sugeno Fuzzy Model

H. Dahmani, O. Pagés and A. El Hajjaji
Laboratoire Modélisation, Information et Systemes, UPJV-MIS (EA4290)
33 rue St Leu, 80039 Amiens Cedex 1, France
(hamid.dahmani, opages, ahmed.hajjaji) @u-picardie.fr

Résune : 1 Introduction

Cet article présente une commande globale du chassis
basée sur des systemes, de braquage et de suspension
actifs dans le but de preserver la stabilité de la dyna-
mique latérale et celle du roulis du véhicule dans les si- Dans ces derniere années, la plupart des
tuations critiques. Un modeéle flou de type Takagi-Sugeno : AT
(TS du véhicule a été utilisé afin de considérer les non- C(,)n_StrUCteurS au\tomOb”eS, Ont_ ,eqU|_pe leurs
linéarités des forces latérales. Le modéle ainsi obtenu a V&hicules de systemes de sécurité actifdBS
permis de développer une loi de commande basée sur un (Anti-lock Braking System) pour améliorer
observateuTS Ce dernier a été développé avec des va- , . :
riables de préemisses non mesurables pour estimer I'angle |€S performances lors d’un freinage d’urgence,

de dérive du véhicule ainsi que I'angle de roulis. L'ob- |’ ESP(ElectroniC Stabmty Program) pour une
jectif du contrbleur consiste a contraindre la dynamique

latérale ainsi que le taux de transfert de charge a suivre Meilleur stabilité de la trajectoire du vehicule,

un modele de référence dans les situations critiques. Les sont deux exemples les plus répandus. Les

conditions de stabilité ont été obtenues en utilisant I'ap- N , iy N s 1 s
proche ... et formulées en termes d'Inégalites Matri-  SyStemes de sécurite et les systemes d'aide a la

cielles Linéairesl(MI). conduite reduisent considérablement les risques
potentiels d’accidents. Les dernieres recherches
Mots-clés : menées ont permis le développement de plu-

Modeéle flou de type Takagi-Sugeno; commande de la Sieurs nouveaux systémes de sécurité active
dynamique du véhicule ; observateur et contrbleur flou; et passive qui couvrent plusieurs types d'ac-
H, ; LMI. . , .

cidents (choc frontal, choc latéral, sortie de
route, etc..). Cependant, certains types d’acci-
Abstract: _ _ dents tels que les renversements restent sans

This paper introduces global chassis control using a tecti dé te. AUktats Uni | i
four-wheel active steering system as well as an active PrOl€Clion adequate. ats unis, seulemen
suspension in order to insure the stability of the lateral 3% des accidents sont causés par les renver-

and roll dynamics of the vehicle in critical situations. The £l
Takagi-SugenoT(S representation has been used in or- sements de vehicule, cependant, le nombre de

der to take into account the non-linearities of the lateral tués lors de ce genre d’accident représentent

forces. Based on the obtained fuzzy modé@lSobserver 0 g ot
has been designed with unmeasurable premise variables :33 Yodes victimes [1]. Ces statistiques montrent

in order to consider the unavailability of the sideslip angle  indéniablement le danger potentiel encouru
and roll angle measurement. The ObJeCt|VeS Of the propo- par |eS passagers en cas de renversement du
sed controller are to force the lateral dynamics as well ™, . P .
as the load transfer ratio to track reference trajectories VEhicule. Réduire le risque de renversement des
in critical situations. The observer and controller design  yghijcules est un challenge important pour bais-
has been formulated in terms of Linear Matrix Inequality , .
(LMI) constraints usindl.. approach. ser le nombre de tués dans les routes, ce qui
montre la nécessité d’intégrer la stabilité de rou-
Keywords: lis dans les systemes de sécurité active. Leffi-
TSfuzzy model; vehicle dynamics; fuzzy controller; cacite d'un tel systeme repose sur la connais-

fuzzy observer H,. ; LMI. sance précise des états du véhicule, notamment
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la vitesse du lacet, 'angle de dérive et I'angle présentons dans le paragraghla synthese du

de roulis du véhicule. Si la vitesse de lacet contrdleur ainsi que celle de 'observateur et les
peut &tre mesurée par des capteurs peu colteuxconditions de stabilité sous forme de contraintes
les angles de dérive et de roulis sont eux in- LMI. Enfin, le paragraphd est consacré aux
accessibles a la mesure par des capteurs stanfésultats de simulations et aux comparaisons
dards. Il doivent alors &tre estimés par des tech- entre les réponses du véhicule avec et sans
niques d’observation avancées [2], pour étre contrdleur.

utilisés par les systemes de commande. Dans

[3], un contrdleur robuste a été développé pour 2 Modeélisation du vehicule

ameéliorer la stabilité du lacet du véhicule. Bien R o )

que ces techniques permettent d’améliorer la L€ modele utilise dans ce travail corespond
N L . a la dynamique latérale et celle du roulis
stabilité latéerale du véhicule, elles restent in- g, vehicule. |l est obtenu en considérant le
suffisantes pour garantir la stabilité globale du modele bicyclette avec un degré de liberté

chassis et éviter les risques d’accidents. supplémentaire_donné par le mouvement du
roulis (Fig. 1). Sous I'hypothese d'angles pe-
Dans ce travail de recherche, une méthode de tits et d’'une vitesse constante, le modele de
commande globale du chassis basée sur obser-xgmggl:e est donne alors par les équations sui-
vateur est présentée. Le contrdleur développé
agit sur le braquage actif des roues avant et

arriere ainsi que sur un moment de roulis ac-
tif pour garantir la stabilité globale dans les i :
ays et a,, représentent respectivement les

§|tgat|ons de' conduite crlthues, telles que les < alerations des masses suspendue et non-
evitements d'obstacles. La representafiéia suspendue et sont données par les équations sui-
été utilisée dans le but de prendre en compte vantes:

les non linéarités des forces latérales qui appa-
raissent particulierement dans les manoeuvres
brusques et les situations d’évitement d’obs-
tacles. Cette derniere a été largement utilisée
dans la littérature pour modeéliser des systemes
non linéaires [4]-[5]. Un observatedrS avec
variables de prémisses non mesurables a été
proposé afin d’estimer les variables de la dyna- 7 )
mique du véhicule qui ne sont pas mesurables. €S angles de deérive, du lacet et du roulis du
Des trajectoires de références sont en outre jm- Vehicule. M, représente le moment du roulis

posées a certaines variables dans la synthesed®nere parle systeme de suspension active (Voir
du controleur. Afin de garantir la stabilite de Figure 1 ettable 1 pour tous les parametres du
lerreur d’estimation ainsi que celle de I'erreur Modele). Les forces laterales avant et arriere

de poursuite, des contraintéMl basées sur [ €ty dépendent des angles de glissement

lapproche H., sont obtenues pour le calcul latéral oy et «,, des parametres du véhicule

des gains de I'observateur et du controleur. Un 2insi que de l'etat de la chausseée. Plusieurs
scénario d’évitement d'obstacle a été simulé sur Modeles ont été proposes pour exprimer ces

Matlab/Simulink afin d'illustrer I'efficacite des ~ forces (Pacejka, Dugoff, Burckhardt/Kiencke).
techniques développées. Ces derniers ont tous I'avantage de prendre en

compte les non-linéarités des forces latérales
Ce travail est organisé comme suit : dans mais sont trop complexes pour &tre utilisés
le paragraphe2, nous présentons le modele dans la synthése d’observateur et de controleur.
du véhicule utilisé et sa représentation par Cette complexité a donc amené les chercheurs
un modele flou de typelS Ensuite, nous  a considérer uniqguement la partie linéaire des

L) = 2Fyfly — 2Fyrly )

Msys + Mylyy = 2Fyf + 2Fyr
Icv(z;v = msgh(z)v + msaysh — k(;bd)'u — C(;b(z)v + My

ays = U(B + 7/’) — héy @)

ayu = v(B + )
Ces deux masses ne sont pas considérées
séparement dans les modeles utilisés dans la
litterature. Nous les avons introduites dans
ce travail afin d’améliorer la modélisation du
véhicule.

Les variabless, ¢ et ¢, sont respectivement
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alors définies par les bases de regles suivantes :

Si |ag| est Mgy alors Fyp = Criay
Si |ay| est Mgy alors Fyp = Craay
Si |ar| est My alors Fyr = Criog
Si |ar| est Mpa alors Fyr = Craay

®

avec Cy;, C,; sont respectivement les coeffi-
cients de r|g|d|te pneumatique avant et arriere.
En considérant les regles floues décrites ci-
dessus, les forces latérales peuvent étre réécrites
sous la forme :

{ Fyp = ppi(af)Crrop + ppa(ay)Craay
(4)

Fyr = Hr1 (a'r)c'r'l Qr + pr2 (a'r)c7'2ar

Figure 1 — Dynamique latérale et du roulis avec :
PV

g

oul utr; andpe, (i = 1,2) sont les fonctions d’ap-
partenance représentant la signification floue

®)

Tableau 1 - Parametre du véhicule des ensembledl; et M, et sont données par :
Par. Description Unité BpE= T N B = (“\Mﬁ
5; Angle de braquage avant  [rad] (H e ) o
0 Angle de braquage arriere  [rad Les parameétres, , b; et ¢; ainsi que les coeffi-
ms  Masse suspendue kgl cients de rigiditeCy;, C,; sont déterminés en
my - Masse non-suspendue [kg] utilisant un algorithme d’optimisation de type
m  Masse totalergy, + m.) [kg] Levenberg-Marquadt [6].
v Vitesseduvehicule - [m/s] Dans le cas d’une route séche les valeurs sui-
I, Moment d,!nert!e du roulis [kgm2] vantes ont &te obtenues
I,  Moment d’'inertie du lacet . '[kgm ] Gp = 82046, Cra = 64847, Cra = 16194, Cry = 12784,
h HaUte.ur du centre de gravn:qm] ap; = 0.0910, agz = 0.3608, ar1 = 0.1237, ar2 = 0.5185,
C¢ Arn_ortlssement glObaI [Nms/rad] br11.1636 =, bya = 7.3138, by1 = 1.6138, b2 = 10.1680,
ks  Raideur globale [Nm/rad|

cp1 = 0.0535, cpp = 0.4284, c1 = —0.0004, cr2 = 0.5807.

En remplagant I'expression des forcéy, et
F,. (4), dans les équations (1) et en prenant

comme vecteur d'état du systeme=[

. . ) T N N

forces qui est proportionnelle aux angles de ¢ ¢ . les quatre regles du modele fiais

: i .~ s'écrivent :
glissement latéral. Cependant, une telle sim-
plification affectera beaucoup la précision du Sileys|estMy; et|ar| estM;; alors :
modele dans les situations critiques notamment i(t) = Apa(t) + By + Brydr + B M
suite aux manoeuvres brusques du conducteur poyr; = 1,2tk = 1,4
induisant la saturation des forces latérales. Afin . ; .
q derer | i : Ou |ay| et |a,| sont les entrées. La sortie

e considérer les non-linéarités, nous proposons 4, modele TS s'écrit donc sous la forme
dans ce travail d'utiliser un systeme flou de type suivante :

TSpour modeéliser les forces latérales.

o i) =Y hi( t) 4+ B0 + Bridy| + BmMs ()
Considérons les ensembles flotigy; et M, Z e ]

( = 1,2) définis pour les régions de petites
et grandes valeurs des angles de gllssementou les matrices4;, By;, B,i(1 = 1,4) et B,
latéral. Les forces latérales avant et arriere sont sont données par :
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A = da_| Modele de
P = o
- _ oils, piley mehCy meh(megh—ky) référence |

v
mII2v mng’llz -1 - mII2v mII2v | 5 5 QE—
pi T Conducteur —)@ Braquagea\fant - gl S :1F
ﬁ _Iz_l'U 0 0 o Braquage arriére 0,
mgho; mshp; Cy (msgh—kg) Moment du roulis M. \—)
IS
) 0 1 0 i
Controdleur
2C 1 Loy 2Cfo 10, TS
Tmlagv Tmlagv
2Cy{ly 2Cyaly . A
BrBpa=| . 0c,, | BrsBra=| o ke, | Figure 2 — Structure du controleur et de I'ob-
e e servateur
267‘1Im1 267‘2Im1
B3, 3,
BruBrs=| e, | B2 B e, | 4
ey ey i(t) = Zhi(a) [Aiz(t) + Biu(t) + Bpida(t)]
ms =1
mII:Lv
B = O | oul, etl, sontles moments 5ot
1 1 2 (t)
Tuy ult)=1| 6 (@) |.Bi= [ By; Bri Bm ]
b0 . . , M (t)
auxilieres d’inertie du roulis donnés par
2 ¥ i !
T T S A S ou d4(t) et d.(t) sont respectlvemef\t I_angle
m de braguage du conducteur et l'action du
Les variables auxiliaires;, p; etr; sontintro-  controleur sur les roues avant (braquage actif),

duit{ag pour simplifier 'ecriture du modele et 5 ;) est I'action du contrbleur sur les roues
sont données par : 4 L -

71 = 2%Cni + Cpa). 02 = ACra + Cpa)y 03 = 2Cra + arrieres e_th est I'action du contrbleur sur le
Cr2), 04 = 2(Cr2 + Cy2), p1 = 2(lrCr1 — 1;Cy1), p2 = roulis actif.

2(1,Cra — lfol) p3 = 2(l Cr1 — lfog) pa = 2(1,Cra —

lfoQ) T1 —2(l Cf1+l Crl) T2 —2(l Cf1+l C,,«Q) T3 =

215Cp2 + 17 cn) 1= 2(3Cs2 + 17 Cra) Le . contrdleur doit. donc assurer le
et les fonctions d’activatiohi(oz) sontdonnées suivi des trajectoires de références

sous la forme simplifiée suivante : Zref = |Bres qpmf , LTR,.s] qui représentent
wi(a) le comportement deésiré et connu du véehicule
hi(a) = og——— avec wi(a) = uyj(af)prx(ar) suite aux_manoeuvres du conducteur. La va-
iy wil®) riable LT'R représente le taux de transfert de
i=L.d4, j=12et k=12 charge et indique le risque de renversement.

Afin de garantir la stabilité du véhicule vis a vis

3 Synthése du contbleur muliti- du renversement, I€T' R doit étre inferieur a
un. Ce dernier est calculé en fonction des forces

actinneur pour la commande glo-  verticales de contact pneu/chaussee mais peut
bale du chassis également étre approximé en fonction de la
dynamique du roulis du véhicule par I'équation

L'objectif principal du contrdleur sera de suivante [8] :

contraindre le véhicule a suivre les sorties d’un
modele de réference donné par un vehicule TR~ P = For %(Cm + ko) ®)

stable dans une situation de conduite idéale. Le FatFr  m
controleur doit agir sur trois actions de com-

mande : le braquage actif avant, le braquage ac-ouU 7" représente la longueur des essieux du
tif arriere et la suspension active pour générer vehicule.
un moment de roulis actif (Fig.2). Afin de faire

apparaitre toutes les entrees de commande, Ie,l[-a '0.'| de tcgmmande flou d?velogf;?etdans ce
modéle flou (7) est réécrit sous la forme sui- ‘avall €st basee sur un retour detai, cepen

vante : dant, certains états du modele du véhicule tels
que la derive et 'angle de roulis ne sont pas
mesurables (ou bien les capteurs sont excessi-

h; B; (0, dc B0y + By My, R A
&) Z (@) [ Asw(®) + Byi(Ga +8c) + Bridr + I vement chers). La synthese du controleur sera
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d’abord les etat du modele considéré. L'obser- 8 —01 ? Z’;{t()t)
vateur proposé est basé sur le modele flou (8)

avec des variables de premisses non mesurable tf'n 4 de S{mplmer ll)es clzor]ltramtesl de Stf‘b"
car ces derniéres dependent aussi de I'angle de'''€ dU SyStéme en boucle fermee, les matrices

donc basée sur un observat@igqui estimera = l Bpo 01 1 W — [ ba(®) 1

dérive. Il est donné sous la forme suivante : Aj; et B,,; sont réécrites sous la forme :
4 Z-v:[Ai_Bin S+RiKPj:| E,:|:B1wi1|
:(:_Zh &) [Ai# + Bju+ Byida + Li (y — 9)] K 0 A; — L;iC wi B2y,
i=1 ©) ou:
y=Czx, §g=0Cz%
z=Csx, 2=0C.d Zi:[é‘: 8],?1.:[%‘}]9:[1{” K1 ),
Il s’agit d'une combinaison convexe d'observa- ¢ _ { 0 },Ri _ { B; }’Blm _ [ Byi 01 } ot
teurs de type Luemberger avec : —C: 0 U
B2y=[0 0 I]
c=[0 30 0] c- oy 0 Afin de garantir la stabilitt du systeme
0 0 1 0l 0 0 250, =2k augmenté (12) en présence du term&t),

le critere d'atténuationt,, suivant doit etre
oy = [ ¢, estla sortie mesurée, = satisfait
[6 ¢ LTR]T estle vecteur de variables a com- o0
mander etl; sont les gains de I'observateur. / (ec(t)” Quec(t) +eo (NQ2e0(t))dt < p / w

La loi de commande proposée est donnée sous s " L
la forme suivante - Ce critere peut étre réécrit sous la forme :

4 t oo
=S hi@) {Kpjfam,j / () = 2res (7)) dr} 10) / T(1)Qa(t)dt < #(0)Pi(0) + o / WOTW (O (13)
=1 0 0

Outre le retour d’état, I'ajout d’'un integrateur 0 0 0 5 est i
permettra le suivi des trajectoires pour le ° @ = |0 @ 0 jetP €SL UNE matrice
vecteurz Q@

_ _ - symeétrique définie positive
Soite, I'erreur de poursuite définie par : . N _
Le lemme suivant donne les conditions de stabi-

lité du systeme (12) sous la contraitife, (13).

€c :é_zref

ete, I'erreur d’estimation définie par :

o= — & Lemme 1 S’il existe une matrice &finie posi-

tive P, et un scalairep, tel que les iggalites

A partir des equations (8) et (9), la dynamique avicielles suivantes sont satisfaites [7]

de I'erreur d’estimation s’écrit sous la forme :
4 PAij+ ALP+ LPB,BLP+Q<0, i,j=14 (14)
€0 = Z hi(&) [(A; — LiC)eo + ] a1) P

4,j=1

Alors le systme (12) est stable et le a¥ie H

4 13) est satisfait avec une attuationp?.

i=1

Un systeme augmenté avee = [ = e o |” Corollaire 1 Soit deux matrices gefinies);

peut &tre écrit sous la forme : et , s'il existe deux matrices sytriques
définies positivesX et P, des matricesl,

W;, K; et un scalairep > 0, tel que les

a(t) = Z Zh (@)h;(8) [Aia(t) + BuW®)]  (2) inegalites matricielles suivantes sont satisfaites
i=1 i=1 pour:,j =1,4:
A; — B;Kp; —B;Ky; B;Kp;
avecA;; = C. " 0 N —C}:J Lij S+ RiKpj  Blu;
0 0 A; — L;,C O P>B2y, <0, 7,7=1,4 (15)
* —p21
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ou * represente les termes transpss

Ty, = AX-BV;+XA4, —VIB] +Xc[Q,1X
i = PA—W,C+ATP, —CTWT + Q-
V; = K;X, W;=PL;
[0 o0 —~ [ ©
a = [o 7] en-[T q]

Alors le syseme @crit par (12) est stable et le
critere d’aténuationH , (13) est satisfait avec
un niveau d’aténuationy?.

Preuve 1 Consicerons une forme particidre
. ~ s g .~ P 0

de la matriceP définie par : 5 — [ o } ot

x = p* En remplagons les expression des ma-

trlcesAZJ et B,,;, I'in égalite (14) devient :

[ Qij Yy

ij

(16)

*

}<07 i,7=1,4

Qij = Pl(Zi—Ein)-i-(Zi—Ein)TPl+pi2P1B1mB15
cfQ,¢

U, = Po(A;—L;C)+(A; — Ly C)TP2+ L PyB2,B2L P+ Q>
Y = Pi(S+ R;Kp;) + 5 P1Bly B2TP2

En multipliant Imegahte (16) & gauche eta
droite par la matrice de rang plenﬁ o ] et
en utilisant les changements de variablgs=
K;X etW; = P,L;, les iregalites suivantes
sont obtenues :

ﬁi]‘
*

Qi = AX — BV, + XA,
xcrQ, a1 x

Wij = PyAi = WiC+ AT Py = CTW] + = Py B2y, B2 Py + Q2
Enfin, par un com@ment de Schur, les condi-
tions (15) sont obtenues.

,LP1+

<0, i,j=1,4 17

Tij

=T
= VI'B; + —5BluiB1y; +

Les conditions décrites ci-dessus n’étant pas
linéaires, elle peuvent étre résolues en deux

etapes. Dans la premiere étape, sachant que (15)°

implique I'inégalité suivante :

A, X + B,V +XA +VTB +

xcT
1 L Bl1,;B1%, 1

<0 (18)
-Qr

Cette inégalité linéaire permet de calculeret
V; (etdoncK; = V;X1).

Ci1X

Dans la seconde étape, en rapportant =
[Kp; Kjj] et X dans linégalité (15), cette
derniere devient une inégalité linéaire qui per-
mettra alors de calculer les matric€s et ;
(etdoncL; = W, ).
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4 Resultat de simulation

Afin d’illustrer l'efficacité du contréleur et de
I'observateur développés, nous avons simulé un
scénario de conduite sur Matlab/Simulink avec
le modele de la dynamique latérale et du rou-
lis du véhicule (1). Le scénario représente une
situation d’évitement d’obstacle avec une ma-
noeuvre brusque du conducteur a une vitesse
constante du véhicule d@km/h (Voir figure

3 pour I'angle de braquage du conducteur).

La résolution de&MI (18) puis (15) sur Matlab
donne les résultats suivants :

9.3 1.2 —07 -39
Kpy = 13.5 —-14 -08 —35
| —2300.9 9.9 2341 27035 |
[ 107 1.0 —-09 —53
Kpo = 21.5 —22 —12 —46
| —3393.5 1325 3013 30275
[ 145 14 —-14 -106 |
Kps = 12.5 —-14 -08 —36
| —1773.9 30.0 221.6 2904.2 |
[ 127 1.6 —-13 —10.1 |
Kpy = 15.2 -1.6 —09 —49
| —1502.6 —3.8 210.5 2861.8 |
Kpi= . K= -
99 142 3 117 140 -8
130 -3 6 ' 216 —11 10
| —21944 —13820 9624 | | —33980 —12640 9618 |
Kz = . Kpn= )
153 190 —28 137 191 —28
0120  —0011 3 ’ 144 —12 0.1
| —16666 —8774 11559 | | —14698 —8971 11668 |
159.8 —68.4 —313.5 —42.6 ]
I 144.5 4.1 I 125.5  —3.8
L= 17.0 85.7 |72 7 | —123.3 109.8
—194.0 —50.3 2428 —75.8 |
520.0 -7 87.7 19.5 7
72.5 1.7 158.2 0.1
53.1 nzs | Pr=1 Zs04 1196 |0 Pmin =024
—517.1 —107.2 —115.0 —128.9 |

Des trajectoires de références pour l'angle
de dérive, la vitesse du lacet et IBTR
sont données et correspondent au comporte-
ment idéal du véhicule dans cette situation
spécifique. Afin de contraindre le comporte-
ment du véhicule a suivre ces trois réferences,
trois actions de commande calculées par le
contrdleur ont été nécessaires.

La figure 3 montre les angles de braguage ac-
tif avant et arriere calculés par le contrbleur.
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Modele de reference
Avec controlleur H
Sans controlleur

Braquage du conducteur
02} Commande braquage avant |{ 0.04f
Commande braquage arriére

Angle de dérive du véhicule (rad)
o

Angle de braquage des roues (rad)

025 i . i i i i i o 05 1 15 2 25 3 35 4
0 . . temps (s)
temps (s)

‘ ‘ ‘ ‘ : Mo(‘iéle de re‘!erence
Figure 3 — Braguage des roues avant et arriere e '\'

Modele Non-linéaire
Observateur TS ||
Observateur Linéaire

Vitesse du lacet (rad/s)
o

é -06 N .
-
2 -0.8
'ug) ) 0.5 1 15 2 25 3 35 4
2 temps (s)
3
8
2
Figure 5—Dynamique latérale du véhicule avec
0.06- 1 ~
N et sans controleur
0'080 0.5 1 15 2 25 3 35 4
temps (s)
0.15 T T T T T T T
Modéle Non-linéaire 15 . . . . . . .
Observateur TS i Modéle de reference
0.1 - Observateur Linéaire L Avec controlleur
= s /- Sans controlleur ||
005} / =\ \
\

Angle du roulis (rad)

Lateral Transfert Ratio (LTR)

0 0.5 1 15 2 25 3 35 4
temps (s) -15

0 05 1 15 2 25 3 35 4
temps (s)

Figure 4 — Estimation du roulis et de la dérive

ey Figure 6 —Evolution du taux de transfert de
du véhicule

charge du véhicule avec et sans contrdleur

Les résultats de I'estimation par I'observateur
TS comparés a un observateur de Luenberger
basé sur le modele linéaire sont montrés sur la
figure (4). Ces résultats demontrent clairement
I'efficacité de I'observateufSa estimer la dy-
namique latérale et du roulis du véhicule dans
de telles manoeuvres.

toires de référence, alors que le véhicule non
contrdolé est completement instable. La figure
(6) illustre le LT R calculé pour le véhicule
avec et sans contrbleur comparé au modele
de référence. Elle montre que IET'R qui
représente un indicateur de risque de renverse-
ment et plus important dans le cas du véhicule
La figure (5) montrent une comparaison entre sans controleur, tandis que le véhicule controlé
le véhicule muni de la loi de commande et le présente unLT R tres proche de la référence
véhicule sans loi de commande. Les états du désirée. Le véhicule sans contrdleur a répondu
véhicule contrdlé suivent avec succes les trajec- aux actions du conducteur avec un retard sur la
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trajectoire, ce qui améne le conducteur a vou- Références

loir sur-braquer, tandis que le véhicule avec
contrdleur a montré une bonne stabilité et une [

réponse plus adéquate sur la trajectoire.

5 Conclusion

Dans cet article, nous avons développé une
méthode de commande par retour d’état basée
sur observateur pour la stabilité globale du
chassis. Le contrbleur agit sur un systeme de
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Abstract:

In the context of Intelligent Transportation Systems
(ITS) one of the aims is to reach autonomous vehicle
capabilities based on human driver experiences in
different situations. This problem can be treated from
two points of view: by tracking a reference (curve lines
-lateral control- or speed -longitudinal control-) and by
the decision approach (in specific or dangerous
situations). In this paper, fuzzy logic techniques have
been implemented in real time control tools to translate
human knowledge to driverless control processes,
considering risk/warning situation. A comparison with
previous works (based in classic control laws) for
driving, was carried out in urban areas. Moreover, a new
approach to give the driver, a reference speed when the
vehicle is arriving to a traffic light intersection was
developed. Some simulations show that fuzzy logic
techniques are promising in the development of ITS
applications.

Keywords:

Autonomous Vehicle, Fuzzy Logic Controllers,
Intelligent Transportation Systems, Cybercars, Speed
Control, Lateral Control tracking

1 Introduction

Autonomous driving is one of the most
expanding topics in the ITS field, because it is
directly beneficial to drivers. For this reason,
different research centres and manufacturers
around the world are working together
developing solutions for driver assistant
systems, intelligent  infrastructure  and
autonomous vehicles.

Different approaches have been developed in
order to control autonomous vehicles in urban
and highway scenarios. The control of a
dynamic system, as real vehicles, it is not a
simple task because of the complexity of the
system modelling and the tuning process. In
this context, intelligent control techniques
offer powerful methods for the control of
autonomous vehicles [1][7][5].
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Fuzzy logic translates human knowledge for
the driverless control process, by rule bases
and membership input and output functions,
for tracking (control) and  decision
(risk/warning situation) point of view.

This approach is framed in the IMARA [13]
team goals, which are focused on ITS
researches, especially in autonomous driving
systems (Cybercars). In this work, the focus is
the control and decision stages [2]. A new
fuzzy tool able to control the lateral and
longitudinal actions is proposed.

The rest of this work is organized as follows.
In section 2, a summary of some of previous
fuzzy logic approaches, as well the proposed
in this work are presented. Lateral control
tracking and speed reference in traffic light
intersections are described in section 3 and 4.
Section 5 explains the simulations carried out
with RTMaps [15] and ProSiVIC [17]. Finally,
the conclusions and future works are presented
in section 6.

2 Fuzzy logic approach

Fuzzy logic techniques have been widely
implemented in different industrial process in
the last decade [4][12]. For this reason, many
libraries, mainly developed in C++, are easily
found in the literature.

Conventional controllers frequently use
differential equations to describe the system
behavior. Sometimes, this information is
incomplete because some assumptions in the
modeling process. For this reason, fuzzy
controllers are an interesting alternative,
because they use the expert knowledge (in our
case the driver), which can be represented in
natural languages.
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Specifically in autonomous driving
applications,  the  experimental  fuzzy
coprocessor, called ORBEX, was used by the
Autopia [14] team in different situations as
follows: lateral and longitudinal control,
overtaking with three vehicles, intersections,
merging, car racing simulations, among others
[6][7][1].

In 2012, this library was updated, improving
its previous performance in terms of
computing time, structure and adding new
membership input and output functions [1].
The goal is to achieve the autonomous driving
of the vehicle using simple sentences defined
in a rule base. Then, it is necessary to define
the input and output membership functions [8].

2.1 Real time implementation

Regarding to real time simulations, two
algorithms were developed in different
situations (lateral control and longitudinal
speed reference), using RTMaps and Microsoft
Visual Studio [16] softwares.

RTMaps is a multitasking environment that
allows embedded systems and its applications
to interact with multi-task processes. It has a
user-friendly  graphical interface  where
different modules can be connected for real
time applications [10]. Some modules are
predefined or programmed in C++ with
Microsoft Visual Studio.

In this work, two modules based on fuzzy
logic libraries were created. One of them was
developed in order to compare the classic
controller of a previous work with a fuzzy
controller to improve the Ilateral control
tracking presented in [2]. Moreover, another
module to warn speed references at
intersections with traffic lights was proposed.
The idea was that the vehicle is able to know
at which speed it must travel to avoid abrupt
braking and save fuel.

V2I (Vehicle to Infrastructure) communica-
tions are considered in this last module. This
allows the vehicle to know the position of the
infrastructure and the traffic light time (time to
red and time to green) up to 200 meters before
arriving to the intersection. This information is
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used by the wvehicle to achieve a better
increasing, decreasing or maintaining of the
reference (recommended) speed, or even stop
slowly and wait for the next green light or the
next green wave if it is necessary.

3 Lateral control tracking

For the fuzzy controller applied to lateral
control, two input variables were considered,
as proposed in [8], the “Heading Error” and
the “Lateral Error”, where:

Heading error: it is the angle between the
vehicle direction and the predetermined
trajectory, measured in radians (Figure 1).
Lateral error: is the deviation of the front of
the vehicle from that same predefined route

(Figure 1).

Deviation

Lateral error

» Lineof
trajectory

Heading error

Figure 1- Input variables for the fuzzy
controller.

Figure 1 shows the input variables. The
surface control is showed in Figure 2.
Moreover, the curvature is also considered in
control law, as proposed in [2]. This variable is
calculated in each segment of the path. Then,
the output of the fuzzy controller is added at
the end of the defuzzification process.

The rules used in the lateral steering control
are described as follows [8]:

IF Lat error Right THEN Steer Pos Left

IF Lat error Center THEN Steer Pos Center
IF Lat error Left THEN Steer Pos Right

IF Head error Right THEN Steer Pos Left
IF Head error Center THEN Steer Pos
Center

IF Head error Left THEN Steer Pos Right
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The Steering Position is the output variable of
the controller and has three singletons (Left
(0.5), Right (-0.5) and Center (0)). Each
singleton represents the basic positions of the
steering wheel.

The inference method (center-of-area method)
uses each output variable according to each
linguistic label, as proposed in [5]. The fuzzy
controller allows to write the rules in an almost
natural language, so if the controller read that
the vehicle is coming out of the path, it orders
the vehicle to steer in the opposite direction.

Controller Behavior

Steering

ErrorLat [meters]

ErrorAng [radians]

Figure 2 — Surface Controller Behavior

4 Speed reference in traffic light
intersections

For this application it was necessary to use
three input variables, which are the traffic light
times, red light, green light and the distance to
interception (DTI) (Figure 3).

? _le TTG: Time to Green
2 —|» TTR: Time to Red
2 + DTI: Distance to Interseccion

Fﬁ@u /,q . + —

3

@1\._J, A
Vehicle

Figure 3 — Input variables for the speed
reference fuzzy controller

Figure 4 and Figure 5 shows the membership
functions for each input variable.
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Figure 5 — Membership function for the
distance to interception (DTI)

Two variables are used for the traffic light
(Red and Green), where each has defined two
membership functions completely symmetrical
covering all the possible inputs. In this
application the time cycle of the lights are 30
seconds for green and 20 seconds for red. The
values of input membership functions were
defined considering these times.

The reason to use two different variables for
green light and red light is that the algorithm
considers them as two principal cases; this
approach is based on the scenarios described
in [9], as follows:

- Scenario 1: maintain speed

- Scenario 2: accelerate and overtake

- Scenario 3: reduce speed and overtake

- Scenario 4: brake and wait for the next
green
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The DTI membership function (Figure 5) gives
more weight to the distance when the vehicle
is closer at the intersection. In this situation,
the vehicle can be inside the “short” or the
“middle” label, because in these cases the
response has to be faster than in the case
where the vehicle is in the “long” label.

The cross rule base, based on driver
knowledge when is arriving to an intersection,
is defined as follows:

IF Green Begin AND DT Short THEN Acc MidAcc
IF Green Begin AND DTI Midle THEN Acc Acc

IF Green Begin AND DTI Long THEN Acc Keep

IF Green Finish AND DT/ Short THEN Acc Brake

IF Green Finish AND DTI Midle THEN Acc MidBrake
IF Green Finish AND DTI Long THEN Acc Keep

IF Red Begin AND DTI Short THEN Acc Brake

IF Red Begin AND DTI Midle THEN Acc MidBrake
IF Red Begin AND DTI Long THEN Acc BrakeFew
IF Red Finish AND DTI Short THEN Acc Few

IF Red Finish AND DTI Midle THEN Acc Few

IF Red Finish AND DTI Long THEN Acc Keep

Here the inference method is the same as
proposed in [5][8]. The singletons represent
accelerations and decelerations, selected to
improve the drivers comfort and avoid abrupt
velocity changes [11].
To obtain the reference speed, two equations,
based on the uniformly accelerated rectilinear
motion, were used. The first equation is used
for accelerate/maintain, and the other for
decrease/break (Eq.1 and Eq. 2).

V=at+ Vo

(1)

V =sqrt(2da) (2)
“Vo” is the initial speed at the first iteration,
and then it is the current speed; “d” is the DTI

variable; “#” is the time to interception; and
“a” 1s the acceleration given by the controller.

5 Experimentation and results

5.1 ProSiVIC and RTMaps

The algorithms for both applications were
tested and validated in a virtual simulation
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environment with ProSiVIC (Connected to the
RTMaps modules). This software offers a
multisensory platform and provides the
possibility to work with different parameters
of a real vehicle, such as longitudinal and
lateral speeds, steering wheel response, pitch,
and roll and yaw angles, weather conditions,
and friction coefficients, among others. [2]

The ProSiVIC platform allows
synchronization of many variables. Among
these are camera viewports, steering position,
simulation time and acceleration.

5.2 Lateral Control Tracking Validation

Figure 6 and Figure 7 show the results
regarding the fuzzy and classic controller.
Specifically, Figure 6 shows the superposition
of the lateral and heading error for each
control. The heading errors graphic is similar
for both controllers, because values of
maximum deviation in the turning inside the
roundabout are approximately 0.3 rad.
However the most important behaviour in this
graphic is the lateral error result, where the
difference is actually remarkable, since the
maximum lateral error introduced with the
fuzzy controller is only the 10% of the error
obtained with the classic control.

It should be noted that this test was made
considering the same scenario and conditions,
with low speed (no more than 30 km/h) and
simulated in a roundabout.

Superposition of Errors in Classic and Fuzzy Controllers
T

T
HeadingError Classic
-=--LateralError Classic ||
—LateralError Fuzzy
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Figure 6 — Lateral and heading errors for
classic and fuzzy controllers

In the Figure 7 the steering output result for
both controllers are shown. It can be
appreciated that the decision in both
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controllers are similar. The difference is at the
beginning, where the fuzzy control is more
drastic, but in the roundabout the fuzzy
response looks more stable than the “Steering
with the classic controller” response. In
general the peak values are the same, but this
was an expected behavior, after all the
difference between lateral errors is only 0.18
m.

Steering Output for both Controllers

0.15
.\

NN F \

L~ i\
-0.05

J
-0.1
-0.15 /
0 100 200 300 400 500 600
Time [10'1seconds]

Figure 7 — Steering output of controllers, the
classic and the fuzzy control

Steering with the classic controller
Steering with the fuzzy controller

Steering

—

5.3 Speed Reference Tool Validation

For this experiment, several parameters have
to be shown, e.g.: distance to interception,
traffic light time, time to interception and
current speed.

Here two simulations were performed; one for
long distance (126m) and one for short
distance (22m), in order to evaluate the fuzzy
controller speed reaction.

Figure 8 shows how the parameters move
when the wvehicle 1is approaching the
intersection. The distance to interception
decreases, and the time to intersection is
directly proportional to the current speed. In
Figure 9, the controllers response with the
traffic lights (dotted lines) can be appreciated.
In this figure the real speed represents the
decision taken by the driver. The purple and
blue lines are the recommended speed given
by the tool with the fuzzy and classic
controller, respectively.
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Variables and Results for The Speed Reference Tool
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Figure 8 — Speed reference tool variable
behaviors for the intersection problem in long
distance

Speed Reference Tool Performance
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Figure 9 — Speed reference tool performance
for long distance (126m)

Variables and Results for The Speed Reference Tool
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Figure 10 — Speed reference tool performance
for the intersection problem in short distance

Figure 10 and Figure 11 the same experiment
was done, but with a shorter distance. The
results for both controllers were similar. The
difference was the simplicity in the tuning
process of the fuzzy controller.
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Speed Reference Tool Performance
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Figure 11 — Speed reference tool performance
for short distance (22m)

Figure 11 shows the current and recommended
speed. The first one doesn’t follow exactly the
recommended by the module; this is due to the
lack of capacity in the graphic card for the
simulation software (ProSiVIC) in our
computer, thereby altering the different
variables. However, this behavior is useful,
because the controller does responds to
inaccurate speed inputs, analogous to a real
vehicle driver behavior.

6 Conclusions and future works

This work describes two ways to use fuzzy
logic  techniques to improve vehicle
maneuvers. The behavior of a human driver
was emulated, both cases: steering wheel and a
reference longitudinal speed in traffic lights
intersections.

These controllers worked very well, even
exceeded expectations, improving previous
works, and giving an easy way to translate
human knowledge in the driving process. For
future works other algorithms based on neuro-
fuzzy systems will be considered, which are
able to learn from a human driver.
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Abstract:

This paper presents the robust Hoo control problems
for a class of uncertain Takagi—Sugeno (T-S) fuzzy
systems with time-delay where uncertainties involved in
the state and input matrices. The T-S fuzzy model is
employed to represent uncertain delayed nonlinear
systems. A delay-dependent stabilization criterion is
first presented and new conditions of stabilization for
uncertain T-S fuzzy model with time-delay are given in
the form of linear matrix inequalities (LMI) and based
on Lyapunov-Krasovskii functional approach. The
fuzzy feedback robust Hoo controller is designed to
stabilize the T—S fuzzy system to achieve the prescribed
disturbance attenuation level. Numerical example is
presented to demonstrate the effectiveness of the
proposed method.

Keywords:

T-S fuzzy model, time-delay systems, robust stability,
LMI, uncertain systems, delay-dependent conditions.

1 Introduction

In recent years, the nonlinear systems in the
form of Takagi and Sugenofuzzy model has
been extensively investigated due to its
effectiveness in control system [1]. This fuzzy
model has shown its advantages in using a
small number of fuzzy rules for modeling the
higher-order nonlinear systems. It is described
by fuzzy I[F-THEN rules which represent local
linear input—output relations in various
operating points of the nonlinear systems. The
overall T-S fuzzy model is obtained by
interconnecting of all subsystems through the
fuzzy membership functions.

The stability and stabilization problem of T-S
fuzzy model based on the candidate Lyapunov
function has been extensively studied over the
past two decades [2-3] and references therein,.
By the parallel distributed compensation
(PDC)  technique the state feedback
stabilization conditions can be obtained and
expressed in terms of the feasibility of a set of
LMI which can be solved numerically and
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effectively  using
techniques [4].

convex  programming

In the original T-S fuzzy model formulation,
there is no delay in the control input, output
and state. However, time delays often appear
in industrial systems and information networks
such as chemical processes, metallurgical
processing systems, network systems and long
transmission lines in pneumatic, hydraulic and
so on. Hence, the existence of time- delays
usually becomes the source of instability and
deteriorated performance of systems. Thus, it
is also important to develop system theory and
extend the stability and stabilization issues to
nonlinear time-delay systems. Therefore, The
study of delay systems has been the subject of
many studies in automatic in recent years [5-
7], in which some LMI conditions for stability
and stabilization have been proposed and
based on Lyapunov-Krasovskii functional
method.

It is clear that the stability analysis and
stabilization are important issues in analysis
and design of fuzzy control systems with time
delay. In general, there are two ways for the
stability analysis and control synthesis of T-S
fuzzy model with time-delay, they are delay-
independent and delay-dependent approaches.
For both approaches, they have their own
advantages on dealing of T-S fuzzy models
with time-delay. Much attention has been paid
to the study of delay-dependent stability and
stabilization for time-delay systems because
delay-dependent results for time-delay systems
are less conservative than those for the delay-
independent cases, especially for time-delay
systems with actually small delay. Delay-
independent conditions that are independent of
the size of the time delay have been proposed
in [8-9], where as delay-dependent conditions
have been obtained in [10-13].
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In this paper, we present some sufficient
conditions for the solvability of the problem of
delay-dependent stability and stabilization for
T-S fuzzy systems with state and input delay
with parameter uncertainties.

Here we give generalized delay-dependent
sufficient conditions for stability of fuzzy
time-delay systems. In fact, our generalized
conditions guarantee the stability of a wider
class of systems than other conditions in the
literature. The principal idea to obtain such
generalized conditions 1is an appropriate
selection of Lyapunov—Krasovskii functional
that give us new stability conditions (less
conservative) than other conditions in the
literature. The delay-dependent robust stability
and stabilization conditions will be presented
in terms of LML

In this paper, we consider the problem of
robust Hoo control design for T-S fuzzy model
with time-delay. it is organized as follows; we
introduce a class of T-S fuzzy model with
time-delay in section 2. In section 3, state
feedback fuzzy control law for fuzzy systems
with time delay is proposed and based on the
PDC and Lyapunov—Krasovskii functional
using LMI. Section 4 establishes the delay-
dependent stability and stabilization of
uncertain T-S fuzzy models results in terms of
LMI. One example of simulation in the Matlab
environment is shown in section 5 to illustrate
the effectiveness of our results. Finally,
concluding remarks are given in section 6.

2 Problem statement

Consider a continuous-time uncertain fuzzy
system with time state and input delays, which
are represented by a following T-S fuzzy
model [1].

Plant Rule i
IF z(is y,and ...and z (1) is g,
2(1) = (A + A4)x(6) + (4, + A )x(t — 7, (1)
+(B, +ABYu(t)+ (B, + AB u(t —7,(t)) + BW (1)
W)= Cx()+ Cyx(t = 7,(0) + Du@)+ BIV(@)
x() = p(0), te[-max(z,.7,), 0} i =12,...,

THEN

where » is the number of IF-THEN rules,
w(i=12,.,r; j=12,.¢g) are fuzzy sets and
2(t) =[z,(1) z,(t)..z,(1)]" € R" are
premise variables depending linearly or not on

known as
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x(t), A4, A4, B,B,, C,C,, B, B.and D are
known constant matrices with appropriate
dimensions, x(t)eR"is the state variable
vector; u(t)eR” is the control input vector,
y(t)e R* 1s the controlled output, W(t)e R’
which is assumed to belong to L,e[0 o],
denotes the external perturbation. 7,(r) and
r,(r) are the continuous functions represents a
time-varying delays in state and input
respectively, satisfying;

0<t(f)<7, <00, 7,(1)<u <oo, (i=12) V20

where r, and p, are constants. A4, A4,,AB,
and AB, are time-varying matrices with

appropriate dimensions, defined as;

A =HF(OE,, M, =HF0E,, AB =HF@E,

AB, = HF()E,, )
where H.,E_, E_,E,and E, are known
constant real matrices with appropriate

dimensions that characterize the structures of
uncertainties, F () is an unknown real matrix
function satisfying the inequality:

F'(OF @) <1 3)
By using center-average defuzzifer, product
inference and singleton fuzzifier, the final
outputs of the T-S fuzzy systems (1) can be
inferred as follows

£0) = X (2(0) x

(A4, +A4)x(t) + (4, + A4, )x(t —7,(1))
+(B, + AB)u(t) + (B, + AB, u(t —7,(t)) + B, W (1))

¥(0) = Y b (1) x
Cx(t)+Cx(t—7,())+ Du(t)+ B.W(t)

(4)

where

h(2(1) = w,(2(1))/ Z w,(2(1), w,(2(0) = ﬁ#, (1)

The term p,(z()) is the degree of membership
of z(nin fuzzy set y,. In this paper, it is
that  w(z(1)=0 i=1,...r

all ‘.

assumed and

2 w.(z(t)) >0 for Therefore,

h(z(t)>0 i=1..r and Xh,(z(t))zl.

In this paper, a state feedback T-S fuzzy-
model-based controller will be designed for
stabilizing T-S fuzzy system (4) via PDC low.
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This law of control shares the same fuzzy sets
than the T-S fuzzy model. The gains of the
controller can be determined by using a LMI
formulation.

Control rule i:
IF z(t) is u, and,...,z (1) is pu, THEN

u@®=Kx() i=1.,r

®)

Hence, the overall fuzzy control law is
represented by:

u(t) = Y 1 (DK x(1) ©

where K (i=1,2,.,r) are the local control gains
to be determined later.

Remarkl: The existence of input delay leads
to the term u(t—7,)= D h(z(t—7,))Kx(t-1,),
i=1
so, it is natural and necessary to make an
assumption that the functions 4 (z(¢) i =1,...,r are
well defined for all ¢e[-z, 0]and also satisfy
the equality h(z(t-7,))>0 i=1,..,rand
ihi(z(t—rz)) =1. For notational simplicity, we

use hand A"

hi (Z(t -7, ))
description.

to represent 4 (z(¢)) and

respectively in the following

The design of the fuzzy controller is to
determine the feedback gains X (i =1,2,..,») such
that the resulting closed-loop system is
asymptotically stable.

Associated with the control law (6), the
resulting closed-loop system can be expressed
as follows:

5(0)= 3 7 x (Ax(0) + A, x(t—7,(0)

=l j=1
+BK x(t)+ B, K x(t—7,(t)) + B, W (1))
Then

#(0)= S (A, + BK )x(0) + A,x(t—7,(0)) + BV (0)]

+ 3 Wi, K x(t - ,(1)] ™)

j=1

y(@) =
> S AI(C.+ DK, )x(t) + Cyxlt —7,(t) + BIV (1))

r=l =1

=A +AA, A, =A4,+M,, and

= Bid + ABM .

A B, =B, +AB,
B,
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For a prescribed scalar J >0, the performance
index J is defined as

J=[ M@y -y W W (sHds  (®)

The purpose of this work is to design a robust
H, controller (6) for the T-S fuzzy model (7)
such that the following requirement is
satisfied:

- Under the zero initial condition, system
(7) with  controller (6) satisfies
Iy, < 7w @), for any  nonzero

W(t)e L,[0 ], where y>01is a prescribed
scalar.

3 Design of robust Hoo controller
and stabilization analysis

In this section, we will derive the delay-

dependent LMI  conditions for Hoo
performance analysis for the systems (7).

The objective of this paper is to
determine the feedback control law

u(t) =Y h(z(0)K x(¢) such that systems (7) to be

robust asymptotically stable with an Hoo norm
bound y >0. Before stating our main results,

the following lemmas are first presented,
which will be used in the proofs of our results.

Lemmal: For any constant matrix M >0, any
scalars a and »witha<b, and any vector
function x(¢):[a b]— R" such that the integrals

concerned are well defined, then, the following
inequality holds [11]:

[ [ }c(s)dsTMU:x(s)ds} <(-a)f ¥ (HMx(s)ds  (9)

Lemma?2: For any constant matrices O, Q,,,
QI] QIZ
* Q22

0,eR"™, 0,20,0,> O,{ } >0, scalar r(r)<r,

and vector function x:[-r, 0]— R" such that
the following integration is well defined,

then[13];
-1, J:i [xT (s) x" (s){Q*ll g: }Bgﬂds <
x(t) - sz sz - QT‘2 x(t)
x(t-1) 0, -0, QTI2 x(t-1) (10)
.[/4«) x(t)ds - le le - Qll J:irmx(t)ds
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Lemma3: Let 0=0" D,E and ,F(t) be real
matrices of appropriate dimensions and,F(¢)
satisfying F'(t)F(t)<I then, the following
inequality [14];

O+ DF()E+E"F"(1)D" <0 (11)

is true, if and only if the following inequality
holds for >0

Q+ADD" + 'ETE<0 (12)

Our first theorem is given as follows;

Theoreml :For given scalars z,, >0, >0, (i=12)
and v >0, (i=1-4) as well as the given matrices
K(@i=1..7) systems (7) is asymptotically stable
via PDC technique for any time-delay ()
0<z(<r, (i=12) 1if there
matrices M, >0, M, >0, N, >0, N, >0,

exist
>0

satisfying

V,>0 W, >0 W,>0, 8, . and real matrlces
T(i=1-4) M,,N, .V,,,W,, K, (j=12,.,r) such
that the following conditions hold for
Lj=L.,r(i<j)).
Q. <0 i=12,..,r (13)
Q,+Q, <0 i<j<r (14)
Mll MIZ 207 ]\lll N12 20’ I/ll I/12 2 0, VVH VVI2 2
* MZZ * N22 * I/Z2 * VV22 (15)
with
_Qll Ql2 QIB QM Q]S Q]() QW—
* QZZ QB QZ4 QZS QZ() QZ7
* * Q33 Q34 Q}S Q}(\ Q37
Qi/' = * * o, Qp Q Q,
* * * * QSS QS(\ QS7
* % * * % Q(,(, Q(ﬂ
* % * * % % Q77
Q, =M, +M.+N,+N,-V,,-W,+S +S, +7.V, +t W,

+T,(4 +BK)+(4+BK,)' T +(C,+DK,)' (C,+DK,)
Q,=-¢M,+V,+T4,+(4+BK)'T] +(C,+DK,)C,
Q. =M. -V,
Q,=—,N,+W,+TB,K +(4+BK)'T'
Q,=NL-w!

Q. =M, +N, +t.V,+7,

Q]7 = TlBiw + (Ci +Din) Biz
sz = _ClSl - sz + TZZM + th]-‘zl + CLIJCLJ

+(4, +BK) T -T,

02 ]Z
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Q, =-cM,-V.,Q,=T,B,K +A]T,Q, =0
Q, =-T,+A4T/, Q,=TB +CB., Q =-
Q,=0,0,=00Q, =M,Q,=0,
Q,=-¢S,-W,+T,B,K,+K/ BT Q, =-c,N,+W,,
Q,=-T,+K/B/T/ ,Q, =T,B,
Qu=-W,,Q,,=0,Q,,=0,
Q =tV +tiW, =T, =T/
Q,=T,B, Q,=B/B —yI

)

Proof: To prove the theorem, we consider the
following Lyapunov—Krasovskii functional
candidate:

Vo) =Vo+V,O+V,O)+V,@O)+V,@0)+V (1) (16)
where

Vi) = 8" (OMI(t)
V() =8 (ONI(t)
V(1) = J:r_r <t)xT (5)S,x(s)ds

no=|_,
V=] (=478 (Wh(s)ds

VO =t,[  (s=147,)¢ (Wh(s)ds

()= [x ) ([ x(s)ds } [M Z}
IREENY
Vi Y Wo W,
L n}W:L “

M=M">0, N=N">0, V=V">20 W=W"20;
S >0, S,20,c,=~1-u), c,=01-u,)

The time derivative of ¥ (¢) is taken along state
trajectory (7), yielding;

x"(5)S,x(s)ds

with

9,(t) = [x () (I ,)x(s)ds

sty =[x"(s) F],V

and

V.(t) = 9" (OMI(t) + & (OMI(t) = 28] ()M I(t) <

) ) M, M x(1)
2[x (®) (Ll(,)X(S)dS)} % x(s)ds) |~

wld)
M22 dt (J‘rfrl(l)
2|:xr(t) (.[[ﬂmx(s)ds)r}r\i“ %::”:x(t)_i[(;)(t_rl)}

<2 (OM, 30 + X OM 2O + ([ x()ds) ML)+

FOM ([ (5)ds) + 3" (OM (1) + 3 (OOMx(0)
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([, X)) Mopx(O) + X" OM([ | x(5)ds)
- Clxr(t)Mlzx(t - 71)_ Clxr (t -7 )erzx(t)
e ([ x(s)ds)" Mox(t=7,)
e (=)Mo, ([ x(s)ds)

From same method we obtains

V.(t) = 97 (ONI(t) + 97 (1)NI(t) = 297 (1) N9(r) <

. : N, N, x(?)
2|:x ) (,[42<1>x(s)ds) ]|: * N22:||:x(f)—02x(t_72):|

<X (ON, 0+ ON, X0 + ([ x(s)ds) NLx(0)
+ X ONL([ | x(5)ds)+ 5" (ON 20+ (ONLx(0)
+([,, X)) Noyx(O) + X" ON([ | x(s)ds)
— e, X" ()N x(t = 7,) = cyx" (1 = 7,)Nx(0)
—ey(] ¥(s)ds) Noyx(t = 7,)
—ex (=T )INu (] x(s)ds)
V() = X" (6)S,x(t) — (1= 2,)x" (t = 7,)S,x(t —7,)
<x" ()S,x(1) = (1= )X (¢ = 7,)S,x(t —7,)

V(1) =x"()S,x(t) - (1—7,)x" (1 —7,)S,x(t — 7,)
< xr(t)Szx(t) - (1 - ,uz)xr(t - Tz)Szx(t - Tl)
V=t (s=t+7,) (W h(s)ds
<t (W) =7, [ F (Wh(s)ds

By using lemma 2, we obtain;

ST RACLIOE

: V. V. x(s
o] e ¥ (S){ AR )} s
ol Vlz sz__x(s)
X0 |[-v, v, —vul x0
<l x(t-1) v, -V, VM x(t—1,)
[Lox@ds| | =V, Vv, =V, ][, x@ds

Vo(t) =X ()2l )x(s) + X7 ()T 2V 0)x(s) +
X ()T )3(s) + 3 ()T Vh)(s) +x" (6)(=V, )x(t) +

X (=)@ + ([ x@)ds) (F,,)x(0) +
X (O )x(t =) +x"(t =)V, )x(t —7,) +
(] OB Ox(t=r)+ 6 O] x(oyds +
(=)o) | x(0ds+
([, xOds) V)] x(e)ds

Using same method to calculate 7, (r)

229

V()= rm[f — ¢ (SWP(s) + (s —r+roz>%¢r(sw¢(s>}ds

—702(1)
< x ()T )x(s) + X ()T Wi)x(s) + x7 ()7 ) (s)
+ X" ()T W)X(s) + x" (O )x (@) + x" (¢ = 7,)(W,,)x(t)

([ HOds) (W0 + X (=)W )x(e - 1,)
F OO )t =)+ ([ x(Ods) )t~ )
X O] x(ods +x = )WD[ | x(oyds

+ (J:;Z(”x(t)ds)f -w, )J:;z(x)x(t)ds

Now define;

é':[xf(t) ¥ (t-1) (J;lx(s)dsjr ¥ (-1,
(17)

T

(Jj,,zx(s)dS)T x'(0) WT(z)}

From V,(),V, (1), V,(0), V,(), V(¢), V,(t) we obtain;

_®l] ®12 ®13 ®14 ®15 ®l6 O_
* 0, D, 0 0 0 0
* * _Vll 0 0 MIZ 0
vy <¢ti e 2 2 o, @, 0 0f¢
* * * * -W, 0 01](18)
* * * * * o, 0
% % * * * * 0
D

T T Y 2 2
chl :MIZ +1‘412 +le +N12 _sz _Vsz +S1 +Sz +T(>1V11 +702VV11
(Dlz = _C1M12 + sz

O, =M, -V

o, =-c,N,+W,

(D15 = Nzrz - W;

®,=M, +N, +T§1V12 +T(?2VV|2
O, =-¢cS, -V,

0, = _Clerz - V;

D, =-cS5,-W,

q)45 = _CzNsz + I/Vlzr

D, = z-(?1V22 + T(szvzz

Next, we will introduce some free variables
as following:

2T (O, + 7 (1= 2T, + X (1= 7)T, + 3 (0T, fx

. [(4 +BK )x(t)+ A,x(t=7,(0) +| .
hh? ’ - =0
{Zz o {BMK/.x(t —-7,(t))+ B W ()] } x(t)}

This equality can be writing as follows

S hh? (O, + A EA, + N FIAL K =0 (19)

i=1 j=1
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where

N, =T HIT] 0 HITT 0 HIT 0]

ATEij = [Em + EmK/ E,, 0 EbidKj 0 0 0]
[(T(4+BK,)+) (TA,+
(4 +BK)'T" | ((4+BK)'T'
* T4, +4,T)
* %
®, = * *
* *
* *
* % (20)
TBK, + o ((AFBEYT)
4, +Bin)TT3T -1
0 TzBidKj + A;T;T 0 - Tz + A;I:tr TzBm
0 0 0 0 0 —0
TB,K,+K/B,I] 0 -T,+KB,T/ TB,
* * 0 0 0
- . «  -1-1’ T8,
% * % * 0

According to the definition of y(¢), we have
PO<Y O+ YT (O, + A EA, + AL ETAL K

+y Oy =y W (W (1) <0

By Lemma 3, it is obtained

POV O+ Y hh? (O, +6,A,N, +6 N, A,
+y Oy =W OW () <0

where

Y )yt = (1)

23S hELC, + DK, )x(0) + Cx(i— 1,(0) + BIV(0)]

=l j<i

< S A x
=l j<i
(€©+DEY ) (€+DK)) 0, [CDEY]
x(C+DK)) (xC, xB,
* cc, 0000  CB
* * 000O0 0
* * * 93
000
* * EE T S BTB
<Y WP xGIG (22)
=l j<i
where GI, =[(c,+DK) ¢, 0 0 0 0B]

From (18)-(21) and (22) we can obtain 7 (¢) as;
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PO <SS hhC0; (23)

i=1j=1

From (23), we arrive at (13)- (14) and (15).
This completes the proof.
Theorem?2:For given scalars z,, >0, >0, (i=12)

and v >0, (i=1-4) as well as the given matrices
K(@i=1..7) systems (4) is asymptotically stable
via PDC technique for any time-delay ()
satisfying 0<z,(f)<z,(i=12) if there exist
matrices M, >0, M,,>0, N, >0, N, >0, V,, >0
V,>0, W, >0 W,>0,8,5,. and real matrices
N, V. W, K (j=12,..,r) such that the

12

X, M,,
following LMIs hold for i, j=1,....r (i< j)

Qn GUT Alli ATEU
* ] 0 0
<0 i=12,.,r (24)
* * - 8111
* * * - 1
_Qif GIJT AHJ ATE!'/ Qﬁ G/Tl AH/ ATE/"'
* ] 0 0 * ] 0 0
+ <0 (25)
* % —g,.jl 0 * 0k —5/.,1 0
* % % gl |k x % _gJ
L L4 Ji
Ml] M12:|>0|:]Vll ]_v12:|>0|:ﬁll V;2:|>O|:V_Vl] I/_V12:|>0
L * 22 * 22 * [/22 * VV22 (26)
where

Q, ZMH +M1T2 +le +le _1722 _sz +§1 +§2 +T§II711 +
W, +A4X +BK)+ XA +K B
Q,=-cM,+V,+4,X" +v,XA +v, KB}

Q= Mzrz - I7lzT >

Q,=—-¢,N,+W, +B,K +v. XA +v K B’

Q =N, -W,;

Q. =M, +N, +t,V,, + oW, +v, XA +v,K B - X"

Q,=B,,, Q,=-¢S -V, +v,4,X" +v,X4]

st = _CIMZTZ _171;7 Qyzzx = VzB‘dE/ +V2XZ; s st =0
Q, = _VzXT +V4)(‘41;

Q,=v,B,, Q= _1711 ,Q,=0, Q,=0
Q,=M,Q,=0

Qy‘44 = _c2§z - V7zz + VSEMI?/ + V3I?/T§‘;
Q,=-¢,N,+W,,Q,=~vX +vK/B,,Q, =v.B,

Q :_V711 ’st :07057 =0,
Qés = 151[722 + T022V722 - V4XTT4 _V4X

Q,=v,B,,Q, ==pI

Proof: Noting that (13) and (14) are not an
LMI, we cannot solve them directly using
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Matlab LMI Toolbox. In order to solve (13)
and (14) efficiently, pre- and post-multiply
both sides of (13) and (14) with
diagX X X X X X I I I I] and their

transpose, respectively. And define new

variables
X=T"M, =XM X" ,M,=XM,X",M, =XM, X"
N,=XN,X",N,=XN,X",N, = XN, X"
I711 = XV”XT, I712 = XVlzXT9I722 = X_szXT
V7ll = XVV]IXT’V?Z = XT/I/]ZXT’ V722 = X-VI/ZZXT
S, =XSX',S,=XS,X",K,=K,X" (j=L..r)
Tz :L)zTIa T; :U3T]’T:t :l)zT]

we can obtain (24)-(25) and (26), respectively.
This completes the proof,

Moreover, the control gain K, is given by

K, :Ej()(f)*, j=12,..,r (27)

4 Illustrative Example

In this section, we provide a numerical
example and simulation to illustrate the
effectiveness of the methods presented in this
paper. We employed the stability conditions in
Theorem 2 to obtain the feedback gains of the
fuzzy controller to stabilize a time-delayed
uncertain nonlinear system. Consider the
following truck-trailer model with a time-state
and input delay represented by T-S fuzzy
model [10]:

Rulel :
IF z(t)zxz+a%xl(t)+(l—a)%xl(t—rl) is i

0

THEN
X(1) = Ax() + A, x(t = 7,(1) + B, u(t —7,(2))

Rule2:

IF z(t)zxz+a%xl(t)+(l—a)%xl(t—rl) is b,

0

THEN
x(t)=Ax(t)+ A, x(t —7,(t))+ B, ,u(t —,())

here x(n) =[x () x,(t) x,(»] and

B =B,=|i/lt, 0 0]
=B,_=[0.02 0; 0 0.02; 0 0.02]
B, =B, :O'IXBlsBlz =B, :[0 1]

B
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a2 0 o _a L
Lt, Lt,
vt vt
A4=la— 0 0, 4= a— 0
Lt, Lt,
272 ry 272 vy
vt vt 0 ad t dvt
2Lt, o, | | 2Lt i
[ vt | [ vt |
-(l-a)— 0 0 —(-a 0 0
Lz, ( )Lt0
vt vt
4, =| (-a 0 0,4, = (-0 0 0
1d ( )LZ‘D 2d ( a) I ]
2172 272
d-a)2 0 o A-a)d 2 0 0
| 2Lt | | 21Lt, |

E,=E, = [1 0 O]
H =H,=[0255 0255 0255],E, =E,
E,.=E, = 1

E,=E,=[0.03 0.03 0.03], F()=2xsin(t)

=03

and

a=0.71=28L=55v=—-1 1 =057=2
d=10t,/x

The disturbance input is assumed to be

W () = sin( 2¢) x exp( —0.2¢)

The membership functions 4 and 54, are
chosen as:

1 1
h=|1- ,
: ( 1+exp(—2z-0.57) )(1 +exp(—2z + 0.57[)]
h,=1-h,

in the simulations, we use ¢(H)=[1 -1 1] , let
a=05 v,=05v,=02 and v,=12.

By applying the stability conditions in
Theorem 2, with the aid of the Matlab LMI
control toolbox, the design problem to
determine the feedback gains can be defined as
follows:

Find
M, >0,M, >0,N, >0,N, >0,V >0,V,,>0,W, >0

w,>0,S,S, and real matrices X,M,,N,,V,,,W,
and K,
Satisfying P>0, (24), (25) and (26)

We obtains the following fuzzy control law
with 7, =0.1, 7,,=02;

u(t)=h[2.6748 -3.8269 0.8130]x(r)
+h,[3.1411 -52073  1.0026]x(r)
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The response of the closed-loop system (7)
with control law (6) is shown in Fig.1 under
initial conditiong(r)=[1 -1 1], The response
of controller is shown in Fig.2. It shows that
the closed-loop fuzzy system with time- delays
has been effectively controlled using the
designed fuzzy controller and the state
response of this system has been uniformly
asymptotically stable.

x1
X2
x3

Stete Response

Time(sec)
Fig.1. Response of the closed-loop system in Example 1 under fuzzy
controller (6)

Controls input

N . . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20
Time(sec)

Fig.2. Controls input u()

5 Conclusion

In this paper, we have discussed the robust
stabilization analysis and Hoo controller design
problems for uncertain nonlinear systems
described by T—S fuzzy models with time-state
and input delay. Based on Lyapunov—
Krasoviskii ~ functional —method. Delay-
dependent sufficient conditions for robust
stability of the closed-loop system have been
obtained and a design method of robustly
stabilizing controllers has been given, these
conditions are presented in terms of LMI
format. The numeric example has also been
given to demonstrate the effectiveness of the
new stabilisation conditions obtained for the
truck-trailer model with a time-state and input
delay and to demonstrate the use and the less
conservativeness of the present method.
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Interprétation possibiliste d’une analyse de sentiments multicritére
pour un systéeme de recommandation sur le web

Possibilistic interpretation of a sentiment analysis
for a web recommender system
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Résumé : simplify our presentation, but this approach is
Cet article propose un systéme de recommandation applicable in many other domains. It may be applied as
(SR) original basé sur [Iextraction automatigue soon as i) overall assessments of competing entities are
d'opinions et l'aide a la décision multicrittre multi  provided by trade magazines and ii) web users’ critics in
acteurs. Notre SR cherche a optimiser 'automatisation natural languages and related to some characteristics of
du traitement de linformation disponible sur le web the assessed entities are available. Recommendation is
pour éviter aux utilisateurs les phases d’évaluation par then based on the capacity of the RS to associate a web
critere et d’identification des préférences généralement user with a trade magazine that conveys the same values
complexes et fastidieuses dans les SR. Pour exposeras the user and thus represents a reliable personalized
notre approche, nous nous focalisons sur la source of information. Precise assessments related to

recommandation de films, mais elle resterait valide dans multiple criteria cannot be expected from automatic
de nombreux domaines. Elle s’applique dés lors que opinion mining. Our RS thus relies on possibility theory
'on dispose i) d’évaluations globales par la presse elements.

spécialisée des entités entre lesquelles il faut choisir et
ii) de critiques d'internautes portant sur les différentes
caractéristiques des entités rédigées en texte libre. La
recommandation repose alors sur l'association d'un
internaute et d'un journal spécialisé réputé avoir les .
mémes valeurs que I'utilisateur et donc constituer une 1 Introduction
référence fiable et personnalisée. L’extraction

automatique d’opinions multiples ne pouvant fournir Ces dernieres années de nombreuses
gue des évaluations imprécises et incertaines sur chaque '

critere, notre modele se place ainsi dans le cadre de Iaemr?prlses et sites Web ont mis en p,la,ce des
théorie des possibilités. systéemes permettant I'analyse des préférences
Mots-clés - de leurs utilisateurs afin c_le mieux re’_:pondre
Théorie de possibilités, Fusion dintervalles, aUX attentes de ces derniers. A ce jour, les
Agrégation multicritére, Systéme de recommandation, Systemes de recommandation sont présents
Extraction d’opinions. dans de multiples domaines comme le
Abstract: tourisme/les loisirs [17], la publicité [3], le
This paper proposes an original recommender system commerce électronique [13], les films [19],
(RS) based upon an automatic extraction of trends from etc. En raison de I'explosion de la quantité de
opinions and a _muItlcrlte_rla_ multi actors assessment 4onnées diffusées sur I'Internet ces derniéres
model. Our RS tries to optimize the use of the available p .
information on the web to reduce as much as possible anne_es, rechercher et trouver _des prodwts, des
the complex and fastidious steps for multicriteria S€rvices ou des contenus pertinents est devenu
assessing and for identifying users’ preference models. une tache difficile pour l'utilisateur souvent

The particular case of RS for moviegoers is dealt to noyé par la masse d'informations. Ceci

Keywords:
Possibility theory, Intervals merging, Multicriteria
aggregation, Recommender system, Opinion-mining.
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explique l'intérét croissant porté aux systemes opinions pour chacun des extraits résultant de
de recommandation tant par les utilisateurs quela segmentation (opinion-mining/sentiment
par les sites commerciaux. analysis). En combinant cette méthode a un
La problématique de recommandation a été systeme interactif d'aide a la décision
identifiée comme étant le moyen d’aider les multicritere (SIAD), il devient possible d’avoir
individus a trouver des informations, ou des un systéme automatisé pour la
éléments, qui sont susceptibles de les recommandation. Cependant [laffectation
intéresser. Généralement, on considére unautomatisée d'un score a un item pour un
ensemble d'utilisateurtlserset un ensemble critere reste une opération au résultat imprécis
d’éléments Items (services ou produits) fourni sous la forme d’'un intervalle. Le SIAD
pouvant étre recommandés a chacun desdoit donc gérer ensuite les multiples
utilisateurs. Par ailleurs, une recommandation évaluations imprécises issues de l'analyse de
multicritere contribue a améliorer la qualité sentiments sur chaque critere d’évaluation
dun SR car elle permet dexpliciter les (fusion d'intervalles), puis agréger sur
caractéristiques pour lesquelles un item a étél'ensemble des criteres. Pour exposer notre
proposé a l'utilisateur [10], [1], [2] et [18]. approche, nous nous focalisons sur la
recommandation de films, mais elle resterait
Un SR qui utilise un Modele Multicritere baseé valide dans de nombreux domaines. De plus,
sur la découverte des Préférences a partirévaluation des films sera limitée & deux
d’Evaluations (MMPE) permet d'obtenir des criteres scénario et actedans cet article.
recommandations détaillées plus pertinentes | g section 2 résume 'approche de détection
vis-a-vis de I'utilisateur [1], [2]. Cependant, la d'opinions que nous avons développée dans
mise en place d’un tel modele nécessite une[10]. Des critiques d'internautes sont donc
base de connaissances ou les items sontextraits et calculés des scores d'opinions
évalués par rapport a un ensemble de criteres.relativement & un groupe de critéres. La
Cette contrainte imposée par le modele est tressection 3 explique comment fusionner ces
lourde pour l'utilisateur. Des approches ont scores imprécis pour un crittre donné. La
tenté d’automatiser I'évaluation multicritere section 4 détaille comment agréger les scores
d'items par des techniques de datamining [20], obtenus & I'étape précédente pour évaluer les
mais elles restent spécifiques a un domaine films dans un espace d'évaluation multicritére.
d’utilisation, car une adaptation a un autre [ g section 5 montre comment ces approches
domaine necessite un nouvel apprentissagepeuvent étre combinées pour répondre a la
supervisé quasi rédhibitoire (annotation problématique de la recommandation

manuelle d'un nouveau COrpus multicritére.
d’apprentissage). Cette charge de travail nuit

Dans [11] et [12], une méthode non-supervisée

d'extraction d'opinions multicriteres est g, |a base de méthodes statistiques, notre

proposée._ Elle permet aux utilisgteurs_de approche construit un dictionnaire  de
saffranchir de la contraignante evaluation gegcripteurs d'opinion pour une thématique
partielle  sur chac:ue crl_tl_ere des items a yonnge. Ce dictionnaire est ensuite utilisé
recommander : les utilisateurs deposent o exiraire automatiquement la polarité
simplement  leurs critiques comme & geyiraits de texte. Deux étapes sont
Faccoutume, sous la forme de textes en iginguées dans cette évaluation multicritere :
Ianggge naturel exprimant leurs opinions, etle _ yans un premier temps, les portions de texte
systtme se charge de les analyser qo annortant a I'un des critéres d'évaluation

automatiquement. II’,Ies décompose d'abord g,n extraites avec notre approcBgnopsis
selon I_es criteres d’évaluation (segme_ntatlon décrite dans [9]. Il s'agit donc de segmenter le
thématique) avant de calculer les polarités ou oyt par théme (ici, les critéres) :

234



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

— ensuite, pour chaque critére, la polarité des dictionnaire (i.e., le niveau d’expertise). Plus

segments qui lui ont été affectés [mopsis I'utilisateur veut étre certain de I'appartenance
est calculée. Il s’agit la de I'étape d’opinion- des segments de texte a un critere, plus le
mining a proprement parler [12]. vocabulaire appris devra étre sélectif.
L’appartenance d'un descripteur au champ
2.1 Segmentation thématique par critere lexical du critere résulte du calcul d'une

fonction de discrimination ; un seuil sur cette

L’approche non superviséeSynopsis est . AP
utilisée pour identifier les extraits de texte qui fOI‘]Ct,IOI’l permet de defln!r\l etiquette « fortg ”
sur I'appartenance au critére. Plus ce seuil est

traitent des criteres considérés et se composeh ¢ Dl | h Japprent q
de 3 étapes : aut, plus la phase d'apprentissage des

1. Construction automatique du corpus dgscri_pteurs_ du dictionnaire _ctéynopsisest
d'apprentissage utilisé pour apprendre sélective (figure _1). Les seuils _retenus sont
les mots caractéristiques d'un critére ; calculés automatiquement a partir de I'analyse

2. Apprentissage automatique de ces m,ots des paliers de la fonction d’appartenance au

caractéristiques, appelés descripteurs, critere [10].
et construction d’'un lexique associé au [ -
critere ; * EE [

3. Segmentation du texte en utilisant le
lexique associé au critére.

L'approche utilise un ensemble de mots - o
appelés «mots germes ». Ces mots germes \

permettent d'une part de caractériser
sémantiquement le critére considéré, et d’autre -

part d’amorcer I'apprentissage des descripteurs /" —-— -

/4

caractéristiques  d'un critere Ol L& Figure 1: pourcentage de mots retenus en
Construqtlon du corpus d gpprentlssage est fonction du seuil de discrimination
automatique. Tres schématiqguement, plus un

mot est fréquemment repéré dans le voisinage2.2 Analyse de sentiments

d'un mot germe du critere (comptage sur |'approche d'extraction d'opinions (ou
fenétre glissante), plus on considere comme ganalyse de sentiments) est une adaptation de
«forte » l'appartenance (sémantique) de ce 'approche Synopsisa I'extraction d’opinions
mot au champ lexical du critere. pour les phases de construction automatique
Synopsisconstruit son corpus d'apprentissage du corpus d’apprentissage et d’apprentissage
a partir de documents du web. La phase de ges descripteurs. Notons que les descripteurs
segmentation permet €galement de gérer gopinion appris sont généralement propres au
limprécision du langage en proposant non pas gomaine d’analyse (ici le cinéma) [14]. Les
une segmentation unique pour un texte donné, mots germes deviennent des mots germes
mais plusieurs segmentations possibles pour g'opinion [12]. Deux ensembles de mots
des granularites de langage différentes [9]. g'opinion sont initialement distingués les
Cette granularité correspond a lidée que les positifs (P) et les négatifs (N) :

passages identifies comme traitant d'un theme P = {good, nice, excellent, positive, fortunate, correct
(critére ici) peuvent varier en fonction du Su;er?or}.’ ’ P ’ ' ’
niveau d'expertise de [utilisateur. Les = {ba(;l, nasty, poor, negative, unfortunate, wrong,
méthodes statistiques qui supportent notre jnferior}.

approche permettent de construire un Partant de I'hypothése qu’un document qui
dictionnaire de descripteurs caractéristiques contient au moins un mot de P (resp. N) et
d'une thématique donnée et peuvent étre gucun de N (resp. P) est porteur d’une opinion
paramétrées afin de controler la taille de ce positive (resp. négative), un ensemble de
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documents associé a un mot germe estprocessus d'évaluation d'un critere. Cette
construit a l'aide d’'un moteur sur le web « subjectivité » techniquement liége a la
comme dansSynopsis(requéte pour le mot précision de I'extraction est « homogénéisée »
germe « good » dans le cinémaovie + good - par le traitement automatiqgue de la
bad - nasty — negative - poor — unfortunate — wrong  segmentation. La multiplicité d’avis imprécis

- inferior). Les descripteurs d'opinions sont recueillis automatiquement pour un critére est
limités aux adjectifs et groupes adjectivaux par ailleurs source d’incertitude sur

[10], [12]. Les techniques de filtrage [évaluation du critére. Pour synthétiser ces
statistiques par fenétre glissante $gnopsis  avis, faciliter leur représentation et leur

sont adaptées au comptage des descripteursnanipulation dans la suite du processus de
d’'opinions. recommandation tout en respectant

. limprécision et lincertitude des scores, la
Enfin, notre approche calcule pour un texte inaorie des croyances fournit le cadre

segmente, un score d’opinion pour un critereé 5nnranrié Les distributions de  possibilité
sous la forme d'une somme pondérée des yonnent une bonne approximation  des

appartenances des segments au critere et aU¥snctions de croyances et sont trés pratiques

descripteurs  positifs ou negatifs. AiNsi, §eg points de vue de la représentation et du
puisque l'extraction des segments thématiques 5 cL.

dépend du seuil de précision exigé, le score

d’opinion du texte pour le critere sera lui aussi Sojent un espace d’évaluation discret et fhi
affecté par ce seuil. Nous avons mis au point ot 22 pensemble des parties d&. Nous

un algorithme de segmentation suffisamment proposons un bref rappel sur la théorie des

performant  pour  calculer  plusieurs ggipilités [7] et la théorie des croyances [4],
segmentations d’'un texte en fonction du seulil [23].

(échantillonnage) sur la fonction

d'appartenance au critere. Ce résultat nous 3 1 Tnéorie des possibilités

permet donc de calculer I'expression d’opinion

du texte sur le critere d'analyse pour plusieurs jne distribution de possibilitér est une
valeurs du parametre modeélisant le niveau de ¢gnction définie sur 'ensembl€® a valeurs
connaissance de lutilisateur. Il existe une
borne inférieure et une borne supérieure pour
ce score. Par conséquent, le score d’opinion 77, sont définies respectivement deux mesures,

est une entité imprécise que nous représentonsyne mesure de possibilitéM(A) = sup7 W)
par un intervalle dont les extrémités sont les WA

bornes précédentes [10]. Cet intervalle sera et une mesure de nécessitf(A) =1-T1(A")

-eme

dans[0,1] telle que :supm )= 1. A partir de
W 1Q

noté par la suité oui est lei®"critere ef la OAOQ. M(A) quantifie a quel degré

j*ecritique (texte). I'événement A est plausible alors quél(A)
guantifie la certitude deA. Une a -coupe

3 Fusion d’intervalles d'une distribution de possibilité 77 est

l'ensemble : E,(n)={w0Q/ M) 2a},

A Tlissue de [lanalyse de sentiments a0,1].
automatique, une critique fournit un score
imprécis relativement a un critere sous la
forme d'un intervalle dont les valeurs
correspondent a différentes segmentations .

. . .~ Une masse de croyanceotée m, est une
possibles du texte (obtenues en faisant varier ) o
la précision de I'extraction comme décrit dans fonction de 2% dans [0,1] telle que
la section 2). Cette imprécision permet z m(A) =1 et m(J)=0. Un ensembleE
d’intégrer la subjectivité des critiques dans le AWP©@)

3.2 Théorie des croyances
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de Q tel que m(E) >0 est appelétlément Lorsque les intervalles sont seulement

focal L'ensemble des éléments focaux est cohérents (ﬂ l,=1#0 : les opinions

noté IF. La fonction m peut étre représentée = _

par deux mesures : lonction de croyance partagent au moins une valeur), mais pas

Bel( A = m(E) ou {EOF/ AO B emboités, deux distributions de possibilité sont
Z{ ELE AL construites. D’abord, OwdQ,

est 'ensemble des témoignages en faveuk de 77(e) = Z m(';)-lj (). Ensuite, on note

et la  fonction de plausibilité ey

PIAY =2 e oy M(B) ol E=E,0E,(m)(s=2r) (E=1) les
{EOF/ An E#Z0L0} est [I'ensemble des nouveaux intervalles emboités construits a
éléments focaux qui ont une relation ayeet partir de{l;| j =LNI}. Dans [6] les masses

le rendent possible. Les éléments focaux
peuvent représenter des  observations
imprécises sous forme d'intervalles. Dans ce m(Es):Z{ljassociéis m(1;) (chaque opinion
cas, la probabilité d’'un événemeAt] Q noté |

Pr(A), est imprécise et elle appartient a
lintervalle [Bel( A, P A] (Bel(A et PI(A)

représentent respectivement la probabilité
inférieure et la probabilité supérieure Ae OwlQ, zrz(a)):_zl:m(Es).lEs (w). Les
3.3 Fusion possibiliste distributions 7z, and 7z, sont les meilleures
approximations inférieure et supérieure pour
Les regles de combinaison classiques |es opiniong{1,| j =1,NI}) [6].
présupposent que les sources sont toutes
fiables (mode conjonctif) ou au moins une
source est fiable (mode disjonctif) [4].
Plusieurs autres regles dites dempromis
entre les modes conjonctifs et disjonctifs ont
été proposées [8]. La regle utilisée ici pour
construire les distributions de possibilité est de

formecompromis L o )

: ) , . contradictoires. Cela signifie que la contrainte
Soit {I;| ] =L NI} Iensemble des intervalles  yo coharence nest pas toujours vérifiée dans
distincts en sortie de l'analyse de sentiments |5 pratiquej.e., () !, =0. Pour faire face a
pour un critére. La probabilité d’occurrence N

d'un intervalle I, est considérée comme sa cette situation, [16] propose une méthode qui
masse de croyanae(|.) consiste a considérer la cohérence des groupes
DE

. . . d’intervalles avec une intersection non vide a
Dans le cas de singletons, les évaluations sont__ . . - .
L : partir des intervalles initiaugl , j =1,NI}, ce
précises, nous avons : ]

DAO P(Q), Pr(A)= Bel( A= PK A. qui revient a chercher les sous-ensembles
Lorsque les intervalles sont emboités Kz UL NI}, f=1g tels que:
,Ldl,0...00,, une distribution de ﬂ l;#0, ou g est le nombre de sous
possibilités 7 est calculée a partir de la ™s

de croyancesm(E) sont calculées selon

; est associée de facon unique au plus petit

ensembleE, qui peut la contenir). Ainsi, une
distribution de possibilitéz, peut étre définie :

Les données ne sont généralement ni précises,
ni cohérentes. Les probabilités d’une part et la
possibilité-nécessité, d’'autre part,

correspondent a des situations extrémes et
idéales [6]. Dans notre problématique, les

opinions exprimées par les internautes peuvent
évidemment correspondre a des évaluations

mesure de plausibilité Ow0Q, ensembles K,. Chaque sous-ensemble
mw) =PI{@) = > nf )1, (@) . d'intervalles est appelé Sous ensemble
J=LNI Maximal Cohérent (SMC). Cette notion a été

initialement introduite dans [21], comme
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moyen de raisonnement dans le cas de basey] Agrégation et modele de
I N . H t t t 't' ’t d Ve 7
ogiques inconsistantes et a été étendue aux préférences

cas de représentations probabilistes imprécises

dans [24] et [5]. Pour chaque gro , de . . TR .
[24] et [] N que grouks HX Lors d’'une évaluation multicriteren (criteres),

distributions sont construitesr’ et 77, les  agrégation est une opération qui permet de
approximations possibilistes inférieure et modéliser le systeme de préférence du
supérieure d¢l | j OK g} . Soit 7z, (resp. 1z,) décideur (ordre partiel suR") par une forme

analytique et [l'ordre classique SuiR.
L’objectif est alors de déterminer la fonction
d'agrégation que le décideur utilise, et qui

la distribution de possibilité union des
distributions de possibilitéz” | 3=1,g (resp.

m|B=19): synthétise I'expression de ses préférences lors
de [I'évaluation. L'opérateur le plus
7T, = U 7’ (resp. 7T, = U ), (1) communément utilisé est la moyenne
A=19 p=19 pondérée, elle permet de donner des rdles non

alors . et m, sont les approximations symétriques aux criteres de I'agrégation. Pour

(possibilistes) inférieure et supérieure des une moyenne pondéréeMP, il s’agit
donnéedl,| j =1,NI}. Les distributionsz, et d’identifier le vecteur des poids relatifs a
77, sont ditegy-modales. chacun des criterea® = (w,...,w, )J[0,1] qui

Pour de simples raisons pratiques de gestionla caractérise.

de la complexité et de linterprétation, on peut La méthode des moindres carrés est
ne garder qu'une seule distribution, synthése classiquement utilisée pour les quantités
approchée des deux distributiorr et 7z, agreégees precises. Imaginons que le décideur
(ex.: une approximation affine par morceaux S't affecté une notel gl%bale 3, un engemble
de type moyenne). L'idéal est de garder les items constituant la base d'apprentissage

deux distributions inférieure et supérieure tout pour Tidentification de son systeme de

2 Kk s oz
au long du processus de fusion et d'introduire Préference. Soitx™ la note agrégee des
une fonction de décision sur la conclusion €valuations pour un itenk. La methode des

portée par chacune des deux distributions au moindres carrés recherche le vecteur de poids
. . * . P . y £ K

moment du choix final (ex.: un ordre de Pareto @ qui minimise I'écart entre<" et la valeur

sur la valeur moyenne et limprécision calculée avec le modele lineairblP, sur

moyenne des distributions). 'ensemble des items de la base
On peut aussi choisir 'une des distributions d’apprentissage :

et 7z, en fonction de l'attitude souhaitée par « = Argmin > (MB,(X,.... X )= X} ou
rapport au risque inhérent & la décision : (€ "*“E[O’lp"m:ms

raisonner avec la distribution inférieure (resp. Mpw(ﬁ'___,)ﬁ)zzag.){ . n est le nombre de
la distribution supérieure) peut correspondre a =

une attitude d'aversion au risque lié a la critéres ety le poids associé al™ critére.
croyance dans l'information (resp. une attitude | o solution de ce probléme d'optimisation

flexible d’acceptation dg risque). fournit le jeu de poids des criteres modélisant
Dans tous les cas de figures, les calculs de la, ;| mieuxa stratégie du décideur.

section 4 restent les mémes pour chacune de

ces distributions. Ainsi_, le traitement n'est | a presse spécialisée fournit en général une

illustré dans cet article que pour une gipple évaluation globalex* dun film

distribution indifférenciee notée. accompagnée d'une critique plus ou moins
détaillée selon le journal. Il est donc difficile
pour [l'utilisateur de savoir si les raisons

7
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(criteres) pour lesquelles un film est bien percu Autrement dit, la question que I'on se pose,
par un journal correspondent a ses critéreSest: connaissant les 7, quelle

personngls. Com.me nous Ievogwons €N distribution w permettrait d'inférer au mieux
introduction, fournir les scores partiel$ est lavis du journal 77? Mathématiquement, la

une tache qui rebute les internautes. Ceux-Ci question se raméne a: quelle distribution de
veulent bien participer a un RS collaboratif, poids maximise 77“= 77 pour un journal

mais  preferent exprimer leur opinion en  yonné sur I'ensemble des items évalués ?
langage naturel sous la forme d'une critique g logique floue, il existe plusieurs

unique, évoquant dans leur texte les seuls propositions  pour  limplication. Les

criteres qui les ont marques en ’blen ou en maljmjications de Willmott, Mamdani, Rescher-
pour le film quils analysent. C'est la raison ggaines Kleene-Dienes Brouwer-Gédel
pour laquelle nous avons voulu automatiser Goguen, Lukasiewicz, Fodor, Reichenbach

I'extraction de critéres et I'analyse d’OpiI:liOnS.. sont soit restrictives soit trop permissives [15],
En revanche, les scores établis [22]. 3

¢ p - i d " . Un compromis consiste a calculer la
automatiquement a partir des critiques Sont o, t- e commune entr@ et 7 telle que
imprécis. Cette section propose une technique .

. g , N cette mesure représente leur pourcentage de
d’identification des poids adaptée a la nature

des données dont on dispose dans notrerecouvrement.

roblématique. K sk N _x

Ea stratégictla que I'on cherche a identifier est Imp(nk,n“)-looj'D(ﬁ* 7)) /J.n ' (2)
celle d'un journal spécialisé : quels sont les Pour les distributions de possibilité
critéres qui caractérisent les valeurs véhiculées multimodales, nous avons décidé de ne
par ce journal ? Un utilisateur saura ensuite considérer que le mode qui représente
quel journal est le plus & méme de lui fournir I'opinion de la majorité des internautes dans le
des recommandations adaptées a son proprecontexte de cet article.

systeme de choix. Nous proposons maintenant de déterminer les
Un journal spécialisé attribue des évaluations poids de chacun des criteres par
globales a des films a l'aide d’échelles du lintermeédiaire d’'une analyse de sensibilite.
type : nombre d’étoiles, nombre de barres, etc. Cette derniére consiste a faire varier les poids
Ces scores sont imprécis et nous les de chacun des criteres et d'évaluer, pour
modélisons a laide d'une partition de chaque variation deg, I'implication de 77

Q=[0,20] en distributions de possibilite par 7 sur lensemble des items. La

trapézoidales 77, k O items. distribution de poidsc« retenue pour un
Selon la méthode de fusion présentée dans lajournal donné est :
section précédente, nous calculons a partir des

opinions extraites du web, pour chaque critere W = max Z T =) @)

i et chaque itemk, une distribution de (@ FIOAT y Fjems

possibilité 77°,i O{1, ...,n}, k Ditems(ou 725 et Ce résultat donne les criteres prioritaires pour
(] ) L | ) vl

L ) ’ o un journal spécialisé donné.
ﬂ;i si 'on ne fait pas d’approximation des

distributions inférieure et supérieure). Notons 5§ (Cas d’étude

¢ =MP,(7z',...,7T") I'agrégation  des

distributions 77°,...,77 pour un item kpar  Le prototype logiciel qui supporte notre
systeme de recommandation de films repose

, i R sur l'association d'un internaute avec un

alors pour un journal donné la distribution de journal spécialisé qui porte les mémes priorités

poids w qui fera correspondre au mieux et ou valeurs que lui. Ce prototype utilise le

77 sur lensemble des items évalués. module d’extraction d’opinions multicritéres

l'opérateur d’agrégationMP,. On cherche
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de la section 2, ainsi qu’une base de critiques
de films écrites en langage naturel, issues du
célebre site de critiques cinématographiques
IMDB. Les critiques fournies par IMDB
(environ 3000 critiques par film) fournissent
assez d’information pour avoir une idée
représentative de la diversité des opinions des
internautes sur un film. Chaque critique de
flm a été scorée par notre systeme
d’extraction d'opinions multicriteres selon
deux critéres :acteur et scénario Avec le
processus de fusion de la section 3, nous
obtenons par exemple pour les films « Drive
et « Avatar», a partir de 324 opinions extraites
pour le premier et 1191 pour le second, les
distributions des deux critéres (section 3) :

Distribution : Drive - Actor

01 2 3 4 5 06 7 8 910111213 141516171819 20

Inf = = Sup

Distribution : Drive - Scenario

A | EoN
08 i i 1
i i !
0.6 it i Tl
i\ i R
04 :
i \ ] 2\
02 P i i
i i i -
o : ! s o
01 23 456 7 8 910111213 141516171819 20
------- Inf = = Sup
Distributions : Avatar - Actor
1,2
1 -
1 !
08 — 1
0 !
0,6 i
f ' E !
0,4 i !
; | i
02 1 !
!

012 3 45 6 7 8 9 101112131415 16 17 1819
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Figure 2 — Distributions de possibilité des
criteres pour les films « Drive » et « Avatar »

Nous disposons par ailleurs, pour chacun des
films de la base, d’évaluations globales sous la
forme d’'un nombre d’étoiles (transformées en

71°) attribuées par la presse spécialisée. Nous
avons retenu 20 journaux dans cette
application.

Pour chaque journal est calculée la distribution
de poids qui synthétise le mieux la stratégie
d’évaluation du journal, c'est-a-dire la
distribution qui expligue au mieux les notes
71 attribuées par le journal aux fiims de la
base d'apprentissage. Sur cet exemple, la
stratégie d’évaluation d'un journal est
modélisée par les poids qu’il accorde aux deux
criteres (figure 3). On remarque qu'’il existe de
grandes différences entre les  politiques
d’évaluation des journaux (par exemple pour
Les Cahiers du Cinémées poids sont de 0.7
et 0.3 alors qu’a l'inverse ils sont de 0.3 et 0.7
pour Charlie Hebdp

Il est évident que la conception d’'un systéme
de recommandation opérationnel nécessite que
bien d'autres critéres que les deux retenus
acteur et scénario soient intégrés dans notre
modéle pour une recommandation plus fiable.
L’automatisation des phases de segmentation
et d’opinion-mining que nous proposons laisse

néanmoins envisager sereinement cette
extension dans notre démonstrateur.
L'utilisation de ces résultats pour de la

recommandation dépend de l'information dont
on dispose sur [lutilisateur (préférences,
évaluations antérieures, etc.). A minima, la

figure 3 fournit a [linternaute les criteres
importants selon les 20 journaux de la base. Il
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peut alors simplement choisir le journal qui identifier, c’est lui-méme qui repére le journal
véhicule les valeurs qui s’approchent le plus qui lui convient le mieux. Notons que ce
de son humeur du moment et aller consulter le principe simple permet a [l'utilisateur de
hitparade de ce journal pour une changer de «systeme de préférence » selon
recommandation personnalisée. Il n'y a ainsi son humeur chaque fois gqu’il va au cinéma!

pas de modele de préférence de l'utilisateur a

el

Implication par cfitére ﬁour chaque journal
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Figure 3 — Stratégies d’évaluation des 20 journaux de la base

langage naturel des opinions (scores)
Il est également possible d'imaginer que I'on relativement & un ensemble de critéres. Nous
identifie ~ un modele de préférence de avons expliqué pourquoi les scores restitués
I'utilisateur sur une base de films mythiques gtaient imprécis. Nous avons alors développé
réduite ou sur des critiques qu'il aurait postées yne méthode de fusion pour calculer I'opinion
antérieurement. Tout dépend de collective des internautes sur un film au regard
linvestissement que l'on souhaite des d'un critére donné. Enfin, nous avons proposé
utilisateurs du systeme collaboratif de une méthode d'identification de la stratégie
recommandation. On calculerait ensuite une d'évaluation d'un journal spécialisé. La
distance entre les distributions de poids des recommandation la plus simple qui soit avec
journaux et de [lutilisateur pour la notre systéme consiste alors a montrer les
recommandation. critéres prioritaires de la presse spécialisée a

Dans nos futurs travaux, nous projetons de |'utilisateur afin qu'il choisisse le journal selon
garder tous les modes calculés par la méthodeson humeur.

de fusion pour chaque critére et mettre en
place un calcul des poids qui tienne compte Cette approche permet donc de développer des
des modes afin de préserver au mieux la systémes de recommandation de type MMPE

disparité des avis des internautes. en s'affranchissant des taches les plus
contraignantes de ce type de systéemes
6 Conclusion collaboratifs. Ceci constitue une avancée

importante car jusgu’'a présent la nécessité
Dans cet article, nous avons proposé un d’évaluer manuellement un grand nombre de
systtme de recommandation qui permet documents et cela selon plusieurs criteres,
d’extraire automatiquement de critiques en représentait un frein majeur a la mise en place
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de tels systemes. La chaine de traitement que

nous proposons établit un  processus
d’automatisation  cognitive  qui  laisse
raisonnablement envisager un large

déploiement et la généralisation des RS de

type MMPE dans les années a venir pour
traiter des données issues du web.
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Résumé :

L’adéquation entre un vocabulaire expert utilisé pour
décrire linguistiquement un ensemble de données et la
structure de ces dernieres est requise pour garantir la
pertinence et la cohérence de I’expression des résultats
d’un processus de découverte des données personna-
lisé. Cet article propose deux mesures pour répondre
a cette tache : la premiere est basée sur la comparai-
son des partitionnements respectivement obtenus & par-
tir de la représentation initiale des données et a partir
des données réécrites ; la seconde évalue, dans 1’espace
réécrit, les regroupements identifiés dans I’espace ini-
tial. Les expérimentations sur des données artificielles
montrent qu’elles permettent d’identifier des vocabu-
laires pertinents.

Mots-clés :

Variables linguistiques, classification non supervisée,
adéquation, structure des données
Abstract:

The adequacy between an expert vocabulary used to
linguistically describe a data set and the structure of the
latter is required to guarantee the relevance and consis-
tency of the expression of the results obtained in a per-
sonalised knowledge discovery task. This paper proposes
two measures to address this task : the first one is based
on the comparison between the partitions obtained from
the initial data and the rewritten data representations ; the
second one assesses, in the rewritten space, the clusters
obtained from the initial data. Experimental results ob-
tained from artificial data show these measures make it
possible to identify relevant vocabularies.

Keywords:

Linguistic variables, clustering, adequacy, data struc-
ture

1 Introduction

La prise en compte des préférences et des be-
soins des utilisateurs permet de personnaliser
le processus de découverte de connaissances
dans des ensembles de données et d’augmen-
ter leur pertinence [2]. Ces préférences peuvent
en particulier étre exprimées par le biais d’un
vocabulaire expert, modélisé¢ par des variables
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linguistiques floues, qui permet de décrire des
propriétés des données qui ont du sens pour
I’analyste. La pertinence de 1’utilisation de
tels vocabulaires pour la personnalisation a été
démontrée dans de nombreux contextes appli-
catifs, parmi lesquels la recherche par facettes
[12], les requétes flexibles coopératives [1] ou
le résumé de données [10, 13].

Il est alors nécessaire que la définition du vo-
cabulaire soit cohérente par rapport a la struc-
ture sous-jacente des données : le vocabulaire
induit une relation d’indistinguabilité sur les
données, puisque deux objets ne peuvent Etre
distingués s’ils satisfont une modalité floue
au méme degré. Cette relation est légitime,
puisqu’elle correspond a des données qui sont
également appréciées par ’expert; toutefois,
elle doit étre définie de sorte a étre compa-
tible avec la structure des données. En effet,
d’une part, deux données similaires par leurs
descriptions numériques ne doivent pas éEtre
séparées par leurs descriptions linguistiques.
Réciproquement, deux données indistinguables
d’apres le vocabulaire ne doivent pas appar-
tenir a des sous-groupes de données distincts.
De telles inadéquations devraient conduire a
nuancer le vocabulaire de 1’analyste, afin de
préserver a la fois I’adéquation avec les données
et la compatibilité avec ses préférences subjec-
tives exprimées par les modalités floues.

Le probleme de I’adéquation entre vocabulaire
expert et structure de données a été soulevé
[10, 13], mais n’a pas été étudié. Dans cet ar-
ticle, nous proposons de I’interpréter comme un
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probleme de compatibilité entre deux proces-
sus de classification non supervisée de données,
plus précisément la compatibilité entre la struc-
ture sous-jacente des données, extraite par un
processus de clustering appliqué aux données
initiales et la structure induite par le vocabu-
laire, identifiée par un processus de clustering
appliqué aux données réécrites comme des vec-
teurs de leurs degrés d’appartenance aux moda-
lités floues considérées. Nous proposons deux
criteres pour mesurer cette compatibilité : le
premier évalue 1’accord des partitions obtenues
par les deux processus de clustering cités; le
second mesure a quel point les clusters obte-
nus par clustering des données initiales sont
pertinents en les évaluant dans l’espace de
représentation réécrit induit par le vocabulaire
considéré.

Larticle  présente  successivement  les
différentes étapes de la méthode proposée :
la section 2 décrit 1’étape de réécriture des
données selon le vocabulaire a évaluer; la
section 3 décrit 1’étape de clustering, justifiant
I’algorithme ainsi que les mesures de compa-
raison de données choisis ; la section 4 présente
les criteres d’adéquation proposés. La section 5
décrit les résultats obtenus sur une base de
données artificielles.

2 Etape de réécriture
2.1 Données et vocabulaire

Les données, notées D, sont constituées d’ob-
jets {x1, za, ..., x, } décrits par m attributs A =
{A1, Ay, ..., A}, catégoriels ou numériques,
respectivement définis sur les domaines D;.

Le vocabulaire V dont I’adéquation est a mesu-
rer est défini comme un ensemble de variables
linguistiques, qui associent chaque attribut a
une étiquette linguistique et une partition floue
de type Ruspini [11] : formellement, pour I’at-
tribut A;, j = 1..m, on note a; le nombre de
modalités associées et V; = {vj1,...Vjq,} les
sous-ensembles flous associés. La propriété de
partition de Ruspini impose Vj = 1..m, Vx &€
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Dj’ szzl oy, (Z') =1
2.2 Données réécrites

Chaque donnée peut alors étre réécrite, en
calculant les degrés d’appartenance a chaque
modalit¢é de chaque variable linguistique
puis en concaténant ceux-ci : la donnée x
z z N m
est représentée par le vecteur a > 7, a,

composantes (Hoyy (T); - ooy gy, (T), -
/“Lvml(x)7 st 7/“'L'Umam (I)>'

Il faut noter que chaque point ne peut satisfaire
partiellement que deux modalités pour chaque
attribut. Aussi le vecteur ci-dessus comporte au
plus 2m composantes non nulles.

2.3 Indistinguabilité

Les représentations numériques ou
catégorielles offrent des descriptions précises
mais peu interprétables d’un objet. Au

contraire, les variables linguistiques floues
améliorent D'interprétabilit€, en particulier
lorsqu’elles sont définies par I’expert en charge
de D’analyse des données. Elles induisent
cependant une imprécision qui ne permet pas
de distinguer des objets qui satisfont au méme
degré une modalité floue. Cette relation d’indis-
tinguabilité est 1égitime puisqu’elle correspond
a des objets qui ne sont pas différenciés par
I’expert, mais également préférés.

Néanmoins, pour garantir la pertinence et la
cohérence des résultats exprimés avec ce vo-
cabulaire, elle ne doit pas étre décorrélée de
la structure sous-jacente des données, mais
étre compatible avec celle-ci. La Figure 1
par exemple illustre deux types d’incompati-
bilité non souhaitables : les données du clus-
ter C4, qui appartiennent a un méme clus-
ter d’apres la structure sous-jacente, ont des
descriptions linguistiques distinctes qui les af-
fectent a 3 clusters différents, Cy, C5 et Cy.
Réciproquement, les objets des clusters (] et
C ont la méme réécriture, mais devraient étre
distingués d’apres la structure sous-jacente.
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Figure 1 — Comparaison des partitions basées
sur le vocabulaire expert (clusters C; a Cy) et
sur la représentation initiale des données (clus-
ters C a C%).

3 [Etape de clustering
3.1 Choix de I’algorithme de clustering

De nombreux algorithmes de clustering peuvent
étre envisagés a priori [6], toutefois le contexte
applicatif impose des contraintes qui guident
la sélection : I’algorithme doit étre capable
de traiter de grands volumes de données, de
déterminer automatiquement le nombre de clus-
ters, que 1’ utilisateur ne peut indiquer a priori, et
de traiter des données hétérogenes, décrites par
des attributs numériques et catégoriels.

Nous proposons d’utiliser I’algorithme I-fcmed-
select [8] qui constitue une extension de I’al-
gorithme des c-médoides linéarisé [-fcmed [7].
Ce dernier présente 3 caractéristiques motivant
son utilisation : il définit les centres des clusters
comme des médoides, c’est-a-dire les données
qui minimisent la distance aux membres du
cluster, et non comme des points fictifs calculés
comme des moyennes par exemple, ceci per-
met une application a des données hétérogenes ;
il effectue une affectation floue, ce qui lui ap-
porte robustesse et indépendance a I’initialisa-
tion aléatoire ; il met en ceuvre une approxima-
tion pour la mise a jour des médoides, en re-
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cherchant la nouvelle position dans le voisinage
de la position précédente, ce qui diminue son
temps de calcul.

L’extension [-fcmed-select [8] constitue une va-
riante incrémentale de [-fcmed, qui est appliqué
a des échantillons de données, conduisant a
des résultats locaux fusionnés ultérieurement
par clustering hiérarchique. De plus, lorsqu’un
échantillon a été traité, une étape d’augmenta-
tion des clusters teste si les données non encore
traitées peuvent étre affectées aux clusters iden-
tifiés. Cette étape permet d’une part de diminuer
la quantité de données restant a traiter et d’autre
part d’éviter I’identification de clusters trop si-
milaires aux clusters déja identifiés. Elle réduit
donc le temps de calcul, a la fois pour les étapes
de [-fcmed et pour leur fusion finale.

En outre, afin de sélectionner le nombre de
clusters, [-fcmed-select ajoute une étape de
sélection de médoides : [-fcmed identifie c clus-
ters, que cette valeur soit pertinente ou non pour
les données. Aussi, [-fcmed-select applique a
chaque échantillon [-fcmed avec une valeur
élevée de c et sélectionne ensuite uniquement
les clusters pertinents, selon des criteres de
taille et de compacité [8].

3.2 Choix des mesures de distance

Pour I'espace de représentation initial, nous
définissons la distance comme la moyenne des
distances calculées pour chaque attribut, c’est-
a-dire d(z,y) /g3 70 dixj,y;), ou d;
est la distance associée a I’attribut A;, définie
comme d.; pour les attributs catégoriels et
dpum pour les attributs numériques :

durn) = { o Gt ¥
|z -y
dnum(xay) m (2)

La distance pour attribut catégoriel est binaire
et vaut O si les deux valeurs comparées sont
identiques, 1 sinon. La distance pour attributs
numériques calcule un écart relatif : ainsi, une
différence de prix de 2 000€ n’a pas le méme
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effet suivant que les valeurs comparées sont de
I’ordre de 100 000€ ou de 10 000€.

Pour les données réécrites, nous proposons de
définir la distance comme la somme des dis-
tances obtenues pour chaque variable linguis-
tique, en utilisant pour celle-ci la distance pro-
posée par [3]. Pour un attribut A associé a une
variable linguistique a a modalités définissant
une partition forte, ordonnées de telle sorte que
leurs noyaux [K, K;] vérifient K; < K, ,, en
notant * = (2;)i=1.q4 €t ¥y = (¥;)i=1.o deux
vecteurs de degrés d’appartenance, [ la fonc-
tion telle que I(z) = ¢ & = € [K,, K, 4], et
n(x) = I(x) — pre)(z), la distance est définie
comme

1

da(z,y) = mln(fﬂ) -n) G

4 Mesures d’adéquation proposées

Deux criteres d’évaluation de 1’adéquation du
vocabulaire considéré a I’ensemble de données
sont proposés, basés sur les résultats de 1’étape
de clustering décrite dans la section précédente.

4.1 Comparaison des partitions

Une premiere approche consiste a comparer les
partitions obtenues lorsque les données D sont
respectivement décrites dans I’espace initial et
réécrites selon le vocabulaire V. Ces partitions
sont respectivement notées C(D) et C(RDy,).

La comparaison de partitions a donné lieu a
de multiples criteres [9], beaucoup s’ expriment
en fonction des 4 quantités suivantes : a est
le nombre de paires de données affectées au
méme cluster dans C(D) et également au méme
cluster dans C(RDy), b le nombre de paires de
données affectées au méme cluster dans C(R),
mais a des clusters différents dans C(RDy), c,
symétriquement, le nombre de paires affectées a
des clusters différents dans C(R) mais un méme
cluster dans C(RDy,), d est le nombre de paires
affectées a des clusters différents dans C(R) et
dans C(RDy).
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L’un des criteres les plus utilisés est I’indice de
Rand ajusté [5], noté ira dans la suite :

tla+d) -7

(n(n—l) ) 2 i
2

ot Z = (a+b)(a+c)+ (c+d)(b+d). 1l nor-
malise I'indice de Rand par rapport a une distri-
bution de référence des données.

ra =

A

La mesure d’adéquation du vocabulaire a la
base de données s’écrit alors

adipa(V,D) = ira(C(D),C(RDy)) (4)

4.2 Evaluation croisée

La mesure précédente requiert d’appliquer I’al-
gorithme de clustering deux fois, pour chacun
des espaces de représentation considérés, ce qui
peut étre coliteux. Le second critere mesure la
qualité du résultat du clustering effectué¢ dans
I’un des espaces de représentation en utilisant
la seconde représentation.

Plus précisément, le critere évalue si les clus-
ters identifiés en utilisant la représentation ini-
tiale des données sont compacts et séparables
au sens des données réécrites. En effet, si
deux médoides apparaissent indistinguables
dans I’espace réécrit, cela signifie que ce dernier
n’est pas approprié€ pour représenter la structure
des données.

Il existe de nombreuses définitions de com-
pacité et de séparabilité, ainsi que de nom-
breuses combinaisons de ces criteres [4]. Nous
considérons I’indice de Xie-Beni [14]

xieBeni(U, W, D) = —C(g,(x,)l))
1
ot C(UW,D)=— Z Z Uy d(;, w,)
n ;€D w,.eW
et SW)= min d(w,,ws)

Wy, wWs EW

ou U désigne la matrice d’affectation des
données, telle que u,; = 1 si la donnée x; est
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affectée au cluster 7, et O sinon. W = {w,}
représente I’ensemble des centres des clusters,
et d la mesure de distance. L’indice de Xie-Beni
doit étre minimisé.

Le critere proposé consiste alors a calculer dans
I’espace réécrit la compacité et la séparabilité
des clusters identifiés dans 1’espace initial :

qdx5(V, D) = zieBeni(U(D), RWy, RDy)
)
ou U(D) représente 1’affectation obtenu en par-
titionnant les données D dans I’espace initial,
W les centres de clusters associés et RD,, leur
réécriture par le vocabulaire V.

5 Résultats expérimentaux

Cette section décrit 1’étude des criteres pro-
posés réalisée sur une petite base de données
artificielle représentative, en deux dimensions.

5.1 Données considérées

Les données, représentées sur la Figure 2, ont
été générées par un mélange de trois gaus-
siennes non sphériques générant chacune 150
points. Plusieurs vocabulaires sont comparés,
comme représenté a gauche et dans la partie
inférieure de la figure : la variable linguistique
associée a ’attribut y est définie par une parti-
tion appropriée, qui correspond a la distribution
des données : les deux modalités isolent le clus-
ter d’en haut des clusters inférieurs et induit des
zones indistinguables au sein de chaque cluster.

Pour I’attribut x, 7 partitions sont considérées,
classées par ordre croissant de nombre de
modalités : P1 contient une unique moda-
lité et peut donc étre considérée comme trop
générale. En effet, toutes les données appar-
tiennent a son noyau et sont donc indistin-
guables. La partition P2 est la partition appro-
priée, qui correspond a la structure des données.
La partition P2a présente également 2 moda-
lités, mais peut étre décrite comme absurde :
elle est en double contradiction avec la struc-
ture des données : d’abord elle conduit a une
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Figure 2 — Données et vocabulaire considérés

distinction artificielle des données du cluster
inférieur de gauche ; de plus, elle ne fait pas de
différence entre les données du cluster inférieur
de droite et certaines des données du cluster
inférieur de gauche. La partition P3 définit
trois modalités qui rendent la partie centrale
des données indistinguable, regroupant les deux
clusters inférieurs et ignorant leur structure. La
partition P3[ est une variante de P3 ou la
région de chevauchement entre les deux clus-
ters est plus large. Les partitions 4 et P9 sont
d’autres exemples de partitions trop détaillées,
possédant trop de modalités.

5.2 Protocole expérimental

Le Tableau 1 montre, pour chacune des parti-
tions considérées, les valeurs des deux criteres
proposés, ad;r4 et gx p, en donnant la moyenne
et I’écart-type pour 100 initialisations. Chaque
initialisation tire aléatoirement un premier
médoide puis sélectionne les autres médoides
de facon a maximiser leurs distances deux a
deux. Des analyses non détaillées ici montrent
que, quelle que soit la représentation de données
considérée, les résultats du clustering sont
stables et peu dépendants de I’initialisation, ce
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Tableau 1 — Moyenne et écart-type des criteres
proposés pour 100 initialisations aléatoires.

1% c adrra qxB
P1 20+0 0.54 £0.05 Inf
P2 30+0 0.95 +0.06 0.04 +0.03
P2a 5.0+0.32 0.55+0.03 Inf
P3 2.14+£0.37 056005 0.204+0.03
P3l 2040 0.56 & 0.05 Inf
P4 3.0+£0.10 094 £0.06 0.33£0.05
P9 20+0.10 056 +£0.07 0.23+0.02

qu’indiquent également les faibles écarts-types
des valeurs du Tableau 1. La Figure 3 montre les
affectations les plus fréquentes obtenues pour
chaque représentation.

On peut observer qu’avec la représentation ini-
tiale des données, I’algorithme de clustering ob-
tient le résultat attendu. L’indice de Rand ajusté,
qui compare les affectations obtenues et atten-
dues d’apres le processus de génération des
données, vaut 0.961+0.05 : quelques affectations
sont erronées, aux frontieres des clusters, mais
Ces erreurs sont rares.

5.3 Résultats de I’adéquation IRA

La mesure ad; 4 indique clairement deux types
de vocabulaires : le premier, associé a des va-
leurs proches de 0.94, contient les partitions P2
et P4; le second, associé a des valeurs autour
de 0.56, groupe les autres partitions P1, P2a,
P3, P3l et P9. On ne note pas de différence
significative au sein de ces deux types.

Les partitions P2 et P4 identifient les trois clus-
ters attendus, correspondant a la structure iden-
tifiée par la représentation initiale des données.
[’adéquation élevée obtenue correspond donc
a un résultat attendu. Comme 1’illustre la Fi-
gure 3, les affectations sont les mémes pour P2
et P4 et ne different de la partition obtenue
a partir de la représentation initiale que pour
la partie supérieure du cluster situé en bas a
gauche : pour I’attribut z, ces données sont in-
distinguables des clusters situés en haut et en
bas a gauche, pour I’attribut y, elles se situent
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dans la zone de chevauchement des deux mo-
dalités et sont plutdt dans la partie haute. I1 est
aussi intéressant de noter que le point qui maxi-
mise y pour le cluster en bas a droite est affecté
au cluster du haut et non au cluster attendu, pour
P2 comme P4 : apres réécriture, ce point est a
égale distance de certains des points du cluster
de droite, en raison d’une distance nulle pour
I’attribut  mais non nulle pour y, et de certains
des points du cluster du haut, en raison de la
configuration inverse (distance non nulle pour
I’attribut x mais nulle pour ).

Les partitions P1, P2a, P3, P3l et P9 échouent
a identifier le nombre de clusters obtenu par
la représentation initiale : a part P2a, elles ne
distinguent que 2 clusters, fusionnant les deux
clusters du bas en un seul groupe. Le plus sou-
vent, P2a décompose les données en 5 clus-
ters, bien qu’elle soit légerement plus instable
que les autres partitions. Plus précisément, elle
identifie 3 clusters correspondant aux combinai-
sons des modalités définies sur x et y, ainsi que
2 clusters correspondant aux données situées
dans les régions de chevauchement des moda-
lités, pour les attributs x comme y.

Il est intéressant de noter que le nombre de
clusters identifiés n’est donc pas corrélé au
nombre de modalités : la partition trop précise
P9 n’identifie pas plus de clusters que la par-
tition 3. En effet, la différence en termes de
distance qu’un nombre trop important de mo-
dalités pourrait induire est d’une part atténuée
par la normalisation par le nombre de modalités
(cf. Eq. 3) et d’autre part dominée par la dis-
tance induite par les partitions définies sur les
autres attributs.

Ces résultats montrent que la méthode proposée
identifie le vocabulaire approprié et pénalise les
vocabulaires incorrects. Toutefois, elle ne dis-
tingue pas parmi ces derniers, ce qui peut étre
un inconvénient dans le cas ou l’objectif est
d’aider un expert a adapter un vocabulaire.

On peut observer que les deux types de vo-
cabulaires ne sont pas justifiés par le nombre
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Figure 3 — Affectations obtenues : (premiere ligne) représentation initiale et apres réécriture avec les
partitions P1, P2, P2a; (seconde ligne) apres réécriture avec les partitions P3, P3l, P4, P9.

de modalités, par exemple selon que ce der-
nier est trop €levé ou trop faible, mais par la
présence ou 1’absence d’une modalité reliant
les deux clusters du bas : pour les deux par-
titions obtenant une valeur élevée de adipa,
P2 et P4, la frontiere entre les clusters corres-
pond a une transition entre des modalités. Au
contraire, pour les vocabulaires obtenant une
valeur faible, la région frontaliere est rendue in-
distinguable par une modalité a cheval entre les
deux clusters. Pour ces données, la taille du che-
vauchement n’a pas d’influence : qu’elle soit
élevée (P1, P2a ou P3l), moyenne (P3) ou
faible (P9), la mesure prend la méme valeur.

5.4 Résultats de I’adéquation XB

La derniére colonne du Tableau 1 donne les
valeurs de ¢gxp, qui doit €tre minimisé. A
titre de référence, 1’évaluation dans I’espace de
représentation initiale, ¢’est-a-dire la mesure de
la compacité et de la séparabilité dans I’espace
ou le clustering a lieu, conduit a 0.1040.02.

On peut observer que P2 est significativement
la meilleure partition : représenter les données
par ce vocabulaire rend les clusters encore plus
compacts et séparables que dans 1’espace ini-
tial. En effet, toutes les données situées dans
les noyaux des modalités sont bien affectées a
un méme cluster, et donc a distance nulle : les
diametres des clusters sont donc tres faibles. De
plus, les médoides sont a distance maximale les
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uns des autres, car ils sont décrits par les moda-
lités extrémes de chaque modalité.

Les partitions P3 et P9 sont classées deuxieme
ex aequo : elles ont également une séparabilité
maximale, mais une compacité plus faible. Il
faut souligner que ces comparaisons de com-
pacité et séparabilité sont basées sur 1’in-
terprétation, et restent conceptuelles et non
numériques : les échelles de distance sont
différentes, et une normalisation est difficile.

La partition P4, classée quatrieme, a une com-
pacité comparable a celles de P3 et P9, mais
n’obtient pas une séparabilité maximale : pour
I’attribut x, les médoides sont respectivement
réécrits comme (0, 1,0,0) and (0,0, 1,0) et non
plus affectés aux modalités extrémes.

Enfin, pour les partitions P1, P2a et P3l, gxp
est infini en raison d’un dénominateur nul : au
moins 2 médoides ne sont pas distinguables se-
lon le vocabulaire, ce qui en indique le manque
d’adéquation. Cette valeur infinie, qui ne per-
met pas de faire de différence entre ces trois vo-
cabulaires, pourrait étre raffinée par le nombre
de paires de médoides indistinguables.

Le classement des partitions pertinentes
est donc plus fin et différent de celui in-
duit par la mesure adjra, ce qui indique
la complémentarit¢ de ces mesures de
sémantiques différentes.
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6 Conclusion

Dans le but de personnaliser le processus de
découverte, nous avons considéré le probleme
de 1’adéquation entre un vocabulaire expert et
la structure des données, en proposant deux me-
sures. La premiere repose sur la comparaison
de deux partitionnements des données, obtenus
a partir de la représentation initiale des données
et d’une réécriture des données. La seconde me-
sure, moins coliteuse en temps de calcul, est
basée sur I’évaluation dans 1’espace réécrit des
regroupements identifiés dans 1’espace initial.
Les expérimentations préliminaires ont montré
que les deux mesures permettent d’identifier les
vocabulaires pertinents.

N

Les travaux en cours visent a étendre les
expérimentations a des bases de données plus
complexes, plus bruitées ou en dimensions
supérieures, et en particulier pour des données
réelles, qui posent également le probleme des
valeurs manquantes. La comparaison de voca-
bulaire différant par le degré de flou des parti-
tions est également envisagée. Les perspectives
incluent aussi I'interprétation plus détaillée des
mesures proposées, en particulier pour proposer
des adaptations du vocabulaire, pour améliorer
I’adéquation a la structure des données tout en
conservant la subjectivité du vocabulaire expert.
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Résumé :

Les motifs graduels de la forme “plus/moins A,
plus/moins B’ résument et caractérisent les données par
leurs tendances internes exprimées comme des corréla-
tions entre les valeurs des attributs. Cet article propose de
caractériser les motifs graduels en les enrichissant par une
clause introduite par 1’expression linguistique “surtout
si”. IIs sont de la forme “I, surtout si J € R” ou I est un
motif graduel, J est un ensemble d’attributs inclus dans
et R est un ensemble d’intervalles définis pour chaque at-
tribut dans J. La méthode proposée est basée sur des
outils de morphologie mathématique et tient compte de
la densité des données. La pertinence de 1’approche pro-
posée est illustrée sur un ensemble de données réelles.

Mots-clés :

Motif graduel, caractérisation, densité, fouille de don-
nées, extraction d’intervalles.
Abstract:

Gradual itemsets of the form “the more/less A, the
more/less B” summarise data through the description of
their internal tendencies, identified as correlation be-
tween attribute values. This paper proposes to character-
ize gradual patterns by enriching them by a clause intro-
duced by the linguistic expression “especially if”. They
are of the form “I, especially if J € R”, where [ is a
gradual itemset, J is a set of attributes occurring in / and
R is a set of intervals defined for each attribute in J. The
proposed method is based on appropriate mathematical
morphology tools and takes into account the data density.
The relevance of the proposed approach is illustrated on
areal data set.

Keywords:

Gradual itemsets, characterisation, density, data min-
ing, interval extraction.

1 Introduction

Les motifs graduels fournissent des informa-
tions résumant un ensemble de données sous
la forme “plus/moins A, plus/moins B”. Initiale-
ment introduits dans le formalisme des impli-
cations floues [8, 9], ces motifs ont ensuite
été interprétés comme des contraintes de co-
variation des valeurs d’attributs, pour des don-
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nées floues ou numériques. Plusieurs interpré-
tations de ces contraintes ont été proposées,
sous la forme de régression [10], de corréla-
tion d’ordres induits [2, 11] ou d’identification
de sous-ensembles d’objets compatibles [4, 5].
Ces interprétations conduisent a différentes
définitions de supports et a des méthodes
d’identification de motifs fréquents.

Dans le cas de données floues, un enrichisse-
ment des motifs graduels par renforcement a
été proposé. Il consiste a identifier des sous-
ensembles des données sur lesquels le motif est
plus satisfait que sur la base totale. Ces sous-
ensembles sont définis par des contraintes de
présence de modalités floues. Les motifs ren-
forcés sont exprimés linguistiquement par une
clause introduite par “d’autant plus que” [3],
comme par exemple “plus on est proche du mur,
plus on freine fort, d’autant plus que la vitesse
est élevée”.

Cet article propose un nouveau type
d’enrichissement par une caractérisation des
motifs graduels, pour des données numériques.
Cet enrichissement considere des restrictions
définies par des contraintes d’intervalles iden-
tifiés automatiquement et non des modalités
existantes dans les données. Linguistiquement,
la caractérisation est exprimée par des clauses
introduites par I’expression “surtout si”. Les
motifs graduels caractérisés peuvent étre illus-
trés par I’exemple “plus on est proche du mur,
plus on freine fort, surtout si la distance au
mur est dans [0,50]m”, ou plus généralement
“plus/moins A, plus/moins B, surtout si J € R”,
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ou J est un ensemble d’attributs appartenant
a AU B et R est un ensemble d’intervalles
définis pour chaque attribut dans J. L’approche
proposée dans cet article considere des con-
traintes de densité, afin de mettre en évidence
les régions appropriées du domaine qui sont
fortement peuplées.

L article est organisé de la facon suivante :
la section 2 rappelle le formalisme des mo-
tifs graduels et présente les travaux existants.
La section 3 décrit I'interprétation des motifs
graduels caractérisés et leur formalisation. La
section 4 décrit le processus de transcription
de données, la section 5 présente la méthode
proposée basée sur des outils de morphologie
mathématique et la section 6 le post-traitement
nécessaire pour le cas général. Enfin, la sec-
tion 7 illustre les résultats obtenus sur des don-
nées réelles.

2 Contexte et travaux liés
2.1 Définition des motifs graduels

On note D un ensemble de données constitué
de n objets décrits par m attributs numériques.

Un item graduel A* est un couple constitué d’un
attribut A et d’une variation, notée x € {>, <}.
Un motif graduel est un ensemble d’items gra-
duels, interprété comme leur conjonction.A un
motif [ {(Aj,%;), ] 1.k}, on asso-
cie sa longueur, k, définie comme le nombre
d’attributs qu’il implique, et le pré-ordre induit
= défini sur D? tel que 0 =<; o ssiV j €
[1,k] Aj(o) *; A;(0') ot A;(0) représente la
valeur de I’attribut A; pour 1’objet o.

L’interprétation des contraintes de co-variation
par identification de sous-ensembles compa-
tibles [4, 5] consiste a identifier des sous-
ensembles D de D, appelés chemins, qui peu-
vent étre ordonnés de facon a ce que tous
les couples de données de D vérifient le pré-
ordre induit. Ainsi pour un motif /, D
{01,...,0,} C D est un chemin si et seule-
ment s’il existe une permutation 7 telle que
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\V/l E [1,p - 1]’ Oﬂ'l j[ Oﬂ'H,l'

Un tel chemin est dit complet si aucun ob-
jet ne peut lui étre ajouté sans violer la con-
trainte d’ordre imposée par /. On note L£([)
I’ensemble des chemins complets associés a I.
On appelle chemin maximal un chemin complet
de longueur maximale. Le support graduel de 7,
SGp(I), est défini comme :

1

SGp(I) = D

ey

max, |D|
DeL(1

2.2 Renforcement des motifs graduels

Les motifs graduels renforcés sont des mo-
tifs enrichis auxquels une clause introduite par
I’expression “d’autant plus que” est ajoutée [3].
La clause de renforcement se compose de
modalités floues des attributs. L’interprétation
en termes de présence renforcée proposée
dans [3] considere de tels motifs enrichis
comme des motifs qui sont mieux satisfaits
quand I’ensemble de données est limité aux ob-
jets satisfaisant la clause de renforcement.

La caractérisation proposée dans cet article
compare aussi la validité du motif évaluée sur
I’ensemble total de données a celle mesurée
sur un ensemble restreint. Toutefois cette res-
triction n’est pas définie par la présence de
modalités pré-définies, mais par des contraintes
d’intervalles, identifiés automatiquement.

2.3 Identification d’intervalles d’intérét

La caractérisation considérée peut étre rap-
prochée de travaux visant a identifier des in-
tervalles d’intérét, comme c’est le cas pour
I’extraction de regles d’association quantita-
tives et pour I’identification de partitions floues.

Les regles d’association quantitatives sont une
extension des regles d’association classiques
aux attributs numériques [1, 15] : un item est
défini comme un couple constitué d’un attribut
et d’un intervalle, par exemple (age, [27,38]).
Il est alors possible de calculer la proportion
de données possédant un item pour évaluer son
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support, et donc d’appliquer des algorithmes
classiques d’extraction de motifs. Les méthodes
proposées pour identifier ces intervalles peu-
vent étre distinguées suivant qu’elles reposent
sur une discrétisation avant [1, 12, 15] ou pen-
dant le processus d’apprentissage [6, 7, 16, 14].

Le probleme d’identification d’intervalles
d’intérét se rapproche également du probleme
de discrétisation pour la construction d’arbre
de décision. L’approche proposée dans [13]
utilise des outils de morphologie mathéma-
tique [18], plus précisément un filtre alterné,
pour regrouper les valeurs d’un attribut qui
sont associées a la méme classe, tolérant
un certain niveau de bruit dans les groupes
identifiés. Ce filtre est appliqué a un mot,
obtenu par transcription de I’univers numérique
unidimensionnel, ou chaque exemple est
représenté par un caractere symbolisant sa
classe. Cette transcription tient compte de
I’écart entre deux valeurs successives dans la
base d’apprentissage.

3 Interprétation des motifs gradu-
els caractérisés

Cette section présente I'interprétation et le
principe de la caractérisation des motifs gra-
duels, en I’illustrant sur un exemple.

3.1 Restriction de données

La Figure 1 représente un ensemble de don-
nées décrit par deux attributs, pour lequel le
motif graduel ] = AZBZ est supporté par le
chemin représenté par e. Son support graduel
vaut 15/23 = 65%. Or, il peut étre observé
que la covariation entre A et B est particuliere-
ment vérifiée si les données sont limitées aux
objets pour lesquels A prend des valeurs dans
Iintervalle [32;65] : pour ces données le sup-
port du motif est plus élevé, il vaut 12/14 =
85%. Ceci motive I’extraction du motif graduel
caractérisé “A=B= ; surtout si A € [32;65]”.

Plus  généralement, nous  proposons
d’interpréter la caractérisation des motifs
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Figure 2: Effet de la densité.

graduels comme validité accrue quand les
données sont restreintes aux objets satisfaisant
la clause de caractérisation. Cependant, afin
d’étre informative, une telle caractérisation ne
doit pas limiter les données trop drastique-
ment : il est facile d’atteindre 100% de support,
par exemple en restreignant les données a un
unique couple d’objets satisfaisant 1’ordre in-
duit. Pourtant, la caractérisation dérivée serait
trop spécifique. Dans I’exemple précédent,
restreindre les données au plus petit intervalle
[32;42] augmente le support a 100%, mais
conduit a une caractérisation trop spécifique.

Le principe de la caractérisation est donc de
trouver un compromis entre un support élevé et
un nombre élevé d’objets lors de la restriction
de I’ensemble de données.

3.2 Prise en compte de la densité

Dans le cas général, deux sous-ensembles de
données différant par leur densité mais de méme



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

cardinalité peuvent donner le méme intervalle
caractéristique, comme illustré sur la Figure 2.
Dans les deux cas, on représente un sous-
ensemble d’une base de données pour lequel
le support est de 100% qui conduit a un inter-
valle caractéristique [8,42]. Or, pour le cas de
droite, il semble plus satisfaisant de restreindre
encore I’intervalle, pour définir la clause surtout
si A € [26;29] : le fait d’ignorer les deux pre-
miers et le dernier objet qui sont isolés du reste
des objets permet d’identifier une zone dense
qui est en effet plus caractéristique du motif, ou
la densité est mesurée par le nombre d’objets
rapporté a la taille de I’intervalle.

3.3 Objectif global

Ainsi I’objectif de la caractérisation d’'un mo-
tif graduel [ est d’identifier un ensemble
d’attributs J C [ et une région R conduisant a
I’expression linguistique “surtoutsi J € R”. La
région R induit une restriction D’ de I’ensemble
de données D, en considérant uniquement les
données satisfaisant la contrainte de valeur ex-
primée par R. Le principe consiste 2 maximiser
a la fois le support du motif considéré I sur D',
le nombre d’objets dans D’ et la densité des
données dans R.

La méthode proposée s’inscrit dans un cadre
supervis€.  Elle est donc plus proche de
I’identification de partition floue telle que pro-
posé dans [13] que des regles d’association
quantitatives. Elle est basée également sur des
outils de morphologie mathématique, comme
détaillé dans les sections suivantes. Elle ex-
ploite aussi un filtre alterné appliqué a une tran-
scription tenant compte de la densité des don-
nées.

4 'Transcription

Etant donné un motif graduel I, un chemin
maximal D identifié par GRITE [4] par exem-
ple et un attribut A pour lequel un intervalle
d’intérét est recherché, 1I’information du chemin
est codée a travers un processus de transcription
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en un mot composé des symboles {+, —, o}.
4.1 Représentation symbolique

Afin de prendre en compte la densité, nous pro-
posons de générer des objets fictifs : on les in-
sere entre les objets de la base de données pour
garantir que I’écart entre deux valeurs succes-
sives observées pour I’attribut A soit inférieur
ou égal a e ol e est un écart minimum fixé par
I’utilisateur, appelé écart de base.

On ordonne les objets selon leur valeur

pour [Dattribut considéré A, le ieme
caractere est ensuite obtenu comme la
transcription du ¢eme objet, comme

— si
+ 81 oeD

— si (0 D)A(A,p < Alo) < Aup)
o sinon

o est un objet fictif

ou A,,p et Ay p représentent respectivement
les valeurs minimale et maximale de A sur D.
Le symbole o code les données en dehors des
limites du chemin traité : il est nécessaire pour
traiter le cas de plusieurs chemins maximaux
(voir la section 6).

Les données a droite de la Figure 2 conduisent
par exemple au mot v pour e = 2.

4.2 Définition du support d’un mot

L’objectif décrit dans la sous-section 3.3 peut
alors étre transposé a la représentation d’un
chemin en un mot : la restriction de I’ensemble
de données correspond a une sous-partie du
mot, et |D’| a sa longueur a laquelle on soustrait
le nombre d’objets fictifs insérés. Le support
restreint SGp/(1) est égal a la proportion de +
dans cette sous-partie.

Formellement, en notant un mot v, NP(v) le
nombre de + qu’il contient et N F'(v) son nom-
bre d’objets fictifs, le support des motifs gradu-
els est étendu aux mots comme supp(v)
NP()/(Jv] = NF(v)).

L’objectif est alors d’extraire des séquences
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de + consécutifs en tolérant quelques sym-
boles — : 1l est alors possible d’augmenter
la taille de la sous-séquence considérée, avec
une diminution limitée de la proportion de +.
Comme détaillé ci-dessous, de tels effets de
lissage peuvent étre obtenus en appliquant un
opérateur ¢, conduisant a v’ @(v) afin de
fusionner les séquences de + proches, puis
en identifiant la plus longue séquence de +
dans o', S(v'), et en évaluant la séquence
correspondante dans v, S,(v’), avec un sup-

port NP(5,(v"))/(|Su(v)| = NF(Sy(v)))-

5 Morphologie mathématique

Cette section présente les outils de morpholo-
gie mathématique proposés pour répondre a
I’ objectif global décrit dans la section 3.3, ainsi
que leurs propriétés et leur pertinence.

La morphologie mathématique [18] a été large-
ment utilisée pour le traitement d’images et
I’analyse fonctionnelle. Les opérateurs utilisés
ici sont des transpositions des opérateurs clas-
siques au cas unidimensionnel et s’appliquent a
des mots obtenus a I’issue d’une transcription
de I'univers numérique.

5.1 Opérateurs considérés

Etant donné un mot défini sur {+,—, 0},
I’opérateur d’érosion, noté FEry, diminue la
taille des séquences de + en remplagant leurs
extrémités par des — : pour tout m entier posi-
tif, indiquant le nombre de + du mot considéré

+m - -
+m - -
+" o

+m+2

o _|_m+1
+m+1 o

_> P P
_> @)
_> J— J—

Les deux dernieres lignes montrent la spéci-
ficité du symbole o qui n’est pas modifié.

Er,, ol n est un parametre entier, désigne la
combinaison de n érosions successives : elle ef-
face les séquences de + de longueur inférieure
a 2n, chacun de leurs éléments étant progres-
sivement remplacé par —.

Réciproquement, 1’opérateur de dilatation,
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noté Di, diminue les séquences de — et allonge
les séquences de + : pour tout m > 0

+ - + — + + "+ o+
o "+ — o =™ 4+ +
+ =" o — + + T oo

Dz, est la combinaison de n dilatations suc-
cessives ; elle efface les séquences de — de
longueur inférieure a 2n.

L’opérateur d’ouverture est défini, comme
dans la morphologie mathématique classique,
par Ouwv, Di,, o Er,. Par rapport au
mot initial, I’opérateur d’ouverture fusionne les
séquences de — séparées par des séquences de
moins de 2n +. Réciproquement, I’opérateur de
fermeture est défini comme Fer, = Er,oD1, :
il fusionne les séquences de + séparées par des
séquences de moins de 2n —.

Le filtre alterné est la combinaison récursive
d’ouvertures et de fermetures :

n=1
n>1

Filty = Fery o Ouvy
Filt,, = Fer,, o Ouv, o Filt,_;

Une combinaison Fer, o Quwv, supprime
d’abord les séquences de + de longueur in-
férieure a 2n, puis regroupe les séquences de +
de longueur supérieure a 2n + 1, si elles sont
séparées par moins de 2n symboles —.

5.2 Propriétés

Il faut noter que le filtre alterné est a la fois
tolérant et exigeant lorsque n est élevé. En effet,
il permet, d’une part, de remplacer de longues
séquences de — dans des séquences de + : il
est tolérant aux — dans les blocs de +. D’autre
part, pour effectuer de telles modifications, les
séquences de — doivent €tre entourées par de
longues séquences de + : il est exigeant pour
fusionner les séquences de 4. C’est la raison
pour laquelle il représente un compromis en-
tre la longueur et la proportion de symboles +,
fournissant un outil intéressant pour extraire les
intervalles d’intérét de caractérisation.



22emes rencontres francophones sur la Logique Floue et ses Applications (LFA 2013), 10-11 octobre 2013, Reims, France

La combinaison d’ouvertures et de fermetures
conduit de plus a une asymétrie intéressante
du filtre F4lt, : les séquences courtes de +
sont inconditionnellement remplacées par des
séquences de —, alors que le remplacement de
séquences courtes de — impose des conditions
sur la longueur des séquences de + qui les en-
tourent. Cette propriété est tres pertinente dans
le contexte de la caractérisation qui se concen-
tre sur les symboles +, et est liée a I’obligation
de ne pas dégrader la valeur du support lorsque
les séquences de + sont fusionnées en ajoutant
quelques symboles —. En effet, alors qu’un
opérateur de fermeture fusionne les séquences
de + indépendamment de leur longueur, ce qui
peut conduire a de longues séquences avec un
support faible, le filtre alterné permet de fusion-
ner les séquences de — uniquement sous la con-
dition qu’elles soient entourées de séquences de
+ plus longues.

6 Etape de post-traitement : agré-
gation de multiples chemins

Dans le cas général, un motif graduel est basé
sur plusieurs chemins complets [17], qui peu-
vent correspondre a plusieurs intervalles carac-
téristiques.  Cette section décrit 1’opérateur
d’agrégation proposé pour combiner les résul-
tats obtenus a partir de ces chemins.

La fonction d’agrégation, Agg, s’applique a
des mots définis sur {+, —, o} ayant la méme
longueur, égale a la somme du nombre d’objets
dans le jeu de données D et du nombre d’objets
fictifs ajoutés. Elle s’applique successivement
a chaque élément de la séquence et fournit en
sortie un mot défini sur {+, @}. Le symbole &
dénote les valeurs sur lesquelles le motif n’est
pas caractérisé. La fonction Agg proposée est
symétrique et définie comme suit, pour toutes
les paires possibles de symboles

S1
S9 +o0o———0o0
Agg(si1, $2)++002D

L’intervalle de caractérisation est finalement
défini par ses limites, définies comme les
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valeurs minimale et maximale de I’ attribut con-
sidéré.

7 Expérimentations et résultats

Nous avons effectué une étude expérimen-
tale de la méthode de caractérisation pro-
posée. L’analyse des résultats est basée sur la
comparaison des supports des motifs graduels
avant et apres caractérisation et le nombre de
motifs extraits dans chacun des cas.

7.1 Données

Nous avons utilis€ une base de données
réelles météorologiques de la station de
Saint-Germain-des-Prés téléchargée a partir
du site http://www.meteo-paris.com/ile-de-
france/station-meteo-paris/pro. Elle con-
tient 2133 observations réalisées pendant 8
jours, décrites par 22 attributs numériques
tels que la température (C'), la pluie (mm),
I’humidité (%), la pression (hPa) ou la vitesse
du vent (km/h).

7.2 Motifs extraits

Pour les expérimentations, nous fixons le seuil
de support graduel minimal a 20% et I’ordre
du filtre a n = 4. L’écart de base e est fixé
a I’écart moyen entre deux valeurs successives
pour chaque attribut.

835 motifs sont extraits avant la caractérisa-
tion ; 461 sont enrichis par une clause de carac-
térisation, ce qui correspond a plus de 55% des
motifs extraits. Les motifs caractérisés peuvent
étre illustrés par les exemples suivants : (i) plus
la température est élevée, moins la vitesse du
vent est élevée surtout si la vitesse du vent
appartient a [1,7.4], SG = 36.3%, SGp =
86.2%; (i) moins I’humidité est élevée, moins
la température est élevée surtout si la tem-
pérature appartient a [9,11.8], SG = 22.8%,
SGpr = 76.5%; (iii) plus la pression est élevée,
plus la température est élevée surtout si la tem-
pérature appartient a [13,19.2], SG = 22%,
SGp = 76%.
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Figure 3: Supports des motifs graduels avant
(abscisses) et apres (ordonnées) caractérisation.

7.3 Comparaison de SGp et SGp

La Figure 3 compare les supports graduels des
motifs avant et apres caractérisation. Elle mon-
tre bien que tous les supports graduels obtenus
apres caractérisation sont supérieurs a ceux
avant caractérisation. Ceci confirme la validité
accrue des motifs graduels. Le SG le plus élevé
avant caractérisation est de 42.4%, en revanche,
le SG le plus élevé apres caractérisation est

de 86.2%, qui lui est bien supérieur.
7.4 Résultats de variation de I’écart de base

La méthode proposée dépend du parametre e,
qui détermine le nombre d’objets fictifs intro-
duits et donc le niveau de prise en compte de
la densité : plus la valeur de e est faible, plus
la contrainte imposée par la densité est impor-
tante. Si e est inférieur a 1’écart minimal ob-
servé entre deux données consécutives, €,,in,
aucune clause de caractérisation ne peut Etre
identifiée : les objets transcrits par des + sont
tous séparés par des objets fictifs transcrits par
des —, et aucune séquence de + n’est identifice.
Si e est supérieur a 1’écart maximal, e,,,,, en-
tre deux valeurs successives, aucun objet fictif
n’est introduit, et la densité n’a pas d’influence
sur le résultat, aussi, le nombre de clauses de
caractérisation identifiées est maximal.

De facon plus précise, quand e est faible, les
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Tableau 1: Nombre de motifs caractérisés
extraits en fonction de 1’écart utilisé e pour
I’ attribut “vitesse du vent”

0.01|0.005|e,:n, = 0.003
37| 7 0

e €maz = 0.1
nb motifs 51

longueurs des séquences identifiées sont de plus
en plus faibles car de nombreux objets fictifs
sont ajoutés ; de plus, le support est faible égale-
ment. Aussi, le nombre de clauses de caractéri-
sation identifiées diminue.

A titre d’exemple, le tableau 1 montre le nom-
bre de motifs caractérisés extraits en fonction de
la valeur de e, pour I’attribut “vitesse du vent”.

8 Conclusion et travaux futurs

Dans cet article, nous avons proposé une
nouvelle approche pour la caractérisation des
motifs graduels, en utilisant la clause de
caractérisation ‘‘surtout si”, afin d’extraire
plus d’information résumant un ensemble de
données. Elle repose sur [I'identification
d’intervalles d’intérét pour les attributs appa-
raissant dans le motif considéré et vérifiant une
contrainte de densité des données. Nous avons
proposé un support graduel de caractérisation
pour mesurer la pertinence de ces motifs et in-
terprété la caractérisation comme une validité
accrue du motif. L’approche proposée est basée
sur les outils de morphologie mathématique.

N

Une premiere perspective consiste a étudier
la sélection des valeurs des parametres de
I’approche proposée, en particulier I’ordre du
filtre n. Une autre perspective de ce travail con-
siste a caractériser les motifs avec une clause
non incluse dans le motif a caractériser, par ex-
emple : “plus la température augmente, plus la
pression diminue, surtout si I’humidité appar-
tient a [50,65]”. Cela souléve des problemes
concernant le temps de calcul et la consomma-
tion mémoire, et dépend de la facon d’éliminer
efficacement les motifs caractérisés non perti-
nents des leur détection.
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Résumé :

L’analyse de données nécessite une phase exploratoire
pour effectuer des rapprochements par similarité et ex-
traire les informations pertinentes. Dans cette commu-
nication, nous proposons une approche par graphes sur
un échantillon de données. Les graphes sont construits a
partir de données floues. Dans une premiere étape, nous
fuzzifions des données multidimensionnelles qualitatives
ou quatitatives. Par une opération d’agrégation, nous
définissons ensuite un indice de représentativité dans
I’échantillon. Le voisinage de chaque donnée est défini
par a-coupes. Enfin nous connectons chaque donnée a
son voisin le plus représentatif pour construire un graphe
dépendant du seuil « utilisé. Cette approche est illustrée
par une étude sur I’insulinothérapie dans le cas du diabete
de type 2 des personnes agées.

Mots-clés :

Données multidimensionnelles, Fuzzification,
Agrégation, Graphe, Représentants
Abstract:

Data analysis requires an exploratory phase to make
connections between similar data and extract relevant in-
formation. In this paper, we propose an approach based
on graphs of data. The graphs are constructed from fuzzy
data. In a first step, we fuzzify both qualitative and quati-
tative multidimensional data. Then we define an index of
representativeness within the data samples using an ag-
gregation operator. The neighborhood of each data is de-
fined by a-cuts. Finally we connect each data to its most
representative neighbor to build a graph which depends
on the used threshold «.. This approach is exemplified to
study insulino-therapy in the case of type 2 diabetes in
the elderly.

Keywords:

Multidimensional Data, Fuzzification, Agregation,
Graph, Representatives

1 Introduction

L’analyse de données nécessite généralement
une phase exploratoire pour déterminer le trai-
tement le plus adapté. Dans ce contexte, la
logique floue est souvent mise a contribution
pour gérer I’incertitude et I'imprécision, elle
permet aussi une évaluation plus flexible des
similarités entre objets [2]. Classiquement la
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relation de similarité au sens de Zadeh [1]
est symétrique. Dans cette communication, la
contrainte de symétrie sera levée : a l'aide
d’opérateurs d’agrégation, nous proposons une
méthode pratique utilisant le flou pour définir
un indice de similarité entre données multidi-
mensionnelles, sans se préoccuper de la pro-
priété de symétrie. Une proposition d’analyse
exploratoire des données est ensuite développée
en utilisant cet indice de similarité.
A Tlinstar des méthodes de raisonnement
base de cas [3], I'indice de similarité per-
met d’extraire de 1’échantillon des observa-
tions ou données particulieres. Ces observations
représentent :
— soit des regroupements de données,
— soit des données individuelles (i.e. des cas
rares).
Cette communication prolonge nos travaux sur
la représentativité des données [8], communica-
tion dans laquelle ces observations particulieres
sont appelées représentants de 1’échantillon.
Plusieurs remarques préliminaires peuvent étre
soulignées dans ce type d’approche de I’analyse
exploratoire des données. Les cas rares peuvent
étre tres nombreux dépassant largement 10% de
I’effectif total (par exemple 18% dans [11]). Les
connaissances a priori sont minimales comme
dans le démarrage a froid d’un raisonnement a
base de cas ou d’un systeme de recommanda-
tion. Aucun clustering préalable n’est imposé,
contrairement aux approches par typicalité [7].
Si I’approche proposée vise a imposer peu de
contraintes, en revanche elle nécessite une étape
d’interprétation des résultats qui sera propre
a chaque application. Comme pour toute ana-
lyse exploratoire, une étape de visualisation est
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impérative. Cette étape peut étre sophistiquée
comme dans [6] ou au contraire tres simple
comme nous le proposons dans cette com-
munication. Nous développons une méthode
de construction de graphes de similarité pour
structurer I’échantillon et permettre d’obser-
ver des connexions induites entre données par
notre indice de similarité. Notre objectif est de
rendre plus facile ’exploration d’un ensemble
des données et de faciliter ’interprétation par
des représentations graphiques simplifiées.

2 Données multidimensionnelles et
domaine de définition

Soit £ un échantillon de n données défini par :

E = {X; /1 < i < n}. Les données appar-

tiennent a un espace de dimension p. Autrement

dit, chaque donnée X appartenant a £ a p com-
posantes. Ainsi la donnée X est définie par :

X = (x,)1<r<p- Les composantes d’une donnée

X sont :

— soit quantitatives et définies dans un inter-
valle de R. La valeur quantitative x, appar-
tient alors a un domaine D, ou : D,
[a, by].

— soit qualitatives. La composante z, appar-
tient alors a un domaine D, avec D,
{1,2,3,....,v} ot v est le nombre de valeurs
que peut prendre ..

Le domaine de définition de I’échantillon E est

alors défini par : Q [T (D,) ou JJ est le

1<r<p
produit cartésien des p domaines des compo-

santes.

3 Fuzzification des données

Une valeur qu’elle soit quantitative ou qualita-
tive est souvent imprécise et incertaine et il est
classique de la représenter soit par un nombre
flou, soit par une quantité floue.

Soit une donnée X de I’échantillon E. Cha-
cune des p composantes z, de X peut ainsi étre
représentée par un sous-ensemble flou de son
domaine D,. La fonction d’appartenance a ce
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sous-ensemble flou est alors telle que :

D, — [0,1]

:ul“r : (1)

Dans cet article, ces sous-ensembles flous sont
normés avec : pi, (z,) = 1.

En utilisant une classique méthode d’agrégation
(voir par exemple [4] ou [5]), nous proposons de
définir X comme une donnée floue de £ dont la
fonction d’appartenance iy est définie par :

E — [0,1]
Y o— px(Y)

Hx: )

X et Y étant deux observations de E. S1 X =
(z,) etY = (y.) avec 1 < r < p, nous propo-
sons de définir px sur E par :

px(Y) = agreg(pie, (yr)) 3)

avec agreg comme opérateur d’agrégation des
p degrés d’appartenance. Pour illustrer cette
communication, nous utilisons une approche
tres empirique ou agreg est simplement la
moyenne arithmétique.

4 Indice de similarité

Cette fuzzification de la donnée X donne lieu
a plusieurs remarques. L’observation X est
considérée comme une donnée floue sur F et
non sur le domaine 2. Ce sous-ensemble flou
de F est normé car pix (X) = 1 pour la méthode
agreg. Soient deux observations X et Y de F,
le sous-ensemble flou associé a X définit une
relation valuée de comparaison de Y avec X et :
— Y estsimilaire a X si px(Y) =1,

— et Y estdissimilaire 2 X si ux(Y) =0.
Ainsi px définit un indice de similarité a X.
La relation de similarité induite sur £ n’est pas
nécessairement symétrique car yix (Y') n’est pas
toujours égal a py (X).

5 Indice de représentativité dans
I’échantillon

En agrégeant les données floues de £, on définit
un sous-ensemble flou dont la fonction d’appar-
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tenance est :

p: E — [0,1]
X — uX) @
avece
u(X) = agreg(px, (X)) (5)

pour 1 < i < n avec la méthode d’agrégation
notée agreg. Le couple (FE,u) définit alors
un échantillon flou de données (sous-ensemble
flou de E). Dans cette communication, nous
utilisons de nouveau la moyenne arithmétique
comme opérateur d’agrégation.

Deux remarques découlent des propriétés
élémentaires des opérateurs d’agrégation. Plus
I’observation X est similaire aux autres obser-
vations de FE, plus p(X) est proche de 1. Si
X était similaire a toutes les données de FE,
alors on aurait ;(X) = 1. Plus I’observation
X est dissimilaire des autres observations de F,
plus 1(X) est proche de 0. Si X était dissimi-
laire a toutes les données de E, alors on aurait
pu(X) = 0. La valeur 1 (X) devient alors un in-
dicateur de similarité de X avec I’ensemble F
dans sa globalité. Dans cet article (X)) est ap-
pelé un indice de représentativité de X dans E.

6 Voisinage d’une donnée et graphe
de voisinage

Soit X une observation de ' considérée comme
une donnée floue (voir partie 3) de fonction
d’appartenance jx. Une a-coupe définit un voi-
sinage de X dans E par :

Va(X) ={Y € E/ux(Y) = o}  (6)

Va(X) n’est pas vide et contient au moins X.
Pour chaque valeur de o, on définit alors un
graphe sur I/ en connectant chaque donnée X
a la donnée voisine Zx ayant la plus grande
représentativité :

Zx = argmax(pu(Y))
YeVa(X)

(7

Ce graphe a plusieurs composantes connexes.
Nous noterons par k le nombre de composantes
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connexes. On remarque que, dans chaque com-
posante connexe, il existe une et une seule
donnée qui est connectée a elle-méme. Ces
données connectées a elles-mémes sont ap-
pelées représentants de E.

Si o = 1, alors k£ = n, il y a n représentants
dans E. Si a = 0, alors £k = 1, il y a un seul
représentant dans £ (aux cas d’égalités pres).
Dans cette approche exploratoire de £, o per-
met de définir les représentants de .

7 Application

Nous avons appliqué cette approche a des
données médicales extraites d’une étude en
cours au CHU de Reims [12] et portant sur le
diabete de type 2 chez des sujets 4gés sous trai-
tement insulinique.

En 2030, ’OMS estime qu’il y aura 438 mil-
lions de personnes touchées par le diabete. En
France en 2009, plus de 3,5 millions de per-
sonnes sont diabétiques dont 26% ont plus de 76
ans [9]. La plupart des systemes d’aide a I’in-
sulinothérapie concernent le diabete de type 1
[10]. Pour concevoir un systeme d’aide aux pa-
tients diabétiques de type 2, nous avons entre-
pris une premiere étude prospective dans le but
de modéliser leur insulinothérapie.

Dans cette communication, nous présentons

les résultats obtenus sur un échantillon de 44

données (44 sujets diabétiques de type 2, agés

de plus de 65 ans). Les variables sont :

— I’age en années modélisé par un nombre flou
triangulaire (age — 10, age, age + 10),

— le poids en kg modélisé a I’aide d’une fonc-
tion trapezoidale (poids — 10, poids — 2,
poids + 2, poids + 10),

— D’objectif glycémique modélisé par un
trapeze dépendant des limites minimales
et maximales fixées par 1’équipe médicale
(0bJmin — 0.1, 0bJpmin + 0.1, 0bjmaer — 0.1,
Objma:r + 01),

— le sexe en variable binaire avec deux valeurs
Ooul,

— la dose basale en unités d’insuline modélisée
par un trapeze (basal —5, basal —1, basal+1,
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basal + 5),

— la dose bolus en unités d’insuline modélisée
par un trapeze (bolus—>5, bolus—1, bolus+1,
bolus + b),

— la durée du diabete en années modélisée par
un trapeze (duree — 6, duree — 2, duree + 2,
duree + 6),

— la glycémie HbAlc en % modélisée par un
trapeze (HbAlc—0.5, HbAlc—0.2, HbAlc+
0.2, HbAlc + 0.5),

— la fonction rénale rénale M DRD modélisée
par un trapeze (M DRD — 7, MDRD — 2,
MDRD +2, MDRD +T7),

— la présence de traitement associé metvic en
variable binaire,

— la présence de complication I DM AV C' en
variable binaire.

La méthode de traitement décrite dans

cette communication a €été appliquée a cet

échantillon. Apres I’étape de fuzzification de
chaque donnée, nous procédons au calcul de

I’indice de représentativité de chaque individu

dans 1’échantillon, puis a la construction du

graphe de similarité pour différentes valeurs
du parametre «. Les figures 1(a), 1(b) et

1(c) représentent les graphes obtenus avec

a =035, a=0.42et a = 0.60.

Lorsque o augmente, la taille des voisinages

diminue et le nombre de représentants (i.e.

le nombre de composantes connexes du

graphe) augmente. Le graphique de la figure 2

représente 1’évolution du nombre de compo-

santes connexes en fonction des valeurs de a.

On constate la propriété triviale suivante :

— lorsque « 1, chaque individu est un
représentant et il y a n représentants,

— lorsque o = 0, il a un seul représentant dans
tout I’ensemble.

Dans cette application, nous ne disposons pas

d’information a priori nous permettant de choi-

sir une valeur de . Empiriquement, nous avons
fixé o 0.42. Au dela de cette valeur, une
faible augmentation de o provoque un morcel-

lement important du graphe. Elle correspond a

une sorte de valeur limite au dela de laquelle

le graphe de similarité est instable ou trop peu
structuré.
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Le graphe de la figure 1(b) représente donc
le graphe de similarité de notre étude permet-
tant de relier les cas médicaux étudiés. La
premiere information apportée est relative aux
arcs orientés du fait de I’'indice de similarité non
nécessairement symétrique. Ces arcs permettent
de rattacher chaque patient a un autre, relative-
ment a sa situation < insulinique >. Le seconde
information est celle fournie par le regroupe-
ment opéré par les composantes connexes. On
obtient ainsi des groupes de patients dont cha-
cun possede un représentant. Cette information
est comparable a celle obtenu par les méthodes
de clustering de type k-medoids [12]. L’intérét
de notre approche est de structurer la base de
cas des diabétiques et de permettre au prati-
cien d’observer des analogies et des similitudes
parmi les patients de I’étude. Nous sommes bien
dans une approche a base de cas.

L’observation du graphe de similarité sur la
base de patients diabétiques nous montre qu’un
patient (ici représenté par le numéro 39)
a une position particuliere puisqu’il est un
représentant isolé (i.e. une composante connexe
constituée d’un seul sommet). Ce type d’in-
formation permet d’extraire de la base de cas,
les patients dont la situation n’est pas as-
similable a celle d’autres sujets, ils consti-
tuent des cas atypiques (par exemple : ca-
ractéristiques physiques différentes, prescrip-
tion insulinique particuliere) qu’il convient de
considérer différemment.

L’étude de ces individus isolés peut étre
complétée en observant I’évolution de leur
nombre et de 1’état d’isolement lorsque « varie.
La courbe de la figure 3 représente 1’évolution
du nombre de sommets isolés en fonction de
la valeur de «. L’allure de cette courbe est
proche de celle représentant le nombre de
composantes connexes (le nombre de compo-
santes connexes augmente d’autant plus que le
nombre de sommets isolés croit). Les figures
4 et 5 représentent les évolutions des demi-
degrés intérieurs, des demi-degrés extérieurs et
de I’état d’isolement des individus 39 et 43.
Le demi-degré extérieur (courbe bleue) ne peut
(par construction) pas €tre supérieur strictement
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(a) a=0.35

(b) a =0.42

(¢) a =0.60

Figure 1 — Graphes de similarité pour différentes valeurs de «.

a 1 (on ne relie un sommet qu’a un seul autre).
Cette courbe représente donc, pour un individu,
la valeur de o a partir de laquelle cet indi-
vidu devient un représentant. Ainsi deés que les
demi-degrés extérieurs et intérieurs sont nuls si-
multanément, le sommet est isolé. La courbe
magenta représente cette information. On peut
ainsi constater que I’individu 39 est isolé beau-
coup plus tot que I’individu 43 (i.e. pour une va-
leur de « plus petite). Ce constat traduit une aty-
picité plus prononcée de I'individu 39 lorsque
I’on compare sa situation avec celle de 1’indi-
vidu 43 (on remarque d’ailleurs que le som-
met 39 est isolé dés @ ~ 0.4 avant de I’étre
définitivement a o ~ 0.55).

8 Conclusion

On a défini, d’une part, un graphe a partir d’'un
échantillon de données multidimensionnelles
qualitatives et quantitatives et, d’autre part, une
méthode pour extraire des représentants de cet
échantillon. La méthode met a contribution le
concept de flou pour définir un indice de simi-
larité entre données. La méthode permet de :

— structurer I’échantillon £ par un graphe,

— sous-échantillonner E par k représentants,

— faciliter la compréhension de £ a I’aide de
ces k exemples qui ne sont pas des prototypes
virtuels.

Ainsi les représentants peuvent permettre

de définir une typologie a Iintérieur de
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Nombre de composantes connexes

Figure 2 — Nombre de composantes connexes
en fonction de o (3 composantes connexes
lorsque v = 0.42).
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Nombre de sommets isolés
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Figure 3 — Nombre de sommets isolés en fonc-
tion de a.

Sommet 39

Isolé

Figure 4 — Demi-degré intérieur, demi-degré
extérieur et fonction indicatrice de 1’isolement
de I’individu 39.
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Sommet 43

Demi-degré intérieur
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Demi-degré extérieur
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T S S
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0.0
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Figure 5 — Demi-degré intérieur, demi-degré
extérieur et fonction indicatrice de 1’isolement
de I’individu 43.

I’échantillon E. Cette approche sans contrainte
préalable de clustering ne nécessite pas d’effec-
tif important et s’adapte a I’initialisation d’une
base de cas pour un démarrage a froid d’un rai-
sonnement.

Cette approche exploratoire d’un échantillon de
données est illustrée par 1’utilisation de données
médicales en vue de déterminer les différents
modeles de traitements insuliniques dans le cas
du diabete de type 2 chez des sujets agés. Ce cas
d’étude est complexe car ces patients souffrent
souvent de multiples pathologies rendant dif-
ficile I’extraction d’une typologie insulinique
pour le diabete de type 2. Si I’'insulinothérapie
est si difficile a modéliser dans le type 2, cela
tient a la fois a la variabilité biologique in-
trinseque et a la conjugaison des phénomenes
d’insulino-résistance et d’insulino-sensibilité
spécifique de chaque patient. L”approche que
nous proposons est une premiere étape explo-
ratoire vers la modélisation de I’aide a I’insuli-
nothérapie pour des patients diabétiques agés.
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