Barycentrically associative aggregation functions

Jean-Luc Marichal Bruno Teheux

University of Luxembourg

Let X be a nonempty set and let

$$X^* = \bigcup_{n \in \mathbb{N}} X^n$$

 $F: X^* \to X$ is *B-associative* (Bemporad, 1926) if

$$F(x_1,\ldots,x_p, y_1,\ldots,y_q, z_1,\ldots,z_r) = F(x_1,\ldots,x_p,\underbrace{F(y_1,\ldots,y_q)\ldots,F(y_1,\ldots,y_q)}_{q \text{ times}},z_1,\ldots,z_r)$$

Example:
$$F(x_1, ..., x_n) = \frac{x_1 + \cdots + x_n}{n}$$
 on $X = \mathbb{R}$

Notation

We regard n-tuples \mathbf{x} in X^n as n-strings over X

```
0-string: \varepsilon
1-strings: x, y, z, ...
n-strings: \mathbf{x}, \mathbf{y}, \mathbf{z}, ...
```

 X^* is endowed with concatenation

Example:
$$\mathbf{x} \in X^n$$
, $y \in X$, $\mathbf{z} \in X^m \implies \mathbf{x}y\mathbf{z} \in X^{n+1+m}$
$$\mathbf{x}^n = \mathbf{x} \cdots \mathbf{x} \qquad (n \text{ times})$$

$$|\mathbf{x}| = \text{length of } \mathbf{x}$$

Functions of multiple arities

Let

$$X^* = \bigcup_{n \in \mathbb{N}} X^n$$

$$F\colon X^*\to X$$

Components of F:

$$F_n: X^n \to X$$

$$F_n = F|_{X^n}$$

F is described by its components $F_1, F_2, F_3, \ldots, F_n, \ldots$

 $F: X^* \to X$ is *B-associative* if

$$F(xyz) = F(xF(y)^{|y|}z) \quad \forall xyz \in X^*$$

Theorem

 $F \colon X^* \to X$ is B-associative if and only if

$$F(xy) = F(F(x)^{|x|}F(y)^{|y|}) \quad \forall xy \in X^*$$

Interpretation?

Theorem (Kolomogorov-Nagumo, 1930)

 $F \colon \mathbb{R}^* \to \mathbb{R}$ is B-associative and every F_n is symmetric, continuous, idempotent (i.e., $F_n(x^n) = x$), and strictly increasing in each argument if and only if there exists a continuous and strictly monotone function $\varphi \colon \mathbb{R} \to \mathbb{R}$ such that

$$F_n(\mathbf{x}) = \varphi^{-1}\left(\frac{1}{n}\sum_{i=1}^n \varphi(x_i)\right)$$

$\varphi(x)$	Mean
X	arithmetic
x^2	quadratic
x^k	root-power
1/x	harmonic
$\log(x)$	geometric
exp(x)	exponential

Theorem (M., Mathonet, and Tousset, 1999)

 $F\colon \mathbb{R}^* \to \mathbb{R}$ is B-associative and every F_n is nondecreasing in each argument and satisfies

$$F_n(rx_1+s,\ldots,rx_n+s) = r F_n(x_1,\ldots,x_n)+s \qquad r,s \in \mathbb{R}, \ r>0,$$

if and only if either

- (i) $F_n = \min$ for every $n \in \mathbb{N}$, or
- (ii) $F_n = \max$ for every $n \in \mathbb{N}$, or
- (iii) $F_n(\mathbf{x}) = \sum_i w_i(\theta) x_i$ for every $n \in \mathbb{N}$, where

$$w_i(\theta) = \frac{\theta^{i-1}(1-\theta)^{n-i}}{\sum_i \theta^{j-1}(1-\theta)^{n-j}}$$

 $F: X^* \to X$ is *B-associative* if

$$F(xyz) = F(xF(y)^{|y|}z) \quad \forall xyz \in X^*$$

Theorem

We can assume that $|xz| \leq 1$ in the definition above

That is, $F: X^* \to X$ is B-associative if and only if

$$F(\mathbf{y}) = F(F(\mathbf{y})^{|\mathbf{y}|})$$

$$F(x\mathbf{y}) = F(xF(\mathbf{y})^{|\mathbf{y}|})$$

$$F(\mathbf{y}z) = F(F(\mathbf{y})^{|\mathbf{y}|}z)$$

Let Y be a nonempty set

Definition. We say that $F: X^* \to Y$ is **B**-preassociative if

$$|\mathbf{y}| = |\mathbf{y}'|$$
 and $F(\mathbf{y}) = F(\mathbf{y}') \Rightarrow F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$

Example:
$$F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2$$
 $(X = Y = \mathbb{R})$

Proposition

 $F \colon X^* \to Y$ is B-preassociative if and only if

$$|\mathbf{x}| = |\mathbf{x}'|$$
 and $F(\mathbf{x}) = F(\mathbf{x}')$
 $|\mathbf{y}| = |\mathbf{y}'|$ and $F(\mathbf{y}) = F(\mathbf{y}')$ \Rightarrow $F(\mathbf{x}\mathbf{y}) = F(\mathbf{x}'\mathbf{y}')$

Remark. If $F: X^* \to X$ is B-associative, then it is B-preassociative

Proof. Suppose
$$|\mathbf{y}| = |\mathbf{y}'|$$
 and $F(\mathbf{y}) = F(\mathbf{y}')$
Then $F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})^{|\mathbf{y}|}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y}')^{|\mathbf{y}'|}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$

Proposition

 $F\colon X^* \to X$ is B-associative if and only if it is B-preassociative and $F(F(\mathbf{x})^{|\mathbf{x}|}) = F(\mathbf{x})$

Proof. (Necessity) OK. (Sufficiency) We have $F(\mathbf{y}) = F(F(\mathbf{y})^{|\mathbf{y}|})$ Hence, by B-preassociativity, $F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})^{|\mathbf{y}|}\mathbf{z})$

Proposition

If $F\colon X^*\to Y$ is B-preassociative, then so is $F\circ (g,\dots,g)$ for every function $g\colon X\to X$, where

$$F \circ (g, \ldots, g) : x_1 \cdots x_n \mapsto F_n(g(x_1) \cdots g(x_n))$$

Example: $F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2$ $(X = Y = \mathbb{R})$

Proposition

If $F\colon X^*\to Y$ is B-preassociative, then so is $g\circ F$ for every function $g\colon Y\to Y$ such that $g|_{\operatorname{ran}(F)}$ is constant or one-to-one

Example:
$$F_n(\mathbf{x}) = \exp(x_1^2 + \dots + x_n^2)$$
 $(X = Y = \mathbb{R})$

Proposition

Assume $F: X^* \to Y$ is B-preassociative If F_n is constant, then so is F_{n+1}

Proof. If $F_n(\mathbf{y}) = F_n(\mathbf{y}')$ for all $\mathbf{y}, \mathbf{y}' \in X^n$, then $F_{n+1}(x\mathbf{y}) = F_{n+1}(x\mathbf{y}')$ and hence F_{n+1} depends only on its first argument...

Open question:

Find necessary and sufficient conditions on a B-preassociative function F for F_{n+1} to be completely determined by F_n

We have seen that $F: X^* \to X$ is B-associative if and only if it is B-preassociative and $F(F(\mathbf{x})^{|\mathbf{x}|}) = F(\mathbf{x})$

Remark. The latter condition can be rewritten as

$$F_n(F_n(\mathbf{x})^n) = F_n(\mathbf{x}) \quad \forall n \in \mathbb{N}$$

or

$$\delta_{F_n}(F_n(\mathbf{x})) = F_n(\mathbf{x}) \quad \forall n \in \mathbb{N}$$

Relaxation of $\delta_{F_n} \circ F_n = F_n$:

$$\operatorname{ran}(\delta_{F_n}) = \operatorname{ran}(F_n) \quad \forall n \in \mathbb{N}$$

Theorem

Let $F: X^* \to Y$ be a function. The following assertions are equivalent:

- (i) F is B-preassociative and satisfies $ran(\delta_{F_n}) = ran(F_n)$
- (ii) F_n can be factorized into $F_n = f_n \circ H_n$, where $H \colon X^* \to X$ is B-associative and $f_n \colon \operatorname{ran}(H_n) \to Y$ is one-to-one. In this case, we have $f_n = \delta_{F_n}|_{\operatorname{ran}(H_n)}$ and $F_n = \delta_{F_n} \circ H_n$

Open problems

- (1) Suppress the condition $ran(\delta_{F_n}) = ran(F_n)$ in this theorem
- (2) Find necessary and sufficient conditions on δ_{F_n} for a function F of the form $F_n = \delta_{F_n} \circ H_n$, where H is B-associative, to be B-preassociative.

Axiomatizations of function classes

Theorem

 $F\colon \mathbb{R}^* \to \mathbb{R}$ is B-preassociative and every F_n is symmetric, continuous, and strictly increasing in each argument

if and only if there exist continuous and strictly increasing function $\varphi \colon \mathbb{R} \to \mathbb{R}$ and $\psi_n \colon \mathbb{R} \to \mathbb{R}$ ($n \in \mathbb{N}$) such that

$$F_n(\mathbf{x}) = \psi_n \left(\sum_{i=1}^n \varphi(x_i) \right)$$

Open problem

Find new axiomatizations of classes of B-preassociative functions from existing axiomatizations of classes of B-associative functions

