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Landmarks

Suppose that we want to study N objects by means of statistical shape
analysis.

A landmark is a point of correspondence on each object that matches
between and within populations.

Denote the number of landmarks by k.

Every object oi in a space V of dimension m is thus represented in a space
of dimension k ·m by a set of landmarks:

∀i = 1 . . .N, oi = {l1 . . . lk}, lj ∈ Rm. (1)
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Removing the scale

1 For every i , i = 1, ...,N, the size of each object is determined as the
euclidian norm of their landmarks.

‖oi‖ =

√√√√ k∑
j=1

‖l ij ‖2
m. (2)

2 The landmarks are standardized by dividing them by the size of their
object:

l̃ ij =
l ij
‖oi‖

. (3)
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Removing the location

To remove the location of the object, the landmarks are centered by the
following procedure:

1 For every i , i = 1, ...,N, we compute the the arithmetic mean z i of
the k standardized landmarks of the ith object :

z i =
1

k

k∑
j=1

l̃ ij (4)

2 We center all the landmarks by subtracting this mean:

l
i
j = l ij − z i (5)
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Remark

We do not need to remove rotation in our application, since we use MR
images of the tumors which are frontal or transversal images.

We have no rotated images in our sample.

Hence, we are able to work completely in the standard three-dimensional
space with the euclidian norm.

We do not need any further procrustes analysis nor any complicated
stochastic geometry.
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The mean shape

To compare the standardized and centered sets of landmarks, we need to
define the mean shape of all the objects and a distance function which
allows us to evaluate how ”near” every object is from this mean shape.

The term ”mean” is here used in the sense of Fréchet (1948).

If X demotes a random variable defined on a probability space (Ω,F ,P)
with values in a metric space (Ξ, d), an element m ∈ Ξ is called a mean of
x1, x2, ..., xk ∈ Ξ if

k∑
j=1

d(xj ,m)2 = inf
α∈Ξ

k∑
j=1

d(xj , α)2. (6)

That means that the mean shape is defined as the shape with the smallest
variance of all shapes in a group of objects.
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The algorithm of Ziezold (1994)
To begin, we fix the mean of all the standardized and centered objects as

starting value: m̃0 = 1
N

N∑
i=1

o i .

We then undertake the following steps for i = 1, . . . ,N

1

m̃ 7→ wi (m̃) =

{ 〈m̃,oi 〉
|〈m̃,oi 〉| if 〈m̃, oi 〉 6= 0

1 if 〈m̃, oi 〉 = 0
(7)

2

m̃ 7→ T (m̃) =
1

N

N∑
i=1

wi (m̃)oi (8)

3

m̃r = T (m̃r−1), r = 1, 2, . . . (9)

The stopping rule is m̃ = T (m̃).
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Example

The green triangle is the mean shape of the group of three triangles
(yellow, red and blue).
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Renal tumors in early childhood

Wilms-tumors (nephroblastoma) growing next to the kidney.

Genetic cause. There are four types of tissue (a, b, c, d) and three
stages of development (I, II, III).

Many renal tumors in the childhood are diagnosed as Wilms (130 per
year).

Renal cell carcinoma growing also next to the kidney.

Are rare in childhood (12 per year) but frequent for adults.

Neuroblastoma growing next to nerve tissue.

Quite frequent (80 per year).

Clear cell carcinoma growing next to bones.

Rare (12 per year).
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The data

Research sample:

Magnetic resonance images of 51 cases of tumors in frontal
perspective (36 Wilms, 6 neuroblastoma, 5 clear cell carcinoma and
3 renal cell carcinoma).

MRI of a renal tumor in frontal view.
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The three-dimensional object

Three-dimensional model of a tumor.
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The platonic body C60

For every object, we consider the platonic body C60 whose center lies in
the center of the object. This platonic body has 60 edges which give us 60
three-dimensional landmarks for every object.
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The landmarks

We take as landmarks the 60 points on the border of each object closest
to the edges of the platonic body.

Only real measured points on the border of the tumor are taken, the
approximated part of the three-dimensional object is not used.
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Examples of tumor shapes

Examples of the mathematical views of the shapes of three tumors.
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Our mean shape

The ”mathematical” mean shape of our sample.
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The mean shape in 3D

The mean shape of our sample.
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Distance from the mean shape for the Wilms tumors
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Ziezold’s test for differentiation of the types of tumors

We consider to subsets A and B of the sample of size n and N − n
respectively.

The subset A is a realization of a distribution P of the distances to the
mean shape and the subset B is an independent realization of a
distribution Q of the distances to the mean shape.

The test hypotheses are:

Hypothesis: H0 : P = Q
Alternative: H1 : P 6= Q
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Ziezold’s test for differentiation of the types of tumors

1 Computing the mean shape m0 of subset A.

2 Computing the u-value

u0 =
n∑

j=1

card
(
bk : d(bk ,m0) < d(aj ,m0)

)
.

3 Determination of all the possibilities of dividing the set into two
subset with the same proportion.

4 Comparing the u0-value to all possible u-values. Computing the rank
(small u-value mean a small rank).

5 Calculate the p-value for H0. pr=i = 1

(N
n)

for i = 1, . . . ,
(N

n

)
, where r

is the rank for which we assume a uniform distribution.
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Wilms tumors against non Wilms tumors

Comparing the Wilms tumors to the mean shape of the non
Wilms tumors.

u = 185 rank = 970

Random sample: n = 1000 p = 0, 97.

Comparing the non Wilms tumors to the mean shape of the
Wilms tumors.

u = 257 rank = 1− 2

Random sample: n = 1000 p = 0, 002.
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Wilms tumors against Neuroblastoma

Comparing the Wilms tumors to the mean shape of the
Neuroblastoma.

u = 2 rank = 78

Random sample: n = 1000 p = 0.078.

Comparing the Neuroblastoma to the mean shape of the Wilms
tumors.

u = 257 rank = 15− 40

Random sample: n = 1000 p = 0.040.
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Influence of the different landmarks

Hypothesis H0 : The kth landmark of X is influenced by the other
landmarks with respect to the distance

Alternative H1 : The kth landmark of X is not influenced by the other
landmarks with respect to the distance
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Influence of the different landmarks for Wilms tumors

Landmark Ap Rp p-value

No.1 0.00049721 65 0.65
No.2 0.000498159 61 0.61
No.3 0.00049902 60 0.60
No.4 0.000496514 73 0.73
No.5 0.00050129 70 0.70

No landmark has any influence.

All the landmarks have the same importance.
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Conclusion

Three-dimensional statistical shape analysis seems to be a good tool for
differentiating the renal tumors appearing in early childhood.

Wilms tumors can be clearly differentiated from neuroblastoma.

It is possible to differentiate the whole set of non-Wilms tumors from
the mean shape of Wilms tumors.

But we cannot use statistical shape analysis to say if a given general
tumor is not a Wilms tumor.

For the Wilms tumors, all the landmarks have the same importance.
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